1,738 research outputs found

    Evolution of Prehension Ability in an Anthropomorphic Neurorobotic Arm

    Get PDF
    In this paper we show how a simulated anthropomorphic robotic arm controlled by an artificial neural network can develop effective reaching and grasping behaviour through a trial and error process in which the free parameters encode the control rules which regulate the fine-grained interaction between the robot and the environment and variations of the free parameters are retained or discarded on the basis of their effects at the level of the global behaviour exhibited by the robot situated in the environment. The obtained results demonstrate how the proposed methodology allows the robot to produce effective behaviours thanks to its ability to exploit the morphological properties of the robot’s body (i.e. its anthropomorphic shape, the elastic properties of its muscle-like actuators, and the compliance of its actuated joints) and the properties which arise from the physical interaction between the robot and the environment mediated by appropriate control rules

    A shape memory alloy-based biomimetic robotic hand : design, modelling and experimental evaluation

    Get PDF
    Every year more the 400,000 people are subject to an upper limb amputation. Projections foresee that this number may double by the 2050. Infections, trauma, cancer, or complications that arise in blood vessels represent the main causes for amputations. The access to prosthetic care is worldwide extremely limited. This is mainly due to the high cost both of commercially available prostheses and of the rehabilitation procedure which every prostheses user has to endure. Aside from high costs, commercially available hand prostheses have faced high rejection rates, mainly due to the their heavy weight, noisy operation and also to the unnatural feel of the fingers. To overcome these limitations, new materials, such as Shape Memory Alloys (SMAs), have been considered as potential candidate actuators for these kind of devices. In order to provide a contribution in the development of performant and easily affordable hand prostheses, the development of a novel and cost-effective five-fingered hand prototype actuated by Shape Memory Alloy (SMA) wires is presented in this work. The dissertation starts with the description of a first generation of a SMA actuated finger. Structure assemblage and performances in term of force, motion and reactiveness are investigated to highlight advantages and disadvantages of the prototype. In order to improve the achievable performances, a second generation of SMA actuated finger having soft features is introduced. Its structure, a five-fingered hand prosthesis having intrinsically elastic fingers, capable to grasp several types of objects with a considerable force, and an entirely 3D printed structure is then presented. Comparing this prototype with the most important prostheses developed so far, relevant advantages especially in term of noiseless actuation, cost, weight, responsiveness and force can be highlighted. A finite element based framework is then developed, to enable additional structure optimization and further improve the SMA finger performances. On the same time, a concentrated parameters physics-based model is formulated to allow, in the future, an easier control of the device, characterized by strong nonlinearities mainly due to the Shape Memory alloy hysteretic behavior.Jedes Jahr werden weltweit bei mehr als 400.000 Menschen Amputationen der oberen Gliedmaßen durchgefĂŒhrt. Prognosen gehen davon aus, dass sich diese Zahl bis zum Jahr 2050 verdoppeln wird. Hauptursachen der Amputationen sind Infektionen, UnfĂ€lle, Krebs oder Durchblutungsstörungen. Der Zugang zu prothetischer Versorgung ist besonders in den EntwicklungslĂ€ndern stark eingeschrĂ€nkt. Dies liegt vor allem an den hohen Kosten sowohl der im Handel erhĂ€ltlichen Prothesen als auch des Rehabilitationsprozesses, den jeder ProthesentrĂ€ger durchlaufen muss. Neben den hohen Kosten haben kommerziell erhĂ€ltliche Handprothesen aufgrund ihres hohen Gewichts, des lauten Betriebes und auch des unnatĂŒrlichen GefĂŒhls hohe Ablehnungsraten. Um diese EinschrĂ€nkungen zu ĂŒberwinden, wurden neue Materialien, wie z.B. FormgedĂ€chtnislegierungen (SMAs), als potenzielle Materialien fĂŒr den Antrieb von Prothesen untersucht . Um einen Beitrag zur Entwicklung von leistungsfĂ€higen und erschwinglichen Handprothesen zu leisten, wird in dieser Arbeit die Entwicklung eines neuartigen und kostengĂŒnstigen FĂŒnf-Finger-Handprototyps vorgestellt, der durch DrĂ€hte aus FormgedĂ€chtnislegierungen aktiviert wird. Die Doktorarbeit beginnt mit der Beschreibung der ersten Generation eines SMA-aktivierten Fingers. Zuerst wird der Aufbau und das Wirkungsprinzip des SMA Fingers erlĂ€utert und die Leistungs- und BewegungsfĂ€higkeit des Systems untersucht sowie Vor- und Nachteile des Prototyps dargestellt. Anschließend, um die erreichbare LeistungsfĂ€higkeit zu verbessern, wird eine zweite Generation von SMA-gesteuerten Fingern vorgestellt, die eine vollstĂ€ndig in 3D gedruckte Struktur aufweisen. Diese FĂŒnffinger-Handprothese mit inhĂ€rent elastischen Fingern ermöglicht nicht nur das Greifen unterschiedlich geformter Objekte sondern auch das Heben und Halten schwerer GegenstĂ€nde. Dieser neuartige Prototyp wird mit den wichtigsten bisher entwickelten Prothesen verglichen und die relevanten Vorteile insbesondere in Bezug auf gerĂ€uschlose Ansteuerung, Kosten, Gewicht, Reaktionszeit und Kraft hervorgehoben. Abschließend wird ein Finite-Elemente-Modell entwickelt, mit Hilfe dessen die Fingerstruktur weiter optimiert und die LeistungsfĂ€higkeit des SMA-Fingers noch verbessert werden kann. ZusĂ€tzlich wird ein Konzentriertes-Parameter-Modell formuliert, um, in der Zukunft, eine leichtere Regelung des Systems zu ermöglichen. Dieses ist notwendig, da der SMA-Finger starke NichtlinearitĂ€ten aufweist, die auf das hysteretische Verhalten der FormgedĂ€chtnislegierung zurĂŒckzufĂŒhren sind

