76 research outputs found

    Collision-free path planning

    Get PDF
    Motion planning is an important challenge in robotics research. Efficient generation of collision-free motion is a fundamental capability necessary for autonomous robots;In this dissertation, a fast and practical algorithm for moving a convex polygonal robot among a set of polygonal obstacles with translations and rotations is presented. The running time is O(c((n + k)N + nlogn)), where c is a parameter controlling the precision of the results, n is the total number of obstacle vertices, k is the number of intersections of configuration space obstacles, and N is the number of obstacles, decomposed into convex objects. This dissertation exploits a simple 3D passage-network to incorporate robot rotations as an alternative to complex cell decomposition techniques or building passage networks on approximated 3D C-space obstacles;A common approach in path planning is to compute the Minkowski difference of a polygonal robot model with the polygonal obstacle environment. However such a configuration space is valid only for a single robot orientation. In this research, multiple configuration spaces are computed between the obstacle environment and the robot at successive angular orientations spanning [pi] . Although the obstacles do not intersect, each configuration space may contain intersecting configuration space obstacles (C-space obstacles). For each configuration space, the algorithm finds the contour of the intersected C-space obstacles and the associated passage network by slabbing the collision-free space. The individual configuration spaces are then related to one another by a heuristic called proper links that exploit spatial coherence. Thus, each level is connected to the adjacent levels by proper links to construct a 3D network. Dijkstra\u27s algorithm is used to search for the shortest path in the 3D network. Finally, the path is projected onto the plane to show the final locus of the path

    Algorithms for fat objects : decompositions and applications

    Get PDF
    Computational geometry is the branch of theoretical computer science that deals with algorithms and data structures for geometric objects. The most basic geometric objects include points, lines, polygons, and polyhedra. Computational geometry has applications in many areas of computer science, including computer graphics, robotics, and geographic information systems. In many computational-geometry problems, the theoretical worst case is achieved by input that is in some way "unrealistic". This causes situations where the theoretical running time is not a good predictor of the running time in practice. In addition, algorithms must also be designed with the worst-case examples in mind, which causes them to be needlessly complicated. In recent years, realistic input models have been proposed in an attempt to deal with this problem. The usual form such solutions take is to limit some geometric property of the input to a constant. We examine a specific realistic input model in this thesis: the model where objects are restricted to be fat. Intuitively, objects that are more like a ball are more fat, and objects that are more like a long pole are less fat. We look at fat objects in the context of five different problems—two related to decompositions of input objects and three problems suggested by computer graphics. Decompositions of geometric objects are important because they are often used as a preliminary step in other algorithms, since many algorithms can only handle geometric objects that are convex and preferably of low complexity. The two main issues in developing decomposition algorithms are to keep the number of pieces produced by the decomposition small and to compute the decomposition quickly. The main question we address is the following: is it possible to obtain better decompositions for fat objects than for general objects, and/or is it possible to obtain decompositions quickly? These questions are also interesting because most research into fat objects has concerned objects that are convex. We begin by triangulating fat polygons. The problem of triangulating polygons—that is, partitioning them into triangles without adding any vertices—has been solved already, but the only linear-time algorithm is so complicated that it has never been implemented. We propose two algorithms for triangulating fat polygons in linear time that are much simpler. They make use of the observation that a small set of guards placed at points inside a (certain type of) fat polygon is sufficient to see the boundary of such a polygon. We then look at decompositions of fat polyhedra in three dimensions. We show that polyhedra can be decomposed into a linear number of convex pieces if certain fatness restrictions aremet. We also show that if these restrictions are notmet, a quadratic number of pieces may be needed. We also show that if we wish the output to be fat and convex, the restrictions must be much tighter. We then study three computational-geometry problems inspired by computer graphics. First, we study ray-shooting amidst fat objects from two perspectives. This is the problem of preprocessing data into a data structure that can answer which object is first hit by a query ray in a given direction from a given point. We present a new data structure for answering vertical ray-shooting queries—that is, queries where the ray’s direction is fixed—as well as a data structure for answering ray-shooting queries for rays with arbitrary direction. Both structures improve the best known results on these problems. Another problem that is studied in the field of computer graphics is the depth-order problem. We study it in the context of computational geometry. This is the problem of finding an ordering of the objects in the scene from "top" to "bottom", where one object is above the other if they share a point in the projection to the xy-plane and the first object has a higher z-value at that point. We give an algorithm for finding the depth order of a group of fat objects and an algorithm for verifying if a depth order of a group of fat objects is correct. The latter algorithm is useful because the former can return an incorrect order if the objects do not have a depth order (this can happen if the above/below relationship has a cycle in it). The first algorithm improves on the results previously known for fat objects; the second is the first algorithm for verifying depth orders of fat objects. The final problem that we study is the hidden-surface removal problem. In this problem, we wish to find and report the visible portions of a scene from a given viewpoint—this is called the visibility map. The main difficulty in this problem is to find an algorithm whose running time depends in part on the complexity of the output. For example, if all but one of the objects in the input scene are hidden behind one large object, then our algorithm should have a faster running time than if all of the objects are visible and have borders that overlap. We give such an algorithm that improves on the running time of previous algorithms for fat objects. Furthermore, our algorithm is able to handle curved objects and situations where the objects do not have a depth order—two features missing from most other algorithms that perform hidden surface removal

