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Abstract

Domain adaptation is essential to enable wide usage of deep learning based networks
trained using large labeled datasets. Adversarial learning based techniques have shown
their utility towards solving this problem using a discriminator that ensures source and
target distributions are close. However, here we suggest that rather than using a point
estimate, it would be useful if a distribution based discriminator could be used to bridge
this gap. This could be achieved using multiple classifiers or using traditional ensemble
methods. In contrast, we suggest that a Monte Carlo dropout based ensemble discrim-
inator could suffice to obtain the distribution based discriminator. Specifically, we pro-
pose a curriculum based dropout discriminator that gradually increases the variance of
the sample based distribution and the corresponding reverse gradients are used to align
the source and target feature representations. The detailed results and thorough ablation
analysis show that our model outperforms state-of-the-art results.

1 Introduction
Visual recognition has seen vast improvements based mainly on the success of deep learning
based models [17]. These models are trained on very large annotated datasets such as
Imagenet [32]. The deployment of these generically trained models require them to adapt to
work in specific settings (for instance with catalog images in E-commerce websites). This
problem is recognized as one of dataset bias and was demonstrated through the work of [45].
However, the requirement of a large annotated dataset becomes a bottleneck for training
networks in deep learning frameworks. In this paper, we tackle the problem of adapting
classifiers to work on datasets that do not have any labeled information. This problem is one
of unsupervised domain adaptation in a more general setting.

Ganin and Lempitsky [11] proposed a method to solve unsupervised domain adapta-
tion through back-propagation. In this method, the domain adaptation problem is solved
by using a discriminator that ensures domain invariance of learned representations used for
classification. There have been several methods [15, 38, 48] proposed for improving the
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Figure 1: The difference in adversarial learning framework for domain adaption using binary
discriminator, multi-discriminator and dropout discriminator. In binary discriminator [11],
the feature extractor is trained with one gradient value of the discriminator. In the case of
multi-discriminator [30], learning occurs with a fixed number of gradient values, whereas in
dropout based discriminator, feature extractor learns a distribution rather than a single value.

discriminator. However, most of these involve an increase in the number of parameters. For
instance a recent work by Pei et al (MADA) [30] addresses this issue through class-specific
discriminators. This leads to a linear increase in the number of parameters with the number
of classes in dataset. In contrast, we propose the use of curriculum-based dropout discrimi-
nator to obtain improved performance of the domain adaptation task without increasing the
number of parameters. It makes our model’s applicability comprehensive as it can also adapt
to datasets with a large number of classes. Specifically, in this paper, we propose Curriculum
based Dropout Discriminator for Domain Adaptation (CD3A) and compare it with a variant,
Dropout Discriminator for Domain Adaptation (D3A). It’s a novel approach that solves the
above problem through an adversarial dynamic dropout based ensemble of discriminators,
where we consider dropout as being a source of an ensemble of domain classifiers [13].
The proposed model also enables the discriminators reduce the prediction variance, remove
overfitting, and average out the bias. The idea for this discriminator is illustrated in Fig-
ure 1. The initial discriminator by Ganin and Lempitsky [11] suggests the use of a single
binary discriminator and MADA [30] extends it to class-specific cues. In contrast, CD3A
obtains a discriminator distribution that provides a much-improved feedback for improving
the feature extractor. The performance of any adversarial learning method largely depends
upon the capability of the discriminator network. The ensemble method [13] improves the
discriminator’s performance and makes it robust. We show that this indeed helps in an im-
proved domain adaptation (around 5.3% improvement in Amazon-DSLR adaptation) with
much fewer parameters(∼59M) than MADA(∼98M). More importantly, our method does
not increase the number of parameters as the number of classes increase, making it scalable
to datasets with a large number of classes. Through this paper we make the following main
contributions:

• We propose a method to obtain a dropout based discriminator that provides a distribu-
tion based discrimination for every sample ensuring a more robust feature adaptation
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• We adopt a curriculum based dropout model, CD3A, that ensures gradual increase
in the number of samples as the adaptation progresses to ensure better adaptation in
contrast to a fixed number of samples based dropout distribution (D3A).

• We provide a thorough empirical analysis of the method (including statistical signif-
icance, discrepancy distance) and evaluate our approach against the state-of-the-art
approaches.

