719 research outputs found

    Practical application of pseudospectral optimization to robot path planning

    Get PDF
    To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simplified kino-dynamic models to avoid the significant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predefined analytical functions to enable real world application

    Learning Image-Conditioned Dynamics Models for Control of Under-actuated Legged Millirobots

    Full text link
    Millirobots are a promising robotic platform for many applications due to their small size and low manufacturing costs. Legged millirobots, in particular, can provide increased mobility in complex environments and improved scaling of obstacles. However, controlling these small, highly dynamic, and underactuated legged systems is difficult. Hand-engineered controllers can sometimes control these legged millirobots, but they have difficulties with dynamic maneuvers and complex terrains. We present an approach for controlling a real-world legged millirobot that is based on learned neural network models. Using less than 17 minutes of data, our method can learn a predictive model of the robot's dynamics that can enable effective gaits to be synthesized on the fly for following user-specified waypoints on a given terrain. Furthermore, by leveraging expressive, high-capacity neural network models, our approach allows for these predictions to be directly conditioned on camera images, endowing the robot with the ability to predict how different terrains might affect its dynamics. This enables sample-efficient and effective learning for locomotion of a dynamic legged millirobot on various terrains, including gravel, turf, carpet, and styrofoam. Experiment videos can be found at https://sites.google.com/view/imageconddy

    Simulation of ultrasonic lamb wave generation, propagation and detection for an air coupled robotic scanner

    Get PDF
    A computer simulator, to facilitate the design and assessment of a reconfigurable, air-coupled ultrasonic scanner is described and evaluated. The specific scanning system comprises a team of remote sensing agents, in the form of miniature robotic platforms that can reposition non-contact Lamb wave transducers over a plate type of structure, for the purpose of non-destructive evaluation (NDE). The overall objective is to implement reconfigurable array scanning, where transmission and reception are facilitated by different sensing agents which can be organised in a variety of pulse-echo and pitch-catch configurations, with guided waves used to generate data in the form of 2-D and 3-D images. The ability to reconfigure the scanner adaptively requires an understanding of the ultrasonic wave generation, its propagation and interaction with potential defects and boundaries. Transducer behaviour has been simulated using a linear systems approximation, with wave propagation in the structure modelled using the local interaction simulation approach (LISA). Integration of the linear systems and LISA approaches are validated for use in Lamb wave scanning by comparison with both analytic techniques and more computationally intensive commercial finite element/difference codes. Starting with fundamental dispersion data, the paper goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries, before presenting a theoretical image obtained from a team of sensing agents based on the current generation of sensors and instrumentation

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom

    Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels

    Full text link
    [EN] This paper presents an extended Kalman-filter-based sensor fusion approach, which enables path-following control of a holonomic mobile robot with four mecanum wheels. Output measurements of the mobile platform may be sensed at different rates: odometry and orientation data can be obtained at a fast rate, whereas position information may be generated at a slower rate. In addition, as a consequence of possible sensor failures or the use of lossy wireless sensor networks, the presence of the measurements may be nonuniform. These issues may degrade the path-following control performance. The consideration of a nonuniform dual-rate extended Kalman filter (NUDREKF) enables us to estimate fast-rate robot states from nonuniform, slow-rate measurements. Providing these estimations to the motion controller, a fast-rate control signal can be generated, reaching a satisfactory path-following behavior. The proposed NUDREKF is stated to represent any possible sampling pattern by means of a diagonal matrix, which is updated at a fast rate from the current, existing measurements. This fact results in a flexible formulation and a straightforward algorithmic implementation. A modified Pure Pursuit path-tracking algorithm is used, where the reference linear velocity is decomposed into Cartesian components, which are parameterized by a variable gain that depends on the distance to the target point. The proposed solution was evaluated using a realistic simulation model, developed with Simscape Multibody (Matlab/Simulink), of the four-mecanum-wheeled mobile platform. This model includes some of the nonlinearities present in a real vehicle, such as dead-zone, saturation, encoder resolution, and wheel sliding, and was validated by comparing real and simulated behavior. Comparison results reveal the superiority of the sensor fusion proposal under the presence of nonuniform, slow-rate measurements.Grant RTI2018-096590-B-I00 funded by MCIN/AEI/10.13039/501100011033 and by "ERDF A way of making Europe" and Grant PRE2019-088467 funded by MCIN/AEI/10.13039/501100011033 and by "ESF Investing in your future".Pizá, R.; Carbonell-Lázaro, R.; Casanova Calvo, V.; Cuenca, Á.; Salt Llobregat, JJ. (2022). Nonuniform Dual-Rate Extended Kalman-Filter-Based Sensor Fusion for Path-Following Control of a Holonomic Mobile Robot with Four Mecanum Wheels. Applied Sciences. 12(7):1-23. https://doi.org/10.3390/app1207356012312

