EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Algorithms for fat objects : decompositions and applications

Citation for published version (APA):

Gray, C. M. (2008). Algorithms for fat objects : decompositions and applications. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR636648

DOI:
10.6100/IR636648

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR636648
https://doi.org/10.6100/IR636648
https://research.tue.nl/en/publications/02ea00db-6423-4a4e-8a7e-27dbb01b3c9c

Algorithms for Fat
Objects: Decompositions
and Applications

Christopher Miles Gray






Algorithms for Fat
Objects: Decompositions
and Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op maandag 25 augustus 2008 om 16.00 uur

door
Christopher Miles Gray

geboren te Flint, Verenigde Staten van Amerika.



Dit proefschrift is goedgekeurd door de promotor:

prof.dr. M.T. de Berg

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN
Gray, Christopher Miles

Algorithms for Fat Objects: Decompositions and Applicatid by Christopher Miles Gray.
Eindhoven: Technische Universiteit Eindhoven, 2008.

Proefschrift. ISBN 978-90-386-1347-5

NUR 993

Subject headings: computational geometry / data strustlakgorithms

CR Subject Classification (1998): 1.3.5, E.1, F.2.2




Promotor: prof.dr. M.T. de Berg
faculteit Wiskunde & Informatics
Technische Universiteit Eindhoven

Kerncommissie:

prof.dr. B. Aronov (Polytechnic University)

prof.dr. P.K. Bose (Carleton University)

dr. B. Speckmann (Eindhoven University of Technology)
prof.dr. G. Woeginger (Eindhoven University of Technolpgy

Ny O | b

Netherlands Organisation for Scientific Research 19 |~ r I

A
\\IV‘VW 20y,
RS
R
(e)
As”

.
)
Yy,

2

'
UNDE g AVC

?

o)

The work in this thesis is supported by the Netherlands’ @irgdion for Scientific Re-
search (NWO) under project no. 639.023.301.

The work in this thesis has been carried out under the auspitthe research school
IPA (Institute for Programming research and Algorithmics)

© Chris Gray 2008. All rights are reserved. Reproduction iroletor in part is pro-
hibited without the written consent of the copyright owner.

Cover Design: Abby Normal
Printing: Eindhoven University Press












Contents

Preface iii
1 Introduction 1
2 Triangulating fat polygons 19
3 Decomposing non-convex fat polyhedra 35
4 Ray shooting and range searching 51
5 Depth orders 69
6 Visibility maps 83
7 Concluding remarks 97

References 101






Preface

| can still remember the sequence of events that led me te i thesis: | was sitting in
my office at the University of British Columbia and chattingline with my friend Chris

Wu'. He mentioned that he had heard of a Ph.D. position that was apthe Technical
University of Eindhoven with Mark de Berg. | knew of Mark fraime book he had written
on computational geometry, but Eindhoven was new to md, @i position seemed like
a good one, so | made up a CV and sent it along. | heard bacl taiitkly that | had

been accepted, and | made the decision to come to Eindhaegradéw days of thinking.

| have never regretted that decision. The people in Eindnbese been extremely kind
and it has been a wonderful environment in which to do re$earc

| started working right away on topics related to my thesigsitaf a surprise after seeing
the normal procedure at North American universities, wiscto do a lot of reading for
the first two years before deciding on a topic. Within the fiest months, | had results
that are included in this thesis.

Since then, in collaboration with many coauthors, | havendfeetunate enough to have
written quite a few papers that have been published in centers and scientific journals.
Many of the results from those papers are included in thisishe

I must thank many people who have made my time in Eindhoveertjmyable time that
it has been. First, my advisor Mark de Berg. He has been a whndeacher. He has
directed me to many good problems, and then has been exyr@atdnt as he tries to
help me write down a clear and understandable solution. Mik\was benefited greatly
from our collaboration.

Lincidentally, Chris also convinced me to take my first colinssomputational geometry as well as to apply
to UBC for the Master’s program. He has had a strangely digptmnate influence on my life up to now.



Next, | would like to thank all of my coauthors. Since | havermto Eindhoven, this list
includes Greg Aloupis, Boris Aronov, Mark de Berg, ProseBfise, Stephane Durocher,
Vida Dujmovic, James King, Stefan Langerman, MaarterfleifElena Mumford, Ro-
drigo Silveira, and Bettina Speckmann. Many of the reshlis e have collaborated on
are included in this thesis. The reading committee alsoributéd to the thesis through
their helpful comments. They were Boris Aronov, Mark de Bétgpsenijit Bose, Bettina
Speckmann, and Gerhard Woeginger.

I would also like to thank my officemates over the last fourge&aren Aardal, Dirk Ger-
rits, Peter Kooijmans, Elena Mumford, Sarah Renkl, and@luriThite. Elena deserves
special thanks because she has had to put up with me for thie titm@. Furthermore, |
would like to thank everyone in the Algorithms group.

Since | have been in Eindhoven, | have also attempted to miaiat nice schedule of
activities. | have especially enjoyed the sports that | hdaged while here. | would like
to thank the three sports teams that have had me: Flying Highhbwrg, the Eindhoven
Icehawks, and Eindhoven Vertigo.

Finally, and most importantly, | would like to thank my fajmiMom, Dad, and Cath, this
is dedicated to you.

Chris Gray
Eindhoven, 2008



CHAPTER 1

Introduction

1.1 Computational geometry

Computational geometry is the branch of theoretical commpstience that deals with
algorithms and data structures for geometric objects. Tbst fnasic geometric objects
include points, lines, polygons, and polyhedra. Componteati geometry has applications
in many areas of computer science, including computer gecaptobotics, and geographic
information systems.

Perhaps a sample computational-geometry problem woupdgdiet a more clear view of
what computational geometry is. The problem of finding thevex hull of a set ofx
input points is a convenient such example. Thavex hulbf a set of points is the convex
polygon with the smallest area that contains all the poirgse-Figurel.1(a). (A convex
setS is one where any line segment between two pgirdadqg in S is completely inside
S).

A naive algorithm for finding the convex hull, known as ti#-wrapping algorithn{17],

is as follows. Find the lowest poipt—we assume for simplicity that this is unique—of
the input (this is guaranteed to be a vertex of the convey halll let/ be an imaginary
horizontal ray starting at, directed rightwards. Then find the poiat-again, we assume
that this is unique—where the angle betwggrand/ is the smallest. Thus, conceptually,
we rotate/ counterclockwise aroung until we hit another poing—see Figurel.1(b).
Add the edg&q to the convex hull, let be the ray contained ipg that starts ag and let

p point tog. Then repeat this procedure untils the lowest point of the input again.
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Figure 1.1 (@) A convex hull. (b) The gift-wrapping algorithm after oadge has been
added.

This example shows how we can construct the convex hull agueesee of edges that are
themselves made out of pairs of input vertices. Since theridign looks at every vertex
of the input for every convex-hull vertex that it finds, andcg every vertex can be on the
convex hull, the gift-wrapping algorithm is clearly@(n?) algorithm, meaning that its
worst-case running time grows quadratically with its inpize. Can we do better?

It turns out we can—there are algorithms that use more adeatechniques like divide-
and-conquer or sorting that tak¥n log n) time [74]. If we disregard the constants hid-
den in the®-notation, this means that these more advanced algorittoukivwake about
ten thousand steps versus about a million for the gift-wiragoplgorithm on an input of
one thousand points. There is a lower boun€6f log n) on finding the convex hull of
n vertices, so we can not do any better than these more advalymithms in theory.

So why do we remember the gift-wrapping algorithm? Is it dimgorelic that can be
discarded? If one implements and runs the gift-wrappingrétlygm and compares it head-
to-head with a more advanced algorithm, a surprising evemtoccur. On some inputs,
the gift-wrapping algorithm actually runs faster. How chisthappen?

The problem was in our analysis of the gift-wrapping aldorit It was not incorrect: in
the worst case, the algorithm can t&ke:?) time. However, this worst case only happens
if there areQ2(n) points on the convex hull. If there is only a constant numHtgraints

on the convex hull, then the algorithm runsGxin) time. This disparity leads us to look
at the time complexity in terms of and a different parametér—the number of points
on the convex hull. The time complexity of the gift-wrappailgorithm when using these
parameters has been shown totg:h). It has been shown, in fact, that the expected
number of points on the convex hull §(log n) for points spread uniformly at random
inside a convex polygomp]. Hence, on such inputs the gift-wrapping algorithm has an
expected running time @ (n logn).



1.2 Realistic input models

The previous example illustrates a problem with the woestecanalysis that we employ
in theoretical computer science. That is, we concentrateléfinition) on the worst case
that the input can take, no matter how unlikely it is.

A number of solutions to this problem have been proposetijdiirog looking at the output
complexity, as illustrated above, and looking at the exg@complexity of the algorithms
on random inputs. The solution that we explore in this th&siks at the “geometric
complexity” of the input.

(a) (b)

Figure 1.2 (@) n triangles. (b) Their union.

As an example, it is easy to see thatriangles in the plane can have a union with com-
plexity ©(n?)—see Figurel.2 However, we can also see that these triangles must have
an angle that is very small—in fact, to make the grid-likerapte of Figurel.2, one
needs angles whose size dependd pm. Thus the larger is, the smaller angles are
needed. If we restrict the smallest angle of any trianglegdalnger than a constant,
though, then it has been shown that the complexity of therudrops toO(n loglogn)
(where the constant in th@-notation depends om) [65]—see Figurel.3.

In most realistic situations, the angles of input trianglesnot depend on the size of the
input. The model where the input triangles are required t& laaconstant minimum angle
is an example of galistic input mode[41] (having to do with thdatnesf the input).

There are two categories of realistic input models: thoaerttake assumptions about the
shapeof the individual input objects and those that make asswmptabout thelistribu-
tion of the input objects. One example of a realistic input modetivmakes assumptions
about the shape of the objects was just given—trianglesaadle® bea-fat if their mini-
mum angle is bounded from below by a const@nfn example of a realistic input model
that makes assumptions about the distribution of the inpdthé \-low-densitymodel.
Here, we assume that the number of “large” objects in a “Smedlion is bounded by a

3



(a)

Figure 1.3 (a@)n fat triangles. (b) Their union.

constant\. More formally, if we letsize(o) denote some measure of size of an object
then a low-density scene is one where the number of objeiteersecting a regiork
wheresize(o) > size(R) is at most some constantfor all regionsR.

It is often the case that realistic input models that makaragsions only on the distribu-
tion of the input are more general than those that make adsumsmbout the shape of
the input. Our example realistic input models are a caseimpany scene consisting of
disjoint fat triangles inR? is low-density, but not all low-density scenes consist asfly

fat objects. A hierarchy of such relations has been prelyaiigen [41].

As suggested above, one primary motivation for using réalisput models is the notion
that they do a better job at predicting the performance dfritlyms in reality. Further-
more, algorithms for realistic input are often simpler tldgorithms that must be tuned
to arbitrary worst-case examples.

One caveat about working with realistic input models: we ningscareful to show the
dependence on the constants associated with the modelsotiidtbe hidden in thé)-
notation in the analysis. This is because any object coulthied a-fat and any collec-
tion of objects could be called-low density ifa and A are chosen suitably small (in the
case ofw) or large (in the case o). If, on the other hand, we show the dependence in the
analysis, then it is clear that at some value of the condtentasult becomes less useful.

1.2.1 Previous work

The past work on realistic input models has focused on foun @as: union complex-
ity, motion planning, point location and range searching] eertain computer-graphics
problems. More recently, there have been some new resldtededo realistic terrains.
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Union complexity. The complexity of the union of a set of objects is a combirator
property that is interesting from an algorithmic point oéwi because it influences the
running times of some algorithms. One area where it is eafhgainportantis in robotics
and motion planning. This is because the first step of thalaratechnique for determin-
ing whether a robot can move between two points is to shriakdbot down to a point,
expanding the obstacles accordingly. The algorithm theardenes whether there are
any paths that can go from the starting point to the targe¢. ddmputational complexity
of this technique depends in large part on the complexithefunion of the expanded
obstacles.

The union complexity of. fat triangles was first shown to b@(nloglogn) by Ma-
touSeket al.[65] and the dependence on the fatness constant was later ietbbgvPach
and Tardos76]. In fact, since convex fat polygons of complexity can be covered by
O(m) fat triangles (as we show in a later chapter), the same isfonuthis class of ob-
jects. Furthermore, under a different definition of fatnéss Kreveld showeddg] that
non-convex polygons have the same property.

For objects that are not convex and that can have curved gbdgeBerg showed that the
union complexity is also close to lineeB(. For locally-y-fat objects (and thu&x, 5)-
covered objects)—defined in Sectibktd—whose curved edges can intersect at most
times, the union complexity iI©(\,2(n) log? n), where), (n) represents the length of
an (n, s) Davenport-Schinzel sequence. Such a sequence has a lbagth hear-linear
in n for any constant [87].

It has recently been shown that the union of fat tetrahed®®irs O(n?*¢) [51]. There
has been some work done under other definitions of fatneslisAvonov et al. [11]

showed that the complexity of the union of so-calletbund objects i€)(n?*¢) in three
dimensions and(n3+<) in four.

Robotics and motion planning. The application of realistic input models to motion
planning has been quite successful. For example, when amabg degrees of freedom,
the free space (that is, the set of places into which the redoimove without colliding
with an obstacle) has complexi€(n/). This implies that any exact solution to the mo-
tion planning problem has time complexiy(n/). Currently, the algorithm with the best
time complexity for motion planning has time complexi®(n’ logn) [16]. However,
when the obstacles form a low-density scene and the robaitisnach larger than the
obstacles, the complexity of the free spac®is:) [97]. This has enabled the develop-
ment of motion-planning algorithms with running times thet nearly linear given these
realistic input assumption9§].

Point location and range searching. There has been some research into data structures
for point location and range searching in aSeff disjoint fat objects. In the first problem,
one wishes to find the specific object fradfrcontaining a query point. In the second, the
problemis to find all objects frorfi intersecting a query range. That is, we wish to report
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all objects that intersect some specific part of space. Tiwaseroblems are related and
often treated in tandem.

Point location has been well studied in two dimensions, evihitemains essentially open
in higher dimensions. A common data structure for point fiecain two dimensions,
known as the trapezoidal map, is given in the book by De Bead.[42]. In arrangements
of hyperplanes i dimensions, Chazelle and Friedman give a data struc23f¢t{at can
answer a point-location query @ (log n) time usingO(n?) space.

Range searching is another well-studied problem. Forraryitnput, the two best-known
data structures are partition trees and cutting trees. Eash trade-off: partition trees use
linear space, but queries tak&n!~1/4+<) time [66], while cutting trees hav® (log® n)
query time, but také) (n?+<) storage 20]. It is also possible to trade storage for query
time by combining the two types of trees: for any< m < n¢, there exists a data
structure withO(m**<) storage and(n® /m!*4) query time.

Overmars and Van der Stappen first show#d fhat point-location and range-searching
gueries can be handled efficiently when the input is fat. Tpregented a data structure
that supports point-location and range-searching qui&z‘r'@élogd‘1 n) time that requires
O(n log?~! n) storage afte(n log? ! nloglog n) preprocessing. However, the range-
searching portion of this result requires the range to betomtmuch larger than the
objects being queried. Subsequently, the same bounds éoy ¢jme and storage space
were obtained for low-density input at the expense of a smatkase in preprocessing
time [85]. This was further improved by De Berg, who ga&9] a linear-sized data
structure with logarithmic query time fanclutteredscenes (another realistic input model
on the distribution of the input that generalizes low dey)sit

Most recently, object BAR-trees were employed to perforprapimate range queries on
low-density input in approximatel®(log n + k) time using linear spacd(].

Computer graphics. Some of the problems related to computer graphics that heee b
studied in the context of realistic input models are hiddefese removal, ray shooting,
and the computation of depth orders. We study these prohfetater chapters and give
detailed overviews of the related work in the next section.

Realistic terrains. A polyhedral terrain(also known as a triangulated irregular net-
work) is a 2.5-dimensional representation of a portion ofidase. The most common
surface that is represented by a terrain is the Earth. Aiteiganodeled as a planar trian-
gulation of a set of two-dimensional points. That is, it isliag of the convex hull of the
points by triangles with the condition that every point is tkertex of at least one triangle.
Each of the points has additional height information, ansl #&ssumed that the elevation
of any point inside a triangleis given by interpolating the heights of the vertices.of

Realistic terrainsare a newer area of research related to realistic input raddat are
inspired by geographic information systems. Here, a fewriotions are placed on the
terrain:



e The triangles of the terrain are fat.
e The triangles are not too steep.
e The triangles are all nearly the same size.

e The projection of the terrain onto the-plane is a rectangle that is nearly a square.

Certain properties of these terrains, such as the compleféit geodesic bisector between
two points, have been shown to be lower than in general tex{ai]. Also, some experi-
ments have been done that show that these assumptions act iedlistic 0. In addi-
tion, there has been some work done on finding the waterstiexdglo terrains32] and
on computing the overlay of maps of such terrains in a marrarttempts to minimize
the number of disk accesses].

1.3 Overview of this thesis

In the remainder of this chapter, we give a short outline ef¢hapters to follow. We
also mention some of the relevant related work. We begin with chapters related to
the decomposition of fat polygons and polyhedra, which wieiowith three chapters
related to new algorithms for problems related to computaplgics.

Triangulating fat polygons. In Chapter2, we examine triangulation of a polygon—
probably the most-used decomposition in computationahgry. We examine the prob-
lem in the context of fat objects. Connections between thaing time of a triangulation
algorithm and the shape complexity of the input polygon Hasen studied before. For
example, it has been shown that monotone polyg®8s $tar-shaped polygon84], and
edge-visible polygons93 can all be triangulated in linear time by fairly simple aigo
rithms. Other measures of shape complexity studied indluelaumber of reflex vertices
[57] or the sinuosity 27] of the polygon.

We give a simple algorithm for computing the triangulatiartime proportional to the
complexity of the polygon and the number of guards that acesgary to “see” the entire
boundary of the polygon. We also show that a certain type tgfdéygons needs a con-
stant number of guards—meaning that our algorithm is a fitiege algorithm for these
polygons.

As of this writing, portions of Chapte? are to appear at th20th Canadian Conference
on Computational Geometry

Decomposing non-convex fat polyhedra. In Chapter3, we look at decompositions of
non-convex fat polyhedra in three dimensions. Here, wergttdo find decompositions
where the number of pieces is not too high. We show in a fewscthsd this can be done,
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and we prove that it can not be done in most cases. This isy as fae know, the first

investigation of the possibilities of decomposition foe trarious types of fat polyhedrain
three dimensions. In two dimensions, Van Kreveld shov@&ithat non-convex polygons
can be covered by fat triangles.

A preliminary version of Chapte& appeared at the4th European Workshop on Computa-
tional Geometryand the full paper has been invited to the special iss@paiputational
Geometry: Theory and Applicatiotisat accompanies that workshop. As of this writing,
the paper is to appear at théth European Symposium on Algorithms

Ray shooting and simplex range searching. In Chapter4, we look at the problem of
ray-shootingamidst fat objects from two perspectives. This is the prnobidé preprocess-
ing data into a data structure that can answer which objditstshit by a query ray in
a given direction from a given point. In the first part of theapter we fix the direction,
while in the second part of the chapter the direction is adidwo be arbitrary. We then
conclude with a data structure that reports the objectssatéed by a query simplex that
works in a similar manner to the data structure for ray simgpith arbitrary directions.

Data structures for vertical ray-shooting queries amotgya&karbitrary disjoint triangles
in R? have rather high storage requirements. Wb¥iog n) query time is desired, the
best-known data structure needén?) space 28. Space can be traded for query time:
for anym satisfyingn < m < n?, a data structure can be constructed that (xes' <)
space and allows vertical-ray-shooting queries that ke +< /m'/?) time [2§].

Given the prominence of the ray-shooting problem in comjmutal geometry it is not
surprising that ray shooting has already been studied flmmperspective of realistic
input models. In particular, the vertical-ray-shootinglpiem has been studied for fat
convex polyhedra. For this case KaB8] presented a data structure that us€s log® n)
storage and ha®(log* n) query time. Using the techniques of Effit al. [47] it is
possible to improve the storage boundt: log” n) and the query time t0(log® n) [59].
Recently De Berg31] presented a structure with(log” n) query time; his structure uses
O(nlog® n(loglogn)?) storage.

Similarly, in the case of ray-shooting in arbitrary directs, the results achieved for non-
fat objects require a lot of storage. If the input consista @frbitrary triangles, the best
known structures wittO(logn) query time use)(n**€) storage 28, 78], whereas the
best structures with near-linear storage have roughtly*’*) query time ]. More gen-
erally, for anym with n < m < n*, one can obtai®((n/m'/*)logn) query time using
O(m!*<) storage 7]. Better results have been obtained for several speciasca&hen
the setP is a collection ofrn axis-parallel boxes, one can achigVélogn) query time
with a structure usin@ (n**<) storage 28]. Again, a trade-off between query time and
storage is possible: witt(m!*¢) storage, for anyn with n < m < n?, one can achieve
O((n/+/m)logn) query time. IfP is a set ofr balls, then it is possible to obtai(n?/3)
query time withO(n'*<) storage 90], or O(n*) query time withO(n3*¢) storage 72].

When the input is fat, the results are somewhat better. Forcése othorizontal fat
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triangles, there is a structure that us&s:?*<) storage and ha@(log n) query time p§g],
but the restriction to horizontal triangles is quite sevefmother related result is by
Mitchell et al. [69]. In their solution, the amount of storage depends on theadled
simple-cover complexityf the scene, and the query time depends on the simple-cover
complexity of the query ray. Unfortunately the simple-cosemplexity of the ray—and,
hence, the worst-case query time—candye) for fat objects. In fact, this can happen
even when the input is a set of cubes. The first (and so far aslfar as we know)
result that works for arbitrary rays and rather arbitratydljects was recently obtained
by Sharir and ShauBp]. They present a data structure for ray shooting in a catlaaif
fat triangles that ha®(n?/3+=) query time and use®(n'*¢) storage. Curiously, their
method does not improve the known bounds at the other enceajukry-time—storage
spectrum, so for logarithmic-time queries the best knowregfe bound is stilD(n**<).

We present a new data structure for answering vertical hapting queries as well as a
data structure for answering ray-shooting queries for veyfs arbitrary direction. Both
structures improve the best known results on these problEmally, we use ideas from
the second data structure to make a data structure for simgolge searching.

Portions of Chaptet appeared at th22nd European Workshop on Computational Geom-
etry, where the full paper was also invited to the special issu@&nfiputational Geometry:
Theory and Applicationthat accompanies that workshd).[The paper also appeared at
the22nd Symposium on Computational Geomggty

Depth order. Another problem that is studied in the field of computer gieplis the
depth-ordemproblem. We study it in Chaptés in the computational-geometry context.
This is the problem of finding an ordering of the objects inshene from “top” to “bot-
tom”, where one object is above the other if they share a poittte projection to the
xy-plane and the first object has a highevalue at that point.

The depth-order problem for arbitrary sets of triangles-space does not seem to admit
a near-linear solution; the best known algorithm run®im?*/3+) time [39]. This has
led researchers to also study this problem for fat objectgar#alet al. [5] gave an
algorithm for computing the depth order of a set of trianglé®se projections onto the
zy-plane are fat; their algorithm runs i@ (n log® n) time. However, their algorithm
cannot detect cycles—when there are cycles it reports amriect order. A subsequent
result by Katz 58] produced an algorithm that runsd(n log® n) time and that can detect
cycles. In this case, one of the restrictions placed on tpetiis that the overlap of the
objects in the projection is not too small. Thus, the cortstéuproportionality depends
on the minimum overlap of the projections of the objects thmbverlap. If there is a
pair of objects whose projections barely overlap, then tiiming time of the algorithm
increases greatly. One advantage that this algorithm higiaist can deal with convex
curved objects.

We give an algorithm for finding the depth order of a group dbfasiects and an algorithm
for verifying if a depth order of a group of fat objects is aut. The latter algorithm is
useful because the former can return an incorrect ordeeibtjects do not have a depth
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order (this can happen if the above/below relationship fegsle in it). The first algorithm
improves on the results previously known for fat objecte;dbhcond is the first algorithm
for verifying depth orders of fat objects.

Portions of Chapteb appeared at th&7th ACM-SIAM Symposium on Discrete Algo-
rithms[34]. The full version of the paper has appeared in $&M Journal on Comput-

ing [36].

Hidden-surface removal. The final problem that we study is thedden-surface re-
movalproblem. In this problem, we wish to find and report the visibbrtions of a scene
from a given viewpoint—this is called thasibility map The main difficulty in this prob-
lem is to find an algorithm whose running time depends in pathe complexity of the
output. For example, if all but one of the objects in the inpegne are hidden behind
one large object, then our algorithm should have a fastamingtime than if all of the
objects are visible and have borders that overlap. We gigh an algorithm—called an
output-sensitivalgorithm—in Chapte6.

The first output-sensitive algorithms for computing vibtpimaps only worked for poly-
gons parallel to the viewing plane or for the slightly moregel case that a depth order
on the objects exists and is givebs] 53, 54, 80, 81, 88]. Unfortunately a depth order
need not exist since there can be cyclic overlap among thectshj De Berg and Over-
mars B8] (see also28]) developed a method to obtain an output-sensitive algarihat
does not need a depth order. When applied to axis-parali@shfor, more generally,
c-oriented polyhedra) it runs i@((n + k) log n) time [38] and when applied to arbitrary
triangles it runs im0 (n'*= + n?/3+<k2/3) time [6]. Unfortunately, the running time for
the algorithm when applied to arbitrary triangles is notrregear inn—the complexity
of the input—andi—the complexity of the output; for example, whier= n the running
time is O(n*/3*¢). For general curved objects no output-sensitive algorihknown,
not even when a depth order exists and is given.

Hidden-surface removal has also been studied for fat abj&ettzet al.[60] gave an algo-
rithm with running timeO((U (n) + k) log® n), whereU (m) denotes the maximum com-
plexity of the union of the projection onto the viewing plasfeany subset ofn objects.
Sincel (m) = O(mloglogm) for fat polyhedra6] andU (m) = O(As12(m)log® m)
for fat curved objectsd(], their algorithm is near-linear in andk. However, the algo-
rithm only works if a depth order exists and is given.

We give an algorithm for hidden-surface removal that dodsneed a depth order and
whose running time is still near-linear inandk.

Portions of Chapte6 appeared at th&0th International Workshop on Algorithms and
Data Structureg35] and the full paper was also invited to the special issu€aiputa-
tional Geometry: Theory and Applicatiotisat accompanies that workshop.

Conclusions. We end the thesis with some conclusions and we state somepoplen
lems in Chapter.

10



1.4 Definitions and basic techniques

Many realistic input models (and measures of fatness) hege proposed. In the next few
paragraphs, we define those that we use most in this thesidisocuss some techniques
that we feel are important to know about when dealing withisgainput.

(-fat objects. The best-known and most widely used of the realistic inpudeh®isS-
fatness This is the model of fatness that we employ in this thesitgasotherwise noted.
Itis defined as follows.

Definition 1.1 Let 3 be a constant, with < 3 < 1. An objecto in R? is defined to be
p-fat if, for any ballb whose center lies in and that does not fully contain we have
vol(bNo) > - vol(b).

There have been other definitions of fatness proposed (sutble ane given in Sectidn?2,
restricting the minimum angle of triangles), but when thpunis convex, they are all
equivalent up to constant factors.

Locally-~-fat objects. When the input is not convex, defining fatness in such a way
that the objects satisfy the intuitive definition of fatnéssrickier. Many of the results
stated for fat objects break completely under Definitichwhen the input is not convex—
for example, the union complexity of two non-convéstat objects can b&(n?) as can

be seen in Figuré.4(b). (In fact,n constant-complexity non-convekfat objects can
also have a union complexity 6f(n?), but the example is more complicateg0].) We

use two definitions of fatness for non-convex objects inttésis that satisfy the intuitive
definition better than Definitioh.1 The first is of locally=-fat objects. See Figure4(a).

(&) ®) (NERRARNNNNNNT

Figure 1.4 (@) A locally-fat polygon. Note that only the part of the irgection containing
the center of the circle is counted. (b) An object that is agjmnately(1/4)-fat, but not
locally-(1/4)-fat.
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Definition 1.2 For an object and a balb, defineb M o to be the connected component
of b N o that contains the center bf Let~y be a constant, with < ~v < 1. An objecto in

R? s defined to béocally-y-fat if, for any ballb whose center lies in and that does not
fully containo, we havevol (b 0) > ~ - vol(b).

(«, B)-covered objects. Definition 1.2 is a small modification of Definitiod.l—we
simply replacen by M. The second definition that we use shares less with Definltitin
Itis illustrated in Figurel.5.

h

Figure 1.5 An (a, 3)-covered polygon with diameter 1.

Definition 1.3 Let P be a polyhedroniiR¢ ando and3 be two constants with < o < 1
and0 < g < 1. A good simplexs a simplex that has fatnesqusing Definition1.1) and
has smallest edge-length diam (P). P is («, 3)-coveredif every pointp on the bound-
ary of P admits a good simplex that has one vertex ahd stays completely inside.

Definition 1.3 is a generalization to higher dimensions of {le 3)-covered polygons
proposed by Efrat46]. As observed by De Berg3p] when he introduced the class of
locally-y-fat polygons, the class of localty-fat objects is strictly more general than the
class of(«a, §)-covered objects: any object that(is, 3)-covered for some constanis
andg is also locallys-fat for some constant depending orx and 3, but the reverse is
not true.

Low-density scenes. Another realistic input model assumes that the inpldvsdensity
This means, essentially, that there can not be too many tdgets intersecting a small
space. The formal definition is given below. We defiie (o), thesizeof an object, to
be the radius of the smallest enclosing baflo.

Definition 1.4 Thedensityof a setS of objects is defined as the smallest numbetich
that any balb is intersected by at moatobjectso € S such thatize(o) > size(b).

1itis also possible to use the diameteiats the measure of its size. This leads to slightly differentstants
in the analysis, but has no asymptotic effect.

12



Figure 1.6 A low-density scene. Note that the small triangles are nahted, since they
are not as large as the circle.

The following lemma relates the density of a set of disjoinjeats to their fatness.

Lemma 1.5 (De Berget al. [41]) Any set of disjoint3-fat objects has density for some
A=0(1/p).

Below, we look at three techniques that are useful whenwigalith realistic input.

Canonical directions. One simple but powerful tool often used when designing algo-
rithms and combinatorial proofs for fat objects is a smatldeanonical directions. It is
difficult to define such a set in the absence of the context péaific problem, so we first
give an example.

We again restrict the input to triangles that have a minimmglethat is at least some
constantr. LetD = {0,a/2,a,3a/2,...} be a set of directions withD| = [47/a/].
Then at every vertex of a trianglet, there must be at least one directidr D where a
line segment placed atin directionJ'stays in the interiot. It is important to note that
the size ofD is independent of the number of triangles in the input setiadter how
many triangles are input, if they are alifat, thenO(1/«) directions suffice.

One application in which such a set of canonical directianaseful is the following.
Let P be a set ofn points. We wish to query a data structure Brwith ranges that
are fat triangles. The data structure should return all tiatp inside the range. This
is known assimplex range searchingFor arbitrarily skinny rangesutting treeshave
near-logarithmic query times ari@(n>*<) storage requirements, apdrtition treeshave
near-linear storage requirements but have query timesiteét(n'/?+¢) [42).
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Figure 1.7 A set of canonical directions far = 48°.

Figure 1.8 A fat triangle divided into triangles with two edges that Baanonical direc-
tions. The canonical directions are those shown in Fidure

However, am-fat triangle can be divided into four smaller trianglesttbach have two
edges that have directions frof—see Figurel.8 This allows us to design a more effi-
cient data structure. Each range query with a triangle cahdgght of as the intersection
of three range queries with half-planes. When the direatioan edge of the triangle is
known beforehand, such a half-plane query is simple: a bathbinary search tree will
suffice.

Therefore, we can construét(1/a?) multi-level data structures—se47] for a good in-
troduction to multi-level data structures—with three leveEach of the first two levels
corresponds to a half-plane query data structure optinfmeone of the canonical direc-
tions (that is, the balanced binary search tree). The fivel lef the data structure is a
data structure by Chazeléd al.[26]. This is a slightly more complex data structure that
usesO(n) space and can answer half-space range queries ir(iiiog n+ k), wherek is
the size of the output. Our data structure then has queryditheg® n + k), while using
O(nlog®n) space. In other words, its query time is approximately teesas the query
time for cutting trees while its space requirement is abbatdame as that of partition
trees.
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In this example, the property that the canonical directlmng is that a segment travelling
in a direction fromD away from a vertex stays inside the triangle. In later chaptee
use sets of canonical directions with more complicatedeutigs, such as when we define
towers in Chapte8 and when we define witness edges in Chapter

Guards. Another tool used when dealing with realistic input igterding set The goal
when creating a guarding set is to define a set of points that thee property that any
rangethat does not contain one of the points must intersect a sraaiber of the input
objects. A range, in this context, is an element of a fanfilpf shapes. An example
family R could be the set of all squaresit¥, and a range from that family would then
be a specific square.

Given a setD of disjoint disks, we can build a guarding set by placing ardw# each
corner of the axis-aligned bounding square of each disk ias well as at the center of
each disk inD. Using the same family of rangésdefined above—namely the set of all
squares—any rangefrom R that contains no guard can intersect at most four disks from
D. This property is useful for constructing data structusesh as binary space partitions,
discussed below.

Figure 1.9 A set of circles with guards. No square can intersect more tbar circles
without containing a guard.

In contrast to the example above, where the size of the guasdit depends am, in cer-
tain situations the size of the guarding set is a constargmtipg on the fatness constant
of the input. In Chaptet, for example, we create a constant-sized grid that gua@iasty
a family of ranges that consists of a subset of the input. Hewén this thesis, guarding
sets are most often used implicitly in the construction ofalby space partitions, which
we discuss next.
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Binary space partitions. Another technique used in computational geometry is the de-
composition of space into cells. Generally the goal is t@aiwbé constant number of (frag-
ments of) input objects in each cell. This is a widely usetinégue, and when the objects
conform to a realistic input model, properties of the decosifions often improve.

One decomposition of space is known as liary space partitionor BSP BSPs are
widely used in practice despite the fact that their use aftes not lead to the best-known
theoretical time bounds. However, their actual perforneasoften better than the theory
predicts. One reason for this might be that the objects itgpBSPs in practice tend to fit
realistic input models.

The main idea behind a BSP is to recursively split space thgiremaining subspaces
each contain at most one fragment of an input object. Thisge®can be modeled as a
tree structure. A BSP is constructed as follows: first, a hgfa@e (a line in two dimen-
sions or a plane in three dimensioris) splits space. Then two hyperplanesandhs
split the parts of space on either sidehgf Two hyperplanes then split the parts of space
on either side ofi; and two more hyperplanes split the parts of space on eittderdh.
This process continues until each part of space containssitome piece of input.

The BSP tree structure is defined as follows: every fragmianmbject is contained in
some leaf. A node contains a splitting hyperplarte(the root node contairfs;) and has
two BSP trees as children. The left childois the BSP tree on the space abdévand
the right child ofv is the BSP tree on the space belbwSee Figurd..1Q

S
A

Figure 1.10 A BSP and its associated tree.

The sizeof a BSP is defined to be the number of fragments that are storthb@ nodes
of the BSP. It is generally desirable to have a BSP that hasadl sine. However, even
for segments ifRk?, it is not always possible to obtain a linear-sized BSP, ath Tas
shown P1] that there are input configurations thatimply a BSP of §ize log n/ loglog n).
In R3, the situation is even worse: Paterson and Yao sh&fvthat binary space parti-
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tions for disjoint triangles can be forced to have siz@?). This is too large for many
applications, so BSPs were often ignored by the theoretizadputer-science community.
However, when the input conforms to a realistic input mothed, situation does not look
so bad. First, De Berg designezf] a BSP with linear size for low-density scenes. Then
De Berg and Streppel designetl] the object BAR-tregwhich also has linear size for
low-density scenes as well as a few other nice propertiesibaiscuss below.

The object BAR-tree is an extension of thelanced aspect-ratio tre@r BAR-treg intro-
duced by Duncaet al.[44]. This is a BSP on points that has linear size (as do all BSPs
on points, since points can not be split). The cells of the BAFR are fat, and the depth
of a BAR-tree om points isO(log n).