2 Related Work

Domain Adaptation:A large number of methods have been proposed to tackle the do-
main adaptation problem. The basic common structure that has been followed is the Siamese
architecture [5] with two streams, representing the source and target models. It is trained with
a combination of a classification loss and the other being one of discrepancy loss or an ad-
versarial loss. The classification loss depends on the source data label, while the discrepancy
loss reduces the shift between the two domains. A discrepancy based deep learning method
is that of deep domain confusion (DDC) [46]. The loss between a single FC (fully connected)
layer of source and target feature extractor network is used to minimize the maximum mean
discrepancy (MMD) between the source and the target. This approach is further extended
by deep adaptation network (DAN) [22]. Recently, a number of other methods have been
proposed which use discrepancy of domain [24, 31, 36, 39, 42, 43, 44, 53].

Adversarial Learning: In the domain adaptation setting, an adversarial network pro-
vides domain invariant representations by making the source and target domain indistin-
guishable by the discriminator. Adversarial Discriminative Domain Adaptation [48] uses
an inverted label GAN loss to split the optimization into two independent objectives. One
such method is the domain confusion based model proposed in [47] that considers a domain
confusion objective. Domain-Adversarial Neural Networks (DANN) [11] integrates a gra-
dient reversal layer into the standard architecture to promote the emergence of the learned
representations that are discriminative for the main learning task on the source domain and
non-discriminative concerning the shift between the domains. Recently, some works have
been proposed which use an adversarial discriminative approach in solving the domain adap-
tation problem [3, 6, 16, 19, 21, 35, 51]. Similarly, the model proposed in [4, 7] exploits
GANs with the aim to generate source-domain images such that they appear as if they were
drawn from the target domain distribution. The closest related work to our approach is the
work by [30] that extends the gradient reversal method by a class-specific discriminator.

Ensemble and Curriculum learning: Ensemble methods [20] can capture the uncer-
tainty of the neural network (NN). Gal et.al. [10] use dropout to obtain the predictive un-
certainty and apply Markov chain Monte Carlo [28] also known as MCMC at the test time
to deal with intractable posterior. In discriminator based approaches, ensembles can be con-
sidered as multi-discriminator or multi-generator architecture. Multi discriminator approach
has also been proposed by [9, 12, 29] to learn the data distribution more effectively. In
Bayesian GAN [33], dropout in the discriminator is used which can be interpreted as an
ensemble model [10]. The curriculum learning [2] enhances model’s performance and its
generalization capability. The performance of the GAN is also improved through the cur-
riculum learning of the discriminator [37]. It has been shown that dropout can also work with
curriculum learning [27]. In domain adaptation, a curriculum style learning approach has
been applied in [52] to minimize the domain gap in semantic segmentation. The curriculum
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domain adaptation first solves easy tasks such as estimating label distributions, then infers
the necessary properties about the target domain. The theoretical framework for curriculum
learning in transfer learning is proposed in [50]. Recently other curriculum learning based
domain adaptation methods have been proposed in Transferable Curriculum Learning [40].

In contrast to the previous works, the main contribution of the present work is to propose
a curriculum based dropout discriminator. We show that through the proposed method, we
are able to outperform state of the art domain adaptation techniques in a scalable way by
using fewer number of parameters as compared to techniques such as MADA[30] and similar
number of parameters as GRL [11].

3 Motivation
In the adversarial domain adaptation problem, the previous methods have used classical sta-
tistical inference in the discriminator. A single discriminator learns the source and target
domain classification. Our hypothesis is that it may lead to overconfident inference and de-
cisions which in turn may lead to challenges in learning invariant features. In the domain
adaptation problem, data is generally structured in a multimodal distribution. Thus, a multi-
ple discriminator approach is compelling [30], due to its capacity to capture multiple modes
of the dataset. It also leads to solving the perennial problem of mode collapse (which GANs
are infamous for) as multiple discriminators now learn to distinguish classes with different
modes. The diversity of an ensemble of such discriminators reduces the random errors in
prediction. The performance of an ensemble model rests on the number of entities in the en-
semble. However, as the number of entities increase, the model parameters and complexity
will increase. This is one of the primary bottlenecks of the ensemble based methods. The
number of parameters in an algorithm is a significant factor in determining model efficiency.

