
A MANY-CORE OVERLAY FOR HIGH-PERFORMANCE
EMBEDDED COMPUTING ON FPGAS

Mário Véstias†, Horácio Neto?

†INESC-ID, Instituto Superior de Engenharia de Lisboa, IPL, Portugal,
?INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal,

mvestias@deetc.isel.pt, hcn@inesc-id.pt

ABSTRACT

In this work, we propose a configurable many-core overlay
for high-performance embedded computing. The size of
internal memory, supported operations and number of ports
can be configured independently for each core of the over-
lay. The overlay was evaluated with matrix multiplication,
LU decomposition and Fast-Fourier Transform (FFT) on a
ZYNQ-7020 FPGA platform. The results show that using a
system-level many-core overlay avoids complex hardware
design and still provides good performance results.

I. INTRODUCTION

Embedded systems have witnessed an exponential
growth in number, diversity and processing requirements.
Due to the stringent time-to-market requirements, high
performance embedded systems must be flexible enough
to adapt to diverse utilization cases and updates, and at the
same time must have enough processing capacity to meet
real-time requirements and high-performance needs. A very
robust architecture in the whole design space consists of
one or more configurable processing units implemented in
field-programmable gate array (FPGA). FPGAs offer the
benefits of determinism and reliability without the need
for an application-specific integrated circuit (ASIC) and
can execute run-time critical algorithms or applications that
otherwise would have to be implemented in a slower and
more power hungry processor.

In general, designing dedicated hardware for a specific
algorithm in FPGAs requires hardware expertise. Instead of
designing dedicated hardware, one approach is to consider
an overlay with an underlying model of computation auto-
matically generated and ready to be programmed and/or
configured by the software developer. Constraining the
hardware design space to a specific overlay may reduce
the performance and increase the power consumption com-
pared to a fully-optimized solution. However, it typically
provides a good tradeoff between hardware performance,
hardware portability and design time.

In this work, we consider an overlay of a many-
core architecture that can be automatically generated and
integrated with an embedded processor as a co-processor.
To optimize the overlay, we made it configurable at two

levels. At the lowest level, the designer configures the
number of cores, system memory (number and size of local
memories, cache and interfaces to external memory) and
can also fix the topology of the interconnection network.
At a higher level, the architecture can be dynamically
changed without changing the lowest level architecture.
In particular, the interconnection network can be changed
by configuring switching circuits of the network (NoC,
ring or simply point-to-point connections), the number and
type of arithmetic operations of each core, number formats,
including floating-point and integer (custom formats must
be configured at the lowest level).

Each core has local memory, an arithmetic unit and
input/output interfaces. Keeping the core simple permits to
explore more parallelism and makes configuration easier.
We have used three algorithms (matrix multiplication, LU
decomposition and Fast-Fourier Transform) to evaluate
architectures designed from the overlay.

The paper is organized as follows. Section 2 describes
the state-of-the-art in many-core processing architectures
for FPGAs. Section 3 describes the proposed many-core
overlay. Section 4 shows the results obtained and section
5 concludes the paper.

II. RELATED WORK

A few many-core designs on FPGA have been pro-
posed. The MPLEM system [2] consists of Xilinx Mi-
croBlaze soft-core processors connected with On-chip Pe-
ripheral Bus (OPB) buses. Each core has a private local
memory block and all cores share an external RAM.
The system synthesized in the biggest Virtex-5 FPGA
(XC5VLX330T) can have 80 processors with no floating-
point support. In [3] a system with 24 MicroBlaze cores
interconnected with an Arteris NoC [4] was proposed. The
system was implemented in a Virtex-4 FX-140 FPGA.

MARC (Many-core Approach to Reconfigurable Com-
puting) [5] is a many-core template comprising one control
processor and multiple processors for running tasks as
SIMD (single instruction multiple data) units. Cores can
be configured as RISC processors or synthesized as full-
custom datapaths. Each core has local private memory
and have access to an internal shared memory. Processors

Copyright is held by the author/owner(s).
1st International Workshop on FPGAs for Software Programmers
(FSP 2014), September 1, 2014, Munich, Germany.

