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Abstract

Perception and control are at the foundation of automation, and in recent years, we
have seen growth in feasible applications including self-driving cars and smart homes. As
automation moves from regulated, well-monitored locations (e.g., factories) into society,
uncertainty in hardware and the environment poses a safety concern. Within this thesis, we
focus primarily on uncertainty in the environment and discuss models of the environment
known a priori and learned as the robot functions. The robot is tasked with moving from
one location or configuration to another while minimizing the expected cost of observation
and motion actions. We focus on control that guides the robot to a position/configuration
or identifies that it is impossible to reach the position/configuration.

We first focus on a robot creating a plan, prior to deployment, based on a known en-
vironment model. This model encodes obstacle configurations into different environmental
realizations along with a probability this realization will be encountered. The robot is also
provided an observation model it may use to sense the environment during the task. We
show that minimizing the expected cost from start to goal within these models is NP-Hard.
Therefore, we present an efficient algorithm to create a policy which can react to obstacles
in real-time while maintaining safety constraints on motion. A by-product of this algorithm
is a lower bound on the expected cost of an optimal policy. We compare the policy and
lower bound, generated by our algorithm, against that of an optimal policy and existing
research.

Our focus then shifts to remove prior information about environmental obstacles. We
ask the robot to complete a finite number of start to goal tasks and show the general version
of this problem is PSPACE-Hard. To reduce the complexity, we develop a method that uses
an arbitrary reactionary algorithm from prior work to handle unexpected obstacles. For
each new environment experienced, we incrementally update the robot’s policy and show
that the dependence on the reactionary algorithm is not increasing. Tests are performed
on a flexible factory to demonstrate the scalability of this method.
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Chapter 1

Introduction and Literature Review

We as humans naturally plan trajectories whether it be to pick up a coffee mug or drive
to work. It is natural to brake in order to avoid a car cutting into your lane or to speed
up in order to avoid getting rear-ended. The success of this response typically depends on
the speed at which we apply the appropriate action. In robotics, we often wish to quickly
select actions that maintain safety and minimize costs associated with a task. Within this
work, we do not wish to trade-off cost with safety, but rather, we consider a task where the
termination conditions allow the robot to identify when a task is unsafe to complete. That
is to say, we allow the robot to terminate when it identifies that the environment does not
contain a trajectory to reach the goal. We minimize the expected cost of reaching this goal
or of showing the goal cannot be reached. For example, if someone locks up your coffee
mug, the task of reaching your mug is no longer possible; thus, once you identify it is locked
up, you should probably pour another cup.

1.1 Point-to-Point Planning in Uncertainty

In robotics and automation, trajectory planning (i.e., moving from a location or a configu-
ration to another) is a fundamental task that aids in completing a potentially larger task. In
order to increase the probability that a task is completed successfully, many practical appli-
cations must consider uncertainty. This uncertainty may capture faulty sensors (Liu et al.
2015, Mahoney et al. 2016), faulty actuators (Dydek et al. 2010, Stavrou et al. 2013) and/or
environmental uncertainty (Aoude et al. 2013, Du Toit & Burdick 2012) to accurately model
the robot’s behaviour. Uncertainty in point-to-point planning often uses sub-trajectories
computed without uncertainty to simplify the overall problem. For example, Gray et al.
(2012) use motion primitives for a semi-autonomous robot in order to avoid obstacles while
Majumdar & Tedrake (2013) encode trajectories into a library to ensure safety in uncertain
environments. These point-to-point sub-trajectories can be selected via reaction to sensor
feedback of the environment (e.g., Arslan & Koditschek (2016)). In particular, we are inter-
ested in real-time reaction to sensor readings of the environment and refer to this as active
sensing. For example, if someone places a book in front of your coffee cup, you will react by
changing your trajectory to avoid hitting the new obstacle and ensure you reach that cup.

Consider environmental uncertainty that models obstacle correlations. Fig. 1 is an
example point-to-point (S-to-G) task where obstacle O1 exists if and only if obstacle O2 does
not. We consider a model where the robot has access to obstacle locations, correlations and
probabilities and another model where the robot must learn obstacle locations, correlations
and probabilities. The robot also has a model of its sensor that defines the method for
observing the state of the environment. Each sensing and motion action is assigned a
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O1

O2

G

S

Figure 1: Example point-to-point path planning task with obstacle correlations.

unique cost, which the robot must pay to complete that action. Given a robot with sensor
model and environment model (known or hidden), our problem is to minimize the expected
cost of a reactive plan that moves the robot from start to goal or identifies the goal cannot
be reached. We restrict reactive plans to contain a contingency plan for every environmental
observation. Continuing the example in Fig. 1, if the robot knows the correlation between
O1 and O2, its reactive plan can avoid all obstacles (seen in Fig. 2) or learn the state of the
obstacles (seen in Fig. 3).

O1

O2

G

S

Figure 2: Example reactive
plan without sensing.

O1

O2

G

S

O1

O2

G

S

Figure 3: Example reactive plan with sensing.

Planning with Known Environment Model Given an environment with a known set
of possible obstacle configurations, a probability mass function (capturing the likelihood
that a configuration will be experienced by the robot), a start and a goal, the planning
problem is to devise a strategy to reach the goal or determine the goal cannot be reached
that minimizes the expected cost of observations and movements made by the robot. We
restrict movement to areas where no obstacles exist with probability one. The robot can
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make observations to determine the existence of an obstacle for a known cost. We consider
observation outcome models that are correct with probability one and provide an extension
to handle certain faulty sensor models.

Planning with Hidden Environment Model Given an environment with an unknown
set of possible obstacle configurations, a number of tasks T , a start and a goal, the planning
problem is to devise a strategy to minimize the expected movement and observation cost
of T independent tasks that each require the robot reach to goal or show the goal cannot
be reached. The robot has access to memory that can store what it experiences in all prior
tasks in order to help in future tasks. Movement is not restricted but if the robot attempts
to move through an obstacle, it pays the movement cost even though the move failed (i.e.,
proximity sensor while moving to avoid collision). The robot can make observations (i.e.,
long range sensing) to determine the existence of an obstacle for a known cost.

1.2 Literature Review

This section reviews prior research relevant to the area of path planning in uncertainty. We
focus mainly on environmental uncertainty in order to reduce the problem complexity, but
a large amount of this work also considers sensor and actuator uncertainty. Note that we
also discuss the differences between our problem and other similar problems in the same
chapter our respective problem is introduced.

1.2.1 Planning with Environment Model

In robotics, there are several effective methods for functioning within environments with
known uncertainty models. Point-to-point motion is addressed by Bhattacharya et al. (2015)
using persistent paths, which maximize the probability of success. However, if the computed
path is obstructed, the robot ends without finishing the task (i.e., failure). To avoid failure,
Partially Observable Markov Decision Processes (POMDPs) can be used to compute reac-
tive motion policies (Bai et al. 2014, Chen et al. 2016, Kaelbling & Lozano-Pérez 2013, Van
Den Berg et al. 2012). A POMDP selects actions based on partially observed states, but the
computation of a POMDP policy is, in general, a PSPACE-Complete problem (Papadim-
itriou & Tsitsiklis 1987). In our work, we are interested in cases where the environment
has a very large state space; for these cases, the POMDP’s scalability becomes a barrier to
use (LaValle 2006).

To avoid computational complexity, algorithms like lifelong planning A* and D* lite
allow the robot to re-plan during execution (Koenig & Likhachev 2005, Koenig et al. 2004)
for the case when the robot’s location is fully observable. Replanning is also used by
Kaelbling & Lozano-Pérez (2013) in their more general problem to form a compact policy,
which is followed until the robot transitions to a state outside of the policy and triggers a
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re-plan. These replanning phases often provide much needed space complexity savings. In
contrast, this work targets complete policies in which all reachable robot states are contained
in a compact policy, and thus, the robot does not need to re-plan during execution.

The Informative Path Planning (IPP) problem is studied in several works (Javdani et al.
2014, Lim et al. 2015, Yu, Schwager & Rus 2014), all of which provide methods for real-
time reaction to information within the environment. Research in this area focuses on tasks
ranging from underwater inspection (Hollinger et al. 2012) to maximizing information from
start to goal (Binney & Sukhatme 2012). Similarly, active sensing (Wang et al. 2016) and
active perception (Best et al. 2016) allow autonomous robot(s) to intelligently collect data
based on prior observations. These works plan policies or paths prior to deployment of the
robot and react to new information collected by the robot, where the robot’s possible actions
are known prior. In contrast, we consider cases where information may not be attainable
until the robot has explored parts of the environment, which is not captured in this prior
work.

In operations research, a closely related problem is planning with recourse and the Cana-
dian Travellers Problem. Planning with recourse by Andreatta & Romeo (1988) provides
possible obstacle locations, but assumes obstacle locations are such that there always ex-
ists a path to goal. The Canadian Travellers Problem, in which no prior information on
obstacles is given, is a PSPACE-Complete problem (Papadimitriou & Yannakakis 1991).
Remote sensing is added to the Canadian Travellers Problem by Bnaya et al. (2009) where
the agent pays a sensing cost dependent on its location to determine the absence/presence
of a particular obstacle. The authors look to minimize the sum of sensing and traversal
costs and decide to use remote sensing based on its potential value. This decision is made
for single obstacles where as in our work, the prior information available to the robot allows
decisions with correlation between obstacles. A problem similar to the Canadian Travellers
Problem was addressed in the area of transportation research, Issac & Campbell (2015).
This work presents an integer linear program to solve their route blocked problem, in which
they select a primary path and then switch to a secondary path when the primary fails. In
contrast, we compute policies that minimize the expected cost for a robot to reach the goal
or realize the goal is unreachable.

The work done by Polychronopoulos & Tsitsiklis (1996) introduces the problem R-
SSPPR, in which the robot is operating in one of a finite number of differently weighted
graphs (realizations), (i.e., each realization is defined over the same set of vertices and edges
but the traversal costs differ). The robot observes outgoing edge costs at each vertex it visits
and the objective is to minimize the expected cost from start and goal. They present an
optimal dynamic program as well as a feedback heuristic. In contrast, our work considers
different graph topologies for each realization, and a generalized sensing model along with
sensing costs.
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1.2.2 Learning the Environment

Consider the case where the environmental uncertainty is hidden from the robot. As the
robot travels between positions or configurations, it collects fragments of its surrounding
that allow it to estimate what the environment contains. Within the field of robotics,
a map of the environment (e.g., occupancy grid map) allows the robot to interpret their
surroundings and navigate within them (Elfes 1989). Applications require these maps to
accurately encode environments ranging from complex 3D surroundings (Souza & Goncalves
2016) to highly dynamic environments (Mitsou & Tzafestas 2007).

Often, storing maps for complex or dynamic environments requires large amounts of
memory, and as such, the research done by Krajnik et al. (2014) harnesses Fourier transforms
to convert temporal maps into their spectral representation. Given an environment model
or map along with robot dynamics, the task of selecting desirable robot actions or control,
prior to task execution, can be a computationally complex task (LaValle 2006). To address
this, Kucner et al. (2013) considers obstacle correlations only between neighboring regions
dependent on the direction from which the robot enters. The computational burden is
often further reduced by allowing the robot to re-plan during execution given its map
was incorrect. Algorithms like D∗ Lite and lifelong planning A∗ provide fast replanning
in order to approach real-time reaction to obstacles (Koenig & Likhachev 2005, Koenig
et al. 2004), which are further discussed under the context of online reactive planning.
In this work, the mapping objective is to capture regions of the environment critical to
task completion. These regions are difficult to identify as their future value depends on
the hidden environment model as well as the current policy. We discuss conditions that
guide the robot to map regions only if these regions are estimated to benefit future task
completion.

The topic of reinforcement learning in robotics, reviewed by Kober et al. (2013), presents
a method to iteratively improve performance of difficult tasks. For example, Pastor et al.
(2011) uses a reinforcement learning strategy to teach fine motor skills to a robot. Our
work focuses on episodic (i.e., repeated robotic tasks) under a finite-time horizon. Within
this area, Dann & Brunskill (2015) provides bounds on the number of episodes (tasks) to
guarantee performance with high probability on episodic finite-horizon Markov Decision
Processes (MDP). Q-Learning has been used to solve similar reinforcement learning prob-
lems (Konar et al. 2013, Park et al. 2007). For our cases the space required to store the
Q-table is exponentially large with respect to the input, even with the work by Konar et al.
(2013) to lower space required to two times the size of the state space.

Our work is focused on minimizing the total expected cost for a given number of episodes.
For this problem, there is an explicit reward/cost for an action in the current episode, but
there is also implicit reward/cost for an action in the current episode that influences future
episodes. This is further complicated as the interaction between the current and future
episodes may become less important as the robot approaches the final episode. Several
works discuss the inverse reinforcement learning problem (IRL), which builds a model of
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the reward function (Kalakrishnan et al. 2013, Kretzschmar et al. 2016, Neu & Szepesvári
2007). Much of this work requires expert examples to learn the underlying reward function
(Argall et al. 2009). For our work, this is unavailable to the robot. Instead, we focus on
predicting the implicit reward of an action on future tasks.

1.2.3 Online Reactive Algorithms

When the environment is known, point-to-point trajectories can be generated efficiently,
with respect to the environment size, via algorithms like Dijkstra’s Algorithm (Dijkstra
1959) or A∗ (Hart et al. 1968). On the other hand, when uncertainty is introduced into
the environment, algorithms like Lifelong Planning A∗ (Koenig et al. 2004) and D∗ Lite
(Koenig & Likhachev 2005) focus on quick replanning when an unexpected obstacle is en-
countered. In reasonably sized environments and/or configuration spaces, these algorithms
may even appear to have real-time reaction to obstacles from the view of human onlookers
(e.g. Kuwata et al. (2009)). Within the area of replanning online, applications range from
reacting to randomly distributed obstacles while considering movements cost (Yu, Yang,
Su & Tu 2014) to autonomous driving amongst many pedestrians (Bai et al. 2015). Of-
ten, the complexity of solving the planning problem before the robot attempts the task
is intractable, and thus online reactive heuristics simplify the problem while maintaining
accurate environmental and robotic models (e.g., Kaelbling & Lozano-Pérez (2013), Ross
et al. (2008)).

Within this area, several approaches use learning to better guide the real-time search.
For example, Bulitko & Lee (2006) combine path planning and learning in unknown en-
vironments to make more intelligent heuristic choices of next actions in real-time. This
approach makes a global plan and corrects it as the environment is learned. The agent-
centric approach from Koenig (2001) plans within the robot’s local vicinity and updates
the plan as more of the environment is learned. Koenig et al. (2003) discusses both of these
approaches and presents bounds on their sub-optimality.

This work aims to extend the use of an online reactive algorithm from this area to
remember what the robot has encountered and how it responded in the past in order to
better react next time. Our main goal is to shift the robot’s dependency from this reactive
online algorithm to a control policy with constant time next action look up. We refer to
this as learning to react in constant time as more tasks are executed.

1.3 Thesis Contribution

Our main contributions for planning within a known environment model are four-fold.
First, we present the Reactive Planning Problem (RPP) and show it is NP-Hard. Second,
we provide properties that allow for a compact representation of a RPP policy. Third, we
present an efficient algorithm for a RPP sub-optimal policy that utilizes mutual information
to guide exploration and uses an estimation of the cost-to-go for exploitation. Fourth, we
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provide a method to bound the gap between the expected cost of our policy and that of the
optimal. A prior conference version of this work appeared at WAFR2016, MacDonald &
Smith (2016), and a journal version has been submitted to a special issue of the International
Journal of Robotics Research.