To tackle the above problems, we propose a novel and efficient discriminator architec-
ture by using Monte Carlo (MC) sampling [41]. We incorporate Bernoulli dropout in a
multi-adversarial network, by dropping out a certain number of neurons from our discrimi-
nator with some probability d. This gives rise to a set of dynamic discriminators for every
data sample. The main idea behind our method is to construct a training regime for the
feature extractor in domain adaptation that consists of increasingly challenging tasks to gen-
erate domain invariant features. This allows the sophistication of the feature extractor to
gradually increase throughout training, rather than aiming for full sophistication at the out-
set. This method is similar to that of curriculum in supervised learning, where one orders
the training examples to be presented to a learning algorithm according to some measure of
difficulty [2]. Despite the conceptual similarity, the methods are quite different. Under our
approach, it is not the difficulty of the training examples presented to either network, but
rather the capacity, and hence strength, of the discriminator network that is increased as the
training progresses. The idea behind the use of a curriculum based dropout discriminator is
to exploit the characteristics of several independent discriminators by consolidating them in
order to achieve higher performance.

We do a curriculum based learning on these dropout discriminators. As the training pro-
ceeds, the number of discriminators sampled, increase, thereby boosting the variance of our
model’s prediction. The proposed approach enforces the feature extractor network not to
constrain the learned representations to satisfy a single discriminator, but, instead, to satisfy
an ensemble of dynamic discriminators (composition is different across different discrimi-
nators). Instead of learning a point estimate (in case of MADA [30]), the feature extractor
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(a) (b)

Figure 2: (a) Proposed model includes the source and target feature extractor(shared), clas-
sifier network using the fully connected layers and the dynamic ensemble of discriminators
using the Bernoulli dropout network (b) Dropout based discriminator architecture

network of our proposed model learns a distribution, due to the ensemble effect of feedback
from a set of dynamic discriminators. This approach leads to a more generalized feature
extractor, promoting resemblance in learned representations of a class from different do-
mains. The instinct behind incorporating dropout in our model is to warrant that neurons are
not exclusively reliant on a precise set of other neurons to determine their outputs. Instead,
each neuron relies on the agglomerate behavior of several other neurons, promoting gen-
eralization. By applying dropout on the discriminator, we obtain a set of entirely dynamic
discriminators and hence the feature extractor cannot use the trick of relying on a specific
type of discriminator or ensemble of discriminators to learn to generate representations to
deceive the discriminator. Instead, it will now have to genuinely learn domain invariant rep-
resentations. Thus, the feature extractor network is now guided by diverse feedback given
to it by an ensemble of dynamic discriminators. All this increase in performance is obtained
without compromising on the scalability and complexity front through our proposed model.

4 Proposed Adaptation Model
In the unsupervised domain adaptation problem, we consider that the source dataset Ds has
access to all its labels while there are no labels for the target dataset Dt at the training
time. We assume that Ds comes from a source distribution S and Dt comes from a target
distribution T . We assume that there are Ns source data points and Nt unlabeled target
data points. So Ds = (xs

i ,y
s
i )

Ns
i=1 ∈ S has Ns labeled examples and the target domain Dt =

(xt
i)

Nt
i=1 ∈ T has Nt unlabeled examples. Our underlying assumption is that both distributions

are complex and unknown. Our model provides a deep neural network that enables learning
of transferable feature representations f (x) and an adaptive classifier y =C( f (x)) to reduce
the shift in the joint distributions across domains, such that the target risk Pr(x,y)∼q[C( f (x)) 6=
y] is minimized by jointly minimizing source risk and distribution discrepancy by adversarial
domain adaptation where q is assumed to be the joint distribution of target samples.

In this work, we employ a variant of GRL[11], where discriminator is modeled as an
MC-dropout based ensemble. The feature extractor network consists of convolution layers
to produce image embeddings. Both source and target feature extractors share the same
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parameters. The classifier network consists of fully connected layers. Only source embed-
dings are forwarded to the classifier network to predict the class label. The classifier network
parameters (θc) are updated only by the loss from source data samples. The discriminator
receives both source and target embeddings. The parameters of the MC-dropout discrimi-
nator (θd) are updated with domain classification loss. The feature extractor parameters(θ f )
are updated by the gradients from the classifier network as well as by the reverse gradient of
both source and target data samples from the dynamic set of the ensemble of discriminators.
Detailed architecture is presented in Figure 2.

