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Quantum mechanics still provides new unexpected effects when considering the transport of energy and
information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric
Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how
breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control,
enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex
networks are presented. This opens new prospects for more efficient methods to transport energy and
information.

nderstanding quantum transport is key to developing more robust communication networks, more

effective energy transmission, and improved information processing devices. Continuous time quantum

walks have become a standard model to study and understand quantum transport phenomena'®. Time-
reversal symmetric (TRS) Hamiltonians have characterized all quantum walk models to date. This symmetry
implies that the site-to-site transfer probability at time t = T is the same as at time t = — T, thereby prohibiting
directional biasing. Here we introduce and study continuous time “chiral” quantum walks whose dynamics break
TRS. Our findings show that the breaking of TRS offers the possibility of directional biasing in the unitary
dynamics and allows one to suppress or enhance transport relative to the standard quantum walk. One subtlety
of this effect is that time-reversal asymmetry cannot affect the site-to-site transport in some simple cases, such as
linear chains and trees - this is proven in the Methods Section. Prior efforts in the area of quantum transport have
focused on controlling and directing transport using either in situ tunable Hamiltonians’® or tailoring specific
initial states'®. In contrast to known approaches, we consider states initially prepared in the standard site-basis and
time-independent Hamiltonians that induce time-asymmetric evolutions in the unitary part of their dynamics.

While the effect of TRS breaking dynamics in the context of quantum walks has not been investigated, it has
been studied intensely in the condensed matter literature. These investigations range from the very early work of
Peierls", through the famous examples of the Hofstadter butterfly'> and the Quantum Hall"® effect, up to recent
research on TRS breaking in topological insulators'* and on artificial gauge fields in optical lattice potentials'®. In
contrast to the present study, these works always concentrated on many-body dynamics in regular lattices, while
in the context of quantum walks, one is instead interested in characteristically different scenarios: e.g. the
dynamics of single individual particles or excitons (usually starting from a single site) moving on complicated
networks (sometimes with a bath included). The examples we study are from a variety of modern research topics
(e.g. photosynthetic exciton transport and complex networks) and considerably extend the domain of application
of known results about TRS breaking beyond solid state applications.

To demonstrate the effect of TRS breaking, we chose five examples which illustrate the main ideas of direc-
tionality, suppression and enhancement of transport. The first example is a unitary quantum switch where the
phase, that is the time reversal asymmetry parameter, controls the direction of quantum transport. The second
example examines transport in a linear chain of triangles, showing a 633% transport speed-up for the chiral
quantum walk. In connection with this, we also demonstrate complete suppression of chiral quantum walks on
loops with an even number of sites. We then consider a system widely studied in the exciton transport literature:
the Fenna-Matthew-Olsen complex (FMO). Although this naturally occurring system is highly efficient, we find
that the introduction of chiral terms allows for an enhancement of transport speed by 7.68%. It has recently been
shown that the effect does appear in similar light harvesting complexes'®. Finally, to investigate the robustness of
the effect of TRS breaking on transport, we consider randomly generated small-world networks. By appending
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time-reversal asymmetric terms to only the edges of the network
connected to the final site, we could increase the speed of the site-
to-site transport on these randomly generated graphs significantly,
up to 130%.

Results

In the standard literature on continuous time quantum walks'~>, the
time-independent walk Hamiltonian is defined by a real weighted
adjacency matrix J of an underlying undirected graph,

sites
How =) _ Jun(|n) (m|+ |m)(n]). (1)
n,m
The condition that the hopping weights J,,,,, are real numbers implies
that the induced transitions between two sites are symmetric under
time inversion. We can break this symmetry while maintaining the
hermitian property of the operator by appending a complex phase to
an edge: J,;,, — T €0nm resulting in a continuous time chiral quantum
walk (CQW) governed by

Heaw= Y Jun€™ [n)(m| +Jume ™" [m)(nl. — (2)

When acting on the single exciton subspace, the Hamiltonian given
in Eq. (2) can be expressed in terms of the spin-half Pauli matrices:

Heqw = Z],,m cos(Oum) (0505 + %0, ) +
n,m

(3)
> Jumsin(Oum) (505, — %)

which arises in a variety of physical systems when magnetic fields are
considered. We explore a proof-of-concept experimental demon-
stration of this effect in Supplementary Information, Section S2.

