47,925 research outputs found

    State-recycling and time-resolved imaging in topological photonic lattices

    Get PDF
    Photonic lattices - arrays of optical waveguides - are powerful platforms for simulating a range of phenomena, including topological phases. While probing dynamics is possible in these systems, by reinterpreting the propagation direction as "time," accessing long timescales constitutes a severe experimental challenge. Here, we overcome this limitation by placing the photonic lattice in a cavity, which allows the optical state to evolve through the lattice multiple times. The accompanying detection method, which exploits a multi-pixel single-photon detector array, offers quasi-real time-resolved measurements after each round trip. We apply the state-recycling scheme to intriguing photonic lattices emulating Dirac fermions and Floquet topological phases. In this new platform, we also realise a synthetic pulsed electric field, which can be used to drive transport within photonic lattices. This work opens a new route towards the detection of long timescale effects in engineered photonic lattices and the realization of hybrid analogue-digital simulators.Comment: Comments are welcom

    Quantum Transport Enhancement by Time-Reversal Symmetry Breaking

    Get PDF
    Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.Comment: 6+5 page

    Bulk detection of time-dependent topological transitions in quenched chiral models

    Get PDF
    The topology of one-dimensional chiral systems is captured by the winding number of the Hamiltonian eigenstates. Here we show that this invariant can be read-out by measuring the mean chiral displacement of a single-particle wavefunction that is connected to a fully localized one via a unitary and translational-invariant map. Remarkably, this implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases. We confirm experimentally these results in a quantum walk of structured light

    Two-photon quantum walks in an elliptical direct-write waveguide array

    Full text link
    Integrated optics provides an ideal test bed for the emulation of quantum systems via continuous-time quantum walks. Here we study the evolution of two-photon states in an elliptic array of waveguides. We characterise the photonic chip via coherent-light tomography and use the results to predict distinct differences between temporally indistinguishable and distinguishable two-photon inputs which we then compare with experimental observations. Our work highlights the feasibility for emulation of coherent quantum phenomena in three-dimensional waveguide structures.Comment: 8 pages, 7 figure

    Classically entangled optical beams for high-speed kinematic sensing

    Full text link
    Tracking the kinematics of fast-moving objects is an important diagnostic tool for science and engineering. Existing optical methods include high-speed CCD/CMOS imaging, streak cameras, lidar, serial time-encoded imaging and sequentially timed all-optical mapping. Here, we demonstrate an entirely new approach to positional and directional sensing based on the concept of classical entanglement in vector beams of light. The measurement principle relies on the intrinsic correlations existing in such beams between transverse spatial modes and polarization. The latter can be determined from intensity measurements with only a few fast photodiodes, greatly outperforming the bandwidth of current CCD/CMOS devices. In this way, our setup enables two-dimensional real-time sensing with temporal resolution in the GHz range. We expect the concept to open up new directions in photonics-based metrology and sensing.Comment: v2 includes the real-time measurement from the published version. Reference [29] added. Minor experimental details added on page

    Statistical Analysis of Dynamic Actions

    Get PDF
    Real-world action recognition applications require the development of systems which are fast, can handle a large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters, and necessitate as short as possible learning stage. In this paper, we suggest such an approach. We regard dynamic activities as long-term temporal objects, which are characterized by spatio-temporal features at multiple temporal scales. Based on this, we design a simple statistical distance measure between video sequences which captures the similarities in their behavioral content. This measure is nonparametric and can thus handle a wide range of complex dynamic actions. Having a behavior-based distance measure between sequences, we use it for a variety of tasks, including: video indexing, temporal segmentation, and action-based video clustering. These tasks are performed without prior knowledge of the types of actions, their models, or their temporal extents

    Fast Escape from Quantum Mazes in Integrated Photonics

    Get PDF
    Escaping from a complex maze, by exploring different paths with several decision-making branches in order to reach the exit, has always been a very challenging and fascinating task. Wave field and quantum objects may explore a complex structure in parallel by interference effects, but without necessarily leading to more efficient transport. Here, inspired by recent observations in biological energy transport phenomena, we demonstrate how a quantum walker can efficiently reach the output of a maze by partially suppressing the presence of interference. In particular, we show theoretically an unprecedented improvement in transport efficiency for increasing maze size with respect to purely quantum and classical approaches. In addition, we investigate experimentally these hybrid transport phenomena, by mapping the maze problem in an integrated waveguide array, probed by coherent light, hence successfully testing our theoretical results. These achievements may lead towards future bio-inspired photonics technologies for more efficient transport and computation.Comment: 13 pages, 10 figure
    corecore