16 research outputs found

    Vehicle Tracking Based on Fusion of Magnetometer and Accelerometer Sensor Measurements With Particle Filtering

    Full text link

    Distributed Kalman Filters over Wireless Sensor Networks: Data Fusion, Consensus, and Time-Varying Topologies

    Get PDF
    Kalman filtering is a widely used recursive algorithm for optimal state estimation of linear stochastic dynamic systems. The recent advances of wireless sensor networks (WSNs) provide the technology to monitor and control physical processes with a high degree of temporal and spatial granularity. Several important problems concerning Kalman filtering over WSNs are addressed in this dissertation. First we study data fusion Kalman filtering for discrete-time linear time-invariant (LTI) systems over WSNs, assuming the existence of a data fusion center that receives observations from distributed sensor nodes and estimates the state of the target system in the presence of data packet drops. We focus on the single sensor node case and show that the critical data arrival rate of the Bernoulli channel can be computed by solving a simple linear matrix inequality problem. Then a more general scenario is considered where multiple sensor nodes are employed. We derive the stationary Kalman filter that minimizes the average error variance under a TCP-like protocol. The stability margin is adopted to tackle the stability issue. Second we study distributed Kalman filtering for LTI systems over WSNs, where each sensor node is required to locally estimate the state in a collaborative manner with its neighbors in the presence of data packet drops. The stationary distributed Kalman filter (DKF) that minimizes the local average error variance is derived. Building on the stationary DKF, we propose Kalman consensus filter for the consensus of different local estimates. The upper bound for the consensus coefficient is computed to ensure the mean square stability of the error dynamics. Finally we focus on time-varying topology. The solution to state consensus control for discrete-time homogeneous multi-agent systems over deterministic time-varying feedback topology is provided, generalizing the existing results. Then we study distributed state estimation over WSNs with time-varying communication topology. Under the uniform observability, each sensor node can closely track the dynamic state by using only its own observation, plus information exchanged with its neighbors, and carrying out local computation

    Real-time mobility tracking algorithms for cellular networks based on Kalman filtering

    No full text

    Traffic pattern prediction in cellular networks.

    Get PDF
    PhDIncreasing numbers of users together with a more use of high bit-rate services complicate radio resource management in 3G systems. In order to improve the system capacity and guarantee the QoS, a large amount of research had been carried out on radio resource management. One viable approach reported is to use semi-smart antennas to dynamically change the radiation pattern of target cells to reduce congestion. One key factor of the semi-smart antenna techniques is the algorithm to adjust the beam pattern to cooperatively control the size and shape of each radio cell. Methods described in the literature determine the optimum radiation patterns according to the current observed congestion. By using machine learning methods, it is possible to detect the upcoming change of the traffic patterns at an early stage and then carry out beamforming optimization to alleviate the reduction in network performance. Inspired from the research carried out in the vehicle mobility prediction field, this work learns the movement patterns of mobile users with three different learning models by analysing the movement patterns captured locally. Three different mobility models are introduced to mimic the real-life movement of mobile users and provide analysable data for learning. The simulation results shows that the error rates of predictions on the geographic distribution of mobile users are low and it is feasible to use the proposed learning models to predict future traffic patterns. Being able to predict these patterns mean that the optimized beam patterns could be calculated according to the predicted traffic patterns and loaded to the relevant base stations in advance
    corecore