71

are interconnected with a network selected from a library
with various topologies, including crossbar and torus. A
prototype with 48 cores was implemented in a Virtex-5
FPGA. Results show that using datapath optimized process-
ing cores the relative performance compared to a custom
FPGA implementation is at most around 35% and the area
efficiency goes up to 55%.

SMYLEref [9] is a many-core architecture for embed-
ded systems prototyped in FPGA. The architecture consists
of multiple clusters arranged in a two-dimensional array
connected with a NoC. Each cluster has a number of
scalar processors connected with a local bus. Each core
has dedicated instruction and data L1 caches. A second
layer of cache exists in each cluster shared by all cores.
The processor core is a Geyser [10]. A prototype of the
architecture in a Virtex-6 XC6VLX240T can have at most
eight processors with each processor running at 10 MHz.
The system was tested with an FFT and LU decomposition.
For the FFT, the performance increases with the number
of cores, but with 8 processors the performance efficiency
drops down to around 65%. The LU performance is worse,
with a performance degradation when using more than four
processors.

Recently, Recore released a many-core processor sub-
system for FPGAs [6]. The many-core processor connects
general-purpose Xentium DSP cores and other IP blocks
via a hybrid Network-on-Chip/AMBA bus. The many-
core processor comes with a Software Development En-
vironment and a functional simulator. It supports up to 4
Xentium 32-bit DSP cores, 512 kB SRAM memory tiles,
connected to the NoC. The system runs at 60 MHz.

Most of these proposals rely on general-purpose embed-
ded processors as the core unit. This increases flexibility but
decreases performance and area efficiency. In approaches,
like MARC, it is possible to customize the processor with
a dedicated datapath that requires hardware design, but the
results are still far from the peak capacity of the FPGA. In
general, the communication is based on a NoC but in some
approaches, e.g., MARC, it can be customized. Design
space exploration is not specified in most approaches, but
HeMPS, for example, uses ISS and system level simulation
models to explore different platforms.

Several works have proposed dedicated many-core ar-
chitectures on FPGA for high-performance computing. For
example, [12] proposed recently a 12×12 systolic multiply-
accumulate array for matrix multiplication reaching 169
GFLOPs. [13] implemented a linear array of 36 process-
ing elements in a Virtex-5 FPGA for LU decomposition.
The implementation with two DMA channels achieved a
sustained performance of 8.5 GFLOPs corresponding to
an efficiency of 89%. All these are dedicated many-core
architectures for particular algorithms.

Recently, the viability of a GPU-like overlay for FPGA
was analyzed [15]. However, whether GPU-like program-
ming models and architectures are a good way to design
many-cores on FPGA is yet to be checked.

FPU

D
M

A

AXI

E
xt

er
na

l M
em

or
y

core

Adaptable
Interconnection Network

Cache

Many-core Architecture

aF bF

aF bF Configuration
Memory

Controller

core core

core core core

Local MEM

Address
generator

Core

DRAM
Controller

FPGA

Fig. 1. Many-core architecture

Our objective is to design many-core architectures to
work as co-processors of a general-purpose processor for
high performance embedded systems. The co-processors
are used for data intensive processing. To design such
architectures we propose a many-core overlay that can be
configured to support the execution of different algorithms
in isolation or in the same many-core architecture. The
core elements are based on simple processing units with
reduced control, small local memories and arithmetic units.
Each core unit can be individually configured in terms
of local memory size and number and type of arithmetic
operations. This permits to improve performance and area
efficiency when compared to many-core architectures based
on general-purpose embedded processors. We consider a
customizable interconnection network that can be a bus, a
crossbar, a NoC or a ring, and that can use point-to-point
connections and/or a mix of these topologies.

III. MANY-CORE ARCHITECTURE

The proposed many-core overlay is configurable to any
number of cores (see Figure 1).

