8 research outputs found

    On the asymptotic and practical complexity of solving bivariate systems over the reals

    Get PDF
    This paper is concerned with exact real solving of well-constrained, bivariate polynomial systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based method, and \sOB(N^{12}) for two subresultant-based methods: this notation ignores polylogarithmic factors, where NN bounds the degree and the bitsize of the polynomials. The previous record bound was \sOB(N^{14}). Our main tool is signed subresultant sequences. We exploit recent advances on the complexity of univariate root isolation, and extend them to sign evaluation of bivariate polynomials over two algebraic numbers, and real root counting for polynomials over an extension field. Our algorithms apply to the problem of simultaneous inequalities; they also compute the topology of real plane algebraic curves in \sOB(N^{12}), whereas the previous bound was \sOB(N^{14}). All algorithms have been implemented in MAPLE, in conjunction with numeric filtering. We compare them against FGB/RS, system solvers from SYNAPS, and MAPLE libraries INSULATE and TOP, which compute curve topology. Our software is among the most robust, and its runtimes are comparable, or within a small constant factor, with respect to the C/C++ libraries. Key words: real solving, polynomial systems, complexity, MAPLE softwareComment: 17 pages, 4 algorithms, 1 table, and 1 figure with 2 sub-figure

    A Generic Position Based Method for Real Root Isolation of Zero-Dimensional Polynomial Systems

    Full text link
    We improve the local generic position method for isolating the real roots of a zero-dimensional bivariate polynomial system with two polynomials and extend the method to general zero-dimensional polynomial systems. The method mainly involves resultant computation and real root isolation of univariate polynomial equations. The roots of the system have a linear univariate representation. The complexity of the method is O~B(N10)\tilde{O}_B(N^{10}) for the bivariate case, where N=max(d,τ)N=\max(d,\tau), dd resp., τ\tau is an upper bound on the degree, resp., the maximal coefficient bitsize of the input polynomials. The algorithm is certified with probability 1 in the multivariate case. The implementation shows that the method is efficient, especially for bivariate polynomial systems.Comment: 24 pages, 5 figure

    On the complexity of real solving bivariate systems

    Get PDF
    This paper is concerned with exact real solving of well-constrained, bivariate algebraic systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based method, and \sOB(N^{12}) for two sub\-result\-ant-based methods: we ignore polylogarithmic factors, and NN bounds the degree and the bitsize of the polynomials. The previous record bound was \sOB(N^{14}). Our main tool is signed subresultant sequences, extended to several variables by the technique of binary segmentation. We exploit recent advances on the complexity of univariate root isolation, and extend them to multipoint evaluation, to sign evaluation of bivariate polynomials over two algebraic numbers, % We thus derive new bounds for the sign evaluation of bi- and multi-variate polynomials and real root counting for polynomials over an extension field. Our algorithms apply to the problem of simultaneous inequalities; they also compute the topology of real plane algebraic curves in \sOB( N^{12}), whereas the previous bound was \sOB( N^{16}). All algorithms have been implemented in \maple, in conjunction with numeric filtering. We compare them against \gbrs and system solvers from \synaps; we also consider \maple libraries \func{insulate} and \func{top}, which compute curve topology. Our software is among the most robust, and its runtimes are comparable, or within a small constant factor, with respect to the C/C++ libraries.

    On The Applications of Lifting Techniques

    Get PDF
    Lifting techniques are some of the main tools in solving a variety of different computational problems related to the field of computer algebra. In this thesis, we will consider two fundamental problems in the fields of computational algebraic geometry and number theory, trying to find more efficient algorithms to solve such problems. The first problem, solving systems of polynomial equations, is one of the most fundamental problems in the field of computational algebraic geometry. In this thesis, We discuss how to solve bivariate polynomial systems over either k(T ) or Q using a combination of lifting and modular composition techniques. We will show that one can find an equiprojectable decomposition of a bivariate polynomial system in a better time complexity than the best known algorithms in the field, both in theory and practice. The second problem, polynomial factorization over number fields, is one of the oldest problems in number theory. It has lots of applications in many other related problems and there have been lots of attempts to solve the problem efficiently, at least, in practice. Finding p-adic factors of a univariate polynomial over a number field uses lifting techniques. Improving this step can reduce the total running time of the factorization in practice. We first introduce a multivariate version of the Belabas factorization algorithm over number fields. Then we will compare the running time complexity of the factorization problem using two different representations of a number field, univariate vs multivariate, and at the end as an application, we will show the improvement gained in computing the splitting fields of a univariate polynomial over rational field

    Real solving of bivariate polynomial systems

    No full text
    Abstract. We propose exact, complete and efficient methods for 2 problems: First, the real solving of systems of two bivariate rational polynomials of arbitrary degree. This means isolating all common real solutions in rational rectangles and calculating the respective multiplicities. Second, the computation of the sign of bivariate polynomials evaluated at two algebraic numbers of arbitrary degree. Our main motivation comes from nonlinear computational geometry and computer-aided design, where bivariate polynomials lie at the inner loop of many algorithms. The methods employed are based on Sturm-Habicht sequences, univariate resultants and rational univariate representation. We have implemented them very carefully, using advanced object-oriented programming techniques, so as to achieve high practical performance. The algorithms are integrated in the public-domain C++ software library synaps, and their efficiency is illustrated by 9 experiments against existing implementations. Our code is faster in most cases; sometimes it is even faster than numerical approaches.

    Real solving of bivariate polynomial systems

    No full text
    We propose exact, complete and efficient methods for 2 problems: First, the real solving of systems of two bivariate rational polynomials of arbitrary degree. This means isolating all common real solutions in rational rectangles and calculating the respective multiplicities. Second, the computation of the sign of bivariate polynomials evaluated at two algebraic numbers of arbitrary degree. Our main motivation comes from nonlinear computational geometry and computer-aided design, where bivariate polynomials lie at the inner loop of many algorithms. The methods employed are based on Sturm-Habicht sequences, univariate resultants and rational univariate representation. We have implemented them very carefully, using advanced object-oriented programming techniques, so as to achieve high practical performance. The algorithms are integrated in the public-domain C++ software library SYNAPS, and their efficiency is illustrated by 9 experiments against existing implementations. Our code is faster in most cases; sometimes it is even faster than numerical approaches. © Springer-Verlag Berlin Heidelberg 2005
    corecore