Our contribution for planning within a hidden environment model are four-fold. First,
we introduce the Learned Reactive Planning Problem and show it is PSPACE-Hard. Second,
we present an environmental estimator that extracts obstacle correlations and provides
a method to integrate an external reactive algorithm into a policy. Third, we present
conditions where explicitly mapping regions of the environment is estimated to reduce the
expected cost of future tasks. Lastly, we provide an incremental policy update that can be
performed between tasks, which is shown to monotonically decrease the dependency on the
external reactive algorithm.

1.4 Organization

We review background information in graph theory and related problems used in computa-
tional complexity proofs in Chapter 2. The Reactive Planning Problem (RPP) is introduced
in Chapter 3. Within this chapter, we review the complexity and limitations of the RPP
and provided a heuristic solution. The Learned Reactive Planning Problem is introduced in
Chapter 4 as a practical extension and generalization of the RPP through a hidden environ-
ment model. This chapter discusses the computational complexity and provides a solution
approach that combines a policy with an existing reactive planning algorithm. Finally, we
conclude this work in Chapter 5 and discuss possible future extensions.
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Chapter 2

Background

This chapter reviews concepts used throughout this thesis. Graph terminology is reviewed
in Section 2.1; Dijkstra’s shortest path algorithm is discussed in Section 2.2; and Mutual
information is reviewed in Section 2.3. We briefly discuss the concept of complexity classes
in Section 2.4. The Informative Path Planning (IPP) problem and Canadian Travellers
Problem (CTP) are reviewed in Section 2.5 and Section 2.6 respectively. We use these
established problems in our computational complexity proofs.

2.1 Graph Terminology

A directed graph G is defined by the pair G = (V, E) and a cost function c : E → R.
Fig. 4 shows an example directed graph with costs labelled on the edges. The set V is
the set of vertices that are connected by the set of edges E ⊆ V × V , and c(e) gives the
cost of traversing an edge e ∈ E . A path P in a graph is defined by a sequence of vertices
v1, . . . , vk that satisfies (vi, vi+1) ∈ E for all i ∈ {1, . . . , k − 1} with cost of traversal defined
by c(P ) =

∑k−1
i=1 c((vi, vi+1)). With some abuse of notation for v, w ∈ V , c(v, w) refers

to the minimum cost of a path from v to w. Given a graph G = (V, E), the subgraph
GE = (V,E) is induced by E ⊆ E with V ⊆ V given by the endpoints of E, and the
subgraph GV = (V,E) is induced by V ⊆ V with E = (V ×V )∩E (i.e., every edge between
vertices in V ).

Note a graph may also be undirected. That is to say, the edges of the graph may be
traversed from v to u or u to v with the same cost when {v, u} ∈ E . We use {v, u} or {u, v}
to denote the edge is undirected and use (v, u) if the edge is directed. Every undirected
graph can be converted into a directed graph by replacing every undirected edge {v, u} with
two directed edges of the same cost, (v, u) and (u, v). Within this thesis, when we refer to
a graph, we refer to a directed graph unless otherwise indicated.

a b

c

d

e

0

10

6

70

1

5

Figure 4: Example graph. Circles show vertices and arrows show directed edges (labels are
costs).
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An edge e = (v, u) ∈ E is said to be incident with vertices v and u. As the graph
is directed, e is outgoing at v and incoming at u. Therefore, e is incident-in to u and is
incident-out to v with the set of edges incident-out to v, Iv ⊆ E . Using Fig. 4, vertex d has
two incident-out edges to c and e; therefore, Id = {(d, c), (d, e)}.

We discuss the connectivity of a directed graph G by the ability to move from one
vertex to another. Formally, a directed graph is strongly connected if for every vertex there
exists a path to every other vertex. We say a set of vertices V forms a strongly connected
component if its subgraph GV is strongly connected. Using Fig. 4, the full graph is not
strongly connected by inspection since no vertex can reach a, but V = {b, d, e} forms a
strongly connected component.

2.2 Dijkstra’s Algorithm

Consider a graph G = (V, E) with positive cost function c, start vertex vs ∈ V and goal
vertex vg ∈ V . The shortest path problem is to find a path originating from vs that
terminates at vg. The algorithm presented in Dijkstra (1959) computes not only the shortest
path from vs to vg, but also the shortest path to any v ∈ V . By switching the direction
of all e ∈ E (i.e., e = (v, u) changes to eswap = (u, v)), the same algorithm can be used
to calculate the shortest path from any vertex to a single destination. We require both
properties in this work and include pseudo code for this algorithm in Algorithm 1.

Algorithm 1: Dijkstra’s Algorithm

Data: Graph G, cost function c, start vertex vs
Result: distance array dist, previous vertex array prev

1 put V into unvisited queue Q;
2 set dist[v] =∞ and prev[v] = N/A for all v ∈ V ;
3 set dist[vs] to 0;
4 while Q not empty do
5 remove v from Q with minimal dist[v];
6 for each neighbor u of v do
7 if dist[v] + c((v, u)) < dist[u] then
8 dist[u] = dist[v] + c((v, u));
9 prev[u] = v;

We use a min heap data structure for the unvisited queue Q. The graph is encoded
as an adjacency list to minimize the time to collect the neighbors of v. Our problem has
edge blockages and as such we add the condition that edge (v, u) is unblocked in Line 7
of Algorithm 1. This condition can be checked in constant time as the edge state is held
in an array indexed by the edge itself. The maintenance of this array is formalized in the
following chapters.
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2.3 Mutual Information

Mutual information quantifies the amount of information one random variable contains
about another random variable. Given two random variables X and Y with joint proba-
bility mass function p(x, y) and marginal probability mass functions p(x) and p(y), mutual
information I(X;Y ) is the relative entropy between joint distribution and product distri-
bution p(x)p(y) (Cover & Thomas 2012). Formally,

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
= H(X)−H(X|Y )

= H(Y )−H(Y |X)

where H(X) is the entropy of X and H(X|Y ) is the conditional entropy of X given Y .
We use mutual information to quantify how useful an observation is with respect to under-
standing the environment.

2.4 Complexity Classes

Problems can be categorized into classes to describe the difficulty (i.e., amount of work) a
digital computer has in identifying a solution (Sipser 2006). We show our planning problem
within a known environment model falls into the NP-Hard class in Chapter 3, and we show
our planning problem within a hidden environment model falls into the PSPACE-Hard class
in Chapter 4. Given “efficient” solutions may not exist (long standing open problem), we
use these proofs to validate our use of heuristic algorithms as “efficient” methods to generate
sub-optimal solutions.

In order to discuss complexity, we first need to formalize the notion of a language. Let
an alphabet be some non-empty finite set. Each element in the alphabet is called a symbol,
and we define a string over the alphabet as a finite sequence of these symbols. A language
is simply a set of these strings (Sipser 2006). Consider the English language as an example.
It has acceptable words (strings) as finite sequences of letters (symbols) from alphabet
{a, b, c, . . .}. Let a decision problem (i.e., a problem with a yes/no answer) be given by
P = (I, Y ) where I is the language of all problem instances (as strings) and Y ⊆ I are the
yes instances. A verifier is an algorithm A which takes input string s ∈ I and certificate
string c and returns yes if s ∈ Y and no otherwise.

NP: We say P is in the class NP (non-deterministic polynomial time) if there exists a
polynomial time verifier. For A to satisfy this, it must return the correct answer within
polynomial time in the length of input string s ∈ I (i.e., O(p(length(s))) where p is some
polynomial). For polynomial time verifiers, the number of symbols in the certificate string
c is polynomial in the length of s or A cannot read them all within time limit (Sipser 2006).
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PSPACE: We say P is in the class PSPACE (polynomial space) if there exists a solver
that require no more than polynomial space. For a solver to satisfy this, it must return the
correct answer by using no more than O(p(length(s))) space for input string s ∈ I and some
polynomial p. One can see that PSPACE contains the class NP as the time restriction on
NP does not allow its verifier more than a polynomial amount of write operations (Sipser
2006).

Hardness: To establish hardness of a problem B within a class, we must show that B is
at least as hard as any other problem within the class. To do this, we use polynomial time
reduction which first converts any instance of problem C, that is known to be at least as
hard as any problem in the class, to an instance for B using a polynomial amount of work.
Then, we show a solution for the instance of B can be converted back to a solution of the
original instance of C using a polynomial amount of work (Sipser 2006).

2.5 Informative Path Planning

Lim et al. (2015) define the Informative Path Planning (IPP) problem under noiseless
observation as a tuple (X, d,H, ρ,O, Z, r). A robot starts at r and can visit the set of
sensing locations X. The cost of travel between these locations is d(x, y) for x, y ∈ X.
There is a finite set of hypotheses H, which has a probability mass function ρ, and a set
of observations O, which are sensed with Z(x, h, o) for x ∈ X, h ∈ H and o ∈ O. The
function Z returns 1 when o agrees with h and 0 otherwise. The problem then asks to
minimize the expected cost of identifying the correct hypothesis. An optimal policy can be
encoded as a binary tree, where nodes contain sensing information and the outgoing edges
are selected via the sensing outcome. From Lim et al. (2015), IPP is NP-hard as it contains
the optimal decision tree problem (Chakaravarthy et al. 2007) as a special case. We will use
IPP to prove that our start to goal problem within a known environment model is NP-Hard
(decision form NP-Complete).

2.6 Canadian Traveller Problem

The Canadian Travellers Problem is similar to our start to goal problem without environ-
mental information. Formally, the robot is given an undirected graph G = (V, E), a set of
uncertain edges U ⊆ E , a start vertex s, and a goal vertex g. A realization of G is the a
graph GH = (V, H) for set of edges H ⊆ E that must contain all certain edges (E \U) ⊆ H.
The uncertain edges of H, namely U , are learned for zero cost when the robot visits an
endpoint of e = {v, u} ∈ U . The goal of the robot is to find a strategy that has the best
ratio of total distance travelled to the shortest path (Papadimitriou & Yannakakis 1991).
Given the robot took path PH for realization GH , we call this ratio the competitive ratio
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for H,

rcomp|H =
cost(PH)

cost
(
Popt|H

) , (1)

for optimal path Popt|H computed given full knowledge of GH from the start.

Problem 2.1 (Canadian Travellers Problem (CTP)). Given (G,U, s, g, r) for r ∈ [1,∞),
is there a strategy that for every realization GH , the competitive ratio is at most r,
rcomp|H ≤ r?

When presenting this problem, Papadimitriou outlines it as a two player game with a
searcher (our robot) and adversary, whose goal is to maximize the competitive ratio. Within
this model, Papadimitriou shows CTP in PSPACE-HARD (Papadimitriou & Yannakakis
1991). We use this fact to show that our problem of start to goal without prior knowledge
of the environment is also PSPACE-HARD.
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Chapter 3

Planning with Known Environment
Model

Robot motion planning under uncertainty is typically concerned with uncertainty in the
robot’s state within an environment and/or uncertainty in the outcome of a selected action
on the robot’s state (Binney & Sukhatme 2012, Dames et al. 2012, Hollinger et al. 2012,
Javdani et al. 2014, Kaelbling & Lozano-Pérez 2013, Yu, Schwager & Rus 2014). In this
work, we consider motion planning with uncertainty in the set of motion actions that a
robot has access to at a given state. This problem arises in scenarios where the robot is
given a set of possible locations for obstacles in an environment. The obstacles restrict the
set of motions available to the robot at each point in the environment. By taking sensor
measurements, the robot can narrow down the set of feasible obstacle locations and thus
the motion actions it has available. We refer to this as active sensing, and our goal is to
compute motion and sensing policies prior to robot deployment that enable the robot to
efficiently navigate in such environments.

3.1 Introduction

In this chapter, we focus on the task of moving from a start location to a goal location
or showing the goal location cannot be reached while minimizing the expected action cost.
The challenge in this problem is that future costs (for obtaining information and moving
between locations) are dependent on the information the robot has obtained thus far. We
present conditions where exploration is no longer helpful. When these conditions are met,
the robot should exploit the known motion action set to reach the goal. We also develop a
policy that provides constant time lookup for the next action given the outcomes of prior
observations. This allows for implementation on robots where on-board computational
resources are limited at deployment, or in which high-speed motion is required.

Our work leverages the concept of mutual information within discrete environments.
Mutual information is widely used to develop efficient, sub-optimal solutions for gaining
information in planning (Charrow et al. 2014, Dames et al. 2016, 2012, Lim et al. 2015).
Julian et al. (2014) show that by maximizing mutual information within a mapping task,
the robot is eventually attracted to unexplored regions. Hollinger & Sukhatme (2014) use
mutual information to generate a cost constrained path for an information collection task.
Dames et al. (2012) present a mutual information gradient controller, where multiple robots
search for targets and avoid hazards. We use mutual information to quantify the robot’s
value of a sensing action and combine it with the cost of attaining this information in order
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to select the next action.

3.2 Problem Definition

We consider a single robot in a discrete environment (i.e., a robotic roadmap). The robot
and environment models are defined using a weighted directed graph G = (V, E , c) where
V is a set of locations in the robot configuration space and E is the set of edges between
configurations. The function c captures the costs of motion, and for each e ∈ E the value
c(e) ∈ R≥0 defines the robot’s cost for traversing the corresponding edge. The robot knows
the vertex it occupies, but does not know which edges leaving that vertex are free to traverse
(that is, which edges are obstructed by obstacles). If the robot is unsure an edge is free
to traverse, it senses the edge, incurs a sensing cost and traverses it only if the outcome is
unblocked. This is formalized in Section 3.2.2.

3.2.1 Environment Model

The unknown environment is one of m subgraphs of G, denoted G1, . . . , Gm, and we refer
to the indices of these subgraphs as environmental states with environmental state space
Nm = {1, . . . ,m}. Each subgraph Gi is created by a combination of obstacles in the
environment (i.e., it is induced by a subset Ei ⊆ E for i ∈ Nm). The robot is given the set
of possible obstacle locations as edge subsets S = {E1, . . . , Em} along with a probability
mass function (pmf) capturing the likelihood of each subgraph. We encode the probability
as a random variable X that takes values from Nm. Given a random draw x from X, the
edge subset Ex induces the realization Gx = (Vx, Ex, cx) where cx(e) = c(e) for all e ∈ Ex;
the robot must operate in Gx without knowing x.

Note that if every edge subset is possible, m = 2|E|, then the absence or presence of an
edge does not imply the absence or presence of any other edges. In this paper, we focus
on cases where m � 2|E|, and thus observing one edge allows the robot to infer the state
of other edges. This is motivated in Section 3.3.2 by the space complexity required for a
control policy.

Example 3.1. To illustrate the problem, consider Fig. 5 as a simplified model of a small
office. We discretize the space into cells where edges between cells exist only when the two
cells share a border (diagonal cells are not connected). Bars between cells represent an
obstacle which implies the robot cannot traverse between these cells directly. Note cells A
and B are labelled for future examples. A robot is tasked with delivering a package to cell
G, and it starts from cell S. There is a large desk blocking three edges in both Environment
1 and 2, but in Environment 3 the desk now blocks off cell G. Environments 1 and 3 also
have a small box next to the desk, further obstructing traversal.
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Figure 5: Office environment with three realizations and respective probability of occur-
rence.
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Environment 1 (p =0.4)1Line of Sight

Figure 6: Example observation models: single outgoing edges (left), all outgoing edges
(middle) or line of sight (right). Edges between shaded cells are sensed.

3.2.2 Robot Model

When the robot is located at vertex v, it has a finite set of observations Θv = {O1, O2, . . .}
where each O ∈ Θv is a subset of E (i.e., O ⊆ E). Given an observation O ∈ Θv, the function
µ, with value µ(O) ∈ R≥0, captures the cost of sensing which edges (i.e., paths between
configurations) of O are free to traverse. Both Θv, for all v ∈ V , and µ are provided a
priori, and we restrict Θv to satisfy Iv ⊆ ∪O∈ΘvO. This ensures the robot may check if
an outgoing edge from v is traversable. Some example observation models include limiting
each observation to one edge (i.e., Θv = Iv for all v ∈ V) or creating an omnidirectional
sensor with one edge range (i.e., Θv = {Iv} for all v ∈ V). Fig. 6 shows three possible sensor
models within Environment 1 from Example 3.1.

If the robot wishes to make an observation O ∈ Θv, it pays µ(O), and it is returned an
outcome as the subset of edges in O that are free to traverse in Gx = (Vx, Ex, cx).
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Definition 3.1 (Observation-Outcome). Given a graph (V, E), a vertex v ∈ V and an
observation O ∈ Θv with O ⊆ E , an observation is mapped to an outcome by O 7→ O ∩Ex.
The robot must occupy v to attain O ∩ Ex.

Observations with respective outcomes allow the robot to rule out environmental states. If
an observation contains edge e but its outcome does not, the robot knows all edge subsets
containing e cannot be correct. Similarly, if the outcome contains e, all edge subsets missing
e cannot be correct.

Definition 3.2 (Consistent). Given a set of observation-outcome pairs O, an edge subset
E is consistent with O if and only if O ∩ E = O ∩ Ex for each (O,O ∩ Ex) ∈ O.

We define Y ⊆ Nm to be the set of environmental states consistent with observation-
outcome pairs O collected by the robot. To avoid collisions with an obstacle in the environ-
ment, we impose the restriction that an edge e can be traversed only when the probability
it is unblocked equals one, namely

P(e|Y ) =

∑
i∈Y P(X = i ∩ e ∈ Ei)∑

j∈Y P(X = j)
= 1 . (2)

Note this condition only holds when e ∈ Ei for all i ∈ Y . If e ∈ E may be blocked (i.e.,
P(e|Y ) ∈ (0, 1)), the robot can take an observation O with e ∈ O, incur observation cost
µ(O) and proceed across the edge when e is in the outcome. Given a belief Y and observation
O, the set of all possible outcomes is defined by Γ(Y,O) ≡ {E ⊆ E|E = O ∩ Ei for i ∈ Y }.

3.2.3 Policy Space

The robot state is characterized by the set of environmental states Y ⊆ Nm that are
consistent with its observation-outcome pairs and the vertex v it occupies. Thus, the robot
state space is 2Nm × V . At each state (Y, v), the robot selects an action from 2E × C where
C = {observe, move, terminate}. The observations available to the robot are (O, observe)
for each O ∈ Θv. The move actions available to the robot are (e,move) where e ∈ Iv and e
is obstacle-free (i.e., P(e|Y ) = 1). The robot can terminate using the action (∅, terminate).
Finally, a policy maps the robot state space to the set of actions, π : 2Nm × V → 2E × C.

Given a start and goal vs, vg ∈ V , the environmental state space Nm is partitioned into
Ygoal = {i ∈ Nm | c(vs, vg) calculated on Gi is finite} and Yno goal otherwise. We restrict
policies to satisfy the following definition:

Definition 3.3 (Complete Policy). A policy π is complete if for any realization it produces
a finite sequence of actions that reach the goal (i.e., a state (Y, vg) with Y ⊆ Ygoal) or that
determine no path exists (i.e., a state (Y, v) with Y ⊆ Yno goal).

Note: There are environments for which no complete policy exists. Consider Fig. 7
with a single edge observation model, Θv = Iv. Let subgraph G1 be the left graph with
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probability of occurrence P(X = 1) = 0.5, and let subgraph G2 be the right graph with
probability of occurrence P(X = 2) = 0.5. The robot must move to A or B in order to
identify the realization in which it resides. If the robot arrives at A and the edge to g is
obstructed, then it must terminate, yet there still exists a path to goal (namely s to B to
g). The same issue occurs for the other realization if the robot instead initially travels to
B. The following is a sufficient condition for a complete policy to exist. Given Gi for any
i ∈ Nm, the connected component containing the start must be strongly connected. We
formalize this with the following Lemma.

Lemma 3.1. Given graphs G1, . . . , Gm with start and goal vs, vg ∈ V, if the component
containing vs is strongly connected, there always exists a complete policy.

Proof. Let the robot assume x = i for i ∈ Nm which has a path P from vs to vg. Let A
be a sequence of sense then move actions to follow P . If any sense action from A returns
blocked, the realization is not i (i.e., x 6= i). The robot then returns to vs (always valid as
component with vs is strongly connected). Continue this until the robot reaches the goal
or has ruled out all graphs which have a path to goal. All cases end in a terminal state.

s

AB

g

s

AB

g

Figure 7: Pathological realizations for which a complete policy may not exist.

A policy π defines a state transition function f : 2Nm × V × 2E × C → 2Nm × V where
f updates Y after the observe command and updates v after the move command. Given x
drawn from Nm according to the pmf, a policy π emits a sequence of states and actions

(Nm, vs), a1, (Y2, v2), a2, . . . , (Yz, vz), (∅, terminate)

for some finite positive integer z. The cost of an action a is

cost(a) =


c(e) if a = (e,move)

µ(O) if a = (O, sense)

0 otherwise

.

Given random draw x, the total cost incurred using π is given by,

cost(π|X = x) =

z∑
i=1

cost(ai) . (3)

Remark 3.1 (Policy Domain). Note that the domain of the policy has n2m states. In
Section 3.3 we derive properties that enable a more compact representation.
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3.2.4 The Reactive Planning Problem

The expected cost of a complete policy π is found by taking the expectation over the
environmental states,

EX(π) =
∑
x∈Nm

cost(π|X = x)P(X = x) . (4)

Problem 3.1 (Reactive Planning Problem, RPP). Given a graph G, start and goal vertices
vs, vg ∈ V , a set of edge subsets S with corresponding random variable X that has a known
probability mass function and observations Θv for all v ∈ V , find a complete policy π that
minimizes EX(π) over induced subgraph Gx for random draw x.

3.3 Properties and Complexity of Reactive Planning

In this section, we establish several properties of robot actions that enable us to efficiently
represent complete policies along with the complexity of the Reactive Planning Problem.

3.3.1 Action Properties

As the robot moves along a path P in Gx, it takes a set of observations Ov ⊆ Θv ∪ ∅ at
each vertex v ∈ P , where ∅ is used to denote that no observation is taken at v. We define
the sequence of these sets of observations to be an observed path.

Definition 3.4 (Observed Path). Given a path P = v1, . . . , vk with observations Ov for all
v ∈ P , the observed path is the sequence OP = Ov1 , . . . ,Ovk .

The cost of an observed path can be found as the sum of travel costs and observation costs
along the path:

cost(OP ) = c(P ) +

k∑
i=1

∑
O∈Ovi

µ(O).

The robot’s understanding of Gx, namely Y , is based on the observed path beginning at a
starting vertex vs. Two important subgraphs can be formed within this understanding.

Definition 3.5 (Known Subgraph). Given a set of environmental states Y , the graph
G = (V ,E, c) induced by E = {e | P(e|Y ) = 1} is the known subgraph.

Definition 3.6 (Consistent Subgraph). Given a set of environmental states Y , the graph
G = (V ,E, c) induced by E = {e | P(e|Y ) > 0} is the consistent subgraph.

The known subgraph includes only edges that are sure to exist, while the consistent sub-
graph includes all edges that may still exist. These graphs are updated as the robot collects
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constructive observation-outcome pairs of the environment. We say an observation is con-
structive if there are at least two different, possible outcomes. Intuitively, we use the term
constructive because the robot already knows the result of an observation with one outcome
and thus does not need to incur the respective cost.

Definition 3.7 (Constructive Observation). Given environmental states Y , an observation
O is constructive if there exists i, j ∈ Y such that O ∩ Ei 6= O ∩ Ej .

An observed path can be broken into smaller sections called legs that start at one
constructive observation and end at the next constructive observation.

Definition 3.8 (Leg). Given an observed path OP , a leg is a subpath of P , namely
vi, vi+1, . . . , vj where Ovi and Ovj are constructive observations, and each Ovi+1 , . . . ,Ovj−1

is an empty set.

A leg can be thought of as a meta-edge between constructive observations. Since the robot
can move only on edges that contain no obstacles, a leg is composed only of edges which
are understood to be unobstructed after the leg’s first observation set Ovi . Therefore, a leg
is a sequence of move actions that join constructive observation actions.

The order in which observations can be visited depends on observation-outcome pairs
to date. The following definition provides a property of an optimal complete policy that
can react to the environment without re-computation of that policy.

Definition 3.9 (Reachable). Given a known subgraph G and a vertex v, an observation
O ∈ Θu is reachable from v if there exists a path from v to u in G.

The following result ties the notion of reachability to that of legs between constructive
observations.

Lemma 3.2. Consider two consecutive constructive observations O1 and O2 on a path P .
Let (Y, v) be the robot state after action (O1, observe) collects outcome O1 ∩ Ex. Then, in
the known subgraph G defined by Y , observation O2 is reachable from v.

Proof. After O1 ∩ Ex the understanding of the environment, namely Y , is fixed until the
robot gains new information at O2. With no loss of generality, let O2 ∈ Θu for observation
location u ∈ V . The robot can only select move actions for edges that cannot be blocked
given Y . G, defined by Y , contains only edges that do not need to be observed before
traversal; therefore, the robot can only reach O2 if there exists a path from v to u in G.

3.3.2 Control Policy Properties

We now show how a complete policy can be efficiently represented by a tree π = (N,L).
The nodes N are tuples (Y,O) where Y corresponds to the consistent environmental states
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prior to constructive observation O. The edges are defined by legs L between constructive
observations. Every non-leaf node (Y,O) ∈ N must have one leg incident-in and |Γ(Y,O)|
legs incident-out. The incident-out legs connect (Y,O) to (YE , O

′) for E ∈ Γ(Y,O) where
YE = {i ∈ Y |E = O ∩ Ei}. The robot knows which leg to traverse given outcome O ∩ Ex
matches E ∈ Γ(Y,O). Informally, the tree stitches together the observed paths, starting
from vertex vs, for each i ∈ Nm until observation-outcome pairs disagree at which point
the tree branches. This allows real-time reaction in every possible environmental state by
Lemma 3.2. We now discuss the space complexity of this encoding.

Lemma 3.3. Any two nodes n1 6= n2 ∈ N where n1 is not an ancestor or descendent of n2

satisfy Y1 ∩ Y2 = ∅ (i.e., the realization at n1 and at n2 must be different).

Proof. Let (Y,O) ∈ N be the youngest ancestor of both n1 and n2. Formally, Y1 ∪ Y2 ⊆ Y
s.t. Y ⊂ Y ′ for all other ancestors (Y ′, O′) ∈ N . Consider two outcomes E1, E2 ∈ Γ(Y,O)

such that Ei ∩ O = E1 for all i ∈ Y1 and Ej ∩ O = E2 for all j ∈ Y2. If E1 = E2, there
exists a node (Y ′, O′) ∈ N such that Y ′ ⊂ Y and Y1 ∪ Y2 ⊆ Y ′, but this contradicts the
definition of (Y,O). Therefore, E1 6= E2 implies i 6= j for any i ∈ Y1 and any j ∈ Y2 (i.e.,
Y1 ∩ Y2 = ∅).

Lemma 3.4. A complete policy can be represented as a tree using O(nm+m2) space where
n is the number of G’s vertices and m is the number of edge subsets.

Proof. The worst case encoding requires the robot to always learn random draw x before
terminating. Given Lemma 3.3, we can bound the number of constructive observations
the robot makes by m − 1 with respective node size O(m). We know the lowest cost leg
connecting these observations will visit at most n vertices because non-negative traversal
cost allows a path without cycles to always be minimum cost. Therefore, the policy can be
stored as a lookup table of size O(nm+m2).

Remark 3.2 (Policy Encodings). The policy size scales with m which motivates m � 2|E|.
A POMDP with nm states and a MDP with n2m states can be encoded for the RPP, but
for our cases this is still very large.

Continuing Example 3.1, suppose the robot’s observations are Θv = {Iv} for all v ∈ V
with zero cost. Let moving between cells cost 1. Consider the two policies presented in
Fig. 8 where edge labels are the costs of L and node labels encode Y . Note that node T
indicates no goal terminal state was reached. The robot moves to A or B and collects IA or
IB respectively. Using Eq. 4, the left and right policies in Fig. 8 render expected costs of 6.7
and 7.3 respectively. These policies satisfy both the reachability condition in Lemma 3.2
and the constructive observation property, and note the left policy allows the robot to reach
G without fully knowing x.
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Figure 8: Possible policies for office example with different observation locations.

3.3.3 Computational Complexity

To establish the complexity of the Reactive Planning Problem, we begin by considering the
following variant.

Problem 3.2 (Probable World Problem, PWP). Given a graph G, a start vertex vs ∈ V and
a set of edge subsets S with corresponding random variable X that has a known probability
mass function and observations Θv for all v ∈ V , find a policy π that minimizes EX(π) and
identifies induced subgraph Gx for a random draw x from X.

Proposition 3.1. The Probable World Problem is NP-Hard.

Proof. Consider the tuple (X, d,H, ρ,O, Z, r) that defines an instance of IPP from Sec-
tion 2.5. We will reduce IPP to PWP. Create a graph of vertices V = A ∪ B where A
mirrors X and B mirrors O. Let vs = r. Create an edge subset Eh for every h ∈ H.
In every Eh, connect A with edges of cost defined by d. For each a ∈ A and b ∈ B,
add an edge from a to b ∈ B for subset Eh only if Z(a, h, b) = 1. Set observation model
Θv = {e ∈ E|e ∈ Iv}. Let random variable X’s pmf be in line with ρ. Set µ((a, b)) = 0 for
all observations. Consider a solution S for PWP. Change each visited vertex of A to X and
each constructive observation to respective elements of O for a solution S′. The legs of S
contain no verticies of B as B has no path to constructive observations. Given S identifies
random draw x, S′ identifies true hypothesis h. Given IPP (perfect sensing) is NP-Hard
(Lim et al. 2015), PWP must be NP-Hard.

Theorem 3.1. The Reactive Planning Problem is NP-Hard.

Proof. We will prove this result by reducing PWP to RPP. Consider an instance of PWP.
Given the graph for PWP, add a set of vertices Q with |Q| = m, an intermediary vertex h
and a goal vertex vg. Connect every v ∈ V to h with 0 cost for all E ∈ S. Let α be the
maximum of all traversal and observation costs. We can upper bound the expected cost of
any optimal policy with α(mn + m2) by Lemma 3.4. Connect h bidirectionally with each
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q ∈ Q with traversal cost of U for all E ∈ S such that (1 − P(X = y))U � α(mn + m2)
where Ey ∈ S is the most probable edge subset. Add an edge to Ei ∈ S from qi ∈ Q to
vg with cost of 0. In other words, there will only ever be one edge from Q to vg, and it is
always different for each subset. This new problem is in the form of RPP.

