59,661 research outputs found

    A multi-variable version of the completed Riemann zeta function and other LL-functions

    Full text link
    We define a generalisation of the completed Riemann zeta function in several complex variables. It satisfies a functional equation, shuffle product identities, and has simple poles along finitely many hyperplanes, with a recursive structure on its residues. The special case of two variables can be written as a partial Mellin transform of a real analytic Eisenstein series, which enables us to relate its values at pairs of positive even points to periods of (simple extensions of symmetric powers of the cohomology of) the CM elliptic curve corresponding to the Gaussian integers. In general, the totally even values of these functions are related to new quantities which we call multiple quadratic sums. More generally, we cautiously define multiple-variable versions of motivic LL-functions and ask whether there is a relation between their special values and periods of general mixed motives. We show that all periods of mixed Tate motives over the integers, and all periods of motivic fundamental groups (or relative completions) of modular groups, are indeed special values of the multiple motivic LL-values defined here.Comment: This is the second half of a talk given in honour of Ihara's 80th birthday, and will appear in the proceedings thereo

    Sub-computable Boundedness Randomness

    Full text link
    This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\"of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen's theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness

    Note on improvement precision of recursive function simulation in floating point standard

    Get PDF
    An improvement on precision of recursive function simulation in IEEE floating point standard is presented. It is shown that the average of rounding towards negative infinite and rounding towards positive infinite yields a better result than the usual standard rounding to the nearest in the simulation of recursive functions. In general, the method improves one digit of precision and it has also been useful to avoid divergence from a correct stationary regime in the logistic map. Numerical studies are presented to illustrate the method.Comment: DINCON 2017 - Conferencia Brasileira de Dinamica, Controle e Aplicacoes - Sao Jose do Rio Preto - Brazil. 8 page

    Diophantine sets of polynomials over algebraic extensions of the rationals

    Get PDF
    Let L be a recursive algebraic extension of Q. Assume that, given alpha is an element of L, we can compute the roots in L of its minimal polynomial over Q and we can determine which roots are Aut(L)-conjugate to alpha. We prove that there exists a pair of polynomials that characterizes the Aut(L)-conjugates of alpha, and that these polynomials can be effectively computed. Assume furthermore that L can be embedded in R, or in a finite extension of Q(p) (with p an odd prime). Then we show that subsets of L[X](k) that are recursively enumerable for every recursive presentation of L[X], are diophantine over L[X]

    A recursive scheme for computing autocorrelation functions of decimated complex wavelet subbands

    Get PDF
    This paper deals with the problem of the exact computation of the autocorrelation function of a real or complex discrete wavelet subband of a signal, when the autocorrelation function (or Power Spectral Density, PSD) of the signal in the time domain (or spatial domain) is either known or estimated using a separate technique. The solution to this problem allows us to couple time domain noise estimation techniques to wavelet domain denoising algorithms, which is crucial for the development of blind wavelet-based denoising techniques. Specifically, we investigate the Dual-Tree complex wavelet transform (DT-CWT), which has a good directional selectivity in 2-D and 3-D, is approximately shift-invariant, and yields better denoising results than a discrete wavelet transform (DWT). The proposed scheme gives an analytical relationship between the PSD of the input signal/image and the PSD of each individual real/complex wavelet subband which is very useful for future developments. We also show that a more general technique, that relies on Monte-Carlo simulations, requires a large number of input samples for a reliable estimate, while the proposed technique does not suffer from this problem

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature
    corecore