6,524 research outputs found

    Review of Face Detection Systems Based Artificial Neural Networks Algorithms

    Get PDF
    Face detection is one of the most relevant applications of image processing and biometric systems. Artificial neural networks (ANN) have been used in the field of image processing and pattern recognition. There is lack of literature surveys which give overview about the studies and researches related to the using of ANN in face detection. Therefore, this research includes a general review of face detection studies and systems which based on different ANN approaches and algorithms. The strengths and limitations of these literature studies and systems were included also.Comment: 16 pages, 12 figures, 1 table, IJMA Journa

    A Reproducible Study on Remote Heart Rate Measurement

    Get PDF
    This paper studies the problem of reproducible research in remote photoplethysmography (rPPG). Most of the work published in this domain is assessed on privately-owned databases, making it difficult to evaluate proposed algorithms in a standard and principled manner. As a consequence, we present a new, publicly available database containing a relatively large number of subjects recorded under two different lighting conditions. Also, three state-of-the-art rPPG algorithms from the literature were selected, implemented and released as open source free software. After a thorough, unbiased experimental evaluation in various settings, it is shown that none of the selected algorithms is precise enough to be used in a real-world scenario

    Facial analysis in video : detection and recognition

    Get PDF
    Biometric authentication systems automatically identify or verify individuals using physiological (e.g., face, fingerprint, hand geometry, retina scan) or behavioral (e.g., speaking pattern, signature, keystroke dynamics) characteristics. Among these biometrics, facial patterns have the major advantage of being the least intrusive. Automatic face recognition systems thus have great potential in a wide spectrum of application areas. Focusing on facial analysis, this dissertation presents a face detection method and numerous feature extraction methods for face recognition. Concerning face detection, a video-based frontal face detection method has been developed using motion analysis and color information to derive field of interests, and distribution-based distance (DBD) and support vector machine (SVM) for classification. When applied to 92 still images (containing 282 faces), this method achieves 98.2% face detection rate with two false detections, a performance comparable to the state-of-the-art face detection methods; when applied to videQ streams, this method detects faces reliably and efficiently. Regarding face recognition, extensive assessments of face recognition performance in twelve color spaces have been performed, and a color feature extraction method defined by color component images across different color spaces is shown to help improve the baseline performance of the Face Recognition Grand Challenge (FRGC) problems. The experimental results show that some color configurations, such as YV in the YUV color space and YJ in the YIQ color space, help improve face recognition performance. Based on these improved results, a novel feature extraction method implementing genetic algorithms (GAs) and the Fisher linear discriminant (FLD) is designed to derive the optimal discriminating features that lead to an effective image representation for face recognition. This method noticeably improves FRGC ver1.0 Experiment 4 baseline recognition rate from 37% to 73%, and significantly elevates FRGC xxxx Experiment 4 baseline verification rate from 12% to 69%. Finally, four two-dimensional (2D) convolution filters are derived for feature extraction, and a 2D+3D face recognition system implementing both 2D and 3D imaging modalities is designed to address the FRGC problems. This method improves FRGC ver2.0 Experiment 3 baseline performance from 54% to 72%

    Multi-View Face Recognition From Single RGBD Models of the Faces

    Get PDF
    This work takes important steps towards solving the following problem of current interest: Assuming that each individual in a population can be modeled by a single frontal RGBD face image, is it possible to carry out face recognition for such a population using multiple 2D images captured from arbitrary viewpoints? Although the general problem as stated above is extremely challenging, it encompasses subproblems that can be addressed today. The subproblems addressed in this work relate to: (1) Generating a large set of viewpoint dependent face images from a single RGBD frontal image for each individual; (2) using hierarchical approaches based on view-partitioned subspaces to represent the training data; and (3) based on these hierarchical approaches, using a weighted voting algorithm to integrate the evidence collected from multiple images of the same face as recorded from different viewpoints. We evaluate our methods on three datasets: a dataset of 10 people that we created and two publicly available datasets which include a total of 48 people. In addition to providing important insights into the nature of this problem, our results show that we are able to successfully recognize faces with accuracies of 95% or higher, outperforming existing state-of-the-art face recognition approaches based on deep convolutional neural networks

    Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos

    Full text link
    Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.Comment: Submitted for publicatio
    • …
    corecore