In the CQW framework, we investigate coherent quantum
dynamics and incoherent dynamics within the Markov approxi-
mation. Both types of evolution are included in the Lindblad equa-
tion'”":

1 .

%p(t) =L{p}=—ilHcow.p)+ Y LipLy— 2 (LiLkarpLzlLk)

¢ (4)
where p(t) is the density operator describing the state of the system at
time t and L; are Lindblad operators inducing stochastic jumps
between quantum states. For example, using the usual terminology
of Markovian processes, we call site t a trap if it is coupled to site s by
the Lindblad jump operators, Ly = |£)(s|. The site-to-site transfer
probability, P,,_.,,,(f) = (m|p(t)|m), gives the occupancy probability
of site m at time ¢ with initial condition p(0) = |n){n|. Note that the
present study, while utilizing open system dynamics, is not related to
the enhancement of transport due to quantum noise®** which has
been well studied in the context of photosynthesis***’. Here the
emphasis is instead on the effect the breaking time-reversal sym-
metry of the Hamiltonian dynamics can have on transport.

To quantify the transport properties of quantum walks, we use the
half-arrival time, Ty, as the earliest time when the occupancy prob-
ability of the target site is one half. We will also make use of the
transport speed, v,,,, defined as the reciprocal of 1,,,.

We now introduce a quantum switch which enables directed trans-
port and could, in principle, be used to create a logic gate and offer
future implementations of transport devices to store and process
energy and information. Figure 1 presents an example of this switch.
The value of a phase (¢"’) appended to a single control edge across the
junction allows selective biasing of transport through the switch. The
maximal biasing occurs at |0| = 7/2, and the sign determines the
direction. The first maxima of Ps ,x(t) (transfer probability from site
S to E) in the unitary dynamics without traps can be enhanced by
134% or suppressed to 91% with respect to the non-chiral case. When
considering traps in the Lindbladian evolution, the optimal transport

Figure 1 | The quantum switch. (a) Directional biasing: enhanced
transport in the preferred direction. (b) The plot shows the occupancy
probability Ps . of site Ewith the particle initially starting from site Swith
and without a sink (dashed and solid lines, respectively). This evolution is
time-reversal asymmetric as replacing t with — ¢ results in the particle
moving from site S towards site F. When starting at site E, the particle
evolves towards site F. By replacing t with —t, a particle initially at site E
evolves towards the initial configuration (b). To recover time-reversal
symmetric transition probabilities in the evolution (b), requires that one
also performs the antiunitary operation® on the Hamiltonian mapping 0
to —0. This has the same effect as reflecting the configuration horizontally
across the page while leaving the site labels intact.

efficiency is 81.4% in the preferred direction. The switch violates TRS
as Pg .g(—1) # Ps_,g(t). By using Ps ,5(—t) = Pg_5(t) and the sym-
metry of the configuration Py .4(f) = Ps .g(f), we conclude that
transport is biased towards the opposite pole when running back-
wards in time, see Figure 1 Note that the behaviour of the switch is
largely independent of the length of the connecting wires.