Suppose, by way of contradiction, there exists a solution to this RPP without solving the
original PWP. This would imply there were at least two environmental states Y consistent
with the observations of an observed path (starting at vs) of the policy before attempting
to reach vg. This policy would move the robot to qi ∈ Q and observe the edge from qi to
vg for i ∈ Y (only exists in Ei). The policy must react to (qi, vg) ∩ Ex = ∅. The resulting
expected cost is at least piU + (1− pi)2U . Given (1 − pi)U � α(mn+m2), there exists a
policy that can do better as α(mn+m2) is an upper bound on an optimal policy which is a
contradiction. This shows RPP solves PWP. Given Proposition 3.1, RPP is NP-Hard.

Remark 3.3 (NP-Complete). In the decision version of RPP we are given a budget B and
asked to find a complete policy with expected cost less than or equal to B. From Lemma 3.4,
it is straightforward to see that the decision version is in NP, and thus is NP-Complete.
Polychronopoulos & Tsitsiklis (1996) provides a similar result for R-SSPPR, but we were
unable to find a gadget from RPP to R-SSPPR or vice versa.

3.4 Policy Generation

The Reactive Planning Problem seeks information to reach the goal. The robot explores
until it is beneficial to exploit the observed information and move to the goal. We address
this efficiently via a mutual information heuristic and optimally via dynamic programming.

3.4.1 Mutual Information Policies

Our heuristic for policy generation can be broken into its method for exploring the environ-
ment, and attempting to reach the goal. Given a state (Y, v) our method for computing a
policy requires the set of all reachable constructive observations. We denote this set as Rv,
which contains observation-vertex pairs (O, u), and is defined as

Rv = {(O, u) | O ∈ Θu is constructive and is reachable from v}.

Recall the definitions of constructive and reachable observations are given in Definitions 3.7
and 3.9, respectively.

Exploration: Consider the RPP. By Lemma 3.2, information can only be collected at
the set of reachable observations. To select which constructive observation is beneficial, we
maximize mutual information extended from (Charrow et al. 2014, Dames et al. 2016, Lim
et al. 2015).
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Let XY encode the probability distribution over environments given a set of consistent
environmental states Y . Its probability mass function is given by

P(XY = i) =

{ P(X=i)∑
j∈Y P(X=j) for i ∈ Y

0 otherwise
. (5)

Mutual information is the difference between entropy of XY and conditional entropy of XY ,
given a reachable constructive observation (O, u) ∈ Rv. Formally,

MI(XY , (O,EO)) = H(XY )−H(XY |(O,EO)) . (6)

The entropy of XY , H(XY ), does not depend on the observation outcome pair (O,EO);
therefore, this problem can be reduced to minimization of conditional entropy,

H(XY |(O,EO)) = −
∑

E∈Γ(Y,O)

P(EO = E)
∑
i∈Y

P(XY = i|EO = E) log(P(XY = i|EO = E)) .

(7)

Exploitation: The robot must be able to decide when it has collected enough information.
We begin with the following inequality from the principle of optimality,

cG(v, vg) ≤ cG(v, u) + µ(O) + cG(u, vg) for each (O, u) ∈ Rv, (8)

where the subscript on the cost function c indicates the realization of the environment in
which the cost is calculated.

Intuitively, making a measurement and going to the goal is at least as expensive as
going straight to the goal in G. The cost calculated in G often performs poorly as an
under-estimator for Gx. To address this, a new cost-to-go function is calculated as an
expectation over the possible environmental states Y . The expected cost-to-go,

CY (u, vg) =
∑
i∈Y

cGi(u, vg)P(XY = i) , (9)

is found for every vertex u ∈ V . To calculate cGi(u, vg), the edges are flipped in each Gi
and a shortest path algorithm is run from vg to all other u ∈ Vi. If ci(u, vg) is infinite, we
set such costs to zero as the robot will not travel any further (i.e., no goal terminal state).

Eq. 8 is augmented to include the robot’s current environmental understanding and the
expected cost-to-go. Given an observation-vertex pair (O, u) ∈ Rv, the pruning inequality
can be written as

cG(v, vg) ≤ cG(v, u) + µ(O) + CY (u, vg). (10)
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If this inequality is satisfied, then it is less expensive for the robot to traverse straight to
the goal than for it to make observation O at vertex u, and thus this information should
not be collected.

Lemma 3.5. Given a robot state r with constructive observation-vertex pairs Rv, if all
(O, u) ∈ Rv satisfy Eq. 10, then the robot should move to the goal.

Proof. Consider cG(v, vg) =∞. This implies there is no known path to goal. No observation
satisfies Eq. 10, so this trivially holds. Now, consider the case where enough information
has been gathered to r = (Y, v) for cG(v, vg) < ∞. If all (O, u) ∈ Rv satisfy Eq. 10, the
known cost of making any observation and the expected cost-to-go is more than the known
cost to complete the task. Thus, the robot should move to the goal.

Lemma 3.6. The expected cost-to-go from the start, CNm(vs, vg), forms a lower bound on
the expected cost of any policy π.

Proof. Consider any two environmental states i, j ∈ Nm. If Gi and/or Gj do not have paths
to the goal, the robot must identify the environmental state and return no goal terminal
state. To do this, the robot uses an observed path to gain the information. The cost of
such a path is at least 0. The expected cost-to-go for these cases is always 0. Suppose Gi
and Gj can both reach the goal. There is at least one leg the robot must travel for both
Gi and Gj . The expected cost-to-go selects the optimal paths independently. Therefore,
the expected cost of the observed paths from π for i and for j can never be less than the
expected cost-to-go, even if the robot acts optimally otherwise.

Combining Exploration and Exploitation: To combine information gain and mo-
tion to goal, we can use any function of the exploration metric H(XY |(O,EO)) and the
exploitation metric cG(v, u) + µ(O) + CY (u, vg).

Weighted conditional entropy (Suhov et al. 2015) is a well-studied method for combining
entropy with a second metric, and within this method, when at state (Y, v), we select
observations satisfying

Omin = argmin
(O,u)∈Rv

(cG(v, u) + µ(O) + CY (u, vg))H (XY |(O,EO)) . (11)

We also test a weighted sum of the terms in order to select observations,

Omin = argmin
(O,u)∈Rv

(cG(v, u) + µ(O) + CY (u, vg)) + ρH (XY |(O,EO)) , (12)

where ρ is tuned based on the importance of information. In Section 3.6, we show the
strength of each case.

24



Detailed Algorithm: Algorithm 2 selects observations that satisfy either Eq. 11 or
Eq. 12. It requires the function Reachable(G,S, (Y, v)) which computes the minimum path
lengths d[u] from v to all other vertices u in the known subgraph G. The set Rv is formed
from constructive observations which render finite path cost from v, where Dv is an array
recording the distance d[u] to each vertex u.

Algorithm 2: RPP Minimization of Conditional Entropy Policy

Data: Graph G, edge subsets S, vertices vs & vg, states Nm, probabilities p
Result: Policy π for RPP and expected cost lower bound lmove

1 Compute cGi(v, vg) for all v ∈ V and i ∈ Nm;
2 Let Q contain only (Nm, vs);
3 while Q not empty do
4 Remove (Y, v) from Q;
5 if cGi(v, vg) =∞ for all i ∈ Y then
6 Mark π, at v for Y , no goal terminal state;

7 else
8 Compute (Rv, Dv) = Reachable(G,S, (Y, v));
9 Remove elements of Rv that satisfy Eq. 10;

10 if |Rv| = 0 then
11 Add leg from v to vg, marked goal terminal state, to π;
12 else
13 Let (O, u) ∈ Rv be the minimum of Eq. 11 (or Eq. 12);
14 Add leg from v to u and node (Y,O) to π;
15 Add (YE , u) to Q for each E ∈ Γ(Y,O);

16 Let lmove = CNm(vs, vg);
17 Return π and lmove;

Remark 3.4 (Runtime). The runtime of Algorithm 2 is dominated by the m calls to Dijk-
stra’s Algorithm, which gives complexity O(m(|V|+|E|) log |V|) (priority queue implemented
as a binary heap).

The biased cost for selecting an observation in Line 13 and for pruning observations
in Line 9 complement each other to provide incentive toward the goal. The biased cost
encourages observation selection closer to the goal. Once enough information is gained,
the pruning condition removes information that is not important for the task. When the
pruning condition removes all observations from Rv, the robot moves to the goal.

Remark 3.5 (Parallel Computation). Given Lemma 3.3, the policy π, returned by Algo-
rithm 2, is independent of the order in which states are removed from Q in Line 4 (potential
for parallel computation).

Theorem 3.2. Algorithm 2 returns a complete policy.
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Proof. Suppose by contradiction, Algorithm 2 did not return a complete policy. This would
imply either it terminates at (Y, vg) for Y ⊆ Yno goal (false positive) or it terminates a (Y, v)
for v 6= vg and there exists y ∈ Y such that y ∈ Ygoal (false negative).

False positive: Algorithm 2 must have directed the robot to travel over an obstructed
edge because Y ⊆ Yno goal. Since each realization Gi for i ∈ Y does not have a path to goal,
the cost cGi(v, vg) will be infinite for all i ∈ Y . Line 5 is satisfied and Line 6 sets this state
to terminal no goal.

False negative: Algorithm 2 would not be able to find a path in each realization Gi for
i ∈ Y , but since the environmental state y is still possible, cGy(v, vg) will have finite cost.
This will not satisfy Line 5, and thus, this state cannot be marked no goal terminal state
by Line 6.

Remark 3.6 (Online Policy Generation). Algorithm 2 can be used in an online manner as
follows. For a state (Y, v), find the reachable observations and select the minimizer of Eq. 11
or Eq. 12, namely (O, u) ∈ Rv with O ∈ Θu. Execute shortest path in G from v to u and
take O. Update (Y, v) given (O,O ∩ Ex) and repeat.

3.4.2 Lower Bound on Observation Costs

The lower bound lmove from Algorithm 2 does not account for any observation costs. We
formulate a lower bound lobs on the expected observation cost such that its sum with lmove

remains a lower bound on an optimal policy. To accomplish this, a new observation is
created for a state (Y, v) from the union of all constructive observations in the reachable
set Rv, namely θ = ∪(O,u)∈RvO. This observation is available at v for the cost µ(θ) =
min(O,u)∈Rv µ(O). We make this new observation if

cG|Y (v, vg) ≥
∑

E∈Γ(Y,θ)

P(XY ∈ YE)cG|YE (v, vg) + µ(θ) , (13)

where subscript G|Y indicates costs are found for G defined by Y .

Lemma 3.7. Algorithm 3 finds a lower bound on the expected observation cost.

Proof. First, we must show Algorithm 3 will not make more than the minimum number
of observations required. If Line 5 is not met then all i ∈ Y have no path to goal; thus,
the robot may terminate because Y ⊆ Yno goal. Consider Eq. 13. The left-hand-side is the
lowest cost path from vs to vg without any more observations. The right-hand-side is the
expected cost from vs to vg, given θ’s outcome, for the cost µ(θ). When this inequality
holds, the added freedom to select a path with the outcome’s information saves more than
it costs to make the observation. Otherwise, the observation may not improve the known
path for future states; thus, the robot will not take the observation θ.
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Algorithm 3: RPP Observation Lower Bound

Data: Graph G, edge subsets S, vertices vs & vg, states Nm, probabilities p
Result: Lower bound on expected observation cost lobs

1 Compute cGi(v, vg) for all v ∈ V and i ∈ Nm;
2 Add Nm to Q and set lobs = 0;
3 while Q not empty do
4 Remove Y from Q;
5 if cGi(vs, vg) 6=∞ for any i ∈ Y then
6 Compute (Rvs , Dvs) = Reachable(G,S, (Y, vs));
7 if Eq. 13 then
8 lobs = lobs + P(X ∈ Y )µ(θ);
9 Add YE to Q for each E ∈ Γ(Y,θ);

10 Return lobs;

If an observation is required, the optimal observation is in Rv by Lemma 3.2. This
information is collected for the minimum cost of any observation in Rv in Line 8. This
lower bounds the expected cost of the optimal observation. Therefore, no more than the
minimum number of observations are made, each with minimum cost, showing that C lower
bounds the expected observation cost.

3.4.3 A Dynamic Program for the Optimal Policy

The research by Polychronopoulos & Tsitsiklis (1996) presents an exponential-time dynamic
program to solve the R-SSPPR problem. Building on their formulation we can create a
dynamic programming solution to the reactive planning problem as follows. We define the
subproblem V (Y, v) to be the optimal expected cost to go from v in belief Y to the goal vg.
Any belief Y such that Y ⊆ Yno goal, has an optimal cost to go of V (Y, v) = 0 for all v ∈ V .
Following Polychronopoulos & Tsitsiklis (1996), the dynamic programming recursion is

V (Y, v) = min
(O,u)∈Rv

[
cG(v, u) + µ(O) + EXYE [V (YE , u)]

]
, (14)

where YE is the consistent environmental state after observation O gives the outcome E ∈
Γ(Y,O). The recursion looks over all reachable constructive observations and determines the
cost to obtain that observation, followed by the optimal expected cost-to-go to the goal,
versus the cost to go directly to the goal from the current state (Y, v).

To implement this, we use memoization and propagate the solution forward from initial
state (Nm, vs). This complements the fact that the next observation must be in the reachable
set and often limits the number of states examined. However, note that the number of
subproblems V (Y, v) can in general be exponential in the number of realizations m, since
Y ⊆ Nm. Our solution uses recursion on each reachable observation to identify the best
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observation to make, and we compare this to Algorithm 2’s simplified selection method in
the simulations.

3.5 Extension to Faulty Sensors

In some applications, the robot sensor may erroneously miss obstacles (false negatives)
or detect obstacles that are not actually present (false positives). The reactive planning
problem can be extended to certain faulty sensor models. We begin by discussing the
difficulties of a general faulty sensor model, and then discuss a special case that can be
handled directly.

In a general model, we have a probability pO ∈ [0, 1] for each observation O ∈ ∪v∈VΘv,
where the robot receives the correct outcome O ∩ Ex with probability pO and an incorrect
subset of O with probability (1 − pO), which can consist of both false negatives and false
positives. In this case, an observation-outcome pair (O,E) cannot eliminate any environ-
mental state unless it makes an observation O for which pO = 1. Instead of updating Y ,
observation-outcome pairs update the distribution of XY . A natural way to address this is
to allow the robot selection of action (e,move) at v even when P(e|Y ) < 1. The robot then
either successfully traverses the edge, or detects an obstruction using a proximity sensor,
or by physical contact, returning to v and incurring cost c(e). This model now bears close
resemblance to the form of POMDP presented by Papadimitriou & Tsitsiklis (1987), and we
conjecture that as with POMDPs, this general extension is PSPACE-hard. This however,
would imply that the optimal policy structure no longer takes the compact form discussed
in Lemma 3.4. Thus, we limit our attention to the following class of faulty sensors for which
our policy structure still applies.

