20 research outputs found

    Seguimento ativo de agentes dinâmicos multivariados usando informação vectorial

    Get PDF
    Doutoramento em Engenharia MecânicaO objeto principal da presente tese é o estudo de sistemas avançados de segurança, no âmbito da segurança automóvel, baseando-se na previsão de movimentos e ações dos agentes externos. Esta tese propõe tratar os agentes como entidades dinâmicas, com motivações e constrangimentos próprios. Apresenta-se, para tal, novas técnicas de seguimento dos referidos agentes levando em linha de conta as suas especificidades. Em decorrência, estuda-se dedicadamente dois tipos de agentes: os veículos automóveis e os peões. Quanto aos veículos automóveis, propõe-se melhorar a capacidade de previsão de movimentos recorrendo a modelos avançados que representam corretamente os constrangimentos presentes nos veículos. Assim, foram desenvolvidos algoritmos avançados de seguimento de agentes com recurso a modelos de movimento não holonómicos. Estes algoritmos fazem uso de dados vectoriais de distância fornecidos por sensores de distância laser. Para os peões, devido à sua complexidade (designadamente a ausência de constrangimentos de movimentos) propõe-se que a análise da sua linguagem corporal permita detetar atempadamente possíveis intenções de movimentos. Assim, foram desenvolvidos algoritmos de perceção de pose de peões adaptados ao campo da segurança automóvel com recurso a uso de dados de distâncias 3D obtidos com uma câmara stereo. De notar que os diversos algoritmos foram testados em experiências realizadas em ambiente real.The main topic of this thesis is the study of advanced safety systems, in the field of automotive safety, based on the prediction of the movement and actions of external agents. This thesis proposes to treat the agents as dynamic entities with their own motivations as constraints. As so, new target tracking techniques are proposed taking into account the targets’ specificities. Therefore, two different types of agents are dedicatedly studied: automobile vehicles and pedestrians. For the automobile vehicles, a technique to improve motion prediction by the use of advanced motion models is proposed, these models will correctly represent the constrains that exist in this kind of vehicle. With this goal, advanced target tracking algorithms coupled with nonholonomic motion models were developed. These algorithms make use of vectorial range data supplied by laser range sensors. Concerning the pedestrians, due to the problem complexity (mainly due to the lack of any specific motion constraint), it is proposed that the analysis of the pedestrians body language will allow to detected early the pedestrian intentions and movements. As so, pedestrian pose estimation algorithms specially adapted to the field of automotive safety were developed; these algorithms use 3D point cloud data obtained with a stereo camera. The various algorithms were tested in experiments conducted in real conditions

    Deep Learning Assisted Intelligent Visual and Vehicle Tracking Systems

    Get PDF
    Sensor fusion and tracking is the ability to bring together measurements from multiple sensors of the current and past time to estimate the current state of a system. The resulting state estimate is more accurate compared with the direct sensor measurement because it balances between the state prediction based on the assumed motion model and the noisy sensor measurement. Systems can then use the information provided by the sensor fusion and tracking process to support more-intelligent actions and achieve autonomy in a system like an autonomous vehicle. In the past, widely used sensor data are structured, which can be directly used in the tracking system, e.g., distance, temperature, acceleration, and force. The measurements\u27 uncertainty can be estimated from experiments. However, currently, a large number of unstructured data sources can be generated from sensors such as cameras and LiDAR sensors, which bring new challenges to the fusion and tracking system. The traditional algorithm cannot directly use these unstructured data, and it needs another method or process to “understand” them first. For example, if a system tries to track a particular person in a video sequence, it needs to understand where the person is in the first place. However, the traditional tracking method cannot finish such a task. The measurement model for unstructured data is usually difficult to construct. Deep learning techniques provide promising solutions to this type of problem. A deep learning method can learn and understand the unstructured data to accomplish tasks such as object detection in images, object localization in LiDAR point clouds, and driver behavior prediction from the current traffic conditions. Deep-learning architectures such as deep neural networks, deep belief networks, recurrent neural networks, and convolutional neural networks have been applied to fields including computer vision, speech recognition, natural language processing, audio recognition, social network filtering, and machine translation, where they have produced results comparable with human expert performance. How to incorporate information obtained via deep learning into our tracking system is one of the topics of this dissertation. Another challenging task is using learning methods to improve a tracking filter\u27s performance. In a tracking system, many manually tuned system parameters affect the tracking performance, e.g., the process noise covariance and measurement noise covariance in a Kalman Filter (KF). These parameters used to be estimated by running the tracking algorithm several times and selecting the one that gives the optimal performance. How to learn the system parameters automatically from data, and how to use machine learning techniques directly to provide useful information to the tracking systems are critical to the proposed tracking system. The proposed research on the intelligent tracking system has two objectives. The first objective is to make a visual tracking filter smart enough to understand unstructured data sources. The second objective is to apply learning algorithms to improve a tracking filter\u27s performance. The goal is to develop an intelligent tracking system that can understand the unstructured data and use the data to improve itself