Each core has an arithmetic unit and a local data
memory. The arithmetic unit can be statically or dynam-
ically configured to execute a set of functions: add/sub,
multiplier, fused multiply-add, reciprocal, square root and
inverse square-root [8]. Each core can be configured with
a different combination of operations. The local memory is
implemented with dual-port block RAMs that are used to
store temporary variables, coefficients to implement some
of the arithmetic operators, constants, and output data.

The many-core has access to external memory through
a DMA that is configured by the embedded processor.
The DMA is responsible for sending/receiving data to/from
memory and for forwarding this data to the network. In
order to improve the bandwidth when requesting elements
stored non-sequentially in memory, the DMA has a cache

72

A0,0 A0,k B0,0

Bk,0

zy

xz

Ai,0 Ai,k

B0,p

Bk,p

… …
…

… …
…

…
 …

…

 …
 …

…

…
 …

…

…
 …

…

px×

..
.

..
.

n

C0,0

Ci,0

y

x

C0,p

Ci,p

…
 …

…

..
.

…

…

…

PEp-1PE0

..
.

Fig. 2. Block multiplication algorithm.

to buffer bursts of data and thus enable faster access. Each
time non-sequential data is requested from memory, a burst
of sequentially-stored elements is fetched (cacheline size).
The first element of the burst is the data requested. This
data is immediately forwarded to the processors. The other
elements are stored in cache. This is useful, for example,
in algorithms working with vectors. The cache can be
configured in terms of size and size of the cacheline. Each
entry of the cacheline is a word whose size depends on the
data width of the arithmetic unit.

The cores are interconnected with an adaptable network
that can be configured statically as a bus, a crossbar, a NoC,
a ring, point-to-point connections or a mix of these topolo-
gies. Alternativelly, a generic interconnection network can
be used with configurable switches that can be adapted to
communication requirements without architectural changes.
The cores are connected to the communication network
through two input and one output buffers.

IV. RESULTS

To evaluate the architecture, we have considered par-
allel algorithms for dense matrix multiplication, LU de-
composition and FFT all with data represented in single
precision floating-point. In all cases, the design space
was explored using SystemC models of the architecture
and the algorithms [16] looking for the best many-core.
Both architectures were implemented and tested in the
reconfigurable area of a XCZ7020 SoC FPGA.

IV-A. Configuration of the Many-Core Overlay for
Matrix Multiplication

Matrix multiplication C = A×B is implemented as a
parallel block matrix algorithm that partitions C matrix into
smaller sub-matrices (blocks) and works with these blocks.
All matrices are square and have the same size (n× n).

As illustrated in figure 2, the C matrix is divided in
blocks with size n×xp. Each of these blocks is calculated
by p cores simultaneously. Each core is responsible for
a sub block with size n × x which in turn is divided in
smaller blocks with dimension y × x. The size of these
smaller blocks, Cij , depends on the local memory size. To
generate a block Cij the processor multiplies a block y×n
from matrix A with a block n × x from matrix B. The
multiplication is implemented as a sequence of k partial
block multiplications,

Cij =

k0∑
k=1

Aik ×Bkj (1)

Each partial block is the multiplication of a y × z sub
block Aik with a z×x sub block Bkj , resulting in a partial
sub block Cijk of size y×x. The final Cij result is obtained
after accumulating the k partial block results.

The partial block multiplications are implemented as
follows. First, each PE receives and stores its Bqj elements.
Then, Aiq elements are broadcasted to all processors. As
the Aiq elements arrive, they are multiplied by all Bqj

elements stored in local memory. The partial results of each
block Cij are also stored in local memory. In the final
iteration, the elements of the result block Cij are sent to
the external memory. As referred, the local memory in each
processor must store the blocks of B (size z × x) and C
(size x× y) under processing.

At the algorithmic level, x, y and z are variables and
thus different performance results are obtained by changing
these values. To optimize the final solution, we have
considered the theoretical results in [11] to determine these
values. According to the referenced theoretical results, the
number of communications with the external memory does
not depend on the dimension z of the sub blocks. Therefore,
z can be simply made equal to 1 in order to reduce the local
memory required. The local memory necessary to store the
sub blocks of B (size 1×x) is doubled in order to enable the
processor to store a new B sub-block while still performing
the computations with the former B sub-block.

