11 research outputs found

    Reachability-based Identification, Analysis, and Control Synthesis of Robot Systems

    Full text link
    We introduce reachability analysis for the formal examination of robots. We propose a novel identification method, which preserves reachset conformance of linear systems. We additionally propose a simultaneous identification and control synthesis scheme to obtain optimal controllers with formal guarantees. In a case study, we examine the effectiveness of using reachability analysis to synthesize a state-feedback controller, a velocity observer, and an output feedback controller.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Provably Safe Reinforcement Learning via Action Projection using Reachability Analysis and Polynomial Zonotopes

    Full text link
    While reinforcement learning produces very promising results for many applications, its main disadvantage is the lack of safety guarantees, which prevents its use in safety-critical systems. In this work, we address this issue by a safety shield for nonlinear continuous systems that solve reach-avoid tasks. Our safety shield prevents applying potentially unsafe actions from a reinforcement learning agent by projecting the proposed action to the closest safe action. This approach is called action projection and is implemented via mixed-integer optimization. The safety constraints for action projection are obtained by applying parameterized reachability analysis using polynomial zonotopes, which enables to accurately capture the nonlinear effects of the actions on the system. In contrast to other state-of-the-art approaches for action projection, our safety shield can efficiently handle input constraints and dynamic obstacles, eases incorporation of the spatial robot dimensions into the safety constraints, guarantees robust safety despite process noise and measurement errors, and is well suited for high-dimensional systems, as we demonstrate on several challenging benchmark systems

    Dynamic analysis of Cyber-Physical Systems

    Get PDF
    With the recent advances in communication and computation technologies, integration of software into the sensing, actuation, and control is common. This has lead to a new branch of study called Cyber-Physical Systems (CPS). Avionics, automotives, power grid, medical devices, and robotics are a few examples of such systems. As these systems are part of critical infrastructure, it is very important to ensure that these systems function reliably without any failures. While testing improves confidence in these systems, it does not establish the absence of scenarios where the system fails. The focus of this thesis is on formal verification techniques for cyber-physical systems that prove the absence of errors in a given system. In particular, this thesis focuses on {\em dynamic analysis} techniques that bridge the gap between testing and verification. This thesis uses the framework of hybrid input output automata for modeling CPS. Formal verification of hybrid automata is undecidable in general. Because of the undecidability result, no algorithm is guaranteed to terminate for all models. This thesis focuses on developing heuristics for verification that exploit sample executions of the system. Moreover, the goal of the dynamic analysis techniques proposed in this thesis is to ensure that the techniques are sound, i.e., they always return the right answer, and they are relatively complete, i.e., the techniques terminate when the system satisfies certain special conditions. For undecidable problems, such theoretical guarantees are the strongest that can be expected out of any automatic procedure. This thesis focuses on safety properties, which require that nothing bad happens. In particular we consider invariant and temporal precedence properties; temporal precedence properties ensure that the temporal ordering of certain events in every execution satisfy a given specification. This thesis introduces the notion of a discrepancy function that aids in dynamic analysis of CPS. Informally, these discrepancy functions capture the convergence or divergence of continuous behaviors in CPS systems. In control theory, several proof certificates such as contraction metric and incremental stability have been proposed to capture the convergence and divergence of solutions of ordinary differential equations. This thesis establishes that discrepancy functions generalize such proof certificates. Further, this thesis also proposes a new technique to compute discrepancy functions for continuous systems with linear ODEs from sample executions. One of the main contributions of this thesis is a technique to compute an over-approximation of the set of reachable states using sample executions and discrepancy functions. Using the reachability computation technique, this thesis proposes a safety verification algorithm which is proved to be sound and relatively complete. This technique is implemented in a tool called, Compare-Execute-Check-Engine (C2E2) and experimental results show that it is scalable. To demonstrate the applicability of the algorithms presented, two challenging case studies are analyzed as a part of this thesis. The first case study is about an alerting mechanism in parallel aircraft landing. For performing this case study, the dynamic analysis presented for invariant verification is extended to handle temporal properties. The second case study is about verifying key specification of powertrain control system. New algorithms for computing discrepancy function were implemented in C2E2 for performing this case study. Both these case studies demonstrate that dynamic analysis technique gives promising results and can be applied to realistic CPS. For distributed CPS implementations, where message passing, and clocks skews between agents make formal verification difficult to scale, this thesis presents a dynamic analysis algorithm for inferring global predicates. Such global predicates include assertions about the physical state and the software state of all the agents involved in distributed CPS. This algorithm is applied to coordinated robotic maneuvers for inferring safety and detecting deadlock

    Nachweislich sichere Bewegungsplanung für autonome Fahrzeuge durch Echtzeitverifikation

    Get PDF
    This thesis introduces fail-safe motion planning as the first approach to guarantee legal safety of autonomous vehicles in arbitrary traffic situations. The proposed safety layer verifies whether intended trajectories comply with legal safety and provides fail-safe trajectories when intended trajectories result in safety-critical situations. The presented results indicate that the use of fail-safe motion planning can drastically reduce the number of traffic accidents.Die vorliegende Arbeit führt ein neuartiges Verifikationsverfahren ein, mit dessen Hilfe zum ersten Mal die verkehrsregelkonforme Sicherheit von autonomen Fahrzeugen gewährleistet werden kann. Das Verifikationsverfahren überprüft, ob geplante Trajektorien sicher sind und generiert Rückfalltrajektorien falls diese zu einer unsicheren Situation führen. Die Ergebnisse zeigen, dass die Verwendung des Verfahrens zu einer deutlichen Reduktion von Verkehrsunfällen führt

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore