10,677 research outputs found

    Probabilistic Motion Planning for Automated Vehicles

    Get PDF
    This thesis targets the problem of motion planning for automated vehicles. As a prerequisite for their on-road deployment, automated vehicles must show an appropriate and reliable driving behavior in mixed traffic, i.e. alongside human drivers. Besides the uncertainties resulting from imperfect perception, occlusions and limited sensor range, also the uncertainties in the behavior of other traffic participants have to be considered. Related approaches for motion planning in mixed traffic often employ a deterministic problem formulation. The solution of such formulations is restricted to a single trajectory. Deviations from the prediction of other traffic participants are accounted for during replanning, while large uncertainties lead to conservative and over-cautious behavior. As a result of the shortcomings of these formulations in cooperative scenarios and scenarios with severe uncertainties, probabilistic approaches are pursued. Due to the need for real-time capability, however, a holistic uncertainty treatment often induces a strong limitation of the action space of automated vehicles. Moreover, safety and traffic rule compliance are often not considered. Thus, in this work, three motion planning approaches and a scenario-based safety approach are presented. The safety approach is based on an existing concept, which targets the guarantee that automated vehicles will never cause accidents. This concept is enhanced by the consideration of traffic rules for crossing and merging traffic, occlusions, limited sensor range and lane changes. The three presented motion planning approaches are targeted towards the different predominant uncertainties in different scenarios, while operating in a continuous action space. For non-interactive scenarios with clear precedence, a probabilistic approach is presented. The problem is modeled as a partially observable Markov decision process (POMDP). In contrast to existing approaches, the underlying assumption is that the prediction of the future progression of the uncertainty in the behavior of other traffic participants can be performed independently of the automated vehicle\u27s motion plan. In addition to this prediction of currently visible traffic participants, the influence of occlusions and limited sensor range is considered. Despite its thorough uncertainty consideration, the presented approach facilitates planning in a continuous action space. Two further approaches are targeted towards the predominant uncertainties in interactive scenarios. In order to facilitate lane changes in dense traffic, a rule-based approach is proposed. The latter seeks to actively reduce the uncertainty in whether other vehicles willingly make room for a lane change. The generated trajectories are safe and traffic rule compliant with respect to the presented safety approach. To facilitate cooperation in scenarios without clear precedence, a multi-agent approach is presented. The globally optimal solution to the multi-agent problem is first analyzed regarding its ambiguity. If an unambiguous, cooperative solution is found, it is pursued. Still, the compliance of other vehicles with the presumed cooperation model is checked, and a conservative fallback trajectory is pursued in case of non-compliance. The performance of the presented approaches is shown in various scenarios with intersecting lanes, partly with limited visibility, as well as lane changes and a narrowing without predefined right of way

    Robotic Motion Planning in Uncertain Environments via Active Sensing

    Get PDF
    Perception and control are at the foundation of automation, and in recent years, we have seen growth in feasible applications including self-driving cars and smart homes. As automation moves from regulated, well-monitored locations (e.g., factories) into society, uncertainty in hardware and the environment poses a safety concern. Within this thesis, we focus primarily on uncertainty in the environment and discuss models of the environment known a priori and learned as the robot functions. The robot is tasked with moving from one location or configuration to another while minimizing the expected cost of observation and motion actions. We focus on control that guides the robot to a position/configuration or identifies that it is impossible to reach the position/configuration. We first focus on a robot creating a plan, prior to deployment, based on a known environment model. This model encodes obstacle configurations into different environmental realizations along with a probability this realization will be encountered. The robot is also provided an observation model it may use to sense the environment during the task. We show that minimizing the expected cost from start to goal within these models is NP-Hard. Therefore, we present an efficient algorithm to create a policy which can react to obstacles in real-time while maintaining safety constraints on motion. A by-product of this algorithm is a lower bound on the expected cost of an optimal policy. We compare the policy and lower bound, generated by our algorithm, against that of an optimal policy and existing research. Our focus then shifts to remove prior information about environmental obstacles. We ask the robot to complete a finite number of start to goal tasks and show the general version of this problem is PSPACE-Hard. To reduce the complexity, we develop a method that uses an arbitrary reactionary algorithm from prior work to handle unexpected obstacles. For each new environment experienced, we incrementally update the robot's policy and show that the dependence on the reactionary algorithm is not increasing. Tests are performed on a flexible factory to demonstrate the scalability of this method

    Technical Report: Distribution Temporal Logic: Combining Correctness with Quality of Estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach.Comment: More expanded version of "Distribution Temporal Logic: Combining Correctness with Quality of Estimation" to appear in IEEE CDC 201

    Technical report: Distribution Temporal Logic: combining correctness with quality of estimation

    Full text link
    We present a new temporal logic called Distribution Temporal Logic (DTL) defined over predicates of belief states and hidden states of partially observable systems. DTL can express properties involving uncertainty and likelihood that cannot be described by existing logics. A co-safe formulation of DTL is defined and algorithmic procedures are given for monitoring executions of a partially observable Markov decision process with respect to such formulae. A simulation case study of a rescue robotics application outlines our approach

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page
    • …
    corecore