11,438 research outputs found

    Crypto Embedded System for Electronic Document

    Get PDF
    In this paper, a development of low-cost RSA-based Crypto Embedded System targeted for electronic document security is presented. The RSA algorithm is implemented in a re-configurable hardware, in this case Field Programmable Gate Array (FPGA). The 32-bit soft cores of AlteraÂ’s Nios RISC processor is used as the basic building blocks of the proposed complete embedded solutions. AlteraÂ’s SOPC Builder is used to facilitate the development of crypto embedded system, particularly in hardware/software integration stage. The use of Cryptographic Application Programming Interface (CAPI) to bridge the application and the hardware, and the associated communication layer in the embedded system is also discussed. The result obtained shows that the crypto embedded system provides a suitable compromise between the constraints of speed, space and required security level based on the specific demands of targeted applications

    A Many-Core Overlay for High-Performance Embedded Computing on FPGAs

    Get PDF
    In this work, we propose a configurable many-core overlay for high-performance embedded computing. The size of internal memory, supported operations and number of ports can be configured independently for each core of the overlay. The overlay was evaluated with matrix multiplication, LU decomposition and Fast-Fourier Transform (FFT) on a ZYNQ-7020 FPGA platform. The results show that using a system-level many-core overlay avoids complex hardware design and still provides good performance results.Comment: Presented at First International Workshop on FPGAs for Software Programmers (FSP 2014) (arXiv:1408.4423

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    Modeling and visualizing networked multi-core embedded software energy consumption

    Full text link
    In this report we present a network-level multi-core energy model and a software development process workflow that allows software developers to estimate the energy consumption of multi-core embedded programs. This work focuses on a high performance, cache-less and timing predictable embedded processor architecture, XS1. Prior modelling work is improved to increase accuracy, then extended to be parametric with respect to voltage and frequency scaling (VFS) and then integrated into a larger scale model of a network of interconnected cores. The modelling is supported by enhancements to an open source instruction set simulator to provide the first network timing aware simulations of the target architecture. Simulation based modelling techniques are combined with methods of results presentation to demonstrate how such work can be integrated into a software developer's workflow, enabling the developer to make informed, energy aware coding decisions. A set of single-, multi-threaded and multi-core benchmarks are used to exercise and evaluate the models and provide use case examples for how results can be presented and interpreted. The models all yield accuracy within an average +/-5 % error margin

    MGSim - Simulation tools for multi-core processor architectures

    Get PDF
    MGSim is an open source discrete event simulator for on-chip hardware components, developed at the University of Amsterdam. It is intended to be a research and teaching vehicle to study the fine-grained hardware/software interactions on many-core and hardware multithreaded processors. It includes support for core models with different instruction sets, a configurable multi-core interconnect, multiple configurable cache and memory models, a dedicated I/O subsystem, and comprehensive monitoring and interaction facilities. The default model configuration shipped with MGSim implements Microgrids, a many-core architecture with hardware concurrency management. MGSim is furthermore written mostly in C++ and uses object classes to represent chip components. It is optimized for architecture models that can be described as process networks.Comment: 33 pages, 22 figures, 4 listings, 2 table

    Debugging Memory Issues In Embedded Linux: A Case Study

    Full text link
    Debugging denotes the process of detecting root causes of unexpected observable behaviors in programs, such as a program crash, an unexpected output value being produced or an assertion violation. Debugging of program errors is a difficult task and often takes a significant amount of time in the software development life cycle. In the context of embedded software, the probability of bugs is quite high. Due to requirements of low code size and less resource consumption, embedded softwares typically do away with a lot of sanity checks during development time. This leads to high chance of errors being uncovered in the production code at run time. In this paper we propose a methodology for debugging errors in BusyBox, a de-facto standard for Linux in embedded systems. Our methodology works on top of Valgrind, a popular memory error detector and Daikon, an invariant analyzer. We have experimented with two published errors in BusyBox and report our findings in this paper.Comment: In proceedings of IEEE TechSym 2011, 14-16 January, 2011, IIT kharagpur, Indi
    • …
    corecore