Also according to this reference, the dimensions of the
sub blocks Cij that minimize the number of communica-
tions, as a function of the available local memory L, are

x =
L

2 +
√
p L

y =
√

p L (2)

At the architectural level, matrix multiplication requires
multiply and add operations. So, the arithmetic units of all
cores are configured as fused multiply-add. The cores are
connected in a linear array, that is, each core is connected
to two neighbors with point-to-point links.

We have configured the overlay with 16 and 32 cores,
all with the same local memory size and a DMA cache with
support for up to 16 cachelines. We have configured the
overlay as a one-dimensional array of the cores connected
to external memory through the DMA.

For both architectures an initial study was done to find
the relation between cache line and local memory sizes (see
table I).

With 16 cores, local memories of 2 KBytes (per each
core) and a cache with a cache line of size 16 are enough
to implement the architecture with the best performance.
In the case of 32 cores, the cache line must be doubled to

73

Table I. Relation between cache line size and local memory
size to guarantee best performance

16 cores
Local Memory Cacheline y Cache size Total Memory

32 KBytes 1 256 1KByte 513 KBytes
16 KBytes 2 256 2 KByte 258 KBytes
8 KBytes 4 256 4 KByte 132 KBytes
4 KByte 8 128 4 KByte 68 KBytes
2 KBytes 16 128 8 KByte 40 KBytes

32 cores
Local Memory Cacheline y Cache Size Total Memory

16 KBytes 2 256 2 KBytes 514 KBytes
8 KBytes 8 256 8 KBytes 264 KBytes
4 KBytes 16 256 16 KBytes 144 KBytes

achieve the best performance. With smaller local memories,
than those indicated in the table, the external memory
access requirements increase such that the communications
cycles become higher than the processing cycles and there-
fore the final performance is always worst independently
of the size of the cacheline.

Assuming an architecture with 32 KBytes of local
memory for the 16-core and 16 KBytes for the 32-core
architecture, we have determined the utilization of re-
sources and the number of execution cycles (see table II).
Both architectures achieve high performance efficiencies
(peak performance/measured performance), 86% and 84%,
respectively. The 16-core achieves 7 GFLOPs and the 32-
core achieves 13.4 GFLOPs.

Table II. Results for matrix multiplication
Core Arch. 16-cores Arch. 32-cores

LUTs 1,364 24,390 46,576
DSPs 4 71 135

BRAMs 8/4 140 140
Freq. (MHz) 250 250 250

Cycles — 77,772,668 39,796,887
Time (s) — 0.31 0.16
GFLOPs 0.5 7 13.5

Efficiency — 86% 84%

Compared to previous implementations, ours has about
half of the performance of the dedicated architecture for
matrix multiplication in [14], but consumes only about
25% of the resources. Doubling the number of cores of
our architecture would provide an architecture with the
same performance. In terms of efficiency, our architecture
is better. We also have higher efficiencies compared to the
dedicated many-core proposed in [12].

IV-B. Configuration of the Many-Core Overlay for LU
decomposition

LU Decomposition factors a square matrix, of size
n × n, into an upper triangular matrix, U, and a lower
triangular matrix, L. Lower/upper triangular decomposition
is performed by a sequence of Gaussian eliminations to
form A=LU. A pseudocode for the column-oriented LU
decomposition is given in Listing 1.