    New Approximation Algorithms for Touring Regions

    Get PDF

    A faster algorithm for computing motorcycle graphs

    Get PDF

    Unions of Fat Convex Polytopes Have Short Skeletons

    Get PDF
    The skeleton of a polyhedral set is the union of its edges and vertices. Let be a set of fat, convex polytopes in three dimensions with n vertices in total, and let f max be the maximum complexity of any face of a polytope in . We prove that the total length of the skeleton of the union of the polytopes in is at most O(a(n)·log* n·logf max) times the sum of the skeleton lengths of the individual polytopes

    On the expected size of the 2d visibility complex

    Get PDF
    We study the expected size of the 2D visibility complex of randomly distributed objects in the plane. We prove that the asymptotic expected number of free bitangents (which correspond to 0-faces of the visibility complex) among unit discs (or polygons of bounded aspect ratio and similar size) is linear and exhibit bounds in terms of the density of the objects. We also make an experimental assessment of the size of the visibility complex for disjoint random unit discs. We provide experimental estimates of the onset of the linear behavior and of the asymptotic slope and y-intercept of the number of free bitangents in terms of the density of discs. Finally, we analyze the quality of our estimates in terms of the density of discs.

    Shooting permanent rays among disjoint polygons in the plane

    Full text link
    We present a data structure for ray shooting-and-insertion in the free space among disjoint polygonal obstacles with a total of nn vertices in the plane, where each ray starts at the boundary of some obstacle. The portion of each query ray between the starting point and the first obstacle hit is inserted permanently as a new obstacle. Our data structure uses O(n log n) space and preprocessing time, and it supports m successive ray shooting-and-insertion queries in O(n log2 n + m log m) total time. We present two applications for our data structure: (1) Our data structure supports efficient implementation of auto-partitions in the plane i.e. binary space partitions where each partition is done along the supporting line of an input segment. If n input line segments are fragmented into m pieces by an auto-partition, then it can now be implemented in O(n log2n+m log m) time. This improves the expected runtime of Patersen and Yao's classical randomized auto-partition algorithm for n disjoint line segments to O(n log2 n). (2) If we are given disjoint polygonal obstacles with a total of n vertices in the plane, a permutation of the reflex vertices, and a half-line at each reflex vertex that partitions the reflex angle into two convex angles, then the folklore convex partitioning algorithm draws a ray emanating from each reflex vertex in the prescribed order in the given direction until it hits another obstacle, a previous ray, or infinity. The previously best implementation (with a semi-dynamic ray shooting data structure) requires O(n3/2-e/2) time using O(n1+e) space. Our data structure improves the runtime to O(n log2 n)
    • …
    corecore