The object BAR-tree is constructed by surrounding eachtiopject by a set of guards
and then building a BAR-tree on the guards. As long as thetiolpjects have low density,
the tree has the same properties as a BAR-tree: linear atzmlfs, and logarithmic depth.
These properties are quite useful, and we see examples o$¢hef the object BAR-tree
in many chapters of this thesis.
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CHAPTER 2

Triangulating fat polygons

2.1 Introduction

Polyhedra and their planar equivalent, polygons, play goitant role in many geometric
problems. From an algorithmic point of view, however, gaheolygons and polyhedra
are unwieldy to handle directly: many algorithms can onlndia them when they are
convex, preferably of constant complexity. Hence, therelie®en extensive research into
decomposing polyhedra (or, more generally, arrangemdrttsaagles) into tetrahedra
and polygons into triangles or other constant-complexityvex pieces. The two main
issues in developing decomposition algorithms are (i) epkiae number of pieces in the
decomposition small, and (ii) to compute the decomposijaickly.

In the planar setting the number of pieces is, in fact, nosane if the pieces should be tri-
angles: any polygon admitgi@angulation—thatis, a partition of a polygon into triangles
without adding extra vertices—and any triangulation ofrae polygon withn vertices
hasn — 2 triangles. Hence, research focused on developing fasguiation algorithms,
culminating in Chazelle’s linear-time triangulation atglbm [19]. An extensive survey
of algorithms for decomposing polygons and their applaatiis given by Keil §1].

In this chapter, we look at the problem in the planar contesd;study the problem in
R3 in the next. In particular, in this chapter we look at thertgalation problem with
respect to fat objects. Polygon triangulation is a commepmrcessing step in geometric
algorithms.
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It has long been known that linear-time polygon triangolatis possible but the algo-
rithm by Chazelle 19] that achieves this is quite complicated. There are sevieale-
mentable algorithms which triangulate polygons in neaedir time. For example, Kirk-
patrick et al. [64] describe anD(n loglogn) algorithm and Seideld6] presents a ran-
domized algorithm which runs i@ (n log™ n) expected time. However, it is a major open
problem in computational geometry to present a linear-tim@ementable algorithm.

We study triangulation in the context of fat objects. Relaships between shape com-
plexity and the number of steps necessary to triangulategpak have been investigated
before. For example, it has been shown that monotone podyf@&h star-shaped poly-
gons B4], and edge-visible polygon®§] can all be triangulated in linear time by fairly
simple algorithms. Other measures of shape complexityeslidclude the number of re-
flex vertices 57] or the sinuosity 27] of the polygon. However, no linear-time algorithm
(except Chazelle’s complicated general algorithm) is kmder fat polygons, arguably
the most popular shape-complexity model of the last decHiuis.is the goal of our work:
to develop a simple linear-time algorithm for fat polygons.

We begin, after defining some terms and setting up some to&edtior2.2, by showing
that(«a, 3)-covered polygons can be “guarded” by a constant nunibhef, points in Sec-
tion 2.3 We call polygons that have this propekiaguardable In this context, a polygon
is guarded by a set of pointsif, for each poinip on the boundary of the polygon, there is
a line segment betweerand one of the guards i@ that is contained itP. Note that this
is a different definition than the one we gave in Chafitethen discussing techniques for
dealing with realistic input. We conclude in Sectid by giving two algorithms for tri-
angulatingc-guardable polygons i@ (kn) time. If the link diameter of the input—see the
next section for a formal definition—i% then one of our algorithms také¥dn) time—

a slightly stronger result. We also describe an algorithrictviriangulates:-guardable
polygons inO(kn) time. That algorithm uses even easier subroutines thantttes, dout

it requires the actual guards as input, which might be umalels in certain situations.

As mentioned in Chaptet, there are several algorithms and data structures forazolle
tions of realistic objects. For example, the problem of sagoting in an environment
consisting of fat objects has been studied extensi&lyq8] (see also Chaptet of this
thesis). However, there are few results concerning indaidealistic objects. We hope
that our results on triangulating realistic polygons wilceurage further research in this
direction.

2.2 Tools and definitions

Throughout this chapter It be a simple polygon with vertices. We assume th&thas
no vertical edges. IP has vertical edges, it is easy to rotate it by a small amoutilttbhe
vertical edges are eliminated.

We denote the interior aP by int(P), the boundary of? by 9P, and thediameterof P
by diam(P). The boundary is considered part of the polygon, thaPiss int(P) U 9P.
We say that a poingisin P if p € int(P) U dP.
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Figure 2.1 The visibility polygonVP(p, P) is shadedP,, is the pocket ofv with respect
to VP(p, P).

The segment or edge between two poin@ndq is denoted bypg. The same notation
implies the direction fronp to ¢ if necessary. Two points andg in P seeeach other if
pg N P = pq. If p andq see each other, then we also say thetvisiblefrom ¢ and vice
versa. We call a polygo® k-guardableif there exists a sefr of £ points in P called
guardssuch that every point € 9P can see at least one pointGh

A star-shapedgolygon is defined as a polygon that contains a set of poirtiskernel—
each of which can see the entire polygon. If there exists geglC 0P such that each
point in P sees some point gig, then P is weakly edge-visibleThevisibility polygon
of a pointp € P with respect taP, denoted byP(p, P) is the set of points it that are
visible fromp. Visibility polygons are star-shaped and have compleity.).

Figure 2.2 A polygon with low link diameter that needs(n) guards.

A concept related to visibility in a polygoR is thelink distance which we denote by
ld(p, q) for two pointsp andq in P. Consider a polygonal path that connectp andgq
while staying in intP). We say thair is a minimum link path if it has the fewest number
of segments (links) among all such paths. The link distarigeandgq is the number of
links of a minimum link path betweemandq. We define thdink diameterd of P to be
max, ,cp ld(p,q). The link diameter of a polygon may be much less than the numbe
of guards required to see its boundary, and is upper boungédebnumber of guards
required to see the boundary. This can be seen in the sa¢abbenb” polygons—see
Figure2.2—that generally have a low link diameter but need a linear lmemof guards.
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Let @ be a subpolygon oP (that is, a simple polygon that is a subset/)f where all
vertices of@ are ondP. If all vertices of(Q coincide with vertices of?, then we callQ

a pure subpolygonlf 9P intersects an edge of 9@ only atw’s endpoints, then is
called awindowof ). Any window w separate$’ into two subpolygons. The one not
containing@ is the pocketof w with respect taQ (see Figure.1). Any vertex added to
the polygon (such as the endpoint of a window) is call&teiner point

Lemma 2.1 (El Gindy and Avis [48]) VP(p, P) can be computed i®(n) time.

This algorithm, while not trivial, is fairly simple. It invges a single scan of the polygon
and a stack. See O’Rourke’s boald] for a good summary.

2.3 Guarding realistic polygons

In this section we discuss several realistic input modelpédygons and their connection

to k-guardable polygons. We first consider the so-callegbod polygons introduced

by Valtr [95]. An e-good polygonP has the property that any poipte P can see a
constant fractiorz of the area ofP. Valtr showed that these polygons can be guarded
by a constant number of guards. Henrcgood polygons fall naturally in the class of
k-guardable polygons. Kirkpatrick6B] achieved similar results for a related class of
polygons, namely polygon8 where any poinp € P can see a constant fractierof the
length of the boundary oP. These polygons can be guarded by a constant number of
guards as well, and hence drg@uardable polygons.

Figure 2.3 A polygon P that is(«, (3)-covered but not-good. By scaling the length of
the edges, the central point & can be made to see an arbitrarily small fraction of the
area ofP.

We now turn our attention to fat polygons. In particular, wensider(a, 3)-covered
polygons—see Chaptdrfor the definition. It is easy to show that the classe$wfs)-
covered polygons ang-good polygons are not equal—any convex polygon that is not
fat ise-good but not «, 3)-covered, and the polygon in FiguBe3is («, 5)-covered but
note-good. In the remainder of this section we prove thats)-covered polygons can
also be guarded by a constant number of guards and hentegargrdable polygons. In
particular, we prove with a simple grid-based argumentwetan guard the boundary
of an(a, 3)-covered polygon with327/(a3%)] guards.
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Let P be an(«, 5)-covered polygon with diameter 1 and letbe a point oroP. We
construct a circle” of radius3/2 aroundp and place[4r/«| guards evenly spaced on
the boundary o€’'. Call this set of guard&’,,. By construction, the triangle consisting of
p and any two consecutive guards@f has an angle atof a/2. Hence any good triangle
which is placed ap must contain at least one guard fra@¥y. Now consider the circl€”
centered ap with radius3/4. We show in the lemma below that any good triangle placed
at a point inside the circlé” must contain at least one guard fras).

Lemma 2.2 LetT be a good triangle with a vertex inside the cir€le ThenT contains
at least one guard frod,.

Proof. Let v be the vertex of" that lies insideC’. SinceT is a good triangle, all of its
edges have length at least Also, all of its angles are at least In particular, the angle
that is atv is at leastv. Since all angles if” are at leasty, « is at mostr /3.

Figure 2.4 The guarding set7,.

Letr be the ray that bisects the anglevatAssume thaf” contains no guards frorf,,.

It is easy to see that we lose no generality by assumingitigabn the boundary of".
Indeed, movingl” towards the boundary @i alongr, no guards fronG,, can entefl.
We also lose no generality by assuming thas orthogonal taC” atv and that it passes
through the center point of the segment connecting two @urtise guards frontz,. We
now show that even in this worst case, pictured in Figu#ethere must be a guard from
GpinT.

We show that there is a segment connecting two consecuta@gromG,, that is com-
pletely contained ifT’. Let g; andgs be the guards which have the property thaasses
through the segmenfigz. We denote the length of the segmemyz by 26. Hence
tan(a/4) = 20/(. Let the anglejvg2 be denoted bgd. We havetan 6 = 46/5. There-
fore,tanf = 2tan(a/4). Sinced < a/4 < 7/12 < 7/4, we haved < 2tan(a/4) <
tan(a/2) (by double-angle identities faan). This implies thatan < tan(«/2) and
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hence2d < «. It follows thatT must contain the segmefigs. Since we chose the worst
possibleT’, any good triangle insidé” must contain at least one guard fr@). O

This lemma almost immediately provides a guarding setfer

Theorem 2.3 Let P be a simpleg(«, 3)-covered polygon. The boundary &f can be
guarded by4r /a][2v/2/F]? guards.

Proof. Assume without loss of generality that the diametePa$ 1. Thus,P has a bound-
ing squareB with areal. The circleC” in the guarding sef,, from Lemma2.2 contains

a square with ared’ /8. We coverB by [2v/2/]? such squares that are each surrounded
by a copy ofG,,. Since every point of P is contained in at least one such square, this
must be a guarding set by Lem& Since each copy af7, contains[4x/«]| guards,
we need at mosdr/a][2v/2/3]? guards to guardP. 0

2.4 Triangulating k-guardable polygons

We present two algorithms that triangulaté-guardable polygon. The first algorithm is
slightly simpler, but it needs the set of guards as input. 3éeond algorithm does not.
The model under which the first algorithm operates, thathiat it needs the guards as
input, may seem strange at first. However, given the resitiltiseoprevious section for
(«, B)-covered polygons, we can easily find a small guarding sé@af time for certain
fat polygons.

2.4.1 Triangulating with a given set of guards

LetG = {¢1,..., 9k} be a given set of guards inP that jointly seedP. In this section
we describe a simple algorithm that triangulafesm O(kn) time.

A vertical decompositionf P—also known as a trapezoidal decompositioPpfeading
to the notatiorZ (P)—is obtained by adding eertical extensiortio each vertex of. A
vertical extensiorof v, denoted vefw), is the maximal vertical line segment which is
contained in intP) and intersects. We sometimes refer to arpward (resp.downwarg
vertical extensiorof v. This is the (possibly empty) part of vés) that is above (resp.

QS{OQ’VP)% a guard andv be a window ofVP(g, P). P, denotes the pocket af with
respect toVP(g, P). Thevertical projection ontow is the ordered list of intersection
points ofw with the vertical extensions of the verticesiaf (see Figure.5).

Our algorithm finds the vertical decompositi@r{ P) of P in O(kn) time. In particular,
we show how to compute all vertical extensiongdfP) that are contained in or cross the
visibility polygon of a guard irO(n) time. Since each vertex @ is seen by at least one
guard, every vertical extension is computed by our algorith is well known that finding

a triangulation of a polygo® is simple given the vertical decompositionBf[27]. The
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Figure 2.5 The vertical projection onta is (z1, x2, x3).

most complicated procedure used in our algorithm has thiewltify level of computing
the visibility polygon of a point.

Below is a high-level description of our algorithm. The distaf the various steps will
be discussed later.

TRIANGULATEWITHGUARDS(P, G)
1 for eachguard € &

2 do find the visibility polygonVP; (g, P).

3 for each windoww in VP, (g, P)

4 do compute the vertical projection ontoand add the resulting Steiner
points tow.

> After all windows of VP (g, P) have been processed, we have a simple
polygonVPs (g, P) that includes the points in the vertical projections as

Steiner points on the windows.
5 Compute the vertical decomposition 6% (g, P). For every vertex of
VP, (g, P) that is not a Steiner point created in S&mdd the vertical ex-
tension ofv to OVPx(g, P), creatingV’Ps(g, P).
> We have now computed the restrictionfP) to VP(g, P). That is, every
vertical extension that is part @f(VPs(g, P)) is contained in a vertical ex-
tension off (P) and every vertical extension @f P) that crosse¥P(g, P)
is represented ii (VPs(g, P)) for someg € G.
6 For each vertex of VPs(g, P), determine the endpoints of vérj ondP.

By Lemmaz2.1, Step2 takesO(n) time. We now discuss the other steps of the algorithm.

Step4: Computing a vertical projection onto a window. Without loss of generality,
we assume that is not vertical and that ifi’P(g, P)) is abovew (see Figure2.7).
Let v be a vertex ofP,, such that velv) intersectsw. Furthermore, let be a point at
infinite distance vertically above some point @n Observe that if we remove the parts
of P abovew so thatz can see all ofv, thenz can sees. This implies that we should
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2

Figure 2.6 Sample execution of the algorithm. The box is the guard, ledfitircles
are new Steiner points, and filled circles are points fromclta vertical extension is
computed.

remove all parts of?,, that are inside the “vertical slab” aboue so that vertices whose
vertical extensions interseat are precisely those that form the visibility polygon aof

The technique of computing a visibility polygon of a pointimfinity was first used by

Toussaint and El Gindygg].

1

7“1" . 7Ty

Figure 2.7 Computing a vertical projection. (a) A polygon that does woap around
w. (b) Its vertical projection. (c) A polygon that wraps ardum. The counters is
incremented at; andiy, decremented af, incremented again af, and decremented
two more times at; andig, at which time it is once again

We remove all the parts oP,, that are outside the vertical slab directly belaw as
follows. Imagine shooting two rays downward from the startd end-points ofv. We
call the raysr; andr,. We keep two counters called andc, that are initialized td),
and are associated tg andrs, respectively. Assume that is to the left ofr,. We begin
scanning) P, at one of the endpoints @f and proceed toward the other endpoint. If an
edge ofd P, intersects; from the right, we increment; and proceed as follows until
c1 is again0. We continue scanningP,,, throwing away edges as we go. If an edge
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intersects; from the right, we increment; and if an edge intersects from the left,
we decrement;. Whene; is 0, we connect the first and last intersection$dt, by a
segment. The procedure is essentially the same when anradgsects, except that we
interchange “right” and “left”. Note that i?,, winds aroundv many times¢; or ¢c; might
be much larger thah. Finally, onced P, has been traced back#g we remove potential
intersections between newly constructed line segmentgyalpby shifting them to the
left by a small amount proportional to their length. We stii#t new segments alomg to
the right by a small amount proportional to their length. Bheplicity of P implies that
the new segments are either nested or disjoint, so we ob&imgle polygon that does
not cross the vertical slab aboue Finally, we removeuv and attach its endpoints tq
thus obtaining polygo®,,. The vertices oVP(z, ]3;) are precisely those vertices Bf,
whose vertical extensions intersectaind appear as output in sorted order.

Lemma 2.4 The vertical projection ont@ can be computed i0@(|P,|) time.

Proof. The algorithm described in the text consists of a scawBf, and a visibility
polygon calculation, which has complexity(| P, |). Therefore, it remains to show that a
pointx is added tav if and only if there is a corresponding vertexin P, whose vertical
extension intersects atz.

Suppose there is a vertex whose vertical extension interseats Thenw, is visible
from z, sow, is included inVP(z,]S;) and thuse is added tow. On the other hand,
suppose there is a pointadded tow. This occurs if there is a vertax, which is visible
to z throughw. Since this is the case, the vertical extension,ointersectso. O

Step5: Computing a vertical decomposition of a star-shaped polygn. Let S be a
given star-shaped polygon agdoe a point inside the kernel ¢f. We assume that the
vertices ofS are given in counterclockwise order aroufid To simplify the algorithm,
we describe only the computation of the upward vertical dgousition (that is, for each
vertexv, we find the upper endpoint of vért) of the part ofS that is to the left of the
vertical line througly. See Figur®.8 We say that a vertex supportsa vertical line/ if
the two edges adjacent taare both on the same side of

The algorithm for finding the upward vertical decompositidrb consists of a sequence
of alternating leftward and rightward walks: a leftward walhich moves a pointer to a
vertex which supports a vertical line (locally) outsifieand a rightward walk which adds
vertical decomposition edges. The algorithm begins withléftward walk which starts

from the point directly above. It ends when the rightward walk passes ungler

The leftward walk simply moves a pointer forward alof§ until a vertexvs which
supports a vertical line outsidg is encountered—so we concentrate on describing the
rightward walk. The rightward walk begins with two pointeps andpg, which initially
point to v,, the last point encountered in the leftward walk. The postre moved
simultaneously so that they always have the sanoeordinate, withp; being moved
forward alongoS—that is, counterclockwise—whilg, is moved backward alongS
(imagine sweeping rightward with a vertical line fran). If p, encounters a vertex, then
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Figure 2.8 Upward vertical decomposition of the part8fo the left of the guard.

a vertical decomposition edge is created betwgeandp,. If p, encounters a vertex

v to which a vertical decomposition edge \eitis already attached (which implies that
v supports a vertical line), them, moves to the top of veft) and continues from there.
Whenp,; encounters a vertexthat supports a vertical line, the rightward walk ends and
the leftward walk begins anew at

Lemma 2.5 The vertical decomposition of a star-shaped polydbis correctly com-
puted by the above algorithm @(n) time.

Proof. The algorithm outlined in the text maintains the followiexfension invariantthe
correct upward vertical extension has been found for evertex to whichp, has pointed.
Initially, the invariant is trivially true.

By constructionp visits all vertices of5 that are the endpoints of the edges of the upward
vertical decomposition of in counterclockwise order. Hence the algorithm constracts
vertical extension for each of these vertices. It remainshtow that the upper endpoint
of the vertical extension is correctly identified. Denote tlurrent position opy by vg.
Again by constructionp,, lies vertically abovey,; at positionv,,. We need to show that
T4y, IS not intersected by an edge $f

Consider the trianglgvgv,,. Sinceg sees all ofS, gug andgv,, can not be intersected
by an edge of5. This implies that any edgethat intersectguv v, must intersectzvs,.
Furthermoree must be an edge in the chairy,, which is the chain fronv, to vy in
counterclockwise order. To show that no edge frl@mintersects,,u,4, we establish the
order invariant Cp, is always to the left op,pg. The invariant is trivially true whenever
pu @ndpg point to v, that is, whenever we begin a rightward walk. Suppose that th
invariant has been true until stépand we will show that it is still true at stép+ 1. Let

C be the chain fromp,, to p, at stepk andC/, be the chain fronp,, to p, at stepk + 1.
There are three cases in step(a) p, is pointing to a vertex of, (b) p,, is pointing to

a vertex ofS without a vertical extension, or (g), is pointing to a vertex of S with a
vertical extension. See Figue9. In the first two cases, the invariant is maintained since
C, only differs fromC’, by two segments that by definition both lie to the lefgQpg.
Since the vertices id';, come beforey,, the correct vertical extension of each vertex in
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C1, has been computed by the assumption of the extension invafiais implies that the
order invariant is also maintained in the case wherés pointing to a vertex of S with
a vertical extension and is moved to the top of (ert This is becaus€’; differs from
C'. by a segment which is to the left pf; and a chain which must be to the left@fp,
since vertv) is a valid vertical extension.

Both p,; andp,, visit every vertex ofS at most once, hence the running timeig:). O

@ ) (c)

Puc

Pd pd

Figure 2.9 Establishing correctness of the order invariant: threezas

Step 6: Computing the endpoints of vertical extensions. The final step of the algo-
rithm is to find and connect the endpoints of the vertical msitens of every vertex of
VPs(g, P). Letv be an arbitrary vertex o¥P;(g, P). If both endpoints of vefv) are

on the boundary o¥P(g, P), we have already found and connected them in the previ-
ous step. Thus, let us assume that at least one of the enslpdimer{v) is not on the
boundary ofP(g, P). Thatis, vertv) intersects at least one windowwf’(g, P). Since

we have already connected the endpoints of(vert VP (g, P) in the previous step, it is
sufficient to find the endpoints of vért) that are outside oV P(g, P). Thus, it suffices

to examine vertices that are Steiner points on windows.

Letwy,...,v; be vertices on window, in sorted order. Again without loss of generality,
we assume that i(WP(g, P)) is abovew. To find the endpoint of veft) that is beloww
forall v € {v1,...,v;}, we use the visibility polygofvP(z, ]3;) computed in Sted of

the algorithm. Note that the vertices BP(z, ]5;) as well{v1,...,v;} are sorted byt-
coordinate. Thus we find the endpoints{ekrt(v)|v € {v1,...,v;}} by simultaneously
scanning inVP(z,JS;) and{vi,...,v;} (as though performing a merge operation in
merge-sort). Sinc_,, |P.,| < n and the number of Steiner points added to windows is
at mostn, we find the endpoints of the vertical extensions of all Siepoints on windows

in O(n) time.

Since each guard is processed in linear time, we obtain tlosviag.

Theorem 2.6 The algorithnT RIANGULATE WITHGUARDS computes the vertical decom-
position of am-vertexk-guardable polygon i®(kn) time, if thek guards are given.
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2.4.2 Triangulating without guards

In many situations where triangulation is desired, it mayubeealistic to expect a set
of guards as part of the input. In this section we show howitmgyulate ak-guardable
polygon inO(kn) time without knowing the guards. The most complicated pdoce
used in our algorithm is computing the visibility polygonin an edge in linear timeép).
This is, in fact, considerably more complicated than alldteps of the previous algorithm.
We begin with some new notation and definitions.

The edge-visibility polygonEVP(e, P), of an edgee with respect to polygor® con-
sists of all points inP that are visible from at least one point en We sometimes call
EVP(e, P) theweak visibility polygorof the edge if the polygon is clear from the con-
text. We define amxtended edge-visibility polygaf e with respect toP, denoted by
EEVP(e, P), to be the smallest (in terms of the number of edges) purecsudpn of P
that containgZVP (e, P). These concepts are illustrated in Fig@r&Q

(a)

Figure 2.10 (a) The weak visibility polygon of the dotted edge. (b) Theasated
extended edge visible polygonZ EVP(e, P) is the union of the light and dark gray
regions.

Thegeodesibetween two points i® is the shortest polygonal path connecting them that
is contained inP. The vertices of a geodesic (except possibly the first arijibatong to
OP. Below, we show that Melkman’s algorithr6§| can find a specific type of geodesic
related to finding théZ EVPof a polygon.

Lemma 2.7 Letx be a vertex of polygoi® and lety be a point on edgew € P. If y
seesr, then the geodesic betweerandv: (a) is a convex chain and entirely visible from
y, and (b) can be computed@(n) time.

Proof. Property (a) holds trivially ifr seesv. Consider the case whefedoes not see
v. Then, the trianglea, y, v), denoted byl’, must contain at least one vertex Bfin its
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Figure 2.11 The geodesic from to v.

interior. Let! be all the vertices oP insideT" and letCH (I) be the convex hull of. The
pathS = OCH(I) \ @v is the geodesic from to v. Any other path fromx to v insideT
can be shortened. Thus, property (a) holds.

To prove property (b), note that since the geodesic we seeftiely visible fromy by
part (a) it is fully contained in/P(y, P). We computel/P(y, P) in linear time. Con-
sider the polygonal chain from to v alongdVP(y, P) that avoidsy. By construction
of VP(y, P), the shortest path from to v is part of the convex hull of this chain. Using
Melkman’s algorithm, we compute the convex hull of a simptdygonal chain in lin-
ear time. O

Finally, a weakly edge-visible polygon can be triangulaisthg a very simple algorithm
known as Graham’s scan. The following lemma formalizes that

Lemma 2.8 (Toussaint and Avis 93]) Let P be a weakly edge-visible polygon. By
performing Graham'’s scan on the pointsfoive can obtain a triangulation &f.

We now show how to compute and triangulate the extended asigdity polygon, which
is the main subroutine of our algorithm.

Lemma 2.9 EEVP(e, P) can be computed and triangulatedifin) time.

Proof. We begin by computinggVP (e, P) in O(n) time using the algorithm of Heffernan
and Mitchell 56]. This yields a set of windowB’ and their associated pockets. For each
windoww; € W that is not a diagonal aP, we do the following.

Let 2 be the endpoint ofv; closer toe, and lety be the endpoint farther from Then
x is a vertex of P, andy is an interior point on some edgg of P. Without loss of
generality letp be the endpoint ofq that is inside the pocket af;, as illustrated in
Figure2.10(b). Sincer seegy, we can use Lemm2.7(b) to compute the geodesic from
z to p. Let P(w;) denote the polygon enclosed by the geodesic froto p, py and
w;. Itis simple to verify that the extended edge-visibilitylygon is EEVP (e, P) =
EVP(e, P)U (U, e Pwy)).

By Lemma2.7 (b), each pockeP(w;) can be computed in time linear in the size of the
pocket ofw;. Since pockets are disjoint and can be processed in drflet, ;, P(w;),
and thusE EVP(e, P), can be computed i®(n) time.
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We now proceed to triangulate EVP(g, P). ConsiderP(w;). Let T be the triangle
determined by the points, y andq. If e sees, theng sees each vertex iR(w;) U T by
Lemma2.7 (a). ThereforeP (w,;) UT is a weakly edge-visible pure subpolygon/of By
Lemmaz2.8, we can triangulaté(w;) U T in O(|P(w;)|) time.

If e does not seg theng € P(w;) for somew; € W with j # i. Let Q be the
quadrilateral determined by the endpointsugfandw;. The polygonY” = P(w;) U
P(w;)UQ is apure subpolygon d? and each of its vertices is visible fropor ¢, which
means thal” is weakly edge-visible fronpg. This implies thafY” can be triangulated
using a simple method as before.

Itis straightforward to verify that all of the pure subpotyws of EEVP (e, P) triangulated
thus far are pairwise non-overlappingZlfis the union of these subpolygons then the clo-
sure of EEVP(e, P) \ T is a weakly edge-visible pure subpolygon®0EVP (e, P) and
thus can also be triangulated in linear time. This resuléstiangulation oE EVP (e, P),

as required. O

When EEVP(e, P;) is triangulated, diagonals d? that are oD EEVP (e, P;) become
windows of new pockets. Each such window serves as the edgevifich a new vis-
ibility polygon will be computed and triangulated, withits irespective pocket. In this
recursive manner we break pockets into smaller componatitall of P is triangulated.
The procedure, although straightforward, is outlined Wwelo more detail. This is fol-
lowed by the analysis of the time complexity, where we shoat the recursion depth is
of the order of the number of guards that suffice to guard

We will maintain a queues of non-overlapping polygons such that eaBhe S has
one edgew; labelled as a window. Thus elements®tre pairg P;, w;). We start with
S := (P,w), wherew is an arbitrary boundary edge & We process the elements®f
in the order in which they were inserted. The main loop of dgodthm is as follows:

TRIANGULATEWITHOUTGUARDS(P)

1 S :=(P,w)wherew is an arbitrary edge aP
2 whileS #0
3 do for each(w;, P;) € S
4 do remove(w;, P;) from S.
5 Compute and triangulat8 EVP (w;, P;).
6 Add the edges of the triangulation b
7 for each boundary edge; of EEVP(w;, P;) that is a diagonal
of P.
8 doidentify @); as the untriangulated portion d? whose
boundary is enclosed hy; andoP.
9 Add every remaining untriangulated portion;, );) to S.
10 return p.
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Theorem 2.10 The algorithnTRIANGULATE WITHOUTGUARDS triangulates an-vertex
k-guardable polygon i@ (kn) time.

Proof. We first note that thé” EVPs created by our algorithm define a tree strucflire
as follows. At the root of" is EEVP(w, P). For every windoww; of EEVP(w;, F;),
we have that? EVP(w;, P;) is a child of EEVP(w;, P;). The construction of the child
nodes from their parents ensures thatm&'VP overlaps with any other and that the
triangulation covers the entire polygéh

We now show thaf" has at mossk levels (alevelis a set of nodes at the same distance
from the root) which implies that the main loop of the alglonit performs at mostk
iterations. Le¥;, ¢; 1, and/; 5 be three successive levelsBfin which all the nodes in
¢;+1 are descendants of the nodedjnand where all the nodes i, are descendants
of the nodes irt; ;. Further, letG be a point set of siz& such that every point € 0P
sees at least one guard@f Assume, for the purpose of obtaining a contradiction, that
there are no guards frofd in the EEVPs corresponding to the nodes in levéls/; 1,
0r€i+2.

Let g be a guard which sees into a nadeat level/; through windoww;. There are two
cases: eithey is at a higher level tha#; or it is at a lower level. Ify is in a higher level
and is visible from a window of;, theng can be in only one levelf;,, (becausé;.,
contains the union of all the edge-visibility polygons of thindows of the nodes if).
We have assumed that this can not happen. Otherwigdsiin a lower levelg can not
see into any level higher thdi, becausev; must be the window which createx.

The combination of these two facts implies that no guard fé@ean see intd;, ;. This

is a contradiction t@+ being a guarding set. Therefor& must have at least one guard in
L, Ui, Or ;5. This implies that there is at least one guard for every theeels, or at
most three levels per guard.

Each level of the tree can be processe@iim) time by Lemma2.9, since all nodes of a
level are disjoint. Therefore, the algorithm terminate®ittn) time. O

As is apparent from the proof of Theoré1Q our algorithm runs irD(¢n) time, wheret

is the number of iterations of the while-loop. The above argnt also implies a stronger
result. The number of iterations, of the while loop is proportional to the link diameter,
d, of the polygon, since any minimum link path between two imust have at least

one bend for every three levels. This leads to the followinigtary:

Corollary 2.11 The algorithmTRIANGULATEWITHOUTGUARDS triangulates am-vertex
polygon with link diameted in O(dn) time.
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2.5 Conclusion

Several known classes of realistic polygons are infagtiardable. In particular, we have
shown that the boundary of ga, 3)-covered polygon can be guarded by a constant—
depending onv and S—number of guards, which implies that, 5)-covered polygons
arek-guardable. We also gave two simple algorithms that tritatgé-guardable poly-
gons in linear time, ifk is a constant. The first algorithm is slightly simpler, buedo
require the guards as input, while the second algorithm doeseed the guards.

]
LI
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1[ |_|"”
I'II_II'I%
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Figure 2.12 A locally-y-fat polygon that requireQ(n) guards.

Our work leaves some open problems. First, can the techsisfu@vn here be used to
design a triangulation algorithm which does not depend emtimber of guards? Second,
are there other problems that can be solved efficiently:fguardable polygons? Finally,
are there more general classes of polygons that can beutaad in linear time with
simple algorithms? For example, our approach does not wihkiecally-y-fat polygons
because they can requif¥¥n) guards—see Figur2.12 However, we believe it is likely
that there is a simple triangulation algorithm that worksléeally-y-fat polygons.
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CHAPTER 3

Decomposing non-convex fat polyhedra

3.1 Introduction

In the previous chapter, we studied triangulation—a comdemomposition of polygons
in the plane. We saw that every simple polygon of complexigdmits a partition into
n — 2 triangles and that we do not need to add any extra verticesy éiangle edge is
either a boundary edge or a diagonal.

For 3-dimensional polyhedra, however, the situation is mless rosy. First of all, not
every non-convex polyhedron admits a tetrahedralizatibare are polyhedra that can-
not be decomposed into tetrahedra without using Steinertposuch asSctonhardt’s
polyhedron[83]. Moreover, deciding whether a polyhedron admits a tetladlezation
without Steiner points is NP-complet8d. Thus we have to settle for decompositions
using Steiner points. Chazell2§] has shown that any polyhedron withvertices can be
decomposed int®(n?) tetrahedra, and that this is tight in the worst case: thex@aly-
hedra withn vertices for which any decomposition useén?) tetrahedra. (In fact, the
result is even stronger: aipnvex decompositiera decomposition into convex pieces—
usesQ(n?) pieces, even if one allows pieces of non-constant complgxBince the
complexity of algorithms that need a decomposition depemd$ie number of pieces in
the decomposition, this is rather disappointing. The petiron used in Chazelle’s lower-
bound example (known as Chazelle’s polyhedron) is quiteiahdnowever, and one may
hope that polyhedra arising in practical applications aex to handle. This is the topic
of this chapter: are there types of polyhedra that can bendposed into fewer than a
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quadratic number of pieces?

Erickson BQ] has answered this question affirmatively for so-caltezhl polyhedra(see
below) by showing that any such 3-dimensional polyhedrocan be decomposed into
O(nlogn) tetrahedra and that this bound is tight. We consfdepolyhedra

Types of fatness. Before we can state our results, we first need to give the tiefirof
fatness that we use. When the input is convex, most of thefg@tams are equivalent
up to constants. When the input is not convex, however, hi®i the case: polyhedra
that are fat under one definition may not be fat under a diffiedefinition. Therefore we
use two different definitions from Chaptér locally-y-fat polyhedra ande«, 3)-covered
polyhedra.

For comparison, let us also give the definition of a local pelyronP [50]. To this end,
define thescale factor at a vertex of P as the ratio between the length of the longest
edge incident te and the minimum distance fromto any other vertex. Thiecal scale
factorof P is now the maximum scale factor at any vertex. ghabal scale factoof P is

the ratio between the longest and shortest edge lengths @ftible polyhedron. Finally,
P is called docal polyhedrorif its local scale factor is a constant, while its global scal
factor is polynomial in the number of vertices Bf

Our Results. First we study the decomposition@f, 3)-covered polyhedra and locally-
~-fat polyhedra into tetrahedra. By modifying Chazelle’syb@dron so that it becomes
(o, 8)-covered, we obtain the following negative result.

e There areg(«, 5)-covered (and, hence, locally fat) polyhedra wittvertices such
that any decomposition into convex pieces uU3és?) pieces.

Next we restrict the class of fat polyhedra further by reigqgithat their faces should be
convex and fat, when considered as planar polygons in theeplantaining them. For
this class of polyhedra we obtain a positive result.

e Any locally-fat polyhedron (and, hence, afw, 3)-covered polyhedron) with
vertices whose faces are convex and fat can be decomposed(in} tetrahedra in
O(nlogn) time.

Several applications that need a decomposition or covefiagolyhedron into tetrahedra
would profit if the tetrahedra were fat. In the plane any faygon can be coverédy
O(n) fat triangles, as shown by Van Krevel@ld (for a slightly different definition of
fatness). We show that a similar result is, unfortunatedy, possible in 3-dimensional
space.

1A coveringof a setS is a set of subsets & where every element of is in at least one subset. This is as
opposed to gartition of S which is a set of subsets &f where every element f is in exactly one subset. A
decompositions a generic term that can refer to either a covering or atjmarti
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e There are(a, 8)-covered (and, hence, locally-fat) polyhedra withvertices and
convex fat faces such that the number of tetrahedra in angric@ythat only uses
fat tetrahedra cannot be bounded as a function of

For some applications—ray shooting is an example—we do eetlra decomposition
of the full interior of the given polyhedrof; instead it is sufficient to havel@oundary
covering thatis, a set of objects whose union is containefl end that together cover the
boundary ofP. Interestingly, when we consider boundary coverings tieeagdistinction
between «, 3)-covered polyhedra and locally-fat polyhedra:

e The boundary of anya, 3)-covered polyhedro#®, can be covered b§(n? logn)
fat convex constant-complexity polyhedra, and there(ares)-covered polyhedra
that require2(n?) convex pieces in any boundary covering. If the faces of the
(«, B)-covered polyhedron are fat, convex and of approximatelystme size, then
the boundary can be covered with orflfn) convex fat polyhedra. Furthermore,
the worst-case number of convex pieces needed to cover thalboy of a locally-
fat polyhedron cannot be bounded as a function.of

Finally, we consider boundary coverings using so-caiteders[9]—see Sectior8.3for
a definition. Such coverings are useful for ray shooting.

