169,766 research outputs found

    Importance driven environment map sampling

    Get PDF
    In this paper we present an automatic and efficient method for supporting Image Based Lighting (IBL) for bidirectional methods which improves both the sampling of the environment, and the detection and sampling of important regions of the scene, such as windows and doors. These often have a small area proportional to that of the entire scene, so paths which pass through them are generated with a low probability. The method proposed in this paper improves this by taking into account view importance, and modifies the lighting distribution to use light transport information. This also automatically constructs a sampling distribution in locations which are relevant to the camera position, thereby improving sampling. Results are presented when our method is applied to bidirectional rendering techniques, in particular we show results for Bidirectional Path Tracing, Metropolis Light Transport and Progressive Photon Mapping. Efficiency results demonstrate speed up of orders of magnitude (depending on the rendering method used), when compared to other methods

    Dynamic Weights in Multi-Objective Deep Reinforcement Learning

    Full text link
    Many real-world decision problems are characterized by multiple conflicting objectives which must be balanced based on their relative importance. In the dynamic weights setting the relative importance changes over time and specialized algorithms that deal with such change, such as a tabular Reinforcement Learning (RL) algorithm by Natarajan and Tadepalli (2005), are required. However, this earlier work is not feasible for RL settings that necessitate the use of function approximators. We generalize across weight changes and high-dimensional inputs by proposing a multi-objective Q-network whose outputs are conditioned on the relative importance of objectives and we introduce Diverse Experience Replay (DER) to counter the inherent non-stationarity of the Dynamic Weights setting. We perform an extensive experimental evaluation and compare our methods to adapted algorithms from Deep Multi-Task/Multi-Objective Reinforcement Learning and show that our proposed network in combination with DER dominates these adapted algorithms across weight change scenarios and problem domains

    Monte Carlo Localization in Hand-Drawn Maps

    Full text link
    Robot localization is a one of the most important problems in robotics. Most of the existing approaches assume that the map of the environment is available beforehand and focus on accurate metrical localization. In this paper, we address the localization problem when the map of the environment is not present beforehand, and the robot relies on a hand-drawn map from a non-expert user. We addressed this problem by expressing the robot pose in the pixel coordinate and simultaneously estimate a local deformation of the hand-drawn map. Experiments show that we are able to localize the robot in the correct room with a robustness up to 80

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Efficiently learning metric and topological maps with autonomous service robots

    Get PDF
    Models of the environment are needed for a wide range of robotic applications, from search and rescue to automated vacuum cleaning. Learning maps has therefore been a major research focus in the robotics community over the last decades. In general, one distinguishes between metric and topological maps. Metric maps model the environment based on grids or geometric representations whereas topological maps model the structure of the environment using a graph. The contribution of this paper is an approach that learns a metric as well as a topological map based on laser range data obtained with a mobile robot. Our approach consists of two steps. First, the robot solves the simultaneous localization and mapping problem using an efficient probabilistic filtering technique. In a second step, it acquires semantic information about the environment using machine learning techniques. This semantic information allows the robot to distinguish between different types of places like, e. g., corridors or rooms. This enables the robot to construct annotated metric as well as topological maps of the environment. All techniques have been implemented and thoroughly tested using real mobile robot in a variety of environments
    corecore