    Comparison of 3D scan matching techniques for autonomous robot navigation in urban and agricultural environments

    Get PDF
    Global navigation satellite system (GNSS) is the standard solution for solving the localization problem in outdoor environments, but its signal might be lost when driving in dense urban areas or in the presence of heavy vegetation or overhanging canopies. Hence, there is a need for alternative or complementary localization methods for autonomous driving. In recent years, exteroceptive sensors have gained much attention due to significant improvements in accuracy and cost-effectiveness, especially for 3D range sensors. By registering two successive 3D scans, known as scan matching, it is possible to estimate the pose of a vehicle. This work aims to provide in-depth analysis and comparison of the state-of-the-art 3D scan matching approaches as a solution to the localization problem of autonomous vehicles. Eight techniques (deterministic and probabilistic) are investigated: iterative closest point (with three different embodiments), normal distribution transform, coherent point drift, Gaussian mixture model, support vector-parametrized Gaussian mixture and the particle filter implementation. They are demonstrated in long path trials in both urban and agricultural environments and compared in terms of accuracy and consistency. On the one hand, most of the techniques can be successfully used in urban scenarios with the probabilistic approaches that show the best accuracy. On the other hand, agricultural settings have proved to be more challenging with significant errors even in short distance trials due to the presence of featureless natural objects. The results and discussion of this work will provide a guide for selecting the most suitable method and will encourage building of improvements on the identified limitations.This project has been supported by the National Agency of Research and Development (ANID, ex-Conicyt) under Fondecyt grant 1201319, Basal grant FB0008, DGIIP-UTFSM Chile, National Agency for Research and Development (ANID)/PCHA/Doctorado Nacional/2020-21200700, Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Span ish Ministry of Science, Innovation and Universities (project RTI2018- 094222-B-I00) for partially funding this research. The Spanish Ministry of Education is thanked for Mr. J. Gene’s pre-doctoral fellowships (FPU15/03355). We would also like to thank Nufri (especially Santiago Salamero and Oriol Morreres) for their support during data acquisitio

    Stereo visual odometry in urban environments based on detecting ground features

    Get PDF
    publisher: Elsevier articletitle: Stereo visual odometry in urban environments based on detecting ground features journaltitle: Robotics and Autonomous Systems articlelink: http://dx.doi.org/10.1016/j.robot.2016.03.004 content_type: article copyright: © 2016 Elsevier B.V. All rights reserved.publisher: Elsevier articletitle: Stereo visual odometry in urban environments based on detecting ground features journaltitle: Robotics and Autonomous Systems articlelink: http://dx.doi.org/10.1016/j.robot.2016.03.004 content_type: article copyright: © 2016 Elsevier B.V. All rights reserved

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Theory, Design, and Implementation of Landmark Promotion Cooperative Simultaneous Localization and Mapping

    Get PDF
    Simultaneous Localization and Mapping (SLAM) is a challenging problem in practice, the use of multiple robots and inexpensive sensors poses even more demands on the designer. Cooperative SLAM poses specific challenges in the areas of computational efficiency, software/network performance, and robustness to errors. New methods in image processing, recursive filtering, and SLAM have been developed to implement practical algorithms for cooperative SLAM on a set of inexpensive robots. The Consolidated Unscented Mixed Recursive Filter (CUMRF) is designed to handle non-linear systems with non-Gaussian noise. This is accomplished using the Unscented Transform combined with Gaussian Mixture Models. The Robust Kalman Filter is an extension of the Kalman Filter algorithm that improves the ability to remove erroneous observations using Principal Component Analysis (PCA) and the X84 outlier rejection rule. Forgetful SLAM is a local SLAM technique that runs in nearly constant time relative to the number of visible landmarks and improves poor performing sensors through sensor fusion and outlier rejection. Forgetful SLAM correlates all measured observations, but stops the state from growing over time. Hierarchical Active Ripple SLAM (HAR-SLAM) is a new SLAM architecture that breaks the traditional state space of SLAM into a chain of smaller state spaces, allowing multiple robots, multiple sensors, and multiple updates to occur in linear time with linear storage with respect to the number of robots, landmarks, and robots poses. This dissertation presents explicit methods for closing-the-loop, joining multiple robots, and active updates. Landmark Promotion SLAM is a hierarchy of new SLAM methods, using the Robust Kalman Filter, Forgetful SLAM, and HAR-SLAM. Practical aspects of SLAM are a focus of this dissertation. LK-SURF is a new image processing technique that combines Lucas-Kanade feature tracking with Speeded-Up Robust Features to perform spatial and temporal tracking. Typical stereo correspondence techniques fail at providing descriptors for features, or fail at temporal tracking. Several calibration and modeling techniques are also covered, including calibrating stereo cameras, aligning stereo cameras to an inertial system, and making neural net system models. These methods are important to improve the quality of the data and images acquired for the SLAM process