Table3.1summarizes our results.

decomposition of interior by covering of boundary by
tetrahedra | fat tetrahedrg fat convex polyhedrei towers

general O(n?)[18 x x unbounded
local O(nlogn) [50] X X unbounded
locally fat 0(n?) unbounded unbounded unbounded
with fat faces O(n) unbounded unbounded unbounded

(o, B)-covered 0(n?) unbounded | O(n*logn), Q(n?) 0(1)

with fat faces O(n) unbounded O(n?logn) 0(1)

Table 3.1 Overview of results on decomposing and covering polyhetineentry marked
x means that the corresponding decomposition or coveringtialvays possible. (For
example, since general polyhedra can have arbitrarilypshentices, they cannot always
be decomposed into fat tetrahedra.)

Applications. As already mentioned, decomposing polyhedra into tetn@hedother
convex pieces is an important preprocessing step in maricappns. Below we mention
some of these applications, where our results help to getoweg performance when the
input polyhedra are fat.

Hachenberged5] studied the computation of Minkowski sums of non-convelyhedra.
To obtain a robust and efficient algorithm for this problem finst decomposes the poly-
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hedra into convex pieces. Our results imply that this firsp gtan be done such that the
resulting number of pieces @(n) if the input polyhedra are locally fat with fat faces,
while in general this number can be quadratic.

Another application is in computing depth orders. The lkestwn algorithm to compute

a depth order fon tetrahedra runs in tim@ (n*/3+<) [2§]. In Chapter5 we show that for
fat convex polyhedra of constant complexity, this can berowgd toO(n log® n). Our re-
sults imply that any constant-complexity, 3)-covered polyhedron can be decomposed
into constant-complexity fat convex polyhedra. It can bevahthat this is sufficient to be
able to use the depth-order algorithm of Chageimilarly, our results imply that the
results from Chapte4 on vertical ray shooting in convex polyhedra extend to camist
complexity («, 3)-covered polyhedra. Finally, our results on boundary dogsrwith
towers imply that we can use the method of Chagtir answer ray-shooting queries in
(v, B)-covered polyhedra i ((n//m) log® n) time with a structure that usey(m'*°)
storage, for any: < m < n2. This is in contrast to the best-known data structure for
arbitrary polyhedraZ§g], which givesO(n'*¢ /m!/4) query time withO(m'*¢) storage
forn < m < n*.

3.2 Decomposing the interior

In this section we discuss decomposing the interior of fatoonvex objects into tetrahe-
dra. We start with decompositions into arbitrary tetralaednd then we consider decom-
positions into fat tetrahedra.

3.2.1 Decompositions into arbitrary tetrahedra

The upper bound. Let P be alocallys-fat polyhedron iR whose faces, when viewed
as polygons in the plane containing the face, are convexgdiatl We will prove thatP
can be decomposed in€(n) tetrahedra irO(n logn) time.

In our proof, we will need the concept of density. Recall fremapterl that thedensity
of a setS of objects is defined as the smallest numbesuch that the following holds:
any ballB C R? is intersected by at mostobjectso € S such thatize(o) > size(B).

We also need the following technical lemma.
Lemma 3.1 Let P be a convey-fat polygon embedded iR® wherediam (P) > 1. Let

C andC’ be axis-aligned cubes centered at the same point. Let thdesidth ofC bel
and the side length a’ be2+/3/3. If P intersectsC, thenP’ := P N C" is (3'-fat for

somel’ = Q(P).

Proof. SinceP must cross the region betwe€randC’ to be different fromp”’, size(P’) >
(v/3/3) — 1/2. For the same reason and sirfeés fat, this implies that the area & is
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at least((2v/3 — 3)/12)?3x. Since the diameter @i’ is 2, the diameter of”’ is at most
2. SinceP’ is convex, its fatness is determined by a circle whose cénfgaced at one
of the vertices that determines the diameteP&f This implies that the fatness ¥ is at
least

2
V3—

”(2 T3 3) ﬂ: 7—4V3
w22 96

g.
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The following lemma shows that the faces of a locaflyat polyhedron have low density
if they are fat themselves.

Lemma 3.2 Let Fp be the set of faces of a localtyfat polyhedronP treated as poly-
gons. If the faces oP are themselves-fat and convex, thefip has density)(1/v3%).

Proof. Without loss of generality, let be a sphere with unit radius. We wish to show that
the number of faceg € Fp with size(f) > 1 that intersect is O(1/v3%).

Partition the bounding cube ¢f into eight equal-sized cubes by bisecting it along each
dimension. Consider one of the cubes: cafl’itAlso construct an axis-aligned cubg
that has side lengthy/3/3 and concentric witt. For all facesf intersecting”' that have
size(f) > 1, we definef’ := f N C’. By Lemma3.1, we know thatf’ is 3’-fat for some

g =Q(p).

Sincef’ is a fat convex polygon with a diameter of at le2sf3/3 — 1, it must contain a
circle c of radiusp = 3'(2v/3/3 — 1)/8 [96]. For any such circle, there is a facé” of

(' such that the projection efonto F' is an ellipse which has a minor axis with length at

leastp/+/2.
(a) 3 (b)

interior in positive z-direction

. . L] L] L]
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Figure 3.1 (a) A box. (b) A boxb (side view) and the different types of faces assigned to
it.

We make a grid on each face 6f where every grid cell has side lengiji2. We call the
rectangular prism between two grid cells on opposite fat€8 abox—see Figurd.1(a).
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Each facef’ has an intersection with some box that is the entire crosseseof the box.
We assign each face to such a box.

We now consider the set of faces that can be assigned to angaxie There are two
types of faces in this set—see Figid(b). For example, ib has its long edges parallel
to thex axis, there are the faces that have the interiaP arf the positiver direction and
the faces that have the interior in the negativdirection. We consider one type of face
at a time. For each facg, we place a spherg with radiusp/4 so that its center is offy
and in the center df (that is, the center is exactly between the long facdg.oinceP

is locally-y-fat,

vol(P M s;) >

yam (p\®  ymp®
3 (Z) 48
Since we only consider one type of fa¢®1s;)N(Prs;) = () foranys; # s;. Therefore
the number of faces of one type that can cross one b&¥#/y7p. The number of faces
that can cross one box is twice that. The number of boxes pectdin is

2v/3/3 2_ 16
p/2 ) 3p?

and the number of directions is 3. Hence, the number of fdwschan intersect is at
most

8v3 16  256v/3
2.3. 2.~ = .
ymp  3p*  myp?
Sincep = Q(), this isO(1/73%). |

Since the sef'p of faces of the polyhedro® has densityO(1/v3%) = O(1), there is
a BSP forF'p of sizeO(n) that can be computed i@ (n log n) time [29]. The cells of
the BSP are convex and contain at most one facet, so we cdy @asbmpose all cells
further intoO(n) tetrahedra in total.

Theorem 3.3 Let~ and be fixed constants. Any locally-fat polyhedron with3-fat
convex faces can be partitioned irign) tetrahedra irO(nlogn) time, wheren is the
number of vertices of the polyhedron.

The lower bound. Nextwe show that the restriction that the faces of the palytwe are
fat is necessary, because there are fat polyhedra with atdades that need a quadratic
number of tetrahedra to be covered.

The polyhedron known a€hazelle’s polyhedrofil8—see Figure3.2(b)—is an impor-
tant polyhedron used to construct lower-bound examplesd&¥eribe a slight modifica-
tion of that polyhedron which makes(it, 3)-covered and retains the properties needed
for the lower bound.

The essential property of Chazelle’s polyhedron is thabittains a region sandwiched
between a sek of line segments defined as follows. Fix a small positive tams > 0.
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For an integei with 1 < i < n, define the line segmerit as
li={(z,y,2):0<z<n+1landy =iandz =iz —¢c}
and the line segmeidf as
0 :={(x,y,2):x=iand0 <y < n+1andz = iy}.

Next define
L:={l(:1<i<n} U {f:1<i<n}

Theregion” := {(z,y,2) : 1 <x,y <nandxy — e < z < zy} between these segments
has volumed (en?). Chazelle showed that for any convex objetat does not intersect
any of the segments i we havevol(o N ¥) = O(e). These two facts are enough to
show that2(n?) convex objects are required to cover any polyhedron thataaos® but
whose interior does not intersect the segments.in

(b)

Figure 3.2 (a) The line segments used in the lower-bound constructiont scale). (b)
Chazelle’s polyhedron before modification (also not toeal

Chazelle turns the set of line segments into a polyhedroruktyng a box around., and
making a slit into the box for each segment, as shown in Fi§LlXe). The resulting poly-
hedron has each of the segmentsias one of its edges, and contains the sandwich region
¥.. Hence, any convex decomposition or covering of its intemzeds2(n?) pieces.

Chazelle’s polyhedron is ndtv, 3)-covered. We therefore modify it as follows. First of
all, we make the outer box from which the polyhedron is formedbe of sizén? x 6n? x

3n? centered at the origin. Second, we replace the slits by idaggular prisms—we will
call the prismseedlefrom now on—sticking into the cube. Thus, for each segment in
L, there is a needle that has an edge containing the segmex ¥ig completely pierce
the cube with the needles, so that the resulting polyhedPomemains simple (that is,
topologically equivalent to a sphere). Note thais still contained inP, and that for each
segment inL there is an edge containing it.

Next we argue thaP is («, 3)-covered. First, consider a poipte 9P on one of the
needles. Assume without loss of generality that the neadfmrallel to therz-plane.
If p is near one of the needles going into the other directiom the situation is as in
Figure3.3 Note that the distance between consecutive needles oathe srientation—
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Figure 3.3 Cross-section of the polyhedrdh shown with the cross-section of a good
tetrahedron (shaded).

that is, the distance between the small triangles in Fi@uBe-is at least 1. Moreover,
we can choose the distaneebetween the needles of opposite orientation—that is, the
distance between the small triangles and the long needlgimd=3.3—as small as we
like. The same is true for the “width” of the needles—thattig, size of the small triangles

in the figure. Hence, we can make the construction such thatwealways put a good
(that is, large and fat) tetrahedronat

Next, consider a point € 9P that is near one of the places where a needle “enters” the
cube. Note that the segmentsiirhave slopes ranging from 1 tq and that any needle
passes near the center of the cube—this is true since thehastszesn? x 6n2 x 3n?,
while the segments il all pass at a distance at mosfrom the cube’s center. Hence,
the needles will intersect the bottom facet of the cube, hag inake an angle of at least
45° with the bottom facet. This implies that also for poipteear the places where these
needles enter the cube, we can place a good tetrahedron.

Finally, it is easy to see that for pointson a cube facet, and for points on a needle that
are not close to a needle of opposite orientation, we canpaita good tetrahedron. We
can conclude with the following theorem.

Theorem 3.4 There are constants > 0 and(3 > 0, such that there arev, 3)-covered
polyhedra for which any convex decomposition consistQ@f*) convex pieces, where
n is the number of vertices of the polyhedron.

3.2.2 Decompositions and coverings with fat tetrahedra

When we attempt to partition non-convex polyhedra intodatihedra, or other fat convex
objects, the news is uniformly bad. That is, no matter whictine realistic input models
we use (of those we are studying), the number of fat convesotbjpnecessary to cover
the polyhedron can be made arbitrarily high. For polyhedthaut fatness restrictions,
there are many examples which require an arbitrary numbéitafonvex objects for
partitioning. In fact, for any constarit > 0 we can even construct a polyhedron that
cannot be covered at all inf@-fat convex objects—simply take a polyhedron that has a
vertex whose solid angle is much smaller thart is also not hard to construct, for any
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given3 > 0, a local polyhedron that cannot be covered witfiat convex objects. For
instance, we can take a pyramid whose base is a unit squansteosd top vertex is at
distances <« 3 above the center of the base.

Next we show how to construct, for any giveran(«, 3)-covered polyhedron of constant
complexity and with convex fat faces, which requif&s:) fat convex objects to cover it.
First we observe that a rectangular box of size (5/k) x (5/k) requiresQ)(k) S-fat
convex objects to cover it. Now consider the, 5)-covered polyhedron in Figurg.4

(a) (b)
Vv

(6%

Bk

Figure 3.4 (a) An («, 5)-covered polyhedron with fat faces whose interior cannot be
covered by a bounded number of fat tetrahedra. (b) The panegiolyhedron seen by a
pointin the center. Note that the polyhedron is construstethat a good tetrahedron just
fits at the points on the boundary inside the central “tube”.

The essential feature of the construction in FigBiis that from any poinp along the
long axis of the tube, one cannot see much outside the tubas ahy convex object
inside P that containg must stay mainly within the tube, and the tube basically asta
rectangular box of sizé x (8/k) x (6/k). Hencef)(k) p-fat tetrahedra are required in
any convex covering of the polyhedron. We obtain the follmyviesult.

Theorem 3.5 There are(a, 3)-covered (and, hence, locally-fat) polyhedra withser-
tices and convex fat faces, such that the number of objeets imsany covering by fat
convex objects cannot be bounded as a functiom. dfurthermore, for any givefi > 0
there are local polyhedra for which no convex covering Viitfat tetrahedra exists.

3.3 Covering the boundary

In the previous section we have seen that the number of faezambjects needed to cover
the interior of a fat non-convex polyhedrdhcannot be bounded as a functionrofIn
this section we show that we can do better if we only wish toecdkie boundary of.
Unfortunately, this only holds wheR is («, 5)-covered; wherP is locally fat, we may
still need an arbitrarily large number of fat convex objeotsover its boundary.

Recall that for each point on the boundary of afw, 3)-covered polyhedro®, there is
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a good tetrahedrdll, C P with one vertex ap, that is, a tetrahedron thatdsfat and has
diameterg - diam(P). We first observe that we can actually repl&Geby a canonical
tetrahedron, as made precise in the following lemma.

Lemma 3.6 Let P be an(«, 3)-covered polyhedron. There exists a §edof O(1/«)

canonical tetrahedra that a&d«)-fat and have diameté)( - diam(P)) with the fol-
lowing property: for any poinp € OP, there is a translated cofy, of a canonical
tetrahedron that is containedihand ha® as a vertex.

Proof. Cover the boundary of the unit sphefén a grid-like fashion byD(1/«) triangular
surface patches, each of area roughlyfor a suitably small constantas in Figure8.5a).
For each triangular patch, define a canonical tetrahedwitrhtis the origin as one of its
vertices, and that has edges going through the verticesegbabch—see Figurd.5(b).
Scale the resulting set of tetrahedra appropriately, thxiagythe setC. Now consider
a good tetrahedrop. Place (a suitably scaled copy) of the sph&reith its center ap.
T, will intersectS in a fat regionR of areac. Hence, by choosing appropriately we
can ensure thaR contains one of the triangular patches. This implies we edecta
tetrahedrorf;) from C with the required properties. O

Now we can prove that we can cover the boundary ofear)-covered polyhedron with

(a) (b)

Figure 3.5 (@) A canonical tetrahedron defined by a triangular patch sphere. (b) A
sphere with a triangular grid.

a bounded number of fat convex objects.

Theorem 3.7 The boundary of afi, 3)-covered polyhedron with complexity can be
covered byO(n?logn) convex, fat, constant-complexity polyhedra.

Proof. Let C be the set of canonical tetrahedra defined in Len3ma Fix a canonical
tetrahedrory” € C. Note that when we put a translated copyloat some poinp € 9P
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according to Lemm&.6, we always put the same vertex, at p. (Namely, the vertex
coinciding with the origin before the translation.) For adg of P, let f(T') C f be
the subset of pointg on f such that we can placE with its designated vertex at p in
such a way thal is contained inP. The regionf(7') is polygonal. We triangulatg(T),
and for each trianglein this triangulation, we define a convex polyhedron by tgkime
union of all the translated copies dfthat havev € ¢. By doing this for all faces, we
get a collectiorC'r of convex polyhedra that together co@; F(1).

We claim that every convex objeate Cr is fat. This follows from the fact thdf is
fat and thatl” cannot be much smaller than Indeed,diam (T') = Q(f3 - diam(P)) =
QB - diam(t)).

Next, we claim thalCr| = O(n?*logn). This follows directly from the fact that the
complexity ofo f(T) is upper bounded by the complexity of tiree spacef T', when

it is translated amidst the faces Bf Aronov and Sharir]2] showed that this free space
has complexityO(n? log n).

Finally, we observe that),... U, f(T") = 0P by Lemma3.6. In other words, the convex
objects in the sdt) .. Cr together cover the boundary &% O

Theorem3.7 implies that the boundary of a constant-complexity 3)-covered polyhe-
dron P can be covered by a constant number of fat objects. Unfaielynghe number of
convex objects used in the boundary covering grows quadtbtin the complexity ofP.
If P has convex fat faces that are roughly the same size, theruthber of convex fat
objects required to cover the boundary reduces to linear.

Theorem 3.8 Let P be an(a, 3)-covered polyhedron with conveX-fat faces. Further,
let there be a constaatvhere, for any two facef andfs of P, diam/(f1) < c¢-diam(fs).
Then the boundary dP can be covered b§(n) convex, fat, constant-complexity poly-
hedra.

Proof. The proof is very similar to the proof of TheoreBn7, with one simple change,
namely that we shrink the canonical tetrahedra such that dieemeter is roughly the
same as the size of the faces. Note that the@etstill contain fat objects. It remains to
argue that each séty has sizeD(n).

To this end, recall from Lemma.2that the set of faces of a fat polyhedron with fat faces
has low density. Thus the free space of a canonical tetranédramidst the faces of
P is the free space of a translating tetrahedfoim a low density environment, whose
obstacles (the faces) are not much smaller thaivan der Stapperdp] has shown that
such a free space h&¥n) complexity. O

We claim that any covering of the boundary of(an 5)-covered polyhedron by fat convex
objects require€(n?) pieces. To show this, we slightly modify our version of CHeze
polyhedron from the previous section. In particular, weaep the edges of the needles
that contain the segments in the #eby long and thin rectangular facets. The resulting
polyhedron s stil{, 3)-covered, and it requirg®(n?) fat convex polyhedra to cover the
newly introduced facets.
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Theorem 3.9 There are constants > 0 and > 0 such that there argy, 3)-covered
polyhedraP for which any decomposition éfP into fat convex polyhedra requir€§n?)
pieces.

The number of fat convex polyhedra necessary to cover thadayy of a polyhedrow
that is not(«, 3)-covered can not be bounded as a functiomofTo see this, we make
a simple modification to the polyhedron of FigilB&. We reduce the gaps that separate
the interior “tube” from the rest of to some arbitrarily small constaat This forces
any fat convex polyhedron that covers the part of the boyndfthe polyhedron inside
the tube to be inside the tube. Now for ahywe can reduce the width and height of the
tube until its boundary requires more tharfat convex polyhedra to be covered. This
example remains locally fat with fat convex faces and it is@al polyhedron. Note that
P is no longer(a, B)-covered: reducing the gaps that separate the tube froneshef
the polyhedron causes the points on the boundary insidelttestd no longer have a good
tetrahedron.

Theorem 3.10 For any givenk, there exist locallyy-fat polyhedra for some absolute
constanty with faces that ar@ fat for some absolute constamtvhich require at least
fat convex polyhedra to cover their boundaries. These malydnare also local polyhedra.

3.3.1 Boundary covering by towers

In Chapter, we describe a data structure for ray shooting in é'swtfat polyhedra. This
result uses a covering of the boundaries of the polyhedfaby so-calledowers Here
we first describe how to obtain such a covering for convex étpedra. Following that,
we extend the covering t@, 5)-covered polyhedra.

We first show that ang-fat convex object admits two concentric cubes, one containing
o and one contained in, whose size ratio is bounded by a functionsobnly. For a cube
C, definesize(C') to be the edge length af.

Lemma 3.11 Let o := [54+/3/3]. For any convex3-fat objecto in R?, there exist
concentric axis-aligned cubés (o) andC™ (o) with C~ (o) C 0o C C*(0) such that

size(CT(0))
size(C—(0))

Proof. Let p = p(o0) be the radius of the smallest enclosing balbofrom the results in
Section 3.2.1 of Van der Stappen’s the€§]] it follows that o contains an axis-aligned
cubeC~ (o) with edge lengti23p/(27+/3). Letp be the center of such a cube. Observe
thatp is at distance at mogt from the center of the minimum enclosing ball @f Let

C™ (o) be the axis-aligned cube with edge lengthand centep. Theno C C* (o) since
the ball centered at with radius2p clearly containg andC* (o) is a bounding box for
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that ball. Therefore, we have
size(CT(0))
size(C—(0))
O

Next we define the canonical directions that we will use in d&composition. LeC'™

andC~ be two concentric axis-aligned cubes such gﬁgfg—f; = o, whereo is defined
as in Lemma3.17; refer to Fig.3.6(a). Sincer is an integer, we can partition each face

(a) ®) cap(t)

v base(t)

c- ¢ (P)

P

ot CcH(P)

Figure 3.6 (a) Swept volume defining a tower. (b) Two-dimensional aga&of a towet.

of C* into o2 squares of the same size as the facet§ of We use this to define a set
D of O(1/3?) canonical directions, as follows. For each squain the top facet of
C+, we add tdD the direction in which the top facet 6f~ must be translated to make it
coincide withs. The remaining five facets @ are treated similarly. The resulting set
D of canonical directiorfshas sizeéso? = O(1/3?).

Finally, we define the towers. Power in the direction! € D is a convex polyhedron
with the following properties:

(i) One of the facets ot is an axis-parallel square; this facet is called Haseof
t, denoted bybase(t). We require that the orientation of the base—whether it is
parallel to thery-plane, to the:z-plane, or to the z-plane—be uniquely determined
by the direction. Hence, all towers in a given directiarhave parallel bases.

(ii) The remaining facets of form a terrain in directiont, that is, any line parallel to
d and intersecting the base intersects the remaining fatber én a single point
or in a line segment. We call the union of these remainingtf&a@xcluding facets
parallel tod, thecapof the tower, denotedap(t).

2In fact, some of the directions defined for, say, the top fatét+ are identical to a direction defined for a
side facet. It will be convenient to treat these directiossliéferent.
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Let P be ap-fat convex polyhedron. The decompositionfis performed in a manner
similar to the way we constructed the canonical directidret C~(P) andC*+(P) be
cubes with the properties given in Lemr@dl Partition each facet of *(P) into o2
equal-sized squares. For each such sgsiare construct a tower by sweepindgowards
the corresponding facet ¢f ~(P), and taking the intersection of the swept volume and
the polyhedrorP—see Fig.3.6(b) for an illustration. This way we obtain for each poly-
hedronP one tower for each of thgD| canonical directions. We denote the set of towers
constructed forP by T'(P). The union of the towers iff’(P) is contained inP; the
boundary of this union consists of the boundarie®afnd of C~ (P).

Since|D| is O(1//3?), our construction leads to the following theorem:

Theorem 3.12 The boundary of @-fat convex polyhedron can be covered®i /(3)?)
towers.

The natural generalization of towers to non-convex polyaésito allow more than one
set of towers to be present inside a polyhedron at a time. dlesset of towers generated
by one pair of cubes would then not need to cover the entiradiny of the polyhedron—
see Figure.7. As long as all of the points of the boundary of the polyhedmencovered
by some tower, the results from Chaptehold. We could apply the results from the
previous section to do this: cover the boundary of the3)-covered polyhedroi by
fat convex polyhedra and then cover the boundary of thosghpdka by towers using
the method described above. Unfortunately, this is not effigient, since the boundary
covering presented in the previous section U3es’ log n) convex polyhedra. Therefore
we describe a direct method to cover the boundary by towets.n@thod only uses a
constant number of towers per polyhedron.

Figure 3.7 A tower in a non-convex polyhedron.

Next we explain how to get a set of towers covering the boundaan («, 5)-covered
polyhedronP. Recall that for every point € 0P there is a good tetrahedrdi, that is,
a tetrahedron that stays completely witlitrthat isa-fat, has diametes - diam (P), and
hasp as a vertex.
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Lemma 3.13 There is a set o0 (1/(a3)?) axis-aligned congruent cubes of edge length
Q(apf - diam(P)) such that the good tetrahedr®} of every pointp € 9P contains at
least one such cube.

Proof. Consider a good tetrahedr@h. Since it isa-fat and has diametgt - diam (P), it
contains a balB, of radiusp = Q(af - diam(P)). Halve the radius of this ball, while
keeping its center at the same position, anddgtdenote the resulting ball. L&t be a
bounding cube of>. If we put a sufficiently fine grid insid€’, thenB; must contain at
least one grid point. SincB; has radiug2(af - diam(P)), andC has edge length at
mostdiam (P), it suffices to put a grid wittD(1/(«3)?) grid points B3].

For each grid poiny inside P, put a cubeC, centered ay with edge lengttp/2. If
q € By, thenC, C B, C T),. Since there is a grid pointinside everyB,, this implies
we have a cub€’, inside everyl,. O

We now have a collectiod of O(1/(af3)?) = O(1) cubes of siz&X(af - diam(P)).
Next we construct a cub@™ of sizec - diam (P) wherec is a constant such thé c C*
whenever the center @t is in P. Finally, we construct towers for each cube € C,

by placingC* concentric withC'— and using the approach described above. Clearly, this
gives us a set oD(1) towers in total. Note that i€~ C 7, then one of the towers
created foilC'~ coversp.

Theorem 3.14 O(1/(af3)°) towers are sufficient to cover the boundary of @n 3)-
covered polyhedron.

Proof. We already noted that the number of towers in our constrng@(1). (More
precisely, it isO(1/(af3)%), since we have(1/(af3)?) cubes inC, and for each cube
we generate)(1/(«3)?) towers.) Moreover, each poipt € P is covered, because
C~ C T, foratleaston€'~ < C. O

Note that construction of the towers in Theor8rh4is very similar to the construction of
the guarding set from Theore2n3. In fact, the existence of a guarding set (with the extra
property that the guards are a sufficient distance from thethary of the polyhedron) is

a sufficient condition for the construction of a set of towers

By slightly modifying the example from TheoreBilQ we see that the number of towers
necessary to cover the boundary of a polyhedPothat is not(«, 3)-covered can not
be bounded. Recall that we modified Figid so that the “tube” in the middle of the
polyhedron was very skinny and had arbitrarily small gapthéorest of the polyhedron.
If we further modify the polyhedron so that the tube does ravehts long axis parallel
to any of the directions fror®, then, givent, we can force) P to require more thak
towers to be coveréd This polyhedron remains locally-fat with fat faces andalloc

30ne could, of course, “cheat” and defifieso that it contained a direction parallel to the tube. Howese
we have notedD should not depend on any specific polyhedron, as this woualderethe decomposition useless
when applied to multiple polyhedra.
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Theorem 3.15 For any givenk, there exist locallyy-fat polyhedra for some absolute
constanty with faces that arg-fat for some absolute constahivhich require at least
towers to cover their boundaries. These polyhedra are atso polyhedra.

3.4 Conclusion

We studied decompositions and boundary coverings of fathealra. Our bounds on the
number of objects needed in the decomposition (or cove@dng)tight, except for the
bound on the number of convex fat polyhedra needed to coedsdhndary of ac, 5)-
covered object. In particular, there is still a large gaptf@ case that the facets of the
polyhedron are also fat. It would be interesting to get tighiinds for this case.
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cHAPTER 4

Ray shooting and range searching

4.1 Introduction

The ray-shooting problenis to preprocess a s@ of objects inR? for the following
queries: what is the first object (if any) # hit by a query ray? Such queries form the
basis of ray-tracing algorithms, they can be used to apprata form factors in radiosity
methods, and they can be used for other visibility proble®mce ray shooting is an
integral part of many graphics applications, it should resbrprising that it has received
much attention, both in computer graphics and computdtgpeametry. In fact, after the
range-searching problem it is probably one of the most widtldied data-structuring
guestions in computational geometry. The survey by Petiepr9] and the book by De
Berg [28] discuss several of the data structures that have beenagedeivithin compu-
tational geometry for the ray-shooting problem (althoulgéré is also much work that
is not covered there, for example, research concerninghragtig in two-dimensional
scenes, or inl-dimensional space, fat > 3). In the discussion below, we will restrict
our attention to results on ray shootingR.

In the first part of the discussion below, we examine ray shgathen the ray is restricted
to travel in a single direction. We assume without loss ofggality that this direction is
parallel to thez-axis and thus call this type of problevertical ray shooting Afterwards
we remove the restriction and give a data structure for ansgeay-shooting queries
where the query ray can have any direction.
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Related work. Data structures for vertical ray-shooting queries amotg&earbitrary
triangles inR?3 have rather high storage requirements. Whed(kbgn) query time is
desired, the best-known data structure ne@@is*) space 28]. Space can be traded for
query time: for anym satisfyingn < m < n?, a data structure can be constructed that
usesO(m!*¢) space that allows vertical-ray-shooting queries that @ke'+</m!/?)
time [28].

Given the prominence of the ray-shooting problem in comjmrial geometry it is not sur-
prising that ray shooting has already been studied from ¢ngpective of realistic input
models. In particular, the vertical-ray-shooting probleas been studied for fat convex
polyhedra. For this case Kata§| presented a data structure that usés log® n) storage
and hasD(log* n) query time. (In fact, Katz's solution works for polygons veiegprojec-
tions onto thery-plane are fat, but it is not difficult to see that it works fat 8D poly-
topes as well.) Using the techniques of Eftal.[47] itis possible to improve the storage
bound toO(n log® n) and the query time t®(log® ) [59]. Recently De Berg31] pre-
sented a structure witB(log? n) query time; his structure us&¥(n log® n(loglog n)?)
storage.

Similarly, in the case of ray-shooting in arbitrary directs, the results achieved for non-
fat objects require a lot of storage. If the $@tconsists ofn arbitrary triangles, the
best known structures wit®(log n) query time use)(n**¢) storage 28, 78], whereas
the best structures with near-linear storage have rouglhy?/*) query time []. More
generally, for anyn with n < m < n*, one can obtai®((n/m'/*)logn) query time
usingO(m!*¢) storage 7). Better results have been obtained for several speciaiscas
When the seP is a collection ofn axis-parallel boxes, one can achieVéogn) query
time with a structure usin@(n2*¢) storage 28]. Again, a trade-off between query time
and storage is possible: with(m!'*) storage, for anyn with n < m < n?, one
can achieve)((n/y/m)logn) query time. IfP is a set ofn balls, then it is possible to
obtainO(n?/?) query time withO(n'*<) storage 90], or O(n®) query time withO(n>*¢)
storage 72.

Both axis-parallel boxes and balls are very special objectd in most graphics applica-
tions the scene will not consist of such objects. The questios becomes: is it possible
to improve upon the ray-shooting bounds for classes of tbjgat are more general
than axis-parallel boxes or spheres? This is the problenaulde in this chapter. More
precisely, we study the ray-shooting problem for conveypetira that areat—see Chap-
ter 1 for a formal definition.

For the case dfiorizontalfat triangles, there is a structure that uégs>*<) storage and
hasO(logn) query time P8, but the restriction to horizontal triangles is quite seve
Another related result is by Mitchedlt al. [69]. In their solution, the amount of storage
depends on the so-calleiimple-cover complexitgf the scene, and the query time de-
pends on the simple-cover complexity of the query ray. Unifaately the simple-cover
complexity of the ray—and, hence, the worst-case query-titen be©(n) for fat ob-
jects. In fact, this can happen even when the input is a saeilds The first (and so far
only, as far as we know) result that works for arbitrary rayd eather arbitrary fat objects
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was recently obtained by Sharir and Sha®8][ They present a data structure for ray
shooting in a collection of fat triangles that h@$n?/3+<) query time and use®(n'*°)
storage. Curiously, their method does not improve the knbbaumds at the other end of
the query-time—storage spectrum, so for logarithmic-timeries the best known storage
bound is stillO(n**+<).

Our results for ray shooting. First, we present a new data structure for vertical ray
shooting in a collection of, convex constant-complexity fat polyhedia R?. Our data
structure use®((1/3)n log? n) storage and had((1/3?) log® n) query time. Compared

to Katz's structure §9] it has a better query time (while the storage is the same) and
compared to the De Berg'’s structul] it has a better storage bound (while keeping the
same query time).

We then present a data structure for ray shooting with amyitrays in a collectior?

of (not necessarily disjoint) convex fat polyhedra wittvertices in total. Our structure
requiresD(n?*<) storage and has query tini¥log® n). A trade-off between storage and
query time is also possible: for anywith n < m < n?, we can construct a structure that
usesO(m!*¢) storage and had((n/\/m)log? n) query time. Compared to the bounds
obtained by Sharir and Shaul there are two differences: oarygtime for near-linear
storage i90(,/n log® n) while the query time of Sharir and Shaul@n?2/3+<), and we
get improved bounds at the other end of the spectrum whileirSirad Shaul will need
O(n**¢) storage forO(log n) query time. Of course, the two settings are not the same:
Sharir and Shaul consider fat triangles, whereas we confatipolyhedra. Indeed, our
solution makes crucial use of the fact that fat polyhedreetevelatively large volume.
Note that neither setting implies the other: fat trianglesdhnot form fat polyhedra, and
fat polyhedra do not necessarily have fat facets. (For el@nappolyhedral model of a
cylinder is likely to contain long and thin facets.)

Results on range searching. The intersection-searching problem is to preprocess a set
of objects such that all objects intersecting a query rargebe reported efficiently. If
the objects are points, then the problem becomes the sthratage-searching problem:
report all points inside a query range. Range searchingraedsection searching have
been studied extensively—see for example the surveys bywsy$2] and Agarwal and
Erickson B]. For intersection-searching with a query simplex in a seimplices inR?

one can, for anyn with n < m < n*, obtainO((n/m'/*)logn + k) query time using
O(m!*¢) storage, wheré is the number of reported simplices. Using our technique of
covering with towers, we show that simplex-intersectioerigs can be answered more
efficiently if the objects are fat convex polyhedra of consamplexity: for anym with

n < m < n® we obtainO((n/m'/?)logn + k) query time with a structure using
O(m!*¢) storage. This matches the best known bounds for simplexeraearching in
point sets inR3. So far, no general results were known for intersectionckéiag among

1Though results are presented in terms of fat polyhedra, esults for vertical ray shooting also work
without modification in the more general setting of objebst {project to fat polygons.
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fat polyhedra that were better than those for arbitrary petira—there has been work on
intersection searching in fat objec9[ 75, 85] but these results require the query range
to be not too large compared to the input objects and theyinethe input objects to
be disjoint.

4.2 Preliminaries

Basic properties of fat objects. We need a result that will allow us to stab a set of
relatively large fat objects that all intersect some regiumsing only a few points. Similar
results have been proved earlid8].

Lemma 4.1 Let R be a bounded region in the plane, anctlée a constant that satisfies
0 < ¢ < 1. Thenthereis a collectia) of O(1/(c3)?) points with the following property:
any [3-fat objecto with size(o) > ¢ - size(R) that intersect$? contains at least one point
fromQ@.

Proof. Let U be a bounding square @i, and letU be the concentric square twice the
size of U. Consider g3-fat objecto with size(o) > c¢ - size(R) that intersect®?. Then
area(oNU) > ¢'cf3- area(U) for a suitable constant (cf. Van der Stappen’s thesig],
Theorem 2.9). Hence, a regular grid Brwith [11]2 cells, whereM = 2/(c/¢/3), must
have at least one grid point insidg because the area of any convex object missing all
grid points is less tha - area(U)/M. O

The following lemma was proved by Van Krevel@dd for non-convex polygons. How-
ever, his definition of fatness is different from ours andasabviously compatible. There-
fore we have proved it independently using our definitione Pphoof is rather long, so it
can be found in the appendix to this chapter. In the lemmanpana-fat triangle refers
to a triangle all of whose angles are at least(Such a triangle is/’-fat according to
Definition 1.1for somea’ = Q(«).)

Lemma 4.2 Let P be ag-fat convex polygon with vertices. There is a sét of a-fat
triangles that coveP where|T| = O(n) anda = ©([3).

Ray shooting and parametric search. Agarwal and Matou3ekg] described a tech-
nigue that reduces the ray-shooting problem on #@s#tobjects to the segment-emptiness
problem,i.e., testing whether a query segment intersects any of the tshje®. Since
then their technique has been used in several papers deatingy shooting72, 89, 90].
We will also use this technique.