We will now utilize the directional biasing of the triangle to give an
example of a speed-up of chiral walks. Using the composition of eight
triangular switches as depicted in Figure 2a, by simultaneously vary-
ing all phases along the red control edges to the same value, we
examine the effect of time-reversal asymmetry on transport. We find
that the occupation probability as a function of 0 is symmetric about
+7/2 with the negative value corresponding to maximal enhance-
ment and the positive value to maximal suppression. Unlike the
occupation probability maxima in the switch, here the first apexes
are separated in time. When we include trapping, the half-arrival
time is reduced from the non-chiral value 7,,, = 38.1 to 5.2 which
represents a 633% enhancement. To conclude this section we focus
on suppression of transport by chiral quantum walks. A good
example is the polygon with an even number of sites. In this case,
complete suppression can be achieved by appending a phase of 7 to
one of the links in the cycle; thereby rendering it impossible for the
quantum walker to move to the diametrically opposite site. This is a
discrete space version of a known effect in Aharonov-Bohm loops™.
The proof that the site-to-site transfer probability is zero in this case
for all times also in our discrete-space and open-system walks can be
found in the Methods Section. However, note that the discrete even-
odd effect, which implies that only loops comprised of odd particles
can exhibit transport enhancement, and only even loops may exhibit
complete suppression, has no known continuous analog.

In natural and synthetic excitonic networks such as photosyn-
thetic complexes and solar cells, we are faced with non-unitary
quantum evolution due to dissipative and decoherent interaction
with the environment. Studies have shown that dissipative
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is applied to the red edges simultaneously in the triangle chain. The plot

illustrates the occupancy probability at the end site E as a function of time for different values of the phase 0 with and without trapping (dashed and solid
lines, respectively). (b) shows the occupancy difference with respect to the time reversal symmetric Hamiltonian of the FMO complex. We use an
optimization procedure to enhance the transport. While holding the magnitude of the couplings constant, we optimize two sets of phases, A; and A,,
which correspond to seven and three edges with an enhancement at 7,,, of 3.25% and 2.25%, respectively.

quantum evolution surpasses both classical and purely quantum
transport (for interesting recent examples see***'). A widely studied
process of such dissipative exciton transport is the one occurring in
the Fenna-Matthews-Olsen complex (FMO), which connects the
photosynthetic antenna to a reaction centre in green sulphur bac-
teria®>*~*°. Due to the low light exposure of these bacteria, there is
evolutionary pressure to optimize exciton transport. Therefore, the
site energies and site-to-site couplings in the system are evolutio-
narily optimized, yielding a highly efficient transport*. However, it
is an open question whether or not there occurs time-reversal
asymmetric hoping terms in these systems, and whether these are
optimized. Recent 2D Electronic Spectroscopy results lead to the
conclusion that, e.g., in the light harvesting complex LH2 hopping
terms with complex phases are indeed present's. Here we ask
whether such TRS breaking interactions may further enhance the
efficiency of the light harvesting process. We consider the tra-
ditional real-hopping Hamiltonian modeling transport on the
FMO, and allow for TRS breaking by introducing complex phases
and find that the transport speed can be further increased. We
study the seven site model of the FMO using an open system
description that includes the thermal bath, trapping at the reaction
centre, and recombination of the exciton®***”. By performing a
standard optimization procedure (as outlined in the Supplemen-
tary Information, Section S3) that varies the phase on a subset of
seven edges, we found a combination of phases where the transport
speed, vy ,, is enhanced by 7.68%. In Figure 2b, the enhancement of
the time dependent occupation probability is shown for the chiral

quantum walk. We note that optimization over only three edges
already changes the transport speed by 5.92%, see Supplementary
Information, Section S3.

Complex network theory has been used in abstract studies of
quantum information science; see for example®>*'. Here we turn to
the theory of complex networks to determine if optimization proce-
dures limited to small subsets of edges will generally lead to
improved transport in larger and possibly randomly generated net-
works. We found a positive answer when testing the site-to-site
transport between oppositely aligned nodes in the Watts-Strogatz
model’”. This family of small-world networks continuously connects
a class of regular cyclic graphs to that of completely random net-
works (Erdés-Rényi models®) by changing the value of the rewiring
probability.

We numerically investigated graphs with 32 nodes, average degree
four and range over rewiring probability p considering 200 different
graph realizations for each value of p. An example with p = 0.2 is
depicted in Figure 3a. Here the occupancy of a sink connected to site
E is compared between the chiral walk and its achiral counterpart.
The particle begins at site S and we perform the optimization of the
phases only on edges connected to site E. In the case of the chiral
quantum walk, the sink reaches half-occupancy in 54.8% less time on
average.

