61,279 research outputs found

    Panel discussion: Proposals for improving OCL

    Get PDF
    During the panel session at the OCL workshop, the OCL community discussed, stimulated by short presentations by OCL experts, potential future extensions and improvements of the OCL. As such, this panel discussion continued the discussion that started at the OCL meeting in Aachen in 2013 and on which we reported in the proceedings of the last year's OCL workshop. This collaborative paper, to which each OCL expert contributed one section, summarises the panel discussion as well as describes the suggestions for further improvements in more detail.Peer ReviewedPostprint (published version

    A Load of Cobbler’s Children: Beyond the Model Designing Processor

    Get PDF
    HCI has developed rich understandings of people at work and at play with technology: most people that is, except designers, who remain locked in the information processing paradigm of first wave HCI. Design methods are validated as if they were computer programs, expected to produce the same results on a range of architectures and hardware. Unfortunately, designers are people, and thus interfere substantially (generally to good effects) with the ‘code’ of design methods. We need to rethink the evaluation and design of design and evaluation methods in HCI. A logocentric proposal based on resource function vocabularies is presented

    Reasoning About a Simulated Printer Case Investigation with Forensic Lucid

    Get PDF
    In this work we model the ACME (a fictitious company name) "printer case incident" and make its specification in Forensic Lucid, a Lucid- and intensional-logic-based programming language for cyberforensic analysis and event reconstruction specification. The printer case involves a dispute between two parties that was previously solved using the finite-state automata (FSA) approach, and is now re-done in a more usable way in Forensic Lucid. Our simulation is based on the said case modeling by encoding concepts like evidence and the related witness accounts as an evidential statement context in a Forensic Lucid program, which is an input to the transition function that models the possible deductions in the case. We then invoke the transition function (actually its reverse) with the evidential statement context to see if the evidence we encoded agrees with one's claims and then attempt to reconstruct the sequence of events that may explain the claim or disprove it.Comment: 18 pages, 3 figures, 7 listings, TOC, index; this article closely relates to arXiv:0906.0049 and arXiv:0904.3789 but to remain stand-alone repeats some of the background and introductory content; abstract presented at HSC'09 and the full updated paper at ICDF2C'11. This is an updated/edited version after ICDF2C proceedings with more references and correction

    Naturally Rehearsing Passwords

    Full text link
    We introduce quantitative usability and security models to guide the design of password management schemes --- systematic strategies to help users create and remember multiple passwords. In the same way that security proofs in cryptography are based on complexity-theoretic assumptions (e.g., hardness of factoring and discrete logarithm), we quantify usability by introducing usability assumptions. In particular, password management relies on assumptions about human memory, e.g., that a user who follows a particular rehearsal schedule will successfully maintain the corresponding memory. These assumptions are informed by research in cognitive science and validated through empirical studies. Given rehearsal requirements and a user's visitation schedule for each account, we use the total number of extra rehearsals that the user would have to do to remember all of his passwords as a measure of the usability of the password scheme. Our usability model leads us to a key observation: password reuse benefits users not only by reducing the number of passwords that the user has to memorize, but more importantly by increasing the natural rehearsal rate for each password. We also present a security model which accounts for the complexity of password management with multiple accounts and associated threats, including online, offline, and plaintext password leak attacks. Observing that current password management schemes are either insecure or unusable, we present Shared Cues--- a new scheme in which the underlying secret is strategically shared across accounts to ensure that most rehearsal requirements are satisfied naturally while simultaneously providing strong security. The construction uses the Chinese Remainder Theorem to achieve these competing goals
    • …
    corecore