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots

    Reconstrução dinâmica de mapa local para o AtlasCar

    Get PDF
    Mestrado em Engenharia MecânicaEste trabalho descreve um método para a reconstrução dinâmica de um mapa local, na vizinhança de um veículo em movimento (AtlasCar ) com recurso a um laser 2D. O mapa local consiste numa nuvem de pontos 3D que é obtida através da acumulação de diversos varrimentos laser à medida que o AtlasCar navega. Para que a nuvem de pontos permita extrair informação útil do mapa, é necessário que a sua construção descreva com elevado rigor a geometria do espaço envolvente. Para tal, é essencial o desenvolvimento de um módulo de software, que forneça ao sistema o estado do veículo enquanto este se move. Este trabalho encontra-se dividido em duas partes principais: melhoria do cálculo da posição do AtlasCar e a monitorização do seu estado em relação ao espaço envolvente. O processo de melhoria do cálculo da posição é feito através da introdução de um sensor inercial, que permite a medição do valor de orientação do carro. A monitorização do estado do veículo relativamente ao ambiente circundante é feito através da medição da altura do chassis do AtlasCar em quatro pontos distintos, permitindo assim a determinação da sua inclinação e a altura média em relação à estrada. O método que se apresenta foi testado e as nuvens de pontos obtidas, mostraram ser bastante fidedignas.This work presents a method for the construction of a dynamic local map using a 2D laser. A local map is a 3D pointcloud that is obtained by the accumulation of several laser scans, while AtlasCar is moving. In order to get a pointcloud that allows the extraction of useful information from the map, it is necessary that the construction describes with a high level of precision the geometry of the surroundings of AtlasCar. To get a high precision pointcloud it is necessary the development of a software module that is responsible to provide the vehicle’s state to the system. This work is divided into two main parts: improvement of the calculation of the AtlasCar position and the development of a system that provides the information of the AtlasCar state relatively to the space around. The improvement of the position calculation was achieved using data from a inercial measurement unit, that measures the orientation of the car relatively to a local magnetic field. The state of the car relatively to the surroundings is obtained through measurements of the chassis height in four different points, allowing the calculation of the inclination and the mean height to the ground. The developed method was tested and the pointclouds obtained were pretty reliable

    Laser-Based Detection and Tracking of Moving Obstacles to Improve Perception of Unmanned Ground Vehicles

    Get PDF
    El objetivo de esta tesis es desarrollar un sistema que mejore la etapa de percepción de vehículos terrestres no tripulados (UGVs) heterogéneos, consiguiendo con ello una navegación robusta en términos de seguridad y ahorro energético en diferentes entornos reales, tanto interiores como exteriores. La percepción debe tratar con obstáculos estáticos y dinámicos empleando sensores heterogéneos, tales como, odometría, sensor de distancia láser (LIDAR), unidad de medida inercial (IMU) y sistema de posicionamiento global (GPS), para obtener la información del entorno con la precisión más alta, permitiendo mejorar las etapas de planificación y evitación de obstáculos. Para conseguir este objetivo, se propone una etapa de mapeado de obstáculos dinámicos (DOMap) que contiene la información de los obstáculos estáticos y dinámicos. La propuesta se basa en una extensión del filtro de ocupación bayesiana (BOF) incluyendo velocidades no discretizadas. La detección de velocidades se obtiene con Flujo Óptico sobre una rejilla de medidas LIDAR discretizadas. Además, se gestionan las oclusiones entre obstáculos y se añade una etapa de seguimiento multi-hipótesis, mejorando la robustez de la propuesta (iDOMap). La propuesta ha sido probada en entornos simulados y reales con diferentes plataformas robóticas, incluyendo plataformas comerciales y la plataforma (PROPINA) desarrollada en esta tesis para mejorar la colaboración entre equipos de humanos y robots dentro del proyecto ABSYNTHE. Finalmente, se han propuesto métodos para calibrar la posición del LIDAR y mejorar la odometría con una IMU
    corecore