Theorem 4.3 (Agarwal and Matowsek [6]) Let P be a set of objects. Suppose that
we have a data structuke supporting segment-emptiness queries with respegt tor
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arbitrary segments. Let, be a parallel algorithm for answering a segment-emptiness
query, which uses at mogtprocessors and runs in at mdst parallel steps, and such
that for a query segment:, the computation oA, uses the information aboutonly in
deciding the signs of certain fixed-degree polynomials exabordinates af. Let B be
another version of the segment-emptiness algorithm, wéachreport an objede; € P
containing the endpoint of the query segment, provided tif@atsegment is otherwise
empty, and lefl’s be the maximum running time d#. Then the ray-shooting problem
for rays inR can be solved using the same data struciyfia timeO(pTa+TpTa logp).

Finally, we will need the following result.

Theorem 4.4 (Chazelleet al. [22)) Let L be a set of. lines in 3-space. For any with
n < m < n?, we can preprocess the detusingO(m'*¢) time and storage so that we
can detect irD((n/+/m) logn) time whether a query linélies above all the lines ifi.

4.3 \Vertical ray shooting

LetP = {P,...,P,} be acollection of: constant-complexity convex-fat polyhedra
that we wish to preprocess for vertical ray shooting. We siastudying the simpler case
where all the objects are intersected by a common vertical IAfter that we will show
how to use this structure to obtain an efficient solution sogkneral problem.

Agarwalet al. [5] already described a data structure for the case where jeltshare in-
tersected by a common vertical line and project to triangléssobserve that it is possible
to apply fractional cascading to their structure to obthmfbllowing result.

Lemmad4.5 LetP = {Py,...,P,} be a set of disjoint convex constant-complexity
(-fat polyhedra that are all stabbed by a vertical linend that all project to fat trian-
gles. Then there is a data structure such that vertical ragtsty queries ofP can be
answered irD(logn) time. The structure use3((1/83)nlogn) storage and it can be
builtin O((1/5)nlogn) time.

Proof. As stated above, all we need to do is apply fractional casgawi the structure of
Agarwalet al.[5]. For completeness, we briefly describe their solution afuaén how
to apply fractional cascading.

The structure is a balanced binary tr€ewith the objects in the leaves, sorted by their
position along’; the lowest object is in the leftmost leaf, the second lowedégect in the
next leaf, and so on. Since the objects are non-interseatidgconvex, this ordering is
well-defined.

For a node/, let P(v) denote the set of objects stored in the leaves of the suliicted
atv. At each non-leaf node of 7, we store the unio®/(v) of the vertical projections
of the objects irP(v). We preproces¥E (v) for point-enclosure queries—that is, queries
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that ask whether a poimtin the zy-plane lies insidd/(v)— as follows. Letp, be the
point wheref intersects they-plane. Then all projections contgi, and since they are
convexU (v) is star-shaped with, in the kernel. Hence, if we partition the plane into
cones by drawing half-lines from, through all breakpoints on the boundary&tv),
then a point-enclosure query can be answered(ih) time after we have determined in
which cone the query point lies.

To perform a query with a vertical ray starting above all aclgewe walk down the tree
as follows. Suppose we reach a nedé&Vhen the poinp where the ray hits they-plane
lies inside the union of the right child of we proceed to the right child, otherwise we
proceed to the left child. The leaf we reach must store thedbgect hit (if any object

is hit at all). When the starting point of the ray does not li@we all objects, things are
more complicated. However, Agarwetlal. have shown that a query can still be answered
by walking down the tree, although now up to four nodes pegllmay be visited. In any
case, we visiD(log n) nodes in total, and at each node we have to do a point-enelosur
query. As explained above, a point-enclosure query can deered inO(1) time after

we have determined in which cone the query point lies. Figdive right cone can be
done inO(logn) time by binary search, but this can be made faster: usingdidrea
cascading 24, 25| finding the cones can be done (1) time, except for the search
at the root. Since the application of fractional cascadingampletely standard in this
setting we omit further details.

To build the structure, we sort the objects alghig O(n logn) time, and then we con-
struct the unions to be stored at each node in a bottom-ufasience, when we arrive
at a node/, we have to merge the two unions of the children-ofBecause the unions
are star-shaped with respect to the same point, computngrtion of these unions boils
down to merging the two circularly sorted lists of breakpsitdence, this can be done in
linear time. The total time to construct all unions is therefequal to the total size of the
data structure, which iy, O(|P(v)|) = O(nlogn). Adding the additional pointers for
the fractional cascading does not increase the preprocgtasie or the amount of storage
asymptotically. O

Now consider the general case, where the objec8 gre not necessarily stabbed by
a vertical line. We can cover each object®y1) subobjects whose projections are fat
triangles using the technique of Lem#2, so we can assume without loss of generality
that all objects project to fat triangles. We shall make uséme-dimensional BAR-
trees. Recall from ChaptédrthatBAR-treegor balanced aspect ratio tregare a special
type of BSP trees for point sets. A BSP tréefor a setS of points contained in some
bounding square is a recursive partitioning of by splitting lines, such that the final
cells of the subdivision do not contain any points in theterior. Each node’ of 7
corresponds to a regioregion(rv) C o, which is defined recursively as follows. The
regionregion(root(T)) is the whole square. Furthermore, if the splitting line stored
at a nodev is £(v), thenregion(leftchild(v)) = region(v) N £(v)~, wherel(v)~ is the
half-plane belowt(v). Similarly, region(rightchild(v)) = region(v) N £(v)*, where
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¢(v)T is the half-plane abov&v).

The special properties of BAR-trees that are relevant foanesthe following. First, a
BAR-tree on a seb of points has deptld(log |S|) and sizeO(|S|). Furthermore, the
regions corresponding to a node in a BAR-tree have boungestaratio, which implies
they arec-fat for some constant It has been shown by De Berg and Strep@é) fhat
this implies the following.

Lemma 4.6 (De Berg and Streppel4Q]) Let o be ai-fat object. Then there is a set
G(o) of 12 points—we call these pointuards—such that for any BAR-tree regioR
that intersects but does not contain a guard frai{o) in its interior we haveize(o) =
O(size(R)).

De Berg and Streppedif)] used this to design a so-called object BAR-tree: this is &BA
tree that can be used for approximate range searching inaf séjects rather than in
a point set. Our ray-shooting structure combines BAR-tarasthe lemma above in a
different way, as described next.

Let? = {Py,...,P,} be a set ofn constant-complexitys-fat polyhedra. LeG; =
G(proj(F;)) be a set of guards for the projection Bf, as in Lemma4.6. Our data
structure for vertical ray shooting dnis defined as follows.

e The main tre¢/ is a BAR-tree fortheset = G U--- UG,,.

e Let v be a node in7. We say that an objed®, is large at v if (i) proj(F;) in-
tersectsregion(v), and (i) region(parent(v)) contains a guard frond; in its
interior but region(v) does not. Note that Lemmé&6 implies thatsize(P;) =
Q(size(region(v))) if P; is large atv. LetP(v) C P be the subset of objects that
are large av.

Let Q(v) be a set of points such that for aiy € P(v), there is a poing € Q(v)
with ¢ € proj(P;). By Lemmad4.1there exists such a sék(v) of sizeO(1/3?).
Assign each objecP; € P(v) arbitrarily to one of the pointg € Q(v) contained
in its projection. LetP(q) denote the set of objects assigned;toWe store the
setP(q) in a data structur@ (q) for vertical ray shooting according to Lemmib.
Thus each node has|Q(v)| associated structures.

Let’s first see how to answer a vertical ray-shooting quetth wiis structure.

Lemma 4.7 A vertical ray-shooting query can be answere®iii1/5?) log® n) time.
Proof. Let p be the point where the line through the query ray intersédwts:g-plane.
Search withp down the treeZ’. At every nodes on the search path, perform a query in
the associated structuféq) of eachy € Q(v). A query thus take® (log n-log n-(1/3?))
time—that is, the length of every search path, times theygtie in the associated data

structures along the search path, times the sizg(of.
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To prove the correctness, it suffices to argue that any objewhose projection contains
p must be large at one of the nodes on the search path o see this, we observe that
region(root(7)) contains all guards from; while the leaf regions do not contain any
guards in their interior. It follows that when we follow thath ofp, the objectP; must
become large at some node. O

We can now prove our final result on vertical ray shooting.

Theorem 4.8 Let P be a collection ofi convex disjoint constant-complexifisfat poly-
hedra inR3. Then there is a data structure such that vertical ray shgatieries orP
can be answered if((1/3?) log® n) time. The structure use3((1/3)n log® n) storage
and it can be built irD((1/3)n log® n) time.

Proof. The correctness of the query procedure and the query time heen shown in
Lemma4.7.

It remains to prove the bound on the construction time; tbeage bound then follows
trivially. Computing the guards for each object takes canistime per object, and con-
structing the BAR-tree taka3(n log n) time [44]. We claim that an objec®; is large at
O(logn) nodes. Indeed, any guard is contained in the regions of tdeson a single
path down the tree, and an object can only be large at a node farent region contains
one of its guards. Hencg,, |P(v)| = O(nlogn). We can generate the sggv) in
O(nlogn) time by filtering the objects down the trée The set)(v) can be constructed

in O(]Q(v)]) time, and associating the objects with the point§)if») can be done in a
brute-force way irO(|Q(v)| - |P(v)|). Finally, constructing the associated structures of
v takes time

Y OW1/B)IP(@)llog|P(a))) = O((1/8)[P(v)|log [P(v)])

q€Q(v)

by Lemma4.5. Hence, the overall construction time is

5, 04PW)] - (1QW)] + (1/8) log [P()]))
— O((1/B)nlog’ n + (1/8)nlogn)
((1/B)nlog? n).

o((

4.4 Aray-shooting data structure for arbitrary directions

Let P be the set of either convex fat polyhedraar 5)-covered polyhedra that we wish
to preprocess for ray-shooting queries with query raystige arbitrary directions. We
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usen to denote the total number of vertices of the polyhedra. Qoba strategy is
roughly as follows.

We first decompose of the boundary of each polyhedron intsataat number of towers.
This is the same decomposition that we mentioned in Ch&pteecall that for a convex
(-fat polyhedronP, we can cover the boundaiywith O(1/3?) towers by Theorer8.12
By Theorem3.14 for an(«, 3)-covered polyhedro®, we can cover the boundary &f
with O(1/(a3)?) towers, where the towers hatg1/(«/3)?) canonical directions. Next,
we present a data structure to efficiently perform segmengtieess queries on the towers.
Using Agarwal and MatouSek’s parametric-search teclmigentioned above, we then
convert this structure into a structure for ray shooting.

Testing for segment emptiness. Before we describe the data structure for segment-
emptiness queries, we describe necessary and sufficieditiomis for a segment to in-
tersect a polyhedroR. We treatP as a solid, meaning that a segmeititersects’ even

if both endpoints of are insideP.

In the lemma below and in the rest of the chapter, wheneverpsaksof “above” and
“below” when referring to a specific tower, this is always lwitspect to the canonical
directiond of that tower. More precisely, we say that an objecs belowan objecty’
whenever there exists a directed line with orientaticthat first intersects and then'.

A pointis inside a tower, for instance, if and only if it is akethe base and below the cap.
Finally, we useproj(o) to denote the projection of an objecin directiond onto a plane

orthogonal tad.

Lemma 4.9 A segmenk = pq intersects a polyhedroR € P if and only if one of the
following conditions holds:

1. p orqisinsideP, or
2. there is a tower € T'(P) such that
(a) pq intersect$ase(t), or

(b) pq passes below an edgewip(t) and above an edge bése(t), or
(c) pq passes below an edgew@ip(t) andp or q is abovebase(t).

Proof. If one of the conditions is meg, clearly intersects. Therefore, we will concen-
trate on the “only if” part of the proof. I§ meetsP but misses ali € T'(P), condition1
clearly holds. Supposeintersects somee T(P). Putb := base(t). Up to exchanging
p andg, there are three possible scenariosfandg with respect ta:

Case (i):proj(p) is insideproj(t) butproj(q) is not. Thenp is either above, below it,
orinside it. Ifp is insidet, then conditiorl is satisfied. Ifp is belowb, then there
must be some other point anthat is above), which implies thats must satisfy
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condition2a Finally, if p is aboveb but not insidet, then conditior2cis satisfied
by the property that is a terrain and the fact thatoj(q) is not insideproj(t).

Case (ii): bothproj(p) andproj(q) are insideproj(t). If either p or ¢ are insidet,
then conditionl is satisfied. Ifp is belowb andq is above it (or vice versa), then
condition2ais satisfied. If bothp andq are belowd, thens can not intersect.
If both p andq are aboveé but not insidet, then they must both be abovep(t).
Sinces intersectg, this implies that conditio2c s satisfied.

Case (iii): neitheproj(p) norproj(q) is insideproj(t). Now condition2b must always
be satisfied.
O

Lemma4.9 allows us to treat a segment-emptiness query as the digjanat several
different conditions and test separately for each of theselitions. Developing data
structures for each of these conditions is relatively rytithey can be implemented
using standard multi-level range-searching data strastuBelow we provide some of the
details.

Lemma 4.10 LetP be a set oB-fat convex polyhedra iR? of total complexityn. Given
a query segment we can detect i)((n/3%\/m) log n) time whether an endpoint efis
inside a polyhedron dP using a data structure that requiteén'*</3?) preprocessing
time and storage, for any parameterwith n < m < n2. If the polyhedra are disjoint,
this can be improved t0(n/3) storage and preprocessing time &nd1/3) logn) query
time.

If P is a set ofy («, 3)-covered polyhedra iR with total complexityn, then the bounds
are the same except for the dependence on the fatness domstahcasesO(1/3?) is
replaced byO(1/(a3)?).

Proof. When the objects ifP may intersect, we treat the towers and the inner cubes of
each object separately.

We preprocess the cubes into a three-level segment4geThis tree use®)(n log® n)
storage and allows us to check if any of the cubes containseayqoint in O(log® n)
time. By increasing the degree of the nodes in the segmentda®@(»°), we can reduce
the query time ta)(log n) at the cost of usin@(n'+¢) storage.

The towers are handled as follows. Consider the collectidoveers for a fixed canonical
direction. Assume without loss of generality that the basfethe towers are parallel

to the xy-plane. A towert contains a query poinj if and only if the following three
conditions hold: the projection gfis contained in the projection of the base @ere the
projections are onto they-plane and in the canonical direction of the toweris above

that base, anglis below the plane through the cap facet whose projectiotedwsy. This
means we can detect this using a multi-level tree: the firsiéwels are segment trees on
the projections of the bases onto thg-plane (these are used to select the bases whose
projections contain the projection gf, the third level is a binary tree on height (used to
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select those bases that are belgwthe next threglevels are partition trees on the edges
of the projected cap facets (to select the cap facets whagections contaig), and the
final level is a structure to test if is above the upper envelope of the planes through
the cap facets. As usual with this type of multi-level datacture, the performance is
determined by the worst-case performance of any of thedewéénce, we get the same
bounds as in a two-dimensional partition tree, as statetiérildmma; the extra factor
O(1/3?) for convex objects 00 (1/(a3)?) is because each of the canonical directions is
treated separately.

When the objects i® are guaranteed not to intersect, we use the so-caliptt BAR-tree
designed by De Berg and Strepp£d]. Recall from Chaptet that this is a BSP-tree with
O(n) nodes and dept®(log n), such that every leaf region intersects at n@@&t/3) ob-
jects. Therefore, assuming the polyhedra have constarpleaity, we can test whether
p is inside any of the polyhedra iR simply by finding the cell containing in O(log n)
time and then testing whethgris inside any of the polyhedra in the cell. If the polyhe-
dra do not have constant complexity, we apply the Dobkirkjgétrick hierarchy43] to
each polyhedron. In either case, the test takélog n) to determine which celp is in
andO((1/8)logn) to testifp is inside any of theé)(1/3) polyhedra meeting that celf)

Lemma 4.11 LetP be a set of conveg-fat polyhedra. Assuming there is no endpoint of
query segment inside any polyhedron i?, we can detect whetherintersects any poly-
hedron inP using a data structure which requiteén>*< /3?) storage and preprocessing
time and has query tim@((logn)/3?%). Furthermore, for anyn withn < m < n?, we
can construct a structure that usesn'+< /3%) storage and preprocessing time and has
O((n/(B%/m))logn) query time.

If P is a set of «, 3)-covered polyhedra, the dependence on the fatness cgnstdach
isO(1/3?) in the convex case, is replaced®y1/(a3)?).

Proof. There are three cases to consider, according to Ledh®aWe will design a
different structure for each of them, and in each case wengild a separate structure
for each of thgD| canonical tower directions. So we fix one of the canonicadions

d, and letT = T(cf) be the set of all towers of that direction. Without loss of getity,
assume that the base of the toweriis horizontal,.e., parallel to thecy-plane.

Condition2a s intersectshase(t) for some towert € 7: Sincebase(t) is an axis-
aligned rectangle, a segmaerintersectdase(t) if and only if £(s), the line through
s, intersectase(t) both in the projection onto thgz-plane and in the projection
onto thexz-plane, and the endpoints efie on opposite sides of the plane through
base(t). Hence, we can test whether there is an intersected basgaiire-level
tree: the first two levels are partition trees used to seleethiases that intersect

2We assume without loss of generality that each cap facetiarate.
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Figure 4.1 (a) Condition2a (b) Condition2b. (c) Condition2c.
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£(s) in the projection onto thez-plane, the next two levels are partition trees used
to select of these bases the ones that also intetsecin the projection onto the
yz-plane, and the last level is a search treezaordinate to test whethethas its
endpoints on opposite sides of any of the selected bases.

Condition2b: s passes above an edgebate(t) and below an edge efip(t), for some
t € T: This happens if and only i intersects an edge bhse(t) in the projection
onto thezxy-plane, is above that edge in the orthogonal projection tmglane
orthogonal to that edge, and is below some edgepft). Therefore, we can also
check conditior2b by using a multi-level structure based on partition trele:first
levels are used to select all towers having a base with an thdgéntersects in
the projection onto they-plane, the next level is to restrict the selection to towers
with base edges belowy the next levels are to select of those towers the cap edges
intersectings in the projection to the:y-plane. It remains to check whether any of
the selected cap edges is abev&ince these edges all intersedn the projection,
we can treat them andas full lines and use the structure from Theorerh

Condition2c: s passes below an edge efp(t) and it has an endpoint abowese(t),
for somet € T: We first select all towers having a base below one of the emtpoi
of s—this can be done using a two-level segment tree storingthjegied bases
and a binary search tree on the heights of the bases—thereet the towers with
a cap edge that is intersected in the projection tacgelane, and finally we apply
the structure of Theored 4 again.

