2,950 research outputs found

    Experiences with Mesh-like computations using Prediction Binary Trees

    Get PDF
    In this paper we aim at exploiting the temporal coherence among successive phases of a computation, in order to implement a load-balancing technique in mesh-like computations to be mapped on a cluster of processors. A key concept, on which the load balancing schema is built on, is the use of a Predictor component that is in charge of providing an estimation of the unbalancing between successive phases. By using this information, our method partitions the computation in balanced tasks through the Prediction Binary Tree (PBT). At each new phase, current PBT is updated by using previous phase computing time for each task as next phase's cost estimate. The PBT is designed so that it balances the load across the tasks as well as reduces {\em dependency} among processors for higher performances. Reducing dependency is obtained by using rectangular tiles of the mesh, of almost-square shape (i. e. one dimension is at most twice the other). By reducing dependency, one can reduce inter-processors communication or exploit local dependencies among tasks (such as data locality). Furthermore, we also provide two heuristics which take advantage of data-locality. Our strategy has been assessed on a significant problem, Parallel Ray Tracing. Our implementation shows a good scalability, and improves performance in both cheaper commodity cluster and high performance clusters with low latency networks. We report different measurements showing that tasks granularity is a key point for the performances of our decomposition/mapping strategy

    Doctor of Philosophy in Computer Science

    Get PDF
    dissertationRay tracing is becoming more widely adopted in offline rendering systems due to its natural support for high quality lighting. Since quality is also a concern in most real time systems, we believe ray tracing would be a welcome change in the real time world, but is avoided due to insufficient performance. Since power consumption is one of the primary factors limiting the increase of processor performance, it must be addressed as a foremost concern in any future ray tracing system designs. This will require cooperating advances in both algorithms and architecture. In this dissertation I study ray tracing system designs from a data movement perspective, targeting the various memory resources that are the primary consumer of power on a modern processor. The result is high performance, low energy ray tracing architectures

    Memory sharing for interactive ray tracing on clusters

    Get PDF
    ManuscriptWe present recent results in the application of distributed shared memory to image parallel ray tracing on clusters. Image parallel rendering is traditionally limited to scenes that are small enough to be replicated in the memory of each node, because any processor may require access to any piece of the scene. We solve this problem by making all of a cluster's memory available through software distributed shared memory layers. With gigabit ethernet connections, this mechanism is sufficiently fast for interactive rendering of multi-gigabyte datasets. Object- and page-based distributed shared memories are compared, and optimizations for efficient memory use are discussed

    Doctor of Philosophy

    Get PDF
    dissertationThe embedded system space is characterized by a rapid evolution in the complexity and functionality of applications. In addition, the short time-to-market nature of the business motivates the use of programmable devices capable of meeting the conflicting constraints of low-energy, high-performance, and short design times. The keys to achieving these conflicting constraints are specialization and maximally extracting available application parallelism. General purpose processors are flexible but are either too power hungry or lack the necessary performance. Application-specific integrated circuits (ASICS) efficiently meet the performance and power needs but are inflexible. Programmable domain-specific architectures (DSAs) are an attractive middle ground, but their design requires significant time, resources, and expertise in a variety of specialties, which range from application algorithms to architecture and ultimately, circuit design. This dissertation presents CoGenE, a design framework that automates the design of energy-performance-optimal DSAs for embedded systems. For a given application domain and a user-chosen initial architectural specification, CoGenE consists of a a Compiler to generate execution binary, a simulator Generator to collect performance/energy statistics, and an Explorer that modifies the current architecture to improve energy-performance-area characteristics. The above process repeats automatically until the user-specified constraints are achieved. This removes or alleviates the time needed to understand the application, manually design the DSA, and generate object code for the DSA. Thus, CoGenE is a new design methodology that represents a significant improvement in performance, energy dissipation, design time, and resources. This dissertation employs the face recognition domain to showcase a flexible architectural design methodology that creates "ASIC-like" DSAs. The DSAs are instruction set architecture (ISA)-independent and achieve good energy-performance characteristics by coscheduling the often conflicting constraints of data access, data movement, and computation through a flexible interconnect. This represents a significant increase in programming complexity and code generation time. To address this problem, the CoGenE compiler employs integer linear programming (ILP)-based 'interconnect-aware' scheduling techniques for automatic code generation. The CoGenE explorer employs an iterative technique to search the complete design space and select a set of energy-performance-optimal candidates. When compared to manual designs, results demonstrate that CoGenE produces superior designs for three application domains: face recognition, speech recognition and wireless telephony. While CoGenE is well suited to applications that exhibit a streaming behavior, multithreaded applications like ray tracing present a different but important challenge. To demonstrate its generality, CoGenE is evaluated in designing a novel multicore N-wide SIMD architecture, known as StreamRay, for the ray tracing domain. CoGenE is used to synthesize the SIMD execution cores, the compiler that generates the application binary, and the interconnection subsystem. Further, separating address and data computations in space reduces data movement and contention for resources, thereby significantly improving performance compared to existing ray tracing approaches

