24 research outputs found

    Re-weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation

    Get PDF
    Unsupervised Domain Adaptation (UDA) aims to trans- fer domain knowledge from existing well-defined tasks to new ones where labels are unavailable. In the real-world applications, as the domain (task) discrepancies are usu- ally uncontrollable, it is significantly motivated to match the feature distributions even if the domain discrepancies are disparate. Additionally, as no label is available in the target domain, how to successfully adapt the classifier from the source to the target domain still remains an open ques- tion. In this paper, we propose the Re-weighted Adversarial Adaptation Network (RAAN) to reduce the feature distribu- tion divergence and adapt the classifier when domain dis- crepancies are disparate. Specifically, to alleviate the need of common supports in matching the feature distribution, we choose to minimize optimal transport (OT) based Earth- Mover (EM) distance and reformulate it to a minimax ob- jective function. Utilizing this, RAAN can be trained in an end-to-end and adversarial manner. To further adapt the classifier, we propose to match the label distribution and embed it into the adversarial training. Finally, after ex- tensive evaluation of our method using UDA datasets of varying difficulty, RAAN achieved the state-of-the-art re- sults and outperformed other methods by a large margin when the domain shifts are disparate

    Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation

    Get PDF
    Unsupervised Domain Adaptation (UDA) aims to transfer domain knowledge from existing well-defined tasks to new ones where labels are unavailable. In the real-world applications, as the domain (task) discrepancies are usually uncontrollable, it is significantly motivated to match the feature distributions even if the domain discrepancies are disparate. Additionally, as no label is available in the target domain, how to successfully adapt the classifier from the source to the target domain still remains an open question. In this paper, we propose the Re-weighted Adversarial Adaptation Network (RAAN) to reduce the feature distribution divergence and adapt the classifier when domain discrepancies are disparate. Specifically, to alleviate the need of common supports in matching the feature distribution, we choose to minimize optimal transport (OT) based Earth-Mover (EM) distance and reformulate it to a minimax objective function. Utilizing this, RAAN can be trained in an end-to-end and adversarial manner. To further adapt the classifier, we propose to match the label distribution and embed it into the adversarial training. Finally, after extensive evaluation of our method using UDA datasets of varying difficulty, RAAN achieved the state-of-the-art results and outperformed other methods by a large margin when the domain shifts are disparate

    Improved Techniques for Adversarial Discriminative Domain Adaptation

    Get PDF
    Adversarial discriminative domain adaptation (ADDA) is an efficient framework for unsupervised domain adaptation in image classification, where the source and target domains are assumed to have the same classes, but no labels are available for the target domain. We investigate whether we can improve performance of ADDA with a new framework and new loss formulations. Following the framework of semi-supervised GANs, we first extend the discriminator output over the source classes, in order to model the joint distribution over domain and task. We thus leverage on the distribution over the source encoder posteriors (which is fixed during adversarial training) and propose maximum mean discrepancy (MMD) and reconstruction-based loss functions for aligning the target encoder distribution to the source domain. We compare and provide a comprehensive analysis of how our framework and loss formulations extend over simple multi-class extensions of ADDA and other discriminative variants of semi-supervised GANs. In addition, we introduce various forms of regularization for stabilizing training, including treating the discriminator as a denoising autoencoder and regularizing the target encoder with source examples to reduce overfitting under a contraction mapping (i.e., when the target per-class distributions are contracting during alignment with the source). Finally, we validate our framework on standard domain adaptation datasets, such as SVHN and MNIST. We also examine how our framework benefits recognition problems based on modalities that lack training data, by introducing and evaluating on a neuromorphic vision sensing (NVS) sign language recognition dataset, where the source and target domains constitute emulated and real neuromorphic spike events respectively. Our results on all datasets show that our proposal competes or outperforms the state-of-the-art in unsupervised domain adaptation.Comment: To appear in IEEE Transactions on Image Processin

    Curriculum based dropout discriminator for domain adaptation

    Get PDF
    Domain adaptation is essential to enable wide usage of deep learning based networks trained using large labeled datasets. Adversarial learning based techniques have shown their utility towards solving this problem using a discriminator that ensures source and target distributions are close. However, here we suggest that rather than using a point estimate, it would be useful if a distribution based discriminator could be used to bridge this gap. This could be achieved using multiple classifiers or using traditional ensemble methods. In contrast, we suggest that a Monte Carlo dropout based ensemble discriminator could suffice to obtain the distribution based discriminator. Specifically, we propose a curriculum based dropout discriminator that gradually increases the variance of the sample based distribution and the corresponding reverse gradients are used to align the source and target feature representations. The detailed results and thorough ablation analysis show that our model outperforms state-of-the-art results.Comment: BMVC 2019 Accepted, Project Page: https://delta-lab-iitk.github.io/CD3A

    Mining Label Distribution Drift in Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation targets to transfer task knowledge from labeled source domain to related yet unlabeled target domain, and is catching extensive interests from academic and industrial areas. Although tremendous efforts along this direction have been made to minimize the domain divergence, unfortunately, most of existing methods only manage part of the picture by aligning feature representations from different domains. Beyond the discrepancy in feature space, the gap between known source label and unknown target label distribution, recognized as label distribution drift, is another crucial factor raising domain divergence, and has not been paid enough attention and well explored. From this point, in this paper, we first experimentally reveal how label distribution drift brings negative effects on current domain adaptation methods. Next, we propose Label distribution Matching Domain Adversarial Network (LMDAN) to handle data distribution shift and label distribution drift jointly. In LMDAN, label distribution drift problem is addressed by the proposed source samples weighting strategy, which select samples to contribute to positive adaptation and avoid negative effects brought by the mismatched in label distribution. Finally, different from general domain adaptation experiments, we modify domain adaptation datasets to create the considerable label distribution drift between source and target domain. Numerical results and empirical model analysis show that LMDAN delivers superior performance compared to other state-of-the-art domain adaptation methods under such scenarios
    corecore