Structured Sensor Failures: To motivate the idea of structured failures, consider de-
ploying a robot in a building that may contain obstacles with reflective surfaces. Certain
sensors have difficulty detecting these surfaces and thus may return incorrect outcomes.
We term this as a failure type and quantify it with a faulty edge subset E ∈ F where
F = {Em+1, Em+2, . . . , Em+f} is the set of f ∈ Z+ possible failure types. The failure ex-
perienced by the robot is encoded as a random variable W taking values in {0, 1, . . . , f}.
The outcome W = 0 corresponds to no sensor failure (i.e., each outcome is O ∩ Ex), and
occurs with probability pnf ∈ [0, 1]. The failure type w ∈ Nf , corresponding to edge subset

Em+w occurs with probability P(W = w), where
∑f

w=1 P(W = w) = 1 − pnf. The robot
knows the pmf of W , but not its random draw w. If the sensor experiences failure type
w ∈ Nf , then the outcome of each observation O will be O ∩ Em+w, which may not agree
with O ∩ Ex. Thus, this model captures correlated failures: if failure type w occurs when
the robot is operating in realization x, then all edges in Em+w \Ex will give false negative,
and all edges in Ex \ Em+w will give false positives.

The robot state is expanded to capture both the possible realizations of Gx, namely
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Y ⊆ Nm, and the indices of edge subsets consistent with the observation-outcome pairs,
namely Z ⊆ Nm+f . Formally, the robot state is (2Nm , 2Nm+f ,V). The set Y records all
environmental realizations that could be consistent with the observations (given that they
may be faulty). The set Z records the possible edge subsets in (E1, . . . , Em+f ) that are
consistent with the measurements. Under this new sensor model, we provide the actions
that update the robot’s environmental information.

Definition 3.10 (Constructive Observation). Given state (Y,Z, v) withO ∈ Θv, (O, observe)
is constructive if there exist i, j ∈ Z such that O ∩ Ei 6= O ∩ Ej .
Definition 3.11 (Reactive Move). Given state (Y,Z, v) with e ∈ Iv, (e,move) is reactive
if there exist i, j ∈ Y such that e ∈ Ei and e 6∈ Ej . The robot remains at v if e 6∈ Ex and
incurs c(e).

Given Z, a constructive observation O has a set, Γ(Z,O) ≡ {E ⊆ E|E = O ∩ Ei, i ∈ Z},
of possible outcomes where outcome E ∈ Γ(Z,O) updates Z to ZE = {i ∈ Z|E = O ∩ Ei}.
A reactive move, (e,move), partitions Y and Z into edge subsets that contain e and those
that do not. If the robot state (Y,Z, v) satisfies Z ⊆ Nm (i.e., the robot knows no fault
types have been encountered), the problem returns to the RPP under perfect sensing with
start state (Z, v). Note the robot may reach a terminal state without satisfying this special
case.

The tree policy can be extended by changing the nodes to (Y,Z, a) where action a is
a constructive observation or reactive move. To calculate its expected cost, we extract
each root to leaf observed path. Given realization x ∈ Nm, there are f + 1 observed paths
corresponding to sensing x ∈ Nm (observed paths Ax|x) and sensing w ∈ Nf (observed paths
Am+w|x). The expected cost of policy π is,

E(π) =
∑
x∈Nm

(
pnfP(X = x)cost(Ax|x) +

∑
w∈Nf

P(W = w)cost(Am+w|x)

)
.

Lemma 3.8. A complete policy tree has at most 2m+ f − 2 nodes where m is the number
of realizations and f is the number of faulty edge subsets.

Proof. The largest policy tree requires the robot to learn if it is getting incorrect outcomes
and then find the true realization x via reactive moves. Every constructive observation
partitions Z and it requires at most m+ f − 1 constructive observations to identify z or x.
If it identifies z, only reactive moves can partition Y and it takes m− 1 reactive moves to
learn every possible x. This can be encoded into 2m+ f − 2 nodes.

Algorithm 2 can be altered to handle this faulty sensor model as follows. The queue
now holds the new state, and Y is still used to calculate G. The function Reachable(G,S ∪
F , (Y,Z, v)) must also find the reactive moves that can be reached with finite cost. Finally,
Eq. 7 must be altered to capture the conditional entropy of the new state given a reactive
move or a constructive observation.
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Figure 9: Flexible factory model with potential obstacles.

3.6 Simulation Results

In this section we provide simulation results on a large scale practical example and on
randomly generated environments. We compare against online algorithms and the optimal
solution presented in Section 3.4.3. Tests where run on a single Intel Core i7-6700 at 3.4GHz.

3.6.1 Flexible Factory

Flexible factories often spend considerable downtime between contracts due to changes in
infrastructure and machinery. Consider Fig. 9 as a simple flexible factory where dashed
vertices may be obstructed and edges with traversal costs of 2 or 3 are not labelled for
simplicity. Note the curved edges have a traversal cost of 2 more than the shortest path
between their end points, which corresponds to the robot waiting for the obstacle to move.
The factory is interested in knowing the expected cost (e.g. expected time and/or fuel) to
move items from inventory to the loading areas.

The dashed vertices indicate areas that require heavy use. For clarity, in Table 1 the
column labelled “Vertex Obstructions” indicates the properties of the environment obstruc-
tion. For instance, in region 0 (vertices labelled 0) up to two vertices may be missing from
the graph. Regions 1 and 2 each contain one forklift obstruction (which corresponds to
removing the two adjacent vertices it occupies). When regions 5 and 6 are obstructed, all
other vertices exist.

We cast this as a Reactive Planning Problem (RPP) by enumerating all combinations
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Figure 10: Example policy run from S→A for flexible factory example.

of the obstructed vertices and removing their incident edges. This generates 34561 edge
subsets each with a corresponding probability. We compute policies from S to A, from S
to B, from A to S, and from B to S. The robot is faster when not loaded, so the movement
costs of A to S and B to S are decreased by a factor of 2.

Table 1: Flexible factory model parameters used in simulations.

Regions Vertex Obstructions Obstruction Probability Observation Cost

0 ≤ 2 independent uniform over combinations 0.5
1,2 2 adjacent vertices uniform over combinations 0.25
3,4 1 0.3 0.25
5,6 both or none 0.02 0.5
7,9 ≤ 1 independent 0.1 0.5
8 1 0.4 0.5

Due to the size of the environment, we will allow replanning during the online phase
for comparison purposes (note these results do not have constant action lookup time). We
compare against A* and maximum probability of success (Ps). Both approaches generate
a path, which we follow until it is obstructed. Then we take the edges of the path as
observations and use this new information to replan. This is completed for every realization
x ∈ Nm. The cost of the corrected paths from vs to a terminal state and X’s pmf are
used to calculate the expected cost found in Table 2. We also compare against the feedback
heuristic from Polychronopoulos & Tsitsiklis (1996). In contrast to the two prior algorithms,
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if any new information is collected the robot replans with this new information. Given the
difference between the R-SSPPR and the RPP, the optimal expected cost path to goal may
not be well-defined. To remedy this, we let the robot find the shortest path in G and make
the lowest cost constructive observations required to use this path. If an observation is
made, the robot replans with the acquired information applied to G.

Table 2: Flexible factory simulation results.

Algorithm 2 Eq. 11 Eq. 12 A* Max Ps Feedback

Task |N | lmove + lobs EX(π) EX(π) EX EX EX
S→A 114 40.0 42.5 42.6 47.7 85.3 47.3
S→B 6869 42.3 50.0 50.0 50.1 61.7 53.7
A→S 84 20.6 23.3 23.3 30.2 43.6 29.9
B→S 175 22.0 25.7 25.4 28.3 33.9 27.6

To show how a policy emits an observed path, we display the actions taken for an
environmental realization in Fig. 10. Although the obstacles are shown, the robot does
not know the exact location of several of them unless these obstacles have been sensed. If
any sensing action returned a different outcome, we could expect a different path. This
facilitates our desired real-time reaction.

In Table 2, the number of observation nodes in the policy is given by |N |; the upper
bound on this number is given by m − 1, namely 34560, for reference. Note the column
for Eq. 12 shows expected cost for optimized ρ. The proposed algorithm provides lower
expected cost than the three online solutions. In addition, for each task the expected cost
of Algorithm 2 is within 20% of the lower bound (lmove + lobs) on the optimal expected
cost. In general, the feedback heuristic should always perform at least as well as A*. Notice
this is not the case for task S→B, but this occurs due to the different tie-breaking methods
for shortest path in each solution. When comparing Eq. 11 and Eq. 12, the solution for
weighted conditional entropy closely compares to the additive method for optimized ρ and is
computed only once verses multiple runs for different values of ρ. We contribute this to the
correlated environment structure, and in the next section we show, when the environments
are randomized, this is not always the case.

3.6.2 Performance versus Optimal

In order to test the performance of the lower bound as well as the proposed algorithm,
we compare against the optimal solver discussed in Section 3.4.3 as well as the feedback
heuristic discussed in Section 3.6.1. The test environments are cell worlds where edges
connect left, right, up and down cells. Traversal and observation costs are set uniformly
at random between [5, 6] and [1, 2] respectively. The edge subsets are generated by adding
obstacles randomly. To do this, we incrementally relax the addition of obstacles into a
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realization until a path to goal exists and vice versa for no path to goal. Finally, X’s pmf
is formed iteratively by selecting a realization uniformly at random from the remaining
unselected realizations and assigning it one fourth of the remaining probability (the final
realization takes the remaining mass). Due to the exponential runtime nature of the optimal
solver, we test on grids of fewer than 40 vertices and up to 100 possible realizations.

The results in Fig. 11 highlight a shortcoming in the lower bound, lmove + lobs. The
lower bound does not perform well for cases where the probability a random draw does not
have a path to goal is high. This is expected because the lower bound lmove assumes the
robot does not move when a realization does not contain a path to the goal. In practice,
the robot must traverse and observe to identify if it can make its way to the goal.
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Figure 11: Comparison of proposed approach versus the optimal. Left: G is a 5x5 grid
with single edge observations and 40 realizations. Right: G is a 6x6 grid with single hop
observations and 100 realizations.

Fig. 11 also displays a strength in Eq. 12 over Eq. 11 and the feedback heuristic. First,
Eq. 12 with an optimized ρ is always within 10% of the optimal while both Eq. 11 and
the feedback heuristic are within 63% of the optimal. These environments are randomly
generated, and thus their structure does not foster a strong relationship between obstacles.
When this is the case, the weighted additive method of Eq. 12 allows the robot to put less
importance on information gathering, H(XY , (O,EO)), and more importance on the cost
of traversal, (cG(v, u) + µ(O) + CY (u, vg)).

We also test the runtime of Algorithm 2 by fixing the number of vertices in the grid
while varying the number of realizations and fixing the number of realizations while varying
the number of vertices. Ten percent of the realizations have no path to goal. The timing
results in Fig. 12 are generated based on a C-programming implementation. For a low
number of realizations, a single observation greatly impacts where the robot can traverse;
in contrast, as more realizations are introduced, the robot requires more observations to
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traverse a similar area (more while loop iterations) as seen in the left plot. The right plot
shows computation time dominated by Dijkstra’s algorithm as expected given the number
of vertices are growing while the number of realizations remain the same.
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Figure 12: Empirical runtime analysis of the proposed approach. Left: G has 625 vertices
and 2600 edges for varied number of realizations. Right: G has 3000 realizations for varied
number of vertices and edges.

3.6.3 Performance with Inaccurate Prior Data

Often prior data fails in that it may not accurately represent the physical environment
the robot functions in (i.e., the realized edge subset is not an element of S). We test
Algorithm 2’s policy by randomly selecting k edges of the realized environment and com-
plementing their obstruction (i.e., adding an obstacle if one does not exist and vice versa).
The robot follows the policy until it reaches a terminal state or finds an inconsistency,
namely state (∅, v). If Y = ∅, the robot switches to the A* algorithm presented in Sec-
tion 3.6.1 where all uncertain edges are assumed to exist but still must be sensed. The A*
algorithm always uses a single hop observation model.

The environment is a 12x12 grid with 400 realizations where 10% have no path to
goal. For a fixed percentage of inaccurate edges, we perform 20 independent tests using
both single edge and single hop observation models and normalize the expected cost by the
expected cost of Algorithm 2’s policy found assuming no errors. Prior tests show Eq. 11
strongly values information; thus, we test Algorithm 2, using Eq. 11, to show how corrupted
information can adversely affect the expected cost.

The results in Fig. 13 show the single hop observation model has higher expected cost
than the single edge observation model. This occurs because the single hop model is more
likely to identify errors in the environment given it often collects more information; thus as
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Figure 13: Imperfect prior data under single edge observation model (left) and single hop
observation model (right).

error grows, this model abandons its prior knowledge sooner causing a tendency to increase
the expected cost (seen in the right plot). Also, the single edge observation model only
senses edges that may be blocked so an error will only be encountered on a leg. The
robot belief may not satisfy x ∈ Y , yet it often continues travelling toward the goal before
abandoning the prior knowledge.

Notice values less than one in Fig. 13 correspond to particular errors in the environment.
Edges may become unblocked causing a lower cost to goal. The robot may become stuck
before reaching a terminal state as the strongly connect component containing vs may be
broken (see Fig. 7 for an example). Also, a terminal no goal state may be reached when
originally there was a path to goal due to added obstructions.
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Chapter 4

Planning with Hidden Environment
Model

In settings ranging from factories to restaurants, many tasks are highly repetitive, and these
tasks may appear ideal for a robot to execute and/or assist in streamlining. In practice,
this may not always be true and typically is not when the environment is highly uncertain.
In these environments, robots can map (e.g., using occupancy grid map) and complete their
task separately or in unison. The environmental uncertainty makes it difficult to harness a
prior map to complete a future task; thus, for simplicity, a designer may ask the robot to
re-map or use only the most recent map to guide the robot’s direction.

In contrast, this work focuses on identifying fundamental structure in the environment
and planning within this structure to complete the task or identify that the task is impos-
sible to complete. We provide two methods to use what the robot maps during a task to
incrementally build (i.e., update after every task) the policy which guides the robot. The
first method does not require storage of prior environmental maps, but we show the robot’s
performance is dependent on the order in which these maps are acquired. In other words, if
the robot poorly completes an initial task for a given environment, we show the performance
for the remaining tasks may be adversely affected. Our second method uses a filter to store
only the most relevant maps, and we show that this method removes the dependence on
the order in which the robot experiences environments.

4.1 Introduction

Chapter 3 discussed the Reactive Planning Problem where the robot has access to the
environment model. In practice, the model parameters may be inaccurate as tested in
Section 3.6.3 or even unavailable. The goal of this chapter is to learn obstacle correlations
and use these correlations to improve the robot’s performance as more tasks are completed.
Given the environment model is hidden, this problem has added complexity as the number
of possible obstacles is exponential in the number of edges in the graph. We divide the
problem into two sub-problems. The first sub-problem handles unexpected obstacles by
using an online reactive algorithm, and we show the second sub-problem is closely related
to the Reactive Planning Problem. As the robot completes tasks, we show the probability
the online reactive algorithm is used monotonically decreases. This allows the robot to learn
real-time reaction to obstacles and decreases time spent replanning during the task.
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4.2 Problem Models

Throughout this chapter, the robot functions within a directed graph G = (V, E) with the
cost c : E → R≥0 for traversing an edge and the cost µ : E → R≥0 for sensing if an edge
is blocked. Note this is a simplification of the observation model in Chapter 3 in order to
reduce the required notation. The robot is given G without the prior knowledge of edge
blockages within G, yet we require the robot to complete T tasks. In each task, the robot
is required to move from a start vertex vs ∈ V to a goal vertex vg ∈ V or identify it is
impossible to move to vg; however, the set of blocked edges may change after a task is
completed. We allow the robot to store what it has learned in prior tasks to aid future
tasks.

