2,029 research outputs found

    Controlling Rayleigh-Backscattering-Induced Distortion in Radio over Fiber Systems for Radioastronomic Applications

    Get PDF
    Radio over Fiber (RoF) Systems exploiting a direct modulation of the laser source are presently utilized within important Radioastronomic scenarios. Due to the particular operating conditions of some of these realizations, the phenomena which typically generate nonlinearities in RoF links for telecommunications applications can be here regarded as substantially harmless. However, these same operating conditions can make the RoF systems vulnerable to different kinds of nonlinear effects, related to the influence of the Rayleigh Backscattered signal on the transmitted one. A rigorous description of the phenomenon is performed, and an effective countermeasure to the problem is proposed and demonstrated, both theoretically and experimentally.Comment: Accepted for publication in IEEE/OSA Journal of Lightwave Technolog

    Outage Capacity for the Optical MIMO Channel

    Full text link
    MIMO processing techniques in fiber optical communications have been proposed as a promising approach to meet increasing demand for information throughput. In this context, the multiple channels correspond to the multiple modes and/or multiple cores in the fiber. In this paper we characterize the distribution of the mutual information with Gaussian input in a simple channel model for this system. Assuming significant cross talk between cores, negligible backscattering and near-lossless propagation in the fiber, we model the transmission channel as a random complex unitary matrix. The loss in the transmission may be parameterized by a number of unutilized channels in the fiber. We analyze the system in a dual fashion. First, we evaluate a closed-form expression for the outage probability, which is handy for small matrices. We also apply the asymptotic approach, in particular the Coulomb gas method from statistical mechanics, to obtain closed-form results for the ergodic mutual information, its variance as well as the outage probability for Gaussian input in the limit of large number of cores/modes. By comparing our analytic results to simulations, we see that, despite the fact that this method is nominally valid for large number of modes, our method is quite accurate even for small to modest number of channels.Comment: Revised version includes more details, proofs and a closed-form expression for the outage probabilit

    Analysis of a distributed fiber-optic temperature sensor using single-photon detectors

    Get PDF
    We demonstrate a high-accuracy distributed fiber-optic temperature sensor using superconducting nanowire single-photon detectors and single-photon counting techniques. Our demonstration uses inexpensive single-mode fiber at standard telecommunications wavelengths as the sensing fiber, which enables extremely low-loss experiments and compatibility with existing fiber networks. We show that the uncertainty of the temperature measurement decreases with longer integration periods, but is ultimately limited by the calibration uncertainty. Temperature uncertainty on the order of 3 K is possible with spatial resolution of the order of 1 cm and integration period as small as 60 seconds. Also, we show that the measurement is subject to systematic uncertainties, such as polarization fading, which can be reduced with a polarization diversity receiver

    Tunable distributed sensing performance in Ca-based nanoparticle-doped optical fibers

    Get PDF
    Rayleigh scattering enhanced nanoparticle-doped optical fibers is a technology very promising for distributed sensing applications, however, it remains largely unexplored. This work demonstrates for the first time the possibility of tuning Rayleigh scattering and optical losses in Ca-based nanoparticle-doped silica optical fibers by controlling the kinetics of the re-nucleation process that nanoparticles undergo during fiber drawing by controlling preform feed, drawing speed and temperature. A 3D study by SEM, FIB-SEM and optical backscatter reflectometry (OBR) reveals an early-time kinetics at 1870 °C, with tunable Rayleigh scattering enhancement 43.2–47.4 dB, regarding a long-haul single mode fiber, SMF-28, and associated sensing lengths of 3–5.5 m. At 2065 °C, kinetics is slower and nanoparticle dissolution is favored. Consequently, enhanced scattering values of 24.9–26.9 dB/m and sensing lengths of 135–250 m are attained. Finally, thermal stability above 500 °C and tunable distributed temperature sensitivity are proved, from 18.6 pm/°C to 23.9 pm/°C, ∼1.9–2.4 times larger than in a SMF-28. These results show the promising future of Rayleigh scattering enhanced nanoparticle-doped optical fibers for distributed sensing

    A Spatially Distributed Fiber-Optic Temperature Sensor for Applications in the Steel Industry

    Get PDF
    This paper presents a spatially distributed fiber-optic sensor system designed for demanding applications, like temperature measurements in the steel industry. The sensor system employed optical frequency domain reflectometry (OFDR) to interrogate Rayleigh backscattering signals in single-mode optical fibers. Temperature measurements employing the OFDR system were compared with conventional thermocouple measurements, accentuating the spatially distributed sensing capability of the fiber-optic system. Experiments were designed and conducted to test the spatial thermal mapping capability of the fiber-optic temperature measurement system. Experimental simulations provided evidence that the optical fiber system could resolve closely spaced temperature features, due to the high spatial resolution and fast measurement rates of the OFDR system. The ability of the fiber-optic system to perform temperature measurements in a metal casting was tested by monitoring aluminum solidification in a sand mold. The optical fiber, encased in a stainless steel tube, survived both mechanically and optically at temperatures exceeding 700â—¦C. The ability to distinguish between closely spaced temperature features that generate information-rich thermal maps opens up many applications in the steel industry
    • …
    corecore