In all cases, we have described a multi-level data structitte a constant number of
levels, where each level is either a two-dimensional partiree, a segment tree, a binary
tree, or (as the final level) the structure of Theorkrh The bounds for such multi-level
structure are determined by the worst level, which leadstgxto the bounds stated in
the lemma. (To speed up the query frantlog® n) time to O(logn), whenO(n'+<)
storage is used, we employ the standard tr28:[ we choose the branching degree to
beO(n*), and we add a point-location structure to identify the ocrohild to which we
must descend i (logn) time.)

—

It is easily checked that, in the worst case, the total coriyl®f the towers of7 (d)
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can be©(n), for eachd. Hence the above estimates for query time and preprocessing
time and space must be multiplied by3? in the case of convex polyhedrabf(a3)? in
the case of«, 3)-covered polyhedrato account for processing all canodicattions.O

Putting it all together. In order to apply the parametric-search technique destribe
in Theorem4.3 we must describe parallel algorithms for querying the dditactures
presented in the previous section. For the object BAR-trekthe Dobkin-Kirkpatrick
hierarchies for the polyhedra of non-constant complexitg, parallel query algorithm
coincides with the sequential one. In the other structuwves;an obtairOD(log n) parallel
query time using)(n/+/m) processors: basically, whenever a search path splits we add
another processor. Applying Theor@n8now gives the final result.

Theorem 4.12 Let P be a set of3-fat convex polyhedra iiR? of total complexityn.

We can preprocesB usingO(n?*¢/3?) storage and preprocessing time, such that ray-
shooting queries can be answered:i(z(log2 n)/B3%) time. Moreover, for anyn with

n < m < n?, we can construct a structure that uSésn' < /3?) preprocessing time and
storage such that queries taR&(n/3%/m) log? n) time.

If P is a set of «, 3)-covered polyhedra iiR* with total complexityn, then the bounds
are the same except for the dependence on the fatness domst@hcasesO(1/3?) is

replaced by (1/(af3)?).

Remark 4.13 This result is most likely optimal, up to ai(n®) factor. Indeed, the ray-
shooting problem for fat polyhedra in 3-space is at leastagd as the ray-shooting prob-
lem for squares in the plane. For the latter problem no bbtiends are known. More-
over, Hopcroft’s problem—deciding whether there is andecice between given sets of
n, points andy, lines in the plane—can be solved by performingay-shooting queries
in the set of points (which can be considered degenerateesjudf we set the storage

parametern of our structure ton, = n,, +n;’ °n.’?, then our algorithm solves Hopcroft's
problem inO((n, + nﬁ/Sn?/g + ng)'*¢) time. In a restricted model of computation, the

lower bound for Hopcroft's problen¥p] is Q(n, logn, + nﬁ/Sn?/g + n¢logn,). Thus

it is unlikely that better results than the trade-off boutitlt we obtain are possible for
ray shooting in a set of points in the plane. (This is not a frstatement, because of
the restricted model of computation.) Hence, such impramsiare also unlikely for ray
shooting in a set of fat objects in 3-space.

4.5 Simplex Range Searching

The techniques described above can be adapted to the probdéamplex range searching.
The task is to preprocegsto facilitate queries of the form: report, given a query diexp
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A, all objects intersecting.. Unlike the previous sections of this chapter, we must agsum
thatP contains constant-complexity polyhedra.

Lemma 4.14 A towert of polyhedronP € P intersects a query simplex if and only if
one of the following conditions holds:

) tC A, or
(i) an edge ofA intersects, or

(iii) t properly intersects a facgt of A, that is,t intersects only the relative interior
int(f) of f and not its boundary.

Proof. If one of the conditions is met, therclearly intersectg\. Suppose neither of the
first two conditions are met, butintersectsA. Sincet intersectsA but is not contained
in it, a facetf of A must intersect; A C t is ruled out by condition (ii). Since none of
the edges ofA meett, it must be the case that f = ¢ N int(f), so the last condition
holds, as claimed. O

Let 7 = 7 (d) be the collection of all towers for the canonical directibnFor each of
the three conditions we will construct a data structure daat report all towerg € 7
satisfying that condition.

To handle condition (i), we take a vertex of each towe¥iland preprocess the resulting
set of points for simplex range searching. Thus, for anwith n < m < n?, we can
obtainO((n/m"/?)log n+k) query time using) (m!*#) preprocessing time and storage,
wherek is the number of reported towerg][

Condition (ii) is handled as follows. Recall that in Sectibd we developed a structure
for segment-emptiness queries in a set of towers. Now we toe@gort all towers inter-
secting a segment, instead of only testing if there is suolvart The structures presented
in Sectiord.4can also report all intersected towers, with one exceptiotite multi-level
structures for conditions 2b and 2c we used the structuréebiienvt.4as the final level.
This structure was used to check whether any line from a gge¢mf lines was above a
query line. Now we need to report all such lines, which can tyeedusing a structure
for half-space range reporting in 5-dimensional (Plutkpace 2]. Note that since the
objects inP are constant-complexity, each object is reported at moshstant number of
times. We get a structure with(m! ) preprocessing time and storage such that queries
takeO((n/v/m)logn + k) time.

To handle condition (iii) we proceed as follows. For eachteser of the cap of a tower
t € 7 we define a segment, which we call astick as follows. Let,, be the line through
v in directiond. Thens, := £, N t. Thus the sticks, connects to the point orbase(t)
that is below.

64



Lemma 4.15 If a towert € T properly intersects a facgtof the query simpleX\, then
f is intersected by an edgeledse(t), or by the sticks, of a vertexv of cap(t).

Proof. Suppose properly intersectg, but f does not intersect an edgelefse(t). Then
base(t) must be completely below the plane containjhdn the other hand, at least one
cap vertexp, must be above that plane, otherwisaould not interseclf. Hence, the
stick s, must intersect that plane. Sinteroperly intersectg, this implies that, must
intersectf. |

This lemma gives us an easy way to handle condition (iii): wecdha structure so that
we can find all sticks whose projection in directiaﬁ(note that this is a point) is con-
tained in the projection of a facgt of the query simplex and whose endpoints are on
opposite sides of the plane throu@ihThis can again be done with a multi-level partition
tree that use®)(m!*/3%) preprocessing time and storage, and for which queries take
O((n/B*v/m)logn + k) time. A similar structure can be used to find the base edges
intersectingf, since the base edges of the towergihave only two distinct directions.

Since we have)(1/3?) different canonical directions in the case of convex potirae
andO(1/(af3)%) towers in the case dfy, 3)-covered polyhedra, we get the following.

Theorem 4.16 LetP be a set ofi 3-fat constant-complexity convex polyhedraif. For
anym withn < m < n3, we can preproce§z usingO(m!*¢/3?) time and storage, such
that simplex range-searching queries can be answeréd(in/ 5>m*'/?)logn + k/(3?)
time, wherék is the number of polyhedra reported.

If P is a set ofn. constant-complexityc, 3)-covered polyhedra iR, then the bounds
are the same except for the dependence on the fatness domst@hcasesO(1/3?) is

replaced byD(1/(a3)).

4.6 Conclusion

In this chapter, we looked at two related problems: ray shgaand range searching.
We studied ray shooting both for rays whose direction is fixed for rays that can have
an arbitrary direction. In the first case, we gave improvestilts for objects that are fat

and convex, whereas in the second case we gave improvetsriEsypolyhedra that are

(«, B)-covered. These results extended fairly directly into $@xpange searching as well.
The results on ray shooting in arbitrary directions and $&xpange searching polyhedra
show the utility of the decomposition into towers that weddiuced in Chaptes.
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Appendix

This appendix contains a proof that was omitted.

Lemma 4.2 Let P be ag-fat convex polygon withe vertices. There is a sét of a-
fat triangles that coveP where|T| = O(n) anda > 3/128.

Proof. Recall that for triangles, we use the definition that the datis given by the
smallest angle in the triangle.

Let S be the largest possible square containef.iriny convex subset aP that contains
all of S'is at least¥ -fat whered’ = ©(3) by Lemma4.18below.

We extend the edges 6f until they intersect” and add vertices t& at the intersection
points. We letP, denote the part of above the (extended) top edgesflet P, denote
the part below the bottom edge 8f let P. denote the part to the right of the right edge of
S, and letP; denote the part to the left of the left edgesfWe will show how to cover
P,. The three other parts df are covered similarly, anfl is covered with two triangles

that each have a fatness4°.

Figure 4.2 One of the subpolygons d? induced bys.

An ear of a polygorP consists of two consecutive edgesfothat have the property that
a straight edge connecting the first and last vertex of thegdtays completely inside the
polygon. In a convex polygon, any two consecutive edgesane e

We coverP, by choosing an arbitrary ear from it (except any ear that atstains the
top edge of5), covering it using Lemma4.17below, and then replacing by P with that
ear removed. Since no part §fis ever removedP remains fat. Thus we keep removing
ears fromP, until it exactly coincides with the extended edgeSof

Since we cover the ears that we remove using the procedumelfeonmad.17, we add a
constant number of triangles Toper vertex, implying thatl’| = O(n). The exact bound
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on« is given by combining Lemma&17and4.18 O

Lemma 4.17 An ear of a3-fat polygonP can be covered with at most fowtfat triangles
that all stay inside® whereo := () /16.

Proof. In a convex polygon, an ear is a triangle formed by three cartse vertices.
Consider the ear defined by vertices 1, v;, andv; 1. Let¢;_1, ¢;, and¢; 1 be the

angles at the respective vertices—see FiguBya). Because® is -fat, we know that
the angle between any two adjacent edgeB odind in particular the anglg;, is at least
B/(2m). There are three possibilities for the other two angles; and¢;;1: either they

are both at least, they are both less thah, or one is larger thala and one is smaller
thana. Note that these cases overlap.

Case (i):¢,—1 > v andg; 1 > «. In this case, the ear is trivial to cover: it is already an
a-fat triangle that can be covered by a copy of itself.

Case (ii): ¢;—1 < 2a and ;11 < 2a. First, we add triangles to the edges ;v; and
v;v;41 Where the angles of the edges of the triangles with respeabetboundary edges
are at leasta—these are the triangles with dotted edges in Figudéa). These triangles
must stay inside” as long asy < (f7)/16 by Lemmab.6, proved in the next chapter.
However, it is clear that the non-boundary vertex of themmtiles must be outside the
ear that we are covering. Therefore, we can place a triarigfeeaniddle vertex of the
ear with two sides that correspond to the sides of the twaodtes that we just added and
whose third side is the edge of the ear that goes between tihessdges. This triangle
completes the covering of the ear.

(a) Vi
<

Vi1

Vi1 Diti

Figure 4.3 (a) Case (ii). (b) Case (iii).

Case (iii): ¢;—1 > 2 and¢;+1 < « (or the symmetric case)See Figuret.3 (b). In

this case, we add an edge between the vertex that is at thedagje ¢; 1, without

loss of generality) and the edge across from it, making xerfe This splitsg; into two
anglesp; andy». We placev; such thatp; is exactlya. Thus,ps = o + ¢ip1 > «

. By assumptionyp, > a. Thus, we can cover the triangle_;v;v; with a copy of
itself. Trianglev;_ v;v;41 can be covered according to the procedure outlined for case
(i) above.

Note that in all cases, we have covered the ear with at mostifdat triangles. O
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Lemma 4.18 Let P be a convex3-fat polygon inR? andS be the largest square con-
tained inP. Then any convex subsét’ such thatS C P’ C P is ['-fat where

B = B/(8m).

Proof. By the results of Section 3.2.1 of Van der Stappen’s th&d {he side length of
S is at leastsp/(2v/2), wherep is the diameter of.

Letd = pipz be the diameter of’. Let S’ C S be the largest square containedSithat
has an edge parallel tb The side length of’ is at least,/2/2 times the side length of.
Let p;3 andp, denote the midpoints of the sides$fparallel tod—see Figurel.4.

Figure 4.4 P’ must be fat.

We will make two trianglesppsps andpspsps. By convexity, both of these triangles
must be completely insid®’. The sum of the area of these triangles is not dependent on
the placement of’—it is alwaysd - s/2, wheres is the side length of’.

Since P’ is convex, the fatness d® is determined by a circle placed @t with radius
d [96]. The area of that circle isd?. Thus the fatness d?’ is at least

ds
ﬂ/ -2 _ 5 > & > ﬁ
wd?  2dm — 8dm — 8w

sinced < p. O
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CHAPTER D

Depth orders

5.1 Introduction

In this chapter we study another problem arising in compgtaphics in the context of
realistic input models; namely the depth-order problenfdbpolytopes inR3.

Problem statement and previous results. Let P be a set ofx disjoint objects inR3.
The problem we study is théepth-order problemcompute a depth order for the st
that is, an ordering?, . . ., P, of the objects ifP such that if?; is belowP; theni < j.
Here we say thab; is below P;, denoted byP; < P;, if there are point§z, y, z;) € P;
and(z,y, z;) € P; with z; < z;. In other words, a depth order is a linear extension of
the <-relation. Since there can be cycles in theelation—we then say there ¢yclic
overlapamong the objects—a depth order does not always exist. tndlsa the algorithm
should report that there is cyclic overlap. Depth ordersuaeful in several applications.
For example, they can be used to render scenes with the Paiilgorithm [52] or to do
hidden-surface removal with the algorithm of Kaizal. [60]. Depth orders also play a
role in assembly planning.

The depth-order problem for arbitrary sets of triangles-space does not seem to admit
a near-linear solution; the best known algorithm run®im?*/3+<) time [39]. This has
led researchers to also study this problem for fat objectgarfal et al. [5] gave an
algorithm for computing the depth order of a set of triangib®se projections onto the

69



zy-plane are fat; their algorithm runs i@ (n log® n) time. However, their algorithm
cannot detect cycles—when there are cycles it reports amriect order. A subsequent
result by Katz §8] produced an algorithm that runs @ (n log® n) time and that can
detect cycles. In this case though, the constant of prapmwlity depends on the minimum
overlap of the projections of the objects that do overlathdfe is a pair of objects whose
projections barely overlap, then the running time of thedtgm increases greatly. One
advantage that this algorithm has is that it can deal witlvercurved objects.

Our results.  We present an algorithm for computing a depth order on actidie of n
convex constant-complexity fat polyhedraia. Our algorithm runs i ((1/5%)n log® n)
time, improving the result of Agarwadt al. [5] by two logarithmic factors. Like the al-
gorithm of Agarwalet al, our algorithm unfortunately does not detect cyclic overla
Hence, we also study the problem of verifying a given depttenor We give an algo-
rithm that checks irO((1/4%)nlog® n) time! whether a given ordering for a set of fat
convex polyhedra is a valid depth order. This is the first ltefeu this problem. Until
now, the only algorithm for verifying a given depth order vasalgorithm for arbitrary
triangles B9], which runs inO(n*/3+¢) time.

5.2 Preliminaries

In this section we introduce some basic definitions and teotogy.

Define thesizeof an objecto, denoted byize(o) to be the radius of its smallest enclos-
ing ball. Note that the size of a ball is simply its radius.

It is not hard to show that the projection of a fat object isdiat, as proved by De
Berg [31] and made precise in the following lemma.

Lemma 5.1 (De Berg B1]) If an objectP is a[3-fat object in three dimensions, then
proj(P) has fatnes€ () in two dimensions.

We will also need the following lemma.

Lemma 5.2 Let P, and P, be simple polygons. Let, be an edge oP; ande, be an
edge ofP,. If Py intersects?, so that there is no vertex &% inside P, and no vertex of
P, insideP;, then there is an intersection of edge®f P, ande, of P, such thats # e,
ande4 75 €.

Proof. Lete of P; ande’ of P, be edges that intersect.df£ e; ande’ # es, then we are
done. Ife # e; ande’ = ey, then there must be an intersection betweand a different

1This is an improvement over th@(n log? n) bound that we had in the preliminary version of the pagd},[
which was published in SODA 2006.
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edge of P, (since there are no vertices 6f inside P,) meaning that we have found an
intersection betweenand some edg€’ # e,, and we are done. Similarly, we are done if
e = ey ande’ # eq. Finally, suppose = e; ande’ = e5. Sincee; entersP,, it must exit

it, and that implies that there must be an intersection betwe and some edge’ # e».
This puts us in the previous case, so we are done. O

5.3 The size of the transitive reduction of depth-order
graphs

LetP = {P,...,P,} be a set of disjoint objects iR®. Recall that we say tha®; is
belowP;, denoted by’ < P, if there are point$z, y, z;) € P; and(z,y, z;) € P; with

z; < zj. We define thelepth-order graph of° to be the grapl¢(P) = (P, E) where
(P;, P;) € E'iff P; < P;. Hence, a depth order f@® corresponds to a topological order
ong(P).

In general it is too costly to comput P) explicitly, since it can hav@(n?) arcs. When
computing depth orders for segments in the plane, this cairtiemvented by only look-
ing at pairs of segments that “see” each other, that is, thatbe connected vertically
without crossing another segment. For objects in 3-spamgever, the number of pairs
that see each other can be quadratic, even when the objectatarn this section we
therefore study the size of the transitive reduction of depter graphs, since the transi-
tive reduction is the smallest subgraph that is sufficiembpmlogically sort a graph. The
main result is that the number of arcs in the transitive rédoof the depth-order graph
of a set of fat objects is linear. Then in the next section wiecsimpute a superset of the
arcs in the transitive reduction.

We define theseparationof two nodes in the depth-order graph, denaotepl( P;, P;) to
be the length of the longest path fraffa to ;. Notice that if the graph contains cycles,
sep(P;, P;) can be infinite. We defing) (P) = (P, EM) to be the subgraph of the
depth-order grapi(P) where(P;, P;) € EM if and only if sep(P;, P;) = 1in G(P).

Lemma 5.3 If G(P) is acyclic, the transitive closure 6f) (P) is the transitive closure
of G(P).

Proof. We have to prove that there is a pdth~» P; in G(P) if and only if there is a path
P, ~ Pjin G (P). The “if” part is obvious sinc&")(P) is a subgraph of(P). We
prove the “only if” part by induction orep(P;, P;).

If sep(P;, P;) = 1, the arc(P;, P;) exists inG™M(P) by construction. Now assume
there is a path i) (P) between all nodes with separation Take P; and P; in G(P)
which have separatiom + 1. Then there is a node such thatsep(P;,z) = 1 and
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sep(z, P;) = m. By the induction hypothesis, we then have a pBth— = ~ P; in
GgO(P). O

For arbitrary