Discussion
In all the examples studied, we found that the effect that TRS break-
ing has on transport is non-trivially affected by the topology of the
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Figure 3 | Transport enhancement of the chiral quantum walk is robust
across randomly generated Watts-Strogatz networks. An example of this
small-world network, with rewiring probability p = 0.2, is depicted in (a).
The transfer probability P from site S to the sink connected to site E is
plotted in a realization of the network. (b) shows the average enhancement
of half arrival time (At,,,) for different values of p.

network. In this regard, a key observation is the following. If two
Hamiltonians are related by on-site unitary transformations map-
ping |n) to €™ |n), then the site-to-site transition probabilities will be
identical. This fact provides a tool to reduce the effective space of
phase parameters for controlling transport. In the Methods Section,
we provide a more formal treatment of this symmetry of the site-to-
site transition probabilities. For instance, we prove that the site-to-
site transfer probability is insensitive to phases in tree graphs. For
bipartite graphs the phases can have an effect, however, the dynamics
still remains time-reversal symmetric.

A further consequence is that the sums of phases along a chosen
orientation of a loop are the unique invariants under on-site unitary
transformations. For example, placing phases on the edges of the
triangle loop of the quantum switch is equivalent to placing the

\/ |

61(01 +an)

sum of them on just one edge. In a wide range of cases and particularly
in all examples we considered, we found strong evidence of the robust-
ness the effect has on transport. For instance, the examples in Figure
3b show that in the Watts-Strogatz model, the transport enhancement
due to the time reversal asymmetry of the Hamiltonian is insensitive
to changes of the rewiring probability p and the clustering coefficient
measuring the density of triangles in the graph. Finally, additional
calculations show that scale free networks such as the Barabasi-
Albert model*, show a similar transport enhancement, indicating
robustness also with respect to the degree distribution.

This study pioneers the exploration of a new degree of freedom
that allows for a significant improvement of control in the engineer-
ing of quantum transport. The fact that we were able to optimize and
control transport by adjusting the phase on only a few edges inside a
complex network and that the effect was relevant in a host of exam-
ples adds optimism to the robustness of this approach. Experimental
demonstrations of the effects we predict are within reach of existing
hardware, as outlined in the Supplementary Information, Section S2.

Methods

Analytical methods. Site-to-site transfer probability. The Markovian open-system
dynamics of a continuous time chiral quantum walk is given by the Kossakowski-
Lindblad equation'’~*

L{p}=—i[Hcqw,p] + Z Crn

(n,m)

1, 1,
ELﬂanmpfiananm 5 (5)

<anpL:1m -
where the chiral Hamiltonian Hcqyy is defined in Eq. (2), and the Lindblad operators
are given as L,,,,, = |m)(n| with c,,, = 0. Transport from vertex |S) to vertex |E) during
such dynamics is characterized by the site-to-site transfer probability (STP). In the
unitary case (c,,, = 0) it is given by

Py () =Tr(e™ Moot pgeioantpy) (6)

with ps = [SXS| and pg = |E)XE|, while for the general Markovian case it is

Pos(t) =Tr(¢"{ps} pr)- 7)

Time-reversal symmetry of the unitary achiral dynamics. In the setting of quantum
walks, the time-reversal operator T acts as complex conjugation (with respect to the
vertex basis)?**:

TY o lv)=> al).

veV veV

The antiunitarity of T and 7% = 1 implies that T = T. The time-reversal of a
Hamiltonian H is given as THT'(= THT). The H—THT action is represented in
parameter space by the replacement 0,,,— — 0,,,, in Eq. (2). Thus exactly the achiral
quantum walks are left invariant by this action. The STP’s of H (Ps_,g(t)) and that of
H'=THT(P's_g(t)) are related in the following way:

P'sg(t)=Ps_,p(—t) and P’s_g(t) = Pp_s(t),

which can be verified using Tp, T = p, and the cyclicity of the trace as follows:

\/
| \/d

Figure 4 | Effect of the gauge transformation |n) —¢™|n) on vertex n. Phases on edges can be gauge-transformed without changing the transition
amplitudes, as described in the text. Here we arrange the graph as a tree rooted at d = 0.
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Pls_x(t) =Tr(e—i(THT)tﬂsei(THT)tpE) =Tr(Te™ TpsTe =™ Tpy)
=Tr(e™ TpsTe ™ TpyT) =Tr(e™ pse ™ pp) =Ps_p(—1),

Psg(—t)=Tr(e™ pse ™ pp) =Tr(e M ppe™ pg) = Pp_s(t).

A crucial consequence of the above is that in the case of achiral quantum walks, the
transition probabilities are the same at time f and —t, i.e. Ps_,x(t) = Ps_,p(—t), and
directional biasing is prohibited Ps_,r(t) = Pp_,s(t). However, H # THT' does not
necessarily imply that transition rates are asymmetric in time. This is because THT"
might be gauge-equivalent to H, as will be seen in the next section.

Gauge transformations. Formal gauge transformations, already introduced in the
early work of Peierls"', are useful tools to study our models. Such a transformation
is simply a local change of basis, i.e., a diagonal unitary

Ualm) = ¢ n). ®)
Here we collect a few of its properties and generalize them for the case of open systems
with a Markovian bath. For us the starting point will be that it leaves the STP
invariant. To prove this, let us first note that any unitary basis-change U would induce
a transformation on the Lindblad superoperator £L— L’ with

£{pt=ucL{utpuiut.

Using this and the invariance of localized states under diagonal unitaries
(U;p,Ua=p,), we arrive at

Ps_p(t) :Tr(e“{ps}pE) :Tr(UdED{U;PsUd}U;PE)
=T1’(5£t{ﬂs}U;ﬂEUd> =Tr(e“{ps}pg) =Ps-p(t),

which proves the invariance of the STP under the gauge transformations defined by
Eq. (8).

Under these diagonal transformations, the parameters of the quantum walk
Hamiltonian transform as

Hmn'_’gmﬂ+°‘m_9‘na (9)
as illustrated in Figure 4. The incoherent part of the Lindblad equation (5) does not
change since the Lindblad operators transform as Ly, —¢'* ~*)L,,, and these
phases cancel in Eq. (5), since L,,,, and L} appear paired. Two important properties
of the model now follow: (i) phases on tree graphs can be transformed out completely
and (ii) the sum of phases along loops is invariant under gauge transformations.

The first property is illustrated in Figure 4. Let us take an arbitrary tree graph and
pick a vertex m with only one neighbour. Redraw every other vertex on successive
levels characterized by the distance d of the vertexes from the given vertex m. Note
that the number of edges connecting two vertices, d, is by definition, unique in tree
graphs. In such an arrangement only one edge emanates downwards from a given
vertex on aline of d > 0 so Figure 4 represents the general neighbourhood of a vertex n
having distance d = 1 from m. The indicated gauge transformation with o, = —0
removes the phase from the bottom edge. Then, one iterates the procedure for all
vertices at level d = 2 and consecutively for all levels. In this way, all phases are
removed. For the second property, pick an orientation on a loop of N vertexes and
compute 0 : = Zf\]ﬂ ;41> considering ¢ n+1 = Pn1. A gauge transformation
|n)r—>e™ |n), according to Eq. (9) leads to:

¢n,n+1'_>¢n.n+l +“Vl’ ¢n—1.nH¢n—1,n — Oy,

so the sum 0 remains unaffected.

Numerical methods. We used the Quantum Information Toolkit*. This is a software
package for the Matlab programming language. The optimization procedure used in
the FMO and the Watts-Strogatz examples rely on the Interior-point Optimization
algorithm of the Matlab minimization tool kit. We start the optimization procedure
several times from different randomly chosen points of the parameter space, to reach
the global minimum of cost function with more certainty. Source code for all
simulations done in this work is available upon request.
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