    Tightly-Coupled Multiprocessing for a Global Illumination Algorithm

    Get PDF
    {dret | elf} @ dgp.toronto.edu A prevailing trend in computer graphics is the demand for increasingly realistic global illumination models and algorithms. Despite the fact that the computational power of uniprocessors is increasing, it is clear that much greater computational power is required to achieve satisfactory throughput. The obvious next step is to employ parallel processing. The advent of affordable, tightly-coupled multiprocessors makes such an approach widely available for the first time. We propose a tightly-coupled parallel decomposition of FIAT, a global illumination algorithm, based on space subdivision and power balancing, that we have recently developed. This algorithm is somewhat ambitious, and severely strains existing uniprocessor environments. We discuss techniques for reducing memory contention and maximising parallelism. We also present empirical data on the actual performance of our parallel solution. Since the model of parallel computation that we have employed is likely to persist for quite some time, our techniques are applicable to other algorithms based on space subdivision. 1

    Parallel hierarchical global illumination

    Get PDF
    Solving the global illumination problem is equivalent to determining the intensity of every wavelength of light in all directions at every point in a given scene. The complexity of the problem has led researchers to use approximation methods for solving the problem on serial computers. Rather than using an approximation method, such as backward ray tracing or radiosity, we have chosen to solve the Rendering Equation by direct simulation of light transport from the light sources. This paper presents an algorithm that solves the Rendering Equation to any desired accuracy, and can be run in parallel on distributed memory or shared memory computer systems with excellent scaling properties. It appears superior in both speed and physical correctness to recent published methods involving bidirectional ray tracing or hybrid treatments of diffuse and specular surfaces. Like progressive radiosity methods, it dynamically refines the geometry decomposition where required, but does so without the excessive storage requirements for ray histories. The algorithm, called Photon, produces a scene which converges to the global illumination solution. This amounts to a huge task for a 1997-vintage serial computer, but using the power of a parallel supercomputer significantly reduces the time required to generate a solution. Currently, Photon can be run on most parallel environments from a shared memory multiprocessor to a parallel supercomputer, as well as on clusters of heterogeneous workstations

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Scalable ray tracing with multiple GPGPUs

    Get PDF
    Rapid development in the field of computer graphics over the last 40 years has brought forth different techniques to render scenes. Rasterization is today’s most widely used technique, which in its most basic form sequentially draws thousands of polygons and applies texture on them. Ray tracing is an alternative method that mimics light transport by using rays to sample a scene in memory and render the color found at each ray’s scene intersection point. Although mainstream hardware directly supports rasterization, ray tracing would be the preferred technique due to its ability to produce highly crisp and realistic graphics, if hardware were not a limitation. Making an immediate hardware transition from rasterization to ray tracing would have a severe impact on the computer graphics industry since it would require redevelopment of existing 3D graphics-employing software, so any transition to ray tracing would be gradual. Previous efforts to perform ray tracing on mainstream rasterizing hardware platforms with a single processor have performed poorly. This thesis explores how a multiple GPGPU system can be used to render scenes via ray tracing. A ray tracing engine and API groundwork was developed using NVIDIA’s CUDA (Compute Unified Device Architecture) GPGPU programming environment and was used to evaluate performance scalability across a multi-GPGPU system. This engine supports triangle, sphere, disc, rectangle, and torus rendering. It also allows independent activation of graphics features including procedural texturing, Phong illumination, reflections, translucency, and shadows. Correctness of rendered images validates the ray traced results, and timing of rendered scenes benchmarks performance. The main test scene contains all object types, has a total of 32 Abstract objects, and applies all graphics features. Ray tracing this scene using two GPGPUs outperformed the single-GPGPU and single-CPU systems, yielding respective speedups of up to 1.8 and 31.25. The results demonstrate how much potential exists in treating a modern dual-GPU architecture as a dual-GPGPU system in order to facilitate a transition from rasterization to ray tracing
    • …
    corecore