Listing 1. LU Decomposition
for k = 1 to n-1
rec_a = 1/a(k,k);
for s = k+1 to n
l(s,k)=a(s,k) * rec_a;

for j = k+1 to n
for i = k+1 to n
a(i,j) = a(i,j) - l(i,k) * a(k,j);

To parallelize the algorithm, we proceeded as follows.
One core receives the first column of A, determines the
first column of L and stores it in its local memory. Next,
the same processor receives the next column of A and
calculates the second column of A′ and so on, until it
obtains the complete A′. In this process, the first element of
each column of A′ is sent back to memory since these are
already the final values of matrix U . As the core calculates
each column of A′, it sends it to the next core that will
calculate A′′ following the same process. It calculates the
second column of L, stores it in its local memory and
calculates the remaining columns of A′′ and sends them
to the next core to calculate A′′′. If n is higher than the
number of cores, then the last core must send its results
back to global memory to be read (again) by the first core.

At the architectural level, the LU algorithm requires
multiply-add and reciprocal operations. So, the arithmetic
unit of all cores was configured with a fused multiply-add
and a reciprocal unit. The cores are connected again as a
linear array and the results are written back to memory
through a bus. The DMA does not need a cache since the
access is always by columns (assuming the matrix is stored
by columns). Each core must store the values of matrix L
to be used in the calculations of new columns. Thus, in the
worst case each core needs a local memory with size equal
to n− pos, where pos is its position in the chain of cores.

To simplify the implementation, we configured the local
memories of all cores with the same size, 16 KBytes,
enough to store at most 4K × 32-bit elements. We have
determined the resources consumed by a single core and
by the whole 16- and 32-core architectures (see table III).

Table III. Resource utilization for LU decomposition
Core Arch. 16-cores Arch. 32-cores

LUTs 1,503 26,614 46,576
DSPs 4 71 135

BRAMs 2 47 63
Freq. (MHz) 250 250 250

Table IV shows the performance results for both 16-
and 32-core architectures and for different matrix sizes.

The performance efficiency decreases slightly with the
number of cores. The increase in the number of cycles
with the size of the matrix is in accordance with the
complexity of the algorithm (n3). In all cases, using a
second DMA channel, the efficiencies would double since
the communications (and also the total execution times)
would reduce 50%.

The computation time is in the order of several milisec-
onds, which is much better than the LU implementation

74

Table IV. Performance results for LU decomposition
16 cores

Size Cycles # operations Efficiency
128× 128 104,017 699,008 42 %
256× 256 765,216 5,559,680 45 %
512× 512 5,853,972 44,739,072 48 %

32 cores
Size Cycles # operations Efficiency

128× 128 61,164 699,008 36 %
256× 256 416,824 5,559,680 42 %
512× 512 3,061,743 44,739,072 46 %

in the (general-purpose) many-core architecture of [9]
(computation time in the order of seconds). This is mainly
due to their many-core approach being based on a complex
and slower general-purpose core which for these type
of applications can be quite inefficient. Our configurable
architecture is also competitive with dedicated approaches.
For example, a 36-core implementation in a Virtex-5, with
2 DMA controllers, of the dedicated many-core in [13],
achieves 8.5 GFLOPs at a 89% performance efficiency.
Our 32-core architecture, also with two DMA channels, can
achieve 15 GFLOPs with a 92% performance efficicency.

IV-C. Fast-Fourier Transform

Fast Fourier Transform is one of the most frequently
used kernels in a wide variety of image and signal pro-
cessing applications. Several FFT algorithms have been
proposed and developed. Radix-X Cooley-Tukey algorithm
is one of the most popular algorithms for hardware imple-
mentation. Starting with the basic equation of an N-point
DFT (see equation 3)

Xp =

N−1∑
n=0

xn e−j
2π
N np (3)

we partition the DFT into odd and even-indexed terms

Xp =
∑N

2 −1
n=0 x2n e−j

2π
N 2np

+e−j
2π
N p

∑N
2 −1
n=0 x2n+1 e−j

2π
N 2np

= Ap +W p Bp

(4)

Ap and Bp are themselves DFTs of length N/2. Hence,
the FFT algorithm performs two independent N/2-point
FFT and combine the results using N multiply-add opera-
tions. This gives rise to the well known complexity of the
FFT algorithm, O(nlog2n).

Evaluating equation 4 at frequencies N + p
2 , we obtain

Xp+N
2

= Ap−W pBp. Both Xp and Xp+N
2

are calculated
with a butterfly structure.