4.2.1 Environment Model

Given a graph G, there are r = 2|E| edge subsets of E . The robot functions within a graph
drawn from a set of graphs labelled G = {G1, . . . , Gr} with a probability mass function (pmf)
capturing the likelihood a given graph will be drawn. Contrary to the RPP, the robot does
not know the pmf over G. The RPP is in fact a special case of this environment model where
S = {E1, . . . , Em} from Section 3.2.1 contains only edge subsets which have non-zero prob-
ability of occurrence. The robot experiences a sequence of T random graphs GX1 , . . . , GXT
for random variables X1, . . . , XT independent and identically distributed (i.i.d) according
to the pmf over Nr (i.e., P(Xt = j) = pj for j ∈ Nr and t ∈ NT where p1, . . . , pr is the pmf).
We drop the index when referring to the underlying pmf and use random variable X. The
robot executes task t in the realization Gxt of GXt without knowing Gxt .

We are interested in applications where a small (cardinality much less than r) subset
of G dominate the pmf. That is to say, the probability a graph is drawn from this set is
much greater than the probability it is not. For cases where each graph is equally likely,
namely P(X = i) = 1

r for any i ∈ Nr, our approach does not provide the intended increase
in functionality over pre-existing online reactive algorithms. From a practical point of view,
we are interested in well structured environments (even though that structure is unknown),
which on occasion has unexpected structure. We believe this captures many environments
where certain areas are often blocked or unblocked (e.g., a doorway) but others are expected
to be a given state (e.g., empty room is expected to be unblocked). Our work still reacts
to the unexpected case, but we wish to speed up reaction time for the most probable cases.
Section 4.6 continues with the flexible factory presented in Chapter 3 to provide an example
of this case.

4.2.2 Robotic Model

Suppose the robot functions within the realization Gxt = (V, Ext) of GXt = (V, EXt) for
some xt ∈ Nr. If the robot occupies v ∈ V , it may sense an edge (v, u) ∈ E to check if it
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is blocked and thus not traversable. Formally, the sensing action is defined by the mapping
γv : Iv → {blocked, unblocked} where γv(e) = unblocked for e ∈ Ext and γv(e) = blocked
otherwise. When we refer to an edge’s state, we are referring to its blocked or unblocked
status within Ext . If the robot, positioned at v ∈ V , wishes to traverse e = (v, u) ∈ E ,
it arrives at u only if e ∈ Ext ; otherwise, we say the move fails and the robot remains at
v. The robot pays c(e) independent of success or failure. This model assumes the robot is
capable of long range sensing (sense action) and proximity sensing (identifies failed moves).
Therefore, there are two methods for the robot to determine the state of an edge: 1) sense
and pay µ(e), or 2) try to move across the edge and pay c(e). Note the position of the robot
is altered for a move over e when e ∈ Ext ; thus, when comparing the cost difference between
a move and an observation, one must also consider the final position. In this chapter, we
focus on µ(e) < c(e) for simplicity.

After the robot performs n actions within the environment, let the set of edges, for which
the robot knows the state, be given by Et,n ⊆ E . We define the robot’s understanding, or
map, of Gxt , after its nth action, as the tuple Mt,n = (Eb

t,n, E
u
t,n) for known blocked edges

Eb
t,n = {e ∈ Et,n|e 6∈ Ext} and known unblocked Eu

t,n = {e ∈ Et,n|e ∈ Ext}. Note that Eb
t,n

and Eu
t,n form a partition of Et,n. When the task is finished, the robot stores the map in the

tuple Mt = (M1, . . . ,Mt) for t ∈ NT , where n is removed to imply the task is completed.

4.3 Problem and Approach

Given a graph G with unknown pmf over all subgraphs G, a start and goal vs, vg ∈ V , the
objective of this work is to minimize the expected cost of completing T tasks that each
traverse from vs to reach vg or show vg cannot be reached. Within this section, we show
this problem in PSPACE-Hard, and we discuss an approach that combines a policy, similar
to the policy for the RPP from Chapter 3, with an existing online reactive algorithm. The
main difficulty in this work is that actions during a given task have implicit dependency on
future tasks. For example, it may be difficult to decide if the cost of sensing an edge has
value to reduce cost in future tasks.

4.3.1 Complete Policy

Let the current task be t ∈ NT , but we remove the label t to reduce notation complexity.
The robot state space is defined as V ×2E ×2E where v ∈ V is the robot’s position, Eb ∈ 2E

is the set of known blocked edges and Eu ∈ 2E is the set of known unblocked edges. At a
given state (v,Eb, Eu), the robot selects an action defined by an outgoing edge e ∈ Iv and
a command from C = {move, sense, call λ, terminate} where we use λ to denote the online
reactive algorithm. Formally, a policy maps the robot state space to the set of actions,
π : V × 2E × 2E → IV × C. A move action (e,move) in realization Gx updates the position
only if it is successful (i.e., e ∈ Ex). Both move and sense actions, for edge e, update the
Eb if e 6∈ Ex and Eu if e ∈ Ex. The terminate command is only used for a terminal state.
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Figure 14: Example realizations G1 (left) and
G2 (right) with undirected edges.

vs, (∅, ∅)

(e1,move)

A, (∅, {e1})

(e3,move)

vs, ({e1}, ∅)

(∅, call λ)

vg , (∅, {e1, e3})

(∅, terminate)

A, ({e3}, {e1})

(∅, call λ)

Figure 15: Example policy where
nodes contain state action pairs.

Given a start and a goal vs, vg ∈ V , a state (v,Eb, Eu) is said to be terminal if v = vg or
the graph G = (V, E \Eb) has no path from vs to vg. The call λ command allows the robot
to use another algorithm λ.

Definition 4.1 (Reactive Algorithm λ). Reactive algorithm λ is an algorithm which com-
putes next actions during a task (online) that are executed by the robot until it reaches a
terminal state.

The reactive algorithm λ allows the robot to handle unexpected environments as they
are encountered. That is to say, the robot will always enter a terminal state (in some finite
number of actions) after it calls λ. An example reactive algorithm is D∗ Lite reviewed along
with several other existing algorithms in Section 1.2.3. Finally, we define a complete policy.

Definition 4.2 (Complete Policy). A policy π is complete if for any graph in G1, . . . , Gr
it produces a finite sequence of actions that ends in a terminal state.

Fig. 15 is an example complete policy π for graphs shown in Fig. 14. Notice the policy will
not call λ if Gx = G1 but will call λ if Gx = G2.

Given a graph Gj with j ∈ Nr, consider the sequence of actions AGj = a1, . . . , az
produced by π (and λ if called) for some z ∈ N. The cost of element a from AGj is

cost(a) =


c(e) if a = (e,move)

µ(e) if a = (e, sense)

0 otherwise

,

with total cost of AGj given by cost(AGj ) =
∑z

i=1 cost(ai). Given π, the expected cost to
complete a task is,

EX(cost(π)) =
∑
j∈Nr

P(X = j)cost(AGj ) . (15)

39



From Lemma 3.1 in Section 3.2.3, for a complete policy to exist it is sufficient that the
component containing vs is strongly connected for each graph in G with non-zero probability
of occurrence. In many application this holds as the robot can exit regions it can enter. An
environment with a crater, that the robot cannot exit, is an example where this condition
is not satisfied. We have not identify necessary conditions for the existence of a complete
policy.

4.3.2 Formal Problem and Complexity

Let the current task be t ∈ NT . The robot experiences a graph from Gt−1 = {Gx1 , . . . , Gxt−1}
or Gnew ∈ G \Gt−1. Consider the special case where the robot is given Gt−1 and occurrence
probabilities p1, . . . , pt−1, pnew (that sum to one) but does not know Gnew. We capture
the probabilities of occurrence with random variable Z that takes values from Nt where t
indicates Gnew was drawn.

Problem 4.1 (Stage t). Given directed graph G with a set of known realizations Gt−1 and
unknown realization Gnew that have occurrence probabilities p1, . . . , pt−1, pnew, start and
goal vs, vg ∈ V , find a travel strategy π (that travels to vg or shows vg is unreachable) that
minimizes EZ(cost(π)).

Lemma 4.1. If pnew > 0, Stage t is PSPACE-Hard; otherwise, Stage t is NP-Hard.

Proof. Consider an instance of the Canadian Travellers Problem (CTP) on graph GCTP

discussed in Section 2.6. We can cast this as the Stage t problem by letting pnew = 1,
G = GCTP, vs = s, vg = g and µ(e) = 0 for all e ∈ E from G. Note pnew > 0 contains this
sub problem after the robot rules out all graphs in Gt−1 through a sequence of n actions (i.e.,
pnew = 1 after n actions). Consider an adversary that wishes to maximize the competative
ratio from Papadimitriou & Yannakakis (1991). Let this adversary set the edge states of

Gm. The competitive ratio is
cost(AGnew )
cGnew (vs,vg) where cGnew(vs, vg) is the shortest path cost in

Gnew. For any given Gnew, minimizing the competitive ratio reduces to minimizing the
associated action cost, cost(AGnew). Since pnew = 1, EZ(cost(AGnew)) = cost(AGnew). At
each vertex the optimal strategy will make all observations given the information has zero
cost just as the original CTP. If the robot can find a strategy that generates AGnew for Stage
t, it finds a strategy to generate a path PGnew for the original CTP by removing all explicit
observations and replacing them with implict observations. Given the Canadian Travellers
Problem is PSPACE-Hard Papadimitriou & Yannakakis (1991), Stage t with pnew > 0 is
PSPACE-Hard.

Consider an instance of the Reactive Planning Problem (G,S, X, vs, vg) where |S| = t−1
and Θv = Iv for all v ∈ V . Let Gt−1 be the set of edge-induced subgraph for all E ∈ S,
pi = P(X = i) for i ∈ Nt−1 and pm = 0. Chapter 3 shows the optimal travel strategy is in
form of a policy tree π, but reactive moves are not permitted. From Theorem 3.1, PWP is
NP-Hard even with zero cost observations, and this implies RPP is NP-Hard for zero cost
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Figure 16: Solution approach that integrates an external algorithm with a policy.

observations from Theorem 3.1. Consider the case where observations cost 0. Any reactive
move can be replaced with an observation by making the observation first and moving if
the edge is unblocked. This is performed for no more cost than a reactive move. Therefore,
given RPP is NP-Hard, Stage t with pm = 0 is NP-Hard.

Note Stage t assumes we know Gt−1 and p1, . . . , pt−1, pm, but in practice we only know
the maps collected by the robot, Mt−1. We wish to consider a sequence of T stages where
the robot wishes to minimize the summed cost. When considering a sequence of T tasks,
note that all prior stages affect the way in which the robot completes the current task. This
fact makes selecting actions in the current task dependent on the actions selected in prior
tasks. In other words, the policy for task t may use the information collected during all
prior tasks. Formally, we define this as the Learned Reactive Planning Problem.

Problem 4.2 (Learned Reactive Planning Problem (LRPP)). Given a graph G with un-
known pmf over all subgraphs G, a start and goal vs, vg ∈ V and number of tasks T , find

a sequence of T complete policies, π1, . . . , πT , that minimizes
∑T

i=1 EXi(cost(πi)) where πi
may depend on the observations made in tasks 1, . . . , i− 1.

We know stage 1 is PSPACE-Hard as pnew = 1; therefore, it follows naturally that the
Learned Reactive Planning Problem is PSPACE-Hard.

4.3.3 Solution Approach

Consider the composite approach displayed in Fig. 16. The number of possible realizations
for GXt may be exponential in the number of edges; therefore, our approach is to use πt
for a subset of environments and λ for the remaining. The robot starts by following πt
until an obstacle (or the lack there of) is encountered that πt does not react to directly. In
this case, πt calls λ to finish the task. This satisfies the complete policy requirement, and
we incrementally build such a policy as more tasks are completed. The policy, πt, reacts
to obstacles in real-time, and as such we wish to maximize the probability the robot can
react to a realization Gxt using only πt. Consider Table 3 as an example of what the robot
experienced during prior tasks as well as the uncertainty in the current task. Notice that
the realizations and probabilities of occurrence for each task are hidden from the robot. Our
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Table 3: Robot’s experiences for t− 1 tasks and uncertainty in the tth task.

task 1 2 3 · · · 8 9 · · · t-1 t

maps M1 M2 M3 · · · M8 M9 · · · Mt−1 Mt

realizations G1 G7 G11 · · · G3 G7 · · · G1 G?

probability p1 p7 p11 · · · p3 p7 · · · p1 p?

Policy
πt

Online
λ

Map
σt

call λ

call
σ
t

cond(σ
t , π

t ) co
nd

(λ
, σ
t)

ca
ll
λ

Figure 17: Solution approach with a mapping policy. Start and end nodes are unaltered
but removed for simplicity.

approach to stage t is to find a policy πt that can react to all realizations Gx1 , . . . , Gxt−1 ,
and we discuss our implementation of such a policy in Section 4.4.

We show our approach to stage t works well to ensure the probability πt calls λ is not
increasing, but we also show its expected cost performance suffers based on the order in
which maps are collected. To address this, we add the policy σt : V × 2E × 2E → IV × C
in Fig. 17 to map regions that the robot identifies may help reducing the total expected
cost. We say σt is our mapping policy similar to πt, but its goal is to learn the state of
certain edges in Gxt . We discuss building this mapping policy as well as the conditions that
increase performance in Section 4.5. The policy σt is kept separate from πt to ensure the
robot has a complete policy independent of the results found while mapping.

Remark 4.1. The dashed edge in Fig. 16 and Fig. 17 is not considered within this chapter
as returning from λ may result in a large number of states that the policy must map to
actions.

4.4 Environmental Estimator

The use of command call λ is not restricted, but we wish to have some guarantees about
the performance of πt as t→ T . In other words, we wish to reduce the robot’s dependency
on reactive algorithm λ as more tasks are completed. This objective reduces time spent
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Table 4: Comparison between the RPP and our approach to the LRPP.

RPP LRPP Description

– t The task number to be executed by the robot with t ∈ NT .
S Mt−1 Maps Mt−1 encode what the robot observed of S during t− 1 tasks.
– n Action number n within a task t.
v vt,n Robot’s position known at all times for both the RPP and the LRPP.
Y At,n Set At,n contains tasks whose maps agree with observations (Y is hidden).

P(e|Y ) p̂e(t, n) Estimate P(e|Y ) with p̂e(t, n) using At,n instead of Y (Y is hidden).
– λ Reactive algorithm λ computes actions during the task.
π πt Policy πt uses λ to react to a subset of environments.
– σt Mapping policy σt observes edges to optimize cost of future tasks.

planning during the robot’s task as the policy can be executed in constant time.

4.4.1 Similarity to the RPP

Table 4 compares the main differences between the RPP and our approach to the LRPP.
The notation is formally introduced throughout this chapter, but we include it here for
reference and intuition into our approach. These similarities allows us to form properties
related to legs and constructive observations presented in Chapter 3.

