22,920 research outputs found
PNNARMA model: an alternative to phenomenological models in chemical reactors
This paper is focused on the development of non-linear neural models able to provide appropriate predictions when acting as process simulators. Parallel identification models can be used for this purpose. However, in this work it is shown that since the parameters of parallel identification models are estimated using multilayer feed-forward networks, the approximation of dynamic systems could be not suitable. The solution proposed in this work consists of building up parallel models using a particular recurrent neural network. This network allows to identify the parameter sets of the parallel model in order to generate process simulators. Hence, it is possible to guarantee better dynamic predictions. The dynamic behaviour of the heat transfer fluid temperature in a jacketed chemical reactor has been selected as a case study. The results suggest that parallel models based on the recurrent neural network proposed in this work can be seen as an alternative to phenomenological models for simulating the dynamic behaviour of the heating/cooling circuits.Publicad
Experimental investigation of reactor-loop transients during startup of a simulated SNAP-8 system
Primary loop transients during startup of Rankine cycle space power system in SNAP 8 simulato
GEN-IV LFR development: Status & perspectives
Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of Generation IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to Heavy Liquid Metal (HLM) nuclear reactors. In this frame, ENEA developed one of the larger European experimental fleet of experimental facilities aiming at investigating HLM thermal-hydraulics, coolant chemistry control, corrosion behavior for structural materials, and at developing components, instrumentations and innovative systems, supported by experiments and numerical tools. The present work aims at highlighting the capabilities and competencies developed by ENEA so far in the frame of the liquid metal technologies for GEN-IV LFR. In particular, an overview on the ongoing R&D experimental program will be depicted considering the actual fleet of facilities: CIRCE, NACIE-UP, LIFUS5, LECOR and HELENA. CIRCE (CIRColazione Eutettico) is the largest HLM pool facility presently in operation worldwide. Full scale component tests, thermal stratification studies, operational and accidental transients and integral tests for the nuclear safety and SGTR (Steam Generator Tube Rupture) events in a large pool system can be studied. NACIE-UP (NAtural CIrculation Experiment-UPgraded) is a loop with a HLM primary and pressurized water secondary side and a 250 kW power Fuel Pin Simulator working in natural and mixed convection. LIFUS5 (lithium for fusion) is a separated effect facility devoted to the HLM/Water interaction. HELENA (HEavy Liquid metal Experimental loop for advanced Nuclear applications) is a pure lead loop with a mechanical pump for high flow rates experiments. LECOR (LEad CORrosion) is a corrosion loop facility with oxygen control system installed. All the experiment actually ongoing on these facilities are described in the paper, depicting their role in the context of GEN-IV LFR development
Dynamic Behaviour of a Continuous Heat Exchanger/Reactor after Flow Failure
The intensified technologies offer new prospects for the development of hazardous chemical syntheses in safer conditions: the idea is to reduce the reaction volume by increasing the thermal performances and preferring the continuous mode to the batch one. In particular, the Open Plate Reactor (OPR) type “reactor/ exchanger” also including a modular block structure, matches these characteristics perfectly. The aim of this paper is to study the OPR behaviour during a normal operation, that is to say, after a stoppage of the circulation of the cooling fluid. So, an experiment was carried out, taking the oxidation of sodium thiosulfate with hydrogen peroxide as an example. The results obtained, in particular with regard to the evolution of the temperature profiles of the reaction medium as a function of time along the apparatus, are compared with those predicted by a dynamic simulator of the OPR. So, the average heat transfer coefficient regarding the “utility” fluid is evaluated in conductive and natural convection modes, and then integrated in the simulator. The conclusion of this study is that, during a cooling failure, a heat transfer by natural convection would be added to the conduction, which contributes to the intrinsically safer character of the apparatus
Consistency Index-Based Sensor Fault Detection System for Nuclear Power Plant Emergency Situations Using an LSTM Network
A nuclear power plant (NPP) consists of an enormous number of components with complex interconnections. Various techniques to detect sensor errors have been developed to monitor the state of the sensors during normal NPP operation, but not for emergency situations. In an emergency situation with a reactor trip, all the plant parameters undergo drastic changes following the sudden decrease in core reactivity. In this paper, a machine learning model adopting a consistency index is suggested for sensor error detection during NPP emergency situations. The proposed consistency index refers to the soundness of the sensors based on their measurement accuracy. The application of consistency index labeling makes it possible to detect sensor error immediately and specify the particular sensor where the error occurred. From a compact nuclear simulator, selected plant parameters were extracted during typical emergency situations, and artificial sensor errors were injected into the raw data. The trained system successfully generated output that gave both sensor error states and error-free states
Simulation of rod ejection accident byPARCS code
This paper describes reactor core model used for simulating REA. The model was designed in PARCS utilizing graphical interface SNAP. The data for model were given from benchmark NEACPR L-335. The PARCS model used integrated thermal hydraulic block for calculation. The results and solution is shown in the paper. Thermal hydraulic calculation can also be provided by external system code TRACE. The PARCS model is prepared to couple with TRACE model for giving more accurate calculation
Experimental Test bed to De-Risk the Navy Advanced Development Model
This paper presents a reduced scale demonstration test-bed at the University of Texas’ Center for Electromechanics (UT-CEM) which is well equipped to support the development and assessment of the anticipated Navy Advanced Development Model (ADM). The subscale ADM test bed builds on collaborative power management experiments conducted as part of the Swampworks Program under the US/UK Project Arrangement as well as non-military applications. The system includes the required variety of sources, loads, and controllers as well as an Opal-RT digital simulator. The test bed architecture is described and the range of investigations that can be carried out on it is highlighted; results of preliminary system simulations and some initial tests are also provided. Subscale ADM experiments conducted on the UT-CEM microgrid can be an important step in the realization of a full-voltage, full-power ADM three-zone demonstrator, providing a test-bed for components, subsystems, controls, and the overall performance of the Medium Voltage Direct Current (MVDC) ship architecture.Center for Electromechanic
Nuclear engineering program marks 10th anniversary
Ten years ago, Virginians who wanted to study nuclear engineering at the graduate level had to leave the state to do so. But then VCU, with support from Dominion Resources, started a program whose hallmark has been its ability to balance theory and application in its approach to nuclear engineering education
European Master in Nuclear Energy (EMINE). When academy and industry meet
EMINE master programme is an international education initiative offered by KIC-InnoEnergy under the framework of the European Institute of Innovation and Technology (EIT). Students in the programme have the opportunity to acquire an in-depth knowledge of the nuclear industry, through unique and specialised courses covering a wide range of subjects. Students choose between UPC (Barcelona) and KTH (Stockholm) for the first year and between Grenoble-INP and Paris-Saclay University (France) for the second year. Grenoble École de Management (GEM) completes the list of academic partners: students take a 3-week summer course on energy management issues after their first year in EMINE. EMINE students also benefit from the involvement of our industrial partners (AREVA, EDF, ENDESA, INSTN-CEA, and Vattenfall) in the Programme. For the academic institutions, EMINE is the opportunity to provide a high level education aligned with the industrial needs. The international collaboration among universities helps improving the quality and the adoption of best practices. EMINE attracts good students to our centres whereas the EIT funding and the industrial involvement allows a number of activities that otherwise would have been difficult to carry out, such as the assistance of external industrial experts or field activities. MSc EMINE helps tomorrow’s nuclear engineers take up the challenges the nuclear energy industry faces in terms of safety, social acceptability and waste management. By offering outstanding technical training and addressing the economic, social and political aspects of nuclear energy, the programme broadens the scope of traditional nuclear education.Postprint (published version
- …