    Path planning algorithms for autonomous navigation of a non-holonomic robot in unstructured environments

    Get PDF
    openPath planning is a crucial aspect of autonomous robot navigation, enabling robots to efficiently and safely navigate through complex environments. This thesis focuses on autonomous navigation for robots in dynamic and uncertain environments. In particular, the project aims to analyze the localization and path planning problems. A fundamental review of the existing literature on path planning algorithms has been carried on. Various factors affecting path planning, such as sensor data fusion, map representation, and motion constraints, are also analyzed. Thanks to the collaboration with E80 Group S.p.A., the project has been developed using ROS (Robot Operating System) on a Clearpath Dingo-O, an indoor mobile robot. To address the challenges posed by unstructured and dynamic environments, ROS follows a combined approach of using a global planner and a local planner. The global planner generates a high-level path, considering the overall environment, while the local planner handles real-time adjustments to avoid moving obstacles and optimize the trajectory. This thesis describes the role of the global planner in a ROS-framework. Performance benchmarking of traditional algorithms like Dijkstra and A*, as well as other techniques, is fundamental in order to understand the limits of these methods. In the end, the Hybrid A* algorithm is introduced as a promising approach for addressing the issues of unstructured environments for autonomous navigation of a non-holonomic robot. The core concepts and implementation details of the algorithm are discussed, emphasizing its ability to efficiently explore continuous state spaces and generate drivable paths.The effectiveness of the proposed path planning algorithms is evaluated through extensive simulations and real-world experiments using the mobile platform. Performance metrics such as path length, execution time, and collision avoidance are analyzed to assess the efficiency and reliability of the algorithms.Path planning is a crucial aspect of autonomous robot navigation, enabling robots to efficiently and safely navigate through complex environments. This thesis focuses on autonomous navigation for robots in dynamic and uncertain environments. In particular, the project aims to analyze the localization and path planning problems. A fundamental review of the existing literature on path planning algorithms has been carried on. Various factors affecting path planning, such as sensor data fusion, map representation, and motion constraints, are also analyzed. Thanks to the collaboration with E80 Group S.p.A., the project has been developed using ROS (Robot Operating System) on a Clearpath Dingo-O, an indoor mobile robot. To address the challenges posed by unstructured and dynamic environments, ROS follows a combined approach of using a global planner and a local planner. The global planner generates a high-level path, considering the overall environment, while the local planner handles real-time adjustments to avoid moving obstacles and optimize the trajectory. This thesis describes the role of the global planner in a ROS-framework. Performance benchmarking of traditional algorithms like Dijkstra and A*, as well as other techniques, is fundamental in order to understand the limits of these methods. In the end, the Hybrid A* algorithm is introduced as a promising approach for addressing the issues of unstructured environments for autonomous navigation of a non-holonomic robot. The core concepts and implementation details of the algorithm are discussed, emphasizing its ability to efficiently explore continuous state spaces and generate drivable paths.The effectiveness of the proposed path planning algorithms is evaluated through extensive simulations and real-world experiments using the mobile platform. Performance metrics such as path length, execution time, and collision avoidance are analyzed to assess the efficiency and reliability of the algorithms
    corecore