4.4.2 Estimator Model

After the nth action during task t, the robot’s knowledge is defined by the tuple (Rt,n,Mt−1)
where Rt,n = (vt,n, E

b
t,n, E

u
t,n) is the robot state after the nth action. The set of prior tasks

whose maps agree with the map, Mt,n, of Gxt isAt,n ≡ {t̄ < t|Eb
t,n∩Eu

t̄ = ∅ & Eu
t,n∩Eb

t̄ = ∅}.
Formally, this is known as map agreement.

Definition 4.3 (Map Agreement). Given maps M1 and M2, we say M2 agrees with M1 if
Eb

2 ∩ Eu
1 = ∅ and Eu

2 ∩ Eb
1 = ∅.

Consider the sequence of maps in Table 3. From inspection both M2 and M9 must agree
as they both map G7. In general, if two maps agree this does not imply they are maps of
the same realization. This occurs as the robot does not need to know all of the environment
to accomplish its task and can leave regions unmapped.

For a fixed set of edges Ext the sensing action γv(e) has fixed output, yet the robot must
reach v and pay µ(e) before it learns if e ∈ Ext . Consider estimating the probability an
edge is blocked or unblocked. To do so, we consider all maps that agree with the robot’s
current knowledge. Let I be the indicator function which returns one if the input event is
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true. We use the following estimator,

p̂e(t, n) =


∑
t̄∈At,n

I(e∈Eu
t̄

)∑
t̄∈At,n

I(e∈Et̄)
∃ j ∈ At,n such that e ∈ Ej

0 otherwise
,

where the condition, that at least one of the tasks have mapped e, ensures the estimator is
well defined. In words, this estimator considers only the maps that know the state of e and
agree with the current map Mt,n. This estimates the true probability that an edge exists
given the current mapped edges, namely

P(e ∈ EXt |Mt,n) =
r∑
i=1

P(Xt = i|Ei ∩ Eb
t,n = ∅ AND Eu

t,n ∪ e ⊆ Ei). (16)

This is analogous to the probability an edge exists given the set of possible environmental
states, namely P(e ∈ EX |Y ) from Eq. 2 in Chapter 3.

Notice our approach is a frequentist or classical approach. The classical approach can be
seen as over fitting the data and often performs poorly when there is little data as compared
to the Bayesian approach Murphy (2012). This being said, we use the over fitting nature
of the frequentist approach to allow aggressive behaviour at the start as well as simplified
action selection.

Lemma 4.2. Given the current map Mt,n, prior maps Mt−1 and edge e ∈ E, the estimate
p̂e(t, n) is asymptotically consistent with the number of tasks in At,n that have mapped e.

Proof. Let the set of tasks that map e and agree with Mt,n be H (i.e., H ⊆ At,n and e ∈ Et̄
for all t̄ ∈ H). Note H contains all tasks that contribute to our estimate. We now show the
estimate is unbiased if |H| > 0.

E(p̂e(t, n)) =

∑
t̄∈H E(I(e ∈ Eu

t̄ ))

|H|

=

∑
t̄∈H

(
P(e ∈ EXt̄ |Mt,n) + 0 · P(e 6∈ EXt̄ |Mt,n)

)
|H|

=
|H|P(e ∈ EX |Mt,n)

|H|
(using fact Xt̄ is i.i.d.)

E(p̂e(t, n)) = P(e ∈ EX |Mt,n).
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Next, we show the variance of p̂e(t, n) tends to zero as |H| → ∞.

V(p̂e(t, n)) =
V
(∑

t̄∈H I(e ∈ Eu
t̄ )
)

|H|2

=

∑
t̄∈H V

(
I(e ∈ Eu

t̄ )
)

|H|2
(using independence of each Xt̄)

=
12P(e ∈ EX) + 02P(e 6∈ EX)− p2

e

|H|

V(p̂e(t, n)) =
pe − p2

e

|H|
→ 0 as |H| → ∞.

We use the estimated probability an edge e exists in a realization Ext of EXt to form a
model of the sensing function,

γ̂t,n(e) =


blocked p̂e(t, n) = 0

unblocked p̂e(t, n) = 1

unknown otherwise

.

This model is being updated during the current task. In other words, after an action is
performed the robot updates At,n; thus, it updates the model of the sensing function γ̂t,n(e).
Given our goal is to react in constant time, the following sections provide methods to update
γ̂t,n(e) only after the task is completed.

4.4.3 Estimator Based Policies Π

Consider the class of complete policies, Π, that obey the following procedure.

Definition 4.4 (Complete Policy Class Π). For a complete policy π to have membership
to the class Π, π must obey the following restrictions:

1. Action (e, sense) only used if γ̂t,n(e) = unknown.

2. Action (e,move) only used if γ̂t,n(e) = unblocked.

3. Action (∅, call λ) only used if |At,n| = 0.

4. Action (∅, terminate) only used if robot state is terminal.

Remark 4.2 (Relation to the RPP). A policy in the class Π produces properties similar to
policies for the RPP from Chapter 3. Consider a move action (e,move) as the nth action
taken by the robot. The model of the sensing function must return unblocked if the robot
wishes to use this action. If this action is successful, the set of tasks which agree with Mt,n,
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namely At,n, remain unaltered (i.e., At,n−1 = At,n). This occurs because the agreeing maps
that contain e must all be unblocked or p̂e(t, n) < 1. This is the fundamental requirement
for all move actions of a leg from Chapter 3. In the case where the move fails, the robot
calls λ. Similarly, the restriction on a sense action, namely γ̂t,n(e) = unknown, only allows
observations if there are two possible outcomes. This is the requirement of a constructive
observation from Chapter 3.

Given a fixed λ, the robot cannot identify the sequence of actions the reactive algorithm
will output without knowing Gxt . In order to evaluate the cost of π from Π, we estimate
Eq. 15 as it is not computable without X or the actions generated by λ. Formally,

cost(T tasks) =

T∑
t=1

costπt(Mt).

Notice that πt is formed with all Mt−1 and as such the actions during prior tasks affect
the ability to minimize cost of future tasks. This creates implicit dependencies of all prior
maps and policies on the current task.

The restrictions on Π allow the robot to function assuming Gxt has been mapped in
Mt−1, but, if the robot learns this assumption is not true, it can rely on λ to finish the
task. We will use this framework to show the dependence on λ is not increasing as more
maps are collected.

4.4.4 Properties of Π

We show the probability, that a policy from the class Π calls λ, does not increase as more
tasks are completed, but also show it tends to zero as the number of tasks tends to infinity.

Property 1: The class Π guarantees that the probability of any π from Π calling reactive
algorithm λ is not increasing as tasks are completed. In effect, the robot has learned how
it should react to the environmental realizations it has experienced.

Lemma 4.3. Given any policy π in the class Π, the probability that λ is called decreases
monotonically with the number of completed tasks.

Proof. To show this, we first prove that command (call λ) does not occur if Gxt has been
mapped in Mt−1. In other words, the policy is complete in Mt−1. Let Gxt ’s prior map be
(Eb

i , E
u
i ) for some i ∈ At,n. By construction of a map, we know the recorded edge states

cannot disagree with the current realized edge states, namely Eb
i ⊆ E \ Ext and Eu

i ⊆ Ext .
Call λ only occurs when |At,n| = 0. We know any final map, Mt, of Gxt must agree with
Mi because they both observed the same realization. This implies no sense or move action
can remove i from At,n. Therefore, the set of maps that agree will never be empty and
call λ will not be used. Given independent draws from the same pmf, the probability any
realization Gx has been mapped in Ma can never be less than Mb for tasks a ≥ b because
all maps in Mb exist in Ma.
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Policy πt

Map Memory

Policy
πt+1

Figure 18: Overview of the incremental update.

Property 2: Given Gxt has not been mapped in Mt−1, a policy in Π may not require
the reactive algorithm λ. To show this, consider two graphs in G which have all the same
edges except for some e ∈ E (e.g., say G1 and G2). Let G1 be mapped in Mt−1 as Mi but
let G2 not be mapped. If Mi does not contain the state of e, the set of tasks which agree,
At,n, will always include task i for Gxt = G2; implying, |At,n| 6= 0 (i.e., the procedure for Π
will not allow the call λ command).

Property 3: Given a policy πt from class Π, the robot can estimate the probability it
will call λ during task t. Given the number of calls to λ during the prior t − 1 tasks is
nλ|t−1, we can estimate the probability λ will be called next task by,

p̂λ|t =
nλ|t−1

t− 1
. (17)

Lemma 4.4. Given πt from Π, the estimate, p̂λ|t is asymptotically unbiased and tends to
zero as t→∞.

Proof. Consider a task t̄ such that each graph with non-zero probability of occurrence has
been mapped in Mt̄. Given πt̄ is in the class Π, no sense or move action can remove all
maps that agree (i.e., |At̄+1,n| ≥ 1 for all n). Therefore, all future tasks t > t̄ will not call

λ implying nλ|t̄ = nλ|t and limt→∞
nλ|t−1

t−1 = 0. We know after t̄ the true probability a new
graph will occur is 0 (i.e., pλ|t = 0); thus, the estimator is asymptotically unbiased and
tends to 0 as t→∞.

4.5 Policy Generation

Our approach to the Learned Reactive Planning Problem is to update the current policy
based on the realizations of the environment it has encountered. We focus on the update
shown in Fig 18 that occurs between tasks and builds a policy as more tasks are complete.
A more rigorous notion of our approach can be seen in Algorithm 4. This algorithm shows
how the robot’s knowledge interacts with task completion. Within this section, we discuss
implementation options for Line 9 and Line 10 of Algorithm 4 and extend the tree policy
for θv = Iv from Chapter 3 by adding the call λ command.
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Algorithm 4: Sequential Task Completion

1 let π1 return call λ command;
2 for t = 1, . . . , T do
3 initialize state Rt,n = (vs, ∅, ∅) for n = 0;
4 do
5 execute πt(Rt,n); // if λ is called wait until it terminates

6 update Rt,n increment n;

7 while Rt,n not terminal;

8 collect Eb
t,n and Eu

t,n from Rt,n;

9 update Mt to include (Eb
t , E

u
t ); // the n is dropped as the task is over

10 build πt+1 given Mt and πt; // incrementally building a policy

4.5.1 Policy Structure

A policy can be efficiently encoded into a binary tree π = (N,O). The nodes N of the
tree are given by tuples (M,a) for map M = (Eb, Eu) before action a = (e, c), and the
edges are outcomes O connecting from node n′ to node n′′ if and only if Eb′′ = Eb′ ∪ e or
Eu′′ = Eu′ ∪ e. Therefore, nodes with call λ or terminate commands are leaf nodes given
they do not directly update the robot state. The nodes with move or sense commands have
two outgoing edges corresponding to e ∈ Ext and e 6∈ Ext .

4.5.2 Incremental Update

Consider a policy πt, for task t, in the class Π from Section 4.4. The robot uses πt while
it traverses its unknown environmental realization Gxt . The call λ action occurs if t = 1, a
move node nmove for action (e,move) fails or the robot senses an edge unblocked when it is
trying to show there does not exist a path to vg. If λ was called during task t, the policy πt
would not be in the class Π after task t because πt calls λ when the new map Mt agrees with
the robot state (i.e., it does not satisfy requirement 3 of Π). We ensure πt+1 remains in the
class Π by implementing Line 10 of Algorithm 4 with the following incremental update.

1. Call simplePolicy to create πnew

2. If t = 1 let π2 = πnew

3. Else If nmove failed, add (e, sense) before nmove attaching πnew to outcome γv(e) =
blocked

4. Else attach πnew to outcome γv(e) = unblocked

In words, the incremental update extends πt into πt+1 to react to graph Gxt if it is encoun-
tered again in a future task. Note the solution to Line 8 of simplePolicy is NP-Hard. If the
time between tasks is short, sub-optimal solutions may be required.
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Algorithm 5: simplePolicy

Input: v, vg, Mt

Output: πnew

1 G = (Vt, E
u
t ) with Vt endpoints of Eu

t ;
2 find shortest path P from v to g in G;
3 if P exists then
4 let πnew encode P ;
5 else
6 let Eb ⊆ Eb

t s.t. (V, E \ Eb) does not contain a path from v to vg;

7 let V b = {v ∈ V|(v, u) ∈ E};
8 find the shortest path P b from v that visits all v′ ∈ V b;

9 let πnew encode P b;

10 add (e, sense) ∀e ∈ Eb;

11 add required call λ nodes to πnew;

To give an example of the incremental update, consider the very simple undirected
graphs displayed in Fig. 14. Suppose the robot’s policy, πt, is displayed in Fig 15, and let
Gxt = G2 (i.e., the right graph from Fig. 14). Action (e1,move) fails because edge e1 6∈ Ext .
The robot calls λ which terminates with map Mt = ({e1}, {e2, e4}). Following simplePolicy,
the shortest path is vs, B, vg. To encode this as a policy the robot must perform two move
actions, namely (e2,move) and (e4,move). Finally, we add call λ nodes to the failed result
of these moves as defined in Line 11. The resulting policy πt+1 can be seen in Fig. 19.

Remark 4.3 (Faulty Sensors). If the sensor is faulty (incorrect observation outcome), the
policy should always call λ in the failed move case. For example, node (e1,move) from
Fig. 19 could call λ when e ∈ Eb

t,n even though the sensor indicated otherwise.

Lemma 4.5. A policy πT built via the incremental update can be encoded into O(T |E|)
nodes.

Proof. Policy πT requires the most space if λ was called after every task t ∈ NT . In the
case vg can be reached, πnew will contain at most 2|V| − 2 move and call λ actions given a
path of lowest cost between any two vertices in G can always be found without visiting the
same vertex twice (positive traversal cost). If vg is not reachable, the robot must sense all
edges between the connected component containing vs and the component containing vg.
πnew will need to sense at most |E| edges and move |V| − 2 times. If a sense action returns
unblocked or a move action fails, the robot will call λ. We can assume G is connected or a
smaller G exists for the same problem; therefore |E| + 1 ≥ |V|. πnew is added T times and
has O(|E|) nodes.

The main benefit of this algorithm is its ability to update the policy using only the
latest map. In other words, this incremental update removes Line 9 and the space required
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vs, (∅, ∅)

(e1, sense)

vs, (∅, {e1})

(e1,move)

A, (∅, {e1})

(e3,move)

vg, (∅, {e1, e3})

(∅, terminate)

A, ({e3}, {e1})

(∅, call λ)

vs, ({e1}, ∅)

(e2,move)

vs, ({e1, e2}, ∅)

(∅, call λ)

B, ({e1}, {e2})

(e4,move)

vg , ({e1}, {e2, e4})

(∅, terminate)

B, ({e1, e4}, {e2})

(∅, call λ)

Figure 19: Example policy after incremental update. Nodes show state action pairs.
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Figure 20: Example G with travel costs shown on edges.

for map storage from Algorithm 4 as the update uses map Mt and πt to form πt+1. On the
other hand, the lack of map memory creates an issue with optimization across maps. That
is to say, the solution is strongly tied to the order of Gx1 , . . . , Gxt . We use the following
example to illustrate this weakness.