The parallel FFT algorithm implemented uses two cores
to calculate each stage of the FFT, one is responsible for
the real part and the other for the imaginary part. The first
two cores receive the point values from memory calculates
the first stage and sends the results to the second pair of
cores and so on. The final results are sent to the memory. In

Table V. Performance results for FFT
points Cycles

4 cores 8 cores 16 cores 32 cores
16 83 76 76 76
32 179 144 144 144
64 407 311 276 276

128 899 667 536 536
256 1.991 1.375 1.052 1.052
512 4.355 2.819 2.080 2.080
1K 9.479 6.407 4.871 4.132
2K 20.483 13.579 10.507 8.232

0,25

0,5

1

2

4

8

16

32

64

128

256

512

16 32 64 128 256 512 1024 2048

Lo
ca

l M
e

m
o

ry
 S

iz
e

 (
K

B
yt

e
s)

FFT points

4 cores

8 cores

16 cores

32 cores

Fig. 3. Memory Size required for different number of cores
and different number of FFT points.

case the number of pairs of cores are less than the number
of stages, some pairs of cores have to calculates more than
one stage of the FFT. For example, with N = 16, the FFT
has four stages, each with eight butterflies, and therefore
eight cores are used in this case.

The FFT algorithm requires only multiply and add
operations and, so, the arithmetic unit of all cores is con-
figured with a fused multiply-add, like in the architecture
for matrix multiplication. All cores were configured with
the same local memory. The interconnection network is
more tricky. Each core is connected to two neighbors with
a point-to-point connection and the results are written back
to memory through a bus. The DMA does not need a
cache since the access is always by columns (assuming
the FFT points are stored by columns). However, we have
considered two DMA channels to retrieve/save both real
and complex values in the external memory.

Table V shows the performance of the architecture for
different number of cores and for different FFT sizes. The
results are consistent with the complexity of the FFT.

Since the algorithm considered to parallelize the FFT
assumes all coefficients are stored in local memory of each
processor, the supported number of FFT points will depend
on the available memory. We have determined the relation
between the number of FFT points and local memory size
(see Figure 3).

As expected, the available memory of the target device
determines the maximum number of FFT points according
to the behavior illustrated in the figure. Given the limit
of available internal memory, we may have to reduce the
number of cores to support the execution of the algorithm,
with consequent reduction of performance. After reaching
the limit of available memory, higher number of FFT-points

75

0

10

20

30

40

50

60

70

80

90

16 32 64 128 256 512 1024 2048

Ef
fi

ci
e

n
cy

 (
%

)

FFT points

4 cores

8 cores

16 cores

32 cores

Fig. 4. Performance efficiency for different number of cores
and different number of FFT points.

can be supported only using external memory. In this case,
the communication to external memory will degrade the
performance of the algorithm and possibly would be better
to reduce the number of cores (this was not yet quantified)

A second aspect of the FFT implementation is the
performance efficiency of the architectures (see Figure 4).

As we can see, the performance efficiency decreases
with the number of cores and increases with the number of
FFT points. This is also true for matrix multiplication and
LU decomposition. Therefore, if we have to run some of
these algorithms within a single application it is better to
run them in parallel with less number of cores allocated for
each algorithm than running them with all cores allocated
to each algorithm serially.

We have also considered the configuration of the over-
lay for all three applications at once. In this case, the
arithmetic units were configured to support fused multiply-
operations and reciprocal. The reciprocal operation is con-
figured dynamically by loading the coefficients of the
piecewise polynomial approximation used to calculate it
[8]. The interconnection network is configured statically
with configurable switches that are dynamically adapted
to the communication requirements of the applications.
The performance results are close to those obtained with
independent architectures.

V. CONCLUSION

A configurable many-core overlay for high-performance
embedded computing was proposed. Cores and intercon-
nection topology can be configured at two levels to opti-
mize the architecture for particular algorithms.

