Unsupervised domain adaptation targets to transfer task knowledge from
labeled source domain to related yet unlabeled target domain, and is catching
extensive interests from academic and industrial areas. Although tremendous
efforts along this direction have been made to minimize the domain divergence,
unfortunately, most of existing methods only manage part of the picture by
aligning feature representations from different domains. Beyond the discrepancy
in feature space, the gap between known source label and unknown target label
distribution, recognized as label distribution drift, is another crucial factor
raising domain divergence, and has not been paid enough attention and well
explored. From this point, in this paper, we first experimentally reveal how
label distribution drift brings negative effects on current domain adaptation
methods. Next, we propose Label distribution Matching Domain Adversarial
Network (LMDAN) to handle data distribution shift and label distribution drift
jointly. In LMDAN, label distribution drift problem is addressed by the
proposed source samples weighting strategy, which select samples to contribute
to positive adaptation and avoid negative effects brought by the mismatched in
label distribution. Finally, different from general domain adaptation
experiments, we modify domain adaptation datasets to create the considerable
label distribution drift between source and target domain. Numerical results
and empirical model analysis show that LMDAN delivers superior performance
compared to other state-of-the-art domain adaptation methods under such
scenarios