Example 4.1. Consider Fig. 20 where all sensing actions cost 0.5. Let P(X = 1) = P(X =
2) = 0.5 with G1 only missing edge (D, g) and G2 only missing edge (s,B). Let Gx1 = G2

and Gx2 = G1. Suppose π1 (i.e., call λ) ends at state R = (g, ∅, {(s,A), (A,D), (D, g)}).
The incremental update selects π2 to traverse path s,A,D, g. Given Gx2 = G1, π2 will call
λ at vertex D resulting in π3 which must back track through S when Gxt = G1. Suppose
the order is changed to Gx1 = G1 and Gx2 = G2. Using the same λ, the robot completes
task 1, and the incremental update set π2 to traverse s,B,C, g. In task 2, (s,B) is blocked,
but the incremental update now creates π3 that does not back track.
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4.5.3 Map Memory Filter

To address the map order dependency displayed in Ex. 4.1, consider a map Mt̄ of Gxt̄ . After
task t̄, any edges not mapped in Mt̄ restricts optimization for a future task t. If Gxt = Gxt̄ ,
the robot cannot show this unless all edges were mapped in Mt̄ and Mt. In essence, the robot
is learning experiences of the environment instead of learning the environment. Suppose the
robot could selectively store or overwrite maps to facilitate learning more of the environment.
With this in mind, consider the function mapFilter as an implementation option for Line 9
in Algorithm 4 with the set of maps, Mfiltered

t , stored and Mfiltered
0 = ∅. We say Mfiltered

t is
the set of super maps from Mt with smallest cardinality (i.e., no repeated super maps).

Definition 4.5 (Super Maps). Given Mt, a map Mj with j ∈ Nt is a super map if all Mi

for j 6= i ∈ Nt that agree with Mj satisfy Eb
i ⊆ Eb

j and Eu
i ⊆ Eu

j .

Algorithm 6: mapFilter

Input: Mt, Mfiltered
t−1

Output: Mfiltered
t

1 for each (Eb, Eu) ∈Mfiltered
t−1 do

2 if Eu
t ⊆ Eu AND Eb

t ⊆ Eb then
3 return Mfiltered

t−1 ;

4 if Eu ⊂ Eu
t AND Eb ⊂ Eb

t then
5 return (Mfiltered

t−1 ∪Mt) \ (Eb, Eu);

6 return Mfiltered
t−1 ∪Mt;

Note, we call Mi the sub map. Using this method of storage, we can simplify the
expected cost estimate Eq. 15 to,

cost(πt) =
∑

Mj∈Mfiltered
t

(
nj
t

)
costπt(Mj) , (18)

where nj is the number of maps in Mt that agree with super map Mj . The filtered map
storage can be thought of as overwriting all sub maps with their super map. We show that
this filter requires no more than q maps where q is the total number of realizations with
non-zero probability of occurrence.

Lemma 4.6. |Mfiltered
t | ≤ min(T, q) for all t ≤ T where q is the number of graphs in G with

non-zero probability of occurrence.

Proof. Given q possible environments with T > q, we must show there are at most q unique
super maps. Suppose by contradiction, |Mfiltered

t | > q for any t ∈ T . This implies there
exists at least one super map (say Mextra ∈Mfiltered

t ) more than the number of environments.
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GivenMfiltered
t is minimal we know that each pair M 6= M ′ ∈Mfiltered

t satisfies Eb∩Eu′ 6= ∅
or Eu ∩Eb′ 6= ∅. In words, no pair of maps can agree or they would not all be unique super
maps. Therefore, Mextra must satisfy Eb

extra ∩ Ei 6= ∅ and Eu
extra ∩ (E \ Ei) 6= ∅ for all

(Vi, Ei) ∈ G with non-zero probability. This is a contradiction as Mextra does not satisfy
the definition of a map; thus, |Mfiltered

t | ≤ q.

Consider the case where T ≤ q. Given the robot only completes T tasks, it experiences
T maps. Therefore, the robot cannot collect more unique super maps than tasks, (i.e.,
|Mfiltered

t | ≤ T ).

If the robot executes a policy built with the incremental update from the prior section,
it will only create new super maps rather than update existing super maps. To see this,
consider the case where λ is not called, which implies |At,n| > 0. The edges mapped in
Mt must agree with some map in Mt−1; and by the creation of πnew, the policy only uses
actions on edges with known state. Therefore, Mt cannot be a super map. In the case
|At,n| = 0, all maps disagree with Mt, and a new super map must be created.

4.5.4 Observation Swapping using Mapping Policy σt

Swapping Observations: The goal of this work is to minimize the expected cost of
the sequence of policies. Consider an observation inserted by the incremental update.
The observation is selected to avoid calling λ. In this section, we discuss replacing this
observation with another observation as an observation swap in order to lower the expected
cost of the policy.

Let the task t − 1 be completed by the robot where the incremental update creates πt
with expected cost estimated by Eq. 18. The robot wishes to reduce the expected cost of
its actions for the remaining tasks. After each task, we review every observation made by
the robot during the task including any just added by the incremental update. The nth

action, B = (eold, sense), can only be swapped with another observation, B’ = (enew, sense),
if B’ partitions At,n−1 the same way B does. This is analogous to the way a constructive
observation partitions Y from Chapter 3. Fig. 21 displays the swapping process. The
sequence of move actions from A to B’ uses the environmental estimator defined by At,n−1

where as B’ to C and D use the respective partition At,n. The robot will swap B’ for B if
the expected cost, using Eq. 18, of the actions removed is greater than the expected cost of
the actions added.

Mapping in Order to Swap: The robot may wish to swap a sense action with another
of an edge e that is currently unknown in Mj ∈ Mfiltered

t (i.e., e 6∈ Ej for known edges of
map Mj). That is to say, if this edge was in a certain state, it would qualify to be swapped
and reduce the expected cost. We estimate the probability e partitions At,n−1 correctly,
p̂epart, to be p̂e(t, n) if e must be unblocked or 1 − p̂e(t, n) if e must be blocked. Note we

52



A

BB’

C D

Figure 21: Example node swap. Edges are sequences of move actions connecting observa-
tions. Dashed edges represent possible swap.

calculate p̂e(t, n) assuming Mj mapped e to be in the desired state. We set p̂epart = 0 for
an edge that cannot partition At,n−1 correctly. If the robot senses this edge, it updates the
existing super map Mj .

To update an existing super map, we use the mapping policy σt : V ×2E ×2E → IV ×C
discussed in Section 4.3.3. To use σt, πt contains a node with the call σ command. The
condition, cond(σt, πt) from Fig. 17, is met when the robot has returned to the vertex v
where σt was first called. From this point πt continues to function as if σt had not been
called. When the robot completes the task, the observations made with σt will update the
super map that agrees with map Mt.

Remark 4.4 (Online mapping). Given Lemma 3.1, the robot can always return to v and
may use the call λ command if required. Note the condition, cond(λ, σt) from Fig. 17, is
met when the robot has returned to v.

This work considers mapping a single edge e by adding σe to σt in order to make σt+1

for the super map Mj ∈ Mfiltered
t of task t. Algorithm 7 defines the selection process of

σe. Line 11 is used to estimate the value of mapping edge e in order to swap it with
another observation, where tremain is the number of tasks remaining after σe updates Mj .
To estimate tremain at time t, we model the event of Mj agreeing with a future Mt′ for t′ > t
as a geometric distribution with event probability

nj
t . Thus, we expect this event to occur

t
nj

tasks from now and render,

tremain = max

(
T − t− t

nj
, 0

)
.

Consider Algorithm 7 which selects an edge to be mapped that is expected to reduce
the cost of future tasks. This algorithm evaluates every edge which has not been mapped
in Mj and estimates the expected savings if it was mapped in Mj . Algorithm 7 assess each
vertex vi from the action sequence A (i.e., vi is the robot’s position before action ai) and
finds the lowest expected cost σe to sense e and return to vi in Line 7. Then it selects
the overall lowest expected cost σe in Line 8. Line 10 evaluates the expected savings of
swapping any current observation with an observation of this new edge. Finally, Line 11
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Algorithm 7: Mapping Selection

Input: πt+1, Mj , Mfiltered
t , T

Output: σe

1 Let A be the sequence of action from πt+1 for Mj ;
2 Let enew be no edge with savings save = 0;
3 for each e 6∈ Ej do
4 Set AKt|0 = N|Mfiltered

t |;

5 Set optσ =∞;
6 for i from 1 to |A| do
7 Find γ̂t|i−1 and use it to create σe from vi;

8 Let optσ = min
(
optσ,

|At,i−1|cost(σe)
t

)
;

9 if c = sense then
10 Let optπ = cost(πt+1)− cost(πet+1);

11 if
optπtremain

p̂epart
− optσt

nj
< save then

12 Update save and set enew = e;

13 return σenew if enew was set;

identifies that the expected savings is greater than the expected cost of mapping the edge,
and Algorithm 7 maps the edge with the highest expected savings a swap can produce.

4.6 Simulations

Consider the flexible factory presented in Section 3.6.1. This environment has 48 vertices,
146 edges and 34561 realizations. In order to test the LRPP, we use this factory model but
hide the prior data from the robot. The robot is provided the graph but no information
on obstacles or their correlations. We consider four separate start and goal configurations,
namely S → A, S → B, A→ S and B → S. Tasks returning to S have half the traversal
cost as the robot is unloaded. Given the robot does not know if any edge is obstructed, the
cost of any observation is set to 0.3 (i.e., µ(e) = 0.3 for all e ∈ E).

In order to test the performance of this work, we compare the incremental update (with
and without swapping observations) against using only the reactive algorithm for the same
sequence of random draws. The reactive algorithm, λ, used for our testing is as follows:

1. Find the shortest path from v to vg and follow it.

2. If edge on path unknown, observe it and go to 1.

The results are outlined in Table 5. The savings column is found by taking the percent
difference between the cost of only using λ and the cost of the incremental update (with
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Table 5: Simulation results for the flexible factory with hidden obstacle correlations.

Inc. Update Inc. Update and Swap Obs.

Task T % saved p̂πT pπT % saved p̂πT pπT

S→A 500 3.9 0.88 0.97 4.2 0.87 0.98
1000 3.0 0.93 0.99 2.8 0.93 0.99
2000 5.1 0.92 0.99 6.0 0.91 1
4000 3.5 0.98 1 3.4 0.98 1

S→B 500 -4.3 0.86 0.93 -4.5 0.86 0.93
1000 0.1 0.92 0.95 5.2 0.90 0.95
2000 3.1 0.94 0.97 3.4 0.94 0.97
4000 3.3 0.96 0.98 3.9 0.95 0.98

A→S 500 9.8 0.86 0.94 9.1 0.86 0.93
1000 21.8 0.96 1 20.4 0.95 1
2000 25.6 0.98 1 30.4 0.97 1
4000 20.5 0.99 1 27.9 0.99 1

B→S 500 9.5 0.88 0.99 9.9 0.87 0.98
1000 5.7 0.93 0.99 11.4 0.91 0.99
2000 6.4 0.96 1 10.6 0.96 1
4000 -1.8 0.98 1 7.0 0.97 1
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and without swapping observations). For the shorter tasks (i.e., T = 500 and T = 1000),
observation swapping has similar performance to not swapping observations. This occurs
because the condition to map an edge considers how many tasks are left and is more cautious
as t→ T . For these cases, we found that, after the robot had identified new maps, mapping
was expected to cost more than the savings from the few remaining tasks. For the longer
tasks (i.e., T = 2000 and T = 4000) with observation swapping, the robot frequently
identified regions to be mapped with possible savings for the remaining tasks. Note without
observation swapping, the robot’s performance varied greatly (e.g., B→S with T = 2000
versus with T = 4000). This is linked to the ordering issue discussed in Ex. 4.1.

Using the hidden data, we calculated the probability the robot will not call λ with
policy πT , pπT = 1 − pλ|T . This is compared against the estimated probability the robot
would not call λ with policy πT , p̂πT = 1 − p̂λ|T , in Table 5. In several cases, the policy
found will not call λ after T tasks. Note this occurs due to Property 2 of the environmental
estimator as the robot cannot map all 34561 realizations that have non-zero probability of
occurrence (i.e., T ≤ 4000 < 34561). The estimated probability was always higher than the
true probability after T tasks for both algorithms. This cannot be proven true in general,
but we found empirically that it often occurs.
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Chapter 5

Conclusions and Future Work

This work discusses reaction to uncertainty in the environment. We show the importance of
allowing the robot to terminate if there does not exist a path to the desired goal. When the
environment model is known, we present a policy that generates trajectories in real-time
response to environmental observations made by the robot, which we describe as active
sensing. When the environment model is hidden, we present a system where the probability
this system will react in real-time is monotonically increasing as more tasks are completed.

5.1 Closing Thoughts

This thesis presents two methods for reactive planning based on prior knowledge of en-
vironmental uncertainty and learning this uncertainty as the robot functions. Given prior
knowledge, we present a sub-optimal, efficient algorithm that produces a policy which guides
the robot to the goal or shows the goal cannot be reached. This algorithm also produces a
lower bound on the optimal expected cost of any policy. We compare the policy generated
by this algorithm to existing research and an optimal policy.

Given the robot has no prior environmental knowledge, we present an incremental up-
date that builds a policy as tasks are completed. This policy calls an external reactive
algorithm to handle unexpected environments, and each incremental update incorporates
the experience into the policy. The probability this policy calls the reactive algorithm is
shown to be monotonically decreasing as more tasks are completed. Finally, we test the
incremental update against the reactive algorithm alone.

5.2 Future Work in Known Environment Model

The primary task within this thesis is to find a strategy to reach the goal or show it cannot
be reached. Consider the task for a robot to dispose some waste within an office building.
There are often several waste baskets which the robot can visit. In other words, there
are environments where a task can be completed at different locations or configurations.
A useful extension of our work would consider multiple goal vertices; thus, the robot can
judge the best goal given its current environmental understanding. This differs from multiple
policies as it may not be clear when to select a different goal until the robot has reached a
level of environmental awareness.

The second extension would provide a set of possible start vertices. Consider a robot
deployed at some location. If the deployment is not similar each time, there may be dis-
crepancies in performance based on localization within the environment. Let a probability
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mass function be defined over the start vertices that quantifies the probability the robot
will start at a given vertex. The robot is now tasked to reach the goal or show it cannot
be reached. We have not considered the complexity of this problem or any policy changes
required.

5.3 Future Work in Hidden Environment Model

Within our hidden environment model, the realizations, experienced by the robot, are inde-
pendently and identically distributed based on an unknown probability mass function. This
models some environments, but it is often desirable to consider environments with temporal
correlations. For example, an office may be more crowded and dynamic at noon than at
midnight. The map memory filter presented in this work can be extended to consider this
correlation. Another alternative is to develop several policies; the robot then selects the
policy it wishes to execute for a given task based on the maps collected to date.

In future work, we wish to extend the observation model from single edges to consider
edge subsets. As presented in Chapter 3, many sensor models can be captured by this
extension, but observing more than one edge no longer guarantees a failed move will pro-
vide the same information as an observation action. The incremental update handles this
difference, but we speculate finding a swap observation that partitions the maps similarly
is a computationally hard problem dependent on the number of edges in the observation.

On a practical note, we are interested in creating different map memory filters with
multiple objectives. Consider a fix memory constraint (i.e., a maximum number of maps
much smaller than T ). Within this constraint, minimize the probability pλ|T as well as
the cost incurred by the robot. This added constraint makes selecting which maps to store
more complicated as both how many maps occurred and when may be critical.

Consider the hidden probability mass function. The estimated probability an edge exists
sums the probability that a drawn graph contains that edge. An interesting sub problem is
to estimate the original hidden probability mass function. The exact probability of a given
graph occurring may not be possible due to Property 2 from Section 4.4.4, but we consider
the probability a subset of these graphs occur.
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