For the adaptation task, the feature extractor learns domain-invariant features with the
help of MC-Dropout based discriminator. For each data sample that goes to the discrim-
inator, we obtain the domain classification loss. These losses are backpropagated through
respective Monte Carlo sampled dropout discriminators followed by gradient reversal layer.
Hence, for every input, we obtain a distribution of gradients. The feature extractor is up-
dated by a gradient from this distribution to generate domain invariant features. In a binary
discriminator [11], we obtain a point estimate of the gradient for specific input. In the case
of multi discriminator [30], we obtain an ensemble of the point estimates of gradients. The
advantage of obtaining a distribution of gradients is that we get generalized learned represen-
tations robustly leading to domain invariant features. We propose Curriculum based Dropout
Discriminator (CD3A), where we increase the number of MC samples as training proceeds in
a paradigm similar to curriculum learning. However, in the other variant(D3A), we maintain
a fixed number of MC sampled discriminators throughout the training.

4.1 Curriculum based Dropout Discriminator for Domain Adaptation
(CD3A)

In CD3A, the distribution of gradients is obtained through a curriculum fashioned training,
i.e., we increase the number of MC samples as training proceeds. The motivation behind
increasing the number of MC samples is that, in the initial phase of the adaptation, the
feature extractor learns the domain invariant features without considering the multi-mode
structure of data. For this purpose, only a small number of discriminators is required. As
the training advances, we expect the network to learn the domain invariant features along
with its multi-modal structure. Thus, in the proposed model, we increase the MC samples
of discriminator as training progress to obtain the domain invariant feature without losing
its multi-mode structure. Given an input sample xi, we obtain feature embedding f (xi), by
passing it through a feature extractor f . These embeddings are further used to obtain the
classification score C( f (xi)) and the domain classification score for jth samples of discrim-
inator D j( f (xi)), where j = 1, ...,K. The curriculum learning of the discriminator does not
rely on the difficulty of the training examples presented to either network, but rather the
capacity, and hence strength, of the discriminator that is increased throughout the training.
We construct an ordered set of sets of samples of discriminator increasing in numbers. More
formally the set of discriminators is D = {{D1},{D1,D2}, ...,{D1,D2, ..DK}}, where D j is
a MC sampled discriminator. We can clearly see that the D is a ordered set in terms of the
capacity, where capacity of {D1} ⊆ {D1,D2}.

4.2 Fixed sampling based Dropout Discriminator for Domain
Adaptation(D3A)

In this variant, we fix the number of MC sampled discriminators during the training. In
this scenario, we obtain an ensemble of discriminators. We call this variant as a Dropout
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Discriminator for Domain Adaptation( D3A). This modification can be considered a more
efficient version of the multi discriminator model. We experimented with different sampling
values (details are reported in supplementary) and obtained the best results when the number
of samples is chosen close to the number of classes in the target dataset.

4.3 Loss Function
Our loss function is composed of classification loss and domain classification loss. Our
classifier takes learned representations as input and predicts its label. Classification loss
function Lc is a cross-entropy loss. Dropout discriminator is expected to label (output) the
source domain images as 0 and target domain images as 1. Domain classification loss Ld is
a binary cross entropy loss between the output of discriminator and the expected output. It
is summed over the number of MC-sampled discriminators K. K is increased as the training
proceeds in the case of CD3A model, whereas it is fixed for D3A model.

L(θ f ,θc,θd) =
1
Ns

∑
xi∈Ds

Lc(C( f (xi)),yi)−
λ

N

K

∑
j=0

∑
xi∈Ds∪Dt

Ld(D j( f (xi)),di) (1)

(θ̂ f , θ̂c) = argmin
θ f ,θc

L(θ f ,θc, θ̂d) θ̂d = argmin
θd

L(θ̂ f , θ̂c,θd) (2)

where di = 0 if xi ∈ Ds and di = 1 if xi ∈ Dt . The function f is the feature extractor
network with shared weights for source and target data ( fs and ft are denoted by common
shared network f ). λ is the trade-off parameter between the two objectives. C is the classifier
network and D j is the jth MC-sampled dropout discriminator. Ds and Dt represent source
and target domains respectively.

We generate the entities of ensemble via dropout. In contrast, previous works [30] use
multiple discriminators; their number being equal to the number of classes in the dataset.
It leads to an increase in the number of parameters employed in the discriminator which
makes it unsuitable for datasets with a large number of classes. Also, due to our model’s
parameters being significantly less, the data requirements are also quite low. This has been
shown in supplementary material, where we remove half of the source data and still obtain
good accuracy. Also, MADA uses the predicted label probabilities to weigh the discrimi-
nator’s response. This is a drawback as it can lead to misleading corrections of the feature
extractor network in case of wrong predictions by the label predictor (classifier). Our model
doesn’t have such constraints making our discriminator even more powerful leading to better
learning of domain invariant features by the feature extractor network. The implementation
details are provided in the supplementary material, and other details are provided on the
project page 1.