Previous proposals of many-core architectures for em-
bedded systems are based on general-purpose embedded
processors. Compared to our many-core, these systems
in general have a better support to run control intensive
kernels or threads but are less efficient for data intensive
applications in terms of performance and area. This is
because our cores are simpler and application optimized,
and can also support higher operating frequencies.

We have evaluated the architecture for matrix multi-
plication, LU decomposition and FFT. The results show
that the architectures generated from the many-core overlay
achieves performances close to those of state-of-the-art
dedicated circuits and performance efficiencies near 90%

without requiring hardware expertise to design the many-
core architecture.

ACKNOWLEDGMENT

This work was supported by national funds through
FCT, Fundação para a Ciência e Tecnologia, un-
der projects PEst-OE/EEI/LA0021/2013 and PTDC/EEA-
ELC/122098/2010.

VI. REFERENCES
[1] D. Capalija and T. S. Abdelrahman, ”A Coarse-Grain FPGA

Overlay for Executing Data Flow Graphs”, Workshop on the
Intersections of CARL, 2012.

[2] Mplemenos, G.-G.; Papaefstathiou, I., ”MPLEM: An 80-
processor FPGA Based Multiprocessor System,” 16th Inter-
national Symposium on Field-Programmable Custom Com-
puting Machines, pp.273-274, April 2008.

[3] Zhoukun Wang; Hammami, O., ”External DDR2-constrained
NOC-based 24-processors MPSOC design and implemen-
tation on single FPGA,” 3rd International Design and Test
Workshop, pp.193-197, Dec. 2008.

[4] Arteris, ”Open Core Protocol,” http://www.ocpip.org.
[5] I. Lebedev, et al., ”MARC: A Many-Core Approach to

Reconfigurable Computing,” International Conference on Re-
configurable Computing and FPGAs, pp.7-12, Dec. 2010.

[6] Recore, ”Recore Many-Core Processor Subsystem IP-on-
FPGA”, http://www.recoresystems.com/products/many-core-
processor-subsystem-ip/.

[7] Open Cores, ”Plasma Processor,”
http://opencores.org/project,plasma.

[8] W. Jose, Ana Silva, H. Neto and M. Véstias, “Efficient Im-
plementation of a Single-Precision Floating-Point Arithmetic
Unit on FPGA”, FPL 2014.

[9] Kondo, M.; Nguyen, S.T.; Hirao, T.; Soga, T.; Sasaki, H.; In-
oue, K., ”SMYLEref: A reference architecture for manycore-
processor SoCs,” ASP-DAC, pp.561-564, Jan. 2013.

[10] N. Seki, et al. ”A Fine Grain Dynamic Sleep Control Scheme
in MIPS R3000,” IEICE Transactions on Information and
Systems, VoI.J93-D, No. 6, pp.920-930, 2010.

[11] W. Jose, Ana Silva, H. Neto and M. Véstias, “Analysis of
Matrix Multiplication on High Density Virtex-7 FPGA”, FPL
2013.

[12] J. Cappello and D. Strenski, “A Practical Measure of FPGA
Floating Point Acceleration for High Performance Comput-
ing”, ASAP 2013.

[13] G. Wu, Y. Dou, J. Sun, and G. Peterson, “A High Perfor-
mance and Memory Efficient LU Decomposer on FPGAs”,
IEEE Transactions on Computers, vol. 61, n. 3, March 2012,
pp. 366-378.

[14] V. Kumar, S. Joshi, S. Patkar, H. Narayanan,”FPGA Based
High Performance Double-Precision Matrix Multiplication”,
VLSID, 2009, pp. 341-346.

[15] J. Kingyens and J. Steffan, ”The Potential for a GPU-Like
Overlay Architecture for FPGAs”, International Journal of
Reconfigurable Computing, 2011.

[16] Ana Rita Silva, Wilson Maltez, Horacio Neto and Mário
Véstias, ”Using SystemC to Model and Simulate a Many-
Core Architecture”, accepted for publication in Elsevier’s
Procedia Technology, 2014.

76