    BRL/Pisa/IIT SoftHand:A Low-cost, 3D-Printed, Underactuated, Tendon-Driven Hand with Soft and Adaptive Synergies

    Get PDF
    This letter introduces the SRI/Pisa/HT (BPI) SoftHand: a single actuator-driven, low-cost, 3D-printed, tendondriven, underactuated robot hand that can be used to perform a range of grasping tasks. Based on the adaptive synergies of the Pisa/IIT SoftHand, we design a new joint system and tendon routing to facilitate the inclusion of both soft and adaptive synergies, which helps us balance durability, affordability and grasping performance of the hand. The focus of this work is on the design, simulation, synergies and grasping tests of this SoftHand. The novel phalanges are designed and printed based on linkages, gear pairs and geometric restraint mechanisms, and can be applied to most tendon-driven robotic hands. We show that the robot hand can successfully grasp and lift various target objects and adapt to hold complex geometric shapes, reflecting the successful adoption of the soft and adaptive synergies. We intend to open-source the design of the hand so that it can be built cheaply on a home 3D-printer

    Innovative robot hand designs of reduced complexity for dexterous manipulation

    Get PDF
    This thesis investigates the mechanical design of robot hands to sensibly reduce the system complexity in terms of the number of actuators and sensors, and control needs for performing grasping and in-hand manipulations of unknown objects. Human hands are known to be the most complex, versatile, dexterous manipulators in nature, from being able to operate sophisticated surgery to carry out a wide variety of daily activity tasks (e.g. preparing food, changing cloths, playing instruments, to name some). However, the understanding of why human hands can perform such fascinating tasks still eludes complete comprehension. Since at least the end of the sixteenth century, scientists and engineers have tried to match the sensory and motor functions of the human hand. As a result, many contemporary humanoid and anthropomorphic robot hands have been developed to closely replicate the appearance and dexterity of human hands, in many cases using sophisticated designs that integrate multiple sensors and actuators---which make them prone to error and difficult to operate and control, particularly under uncertainty. In recent years, several simplification approaches and solutions have been proposed to develop more effective and reliable dexterous robot hands. These techniques, which have been based on using underactuated mechanical designs, kinematic synergies, or compliant materials, to name some, have opened up new ways to integrate hardware enhancements to facilitate grasping and dexterous manipulation control and improve reliability and robustness. Following this line of thought, this thesis studies four robot hand hardware aspects for enhancing grasping and manipulation, with a particular focus on dexterous in-hand manipulation. Namely: i) the use of passive soft fingertips; ii) the use of rigid and soft active surfaces in robot fingers; iii) the use of robot hand topologies to create particular in-hand manipulation trajectories; and iv) the decoupling of grasping and in-hand manipulation by introducing a reconfigurable palm. In summary, the findings from this thesis provide important notions for understanding the significance of mechanical and hardware elements in the performance and control of human manipulation. These findings show great potential in developing robust, easily programmable, and economically viable robot hands capable of performing dexterous manipulations under uncertainty, while exhibiting a valuable subset of functions of the human hand.Open Acces

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5

    Platform Portable Anthropomorphic Grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM Hand

    Get PDF
    Röthling F, Haschke R, Steil JJ, Ritter H. Platform Portable Anthropomorphic Grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM Hand. In: Proc. Int. Conf. on Intelligent Robots and Systems (IROS). IEEE; 2007: 2951-2956

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time
    • 

    corecore