5 Results and Analysis

5.1 Datasets
Office-31 Dataset: Office-31 [34] is a benchmark dataset for domain adaptation, comprising
4,110 images in 31 classes collected from three distinct domains: Amazon (A), Webcam (W)

1https://delta-lab-iitk.github.io/CD3A/
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and DSLR (D). To enable unbiased evaluation, we evaluate all the methods on all 6 transfer
tasks A→W, D→ A, W→ A, A→ D , D→W and W→ D.
ImageCLEF Dataset: ImageCLEF-2014 dataset consists of 3 domains: Caltech-256 (C),
ILSVRC 2012 (I), and Pascal-VOC 2012 (P). There are 12 common classes, and each class
has 50 samples.There is a total of 600 images in each domain. We evaluate models on all 6
transfer tasks: I→P, P→I, I→C, C→I, C→P, and P→C.

Method A→W D→W W→ D A→ D D→ A W→ A Average
Alexnet [17] 60.6 95.0 99.5 64.2 45.5 48.3 68.8
MMD[46] 61.0 95.0 98.5 64.9 47.2 49.4 69.3
RTN[23] 73.3 96.8 99.6 71.0 50.5 51.0 74.1
DAN[22] 68.5 96.0 99.0 66.8 50.0 49.8 71.7
GRL [11] 73.0 96.4 99.2 72.3 52.4 50.4 74.1
JAN [25] 75.2 96.6 99.6 72.8 57.5 56.3 76.3

CDAN[26] 77.9 96.9 100.0 74.6 55.1 57.5 77.0
MADA[30] 78.5 99.8 100.0 74.1 56.0 54.5 77.1
IDDA[18] 82.2 99.8 100.0 82.4 54.1 52.5 78.5
D3A(31) 79.0 97.7 100.0 79.4 58.2 55.3 78.3
CD3A 82.3 99.8 100.0 81.1 58.2 55.6 79.5

Table 1: Classification accuracy (%) on Office-31 dataset for unsupervised domain adapta-
tion on AlexNet[17] pretrained network. Our model is CD3A and D3A with the number in
bracket indicating the number of Monte Carlo samples

Method I→P P→I I→C C→I C→P P→C Avg
AlexNet [17] 66.2 70.0 84.3 71.3 59.3 84.5 73.9

DAN[22] 67.3 80.5 87.7 76.0 61.6 88.4 76.9
GRL [11] 66.5 81.8 89.0 79.8 63.5 88.7 78.2
RTN[23] 67.4 82.3 89.5 78.0 63.0 90.1 78.4

MADA [30] 68.3 83.0 91.0 80.7 63.8 92.2 79.8
D3A(12) 69.1 80.9 91.0 81.5 66.2 90.0 79.8
CD3A 69.3 81.5 91.3 81.6 65.9 90.2 80.0

Table 2: Classification accuracy (%) on ImageCLEF dataset for unsupervised domain adap-
tation (AlexNet [17])

5.2 Results
We use pre-trained Alexnet [17] architecture following the typical setting in unsupervised
domain adaption for our base model. Table 1 summarizes results on Office31 dataset, and
Table 2 and Table 3 have results for the ImageClef dataset for AlexNet and ResNet networks
respectively. The results on Office-Home [49] along with the implementation details are pro-
vided in the supplementary material. We obtained state-of-the-art results on all the datasets.
It is noteworthy that the proposed model boosts the classification accuracies substantially on
hard transfer tasks, e.g., A→D, A→W, etc. where the source and target domains are sub-
stantially different. On average, we obtain considerably improved accuracies and statistically
significant results as shown further.
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Method I→ P P→ I I→ C C→ I C→ P P→ C Average
ResNet [14] 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DAN [22] 75.0 86.2 93.3 84.1 69.8 91.3 83.3
RTN [23] 75.6 86.8 95.3 86.9 72.7 92.2 84.9
GRL [11] 75.0 86.0 96.2 87.0 74.3 91.5 85.0
JAN [24] 76.8 88.0 94.7 89.5 74.2 91.7 85.8

MADA [30] 75.0 87.9 96.0 88.8 75.2 92.2 85.8
CDAN [26] 77.2 88.3 98.3 90.7 76.7 94.0 87.5

CD3A 77.5 88.7 96.8 93.2 78.3 94.7 88.2

Table 3: Classification accuracy (%) on ImageCLEF dataset for unsupervised domain adap-
tation (ResNet-50 [14])

(a) t-SNE plot of (b) t-SNE plot of (c)Proxy-Distance (d)Proxy-Distance
RevGrad CD3A A→D A→W

Figure 3: (a) and (b) figures show t-SNE visualizations of the CNN’s activation (a) in case
when adapted through[11] and (b) when adapted through proposed model. Blue and red
points correspond to the source domain(A), and the target domain (W) respectively. Sub
figures (c) and (d) show the proxy distance for A→D and A→W.

5.3 Analysis

Curriculum v/s Fixed sampling: We have plotted the accuracy as a function of the number
of MC samples for both the models, curriculum-based sampling (CD3A) and fixed sampling
(D3A) in Figure 4 (a). We can clearly observe that in the case of D3A, the performance
increases as we increase the number of MC sampled discriminators, but after some samples,
the performance starts to deteriorate. While in case of CD3A, the performance of model
saturates after certain epochs. We can also see that CD3A outperforms D3A.
Model complexity comparison with MADA: The proposed CD3A model uses one discrim-
inator(ensemble using dropout) whereas MADA uses as many discriminators as are the num-
ber of classes. Therefore, CD3A has very few parameters as compared to MADA even for
datasets with a small number of classes. For instance, in case of Office-31 dataset, MADA
has 31 discriminators compared to CD3A, which has only one discriminator. MADA has
∼98M parameters, while CD3A has ∼59M parameters for Office-31 dataset. If we further
increase the class size, the number of parameters in MADA increases(by ∼1.3M for every
class label), but CD3A will have constant number of parameters (∼59M).
Feature visualization: The adaptability of target to source features can be visualized using
the t-SNE embeddings of image features. We follow similar setting as in [11] to plot t-SNE
embeddings for A→W adaptation task in Figure 3 (a) and (b). From the plot, we observe
that adapted features(CD3A) are more domain invariant than the features adapted with GRL.
Statistical significance analysis: We analyzed statistical significance [8] for our CD3A
model against GRL[11] and source only method for the domain adaptation task. The Criti-
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(a) CD3A v/s D3A Model A→W (b) SSA Plot for A→W

Figure 4: (a) Accuracy v/s Number of MC samples for D3A and CD3A model. Note that
in D3A model, each model is trained separately and reported accuracy after the training,
while in CD3A model the accuracy is calculated with single training process (b) Analysis
of statistically significant difference for A→ W in Binary label Discriminator (GRL) [11],
proposed model and Source only methods, with a significance level of 0.05.

cal Difference (CD) for Nemenyi test depends upon the given confidence level (0.05 in our
case) for average ranks and number of tested datasets. If the difference in the rank of the two
methods lies within CD (our case CD = 0.6051), then they are not significantly different. Fig-
ure 4(b) visualizes the posthoc analysis using the CD diagram for A→W. From the figures,
it is clear that our CD3A model is better and significantly different from other methods.
Proxy-A- Distance A-distance as a measure of cross domain discrepancy[1], which, to-
gether with the source risk, will bound the target risk. The proxy A-distance is defined as
dA = 2(1−2ε), where ε is the generalization error of a classifier(e.g. kernel SVM) trained
on the binary task of discriminating source and target. Figure 3(c) and (d) shows dA on
tasks A→D and A→W, with features of source only model[17], GRL[11], MADA[30] and
proposed model CD3A. We observe that dA calculated using CD3A model features is much
smaller than calculated using source only model, GRL and MADA features, which suggests
that representations learned via CD3A can reduce the cross-domain gap more effectively.

6 Conclusion
In this paper, we provide a simple approach to obtain an improved discriminator for adversar-
ial domain adaptation. We specifically show that the use of sampling-based ensemble results
in an improved discriminator without increasing the number of parameters. The main reason
for this improvement is that the features are made domain invariant based on a distribution of
observations as against a single point estimate. Our approach based on curriculum dropout
suggests that we are able to obtain an improved discriminator that is stable and improves
the feature invariance learnt. We compare our method with standard baselines and provide
a thorough empirical analysis of the method. We further observe through visualization that
domain adapted features do result in domain invariant feature representations. Using the
discriminator obtained through curriculum based dropout to solve domain adaptation is a
promising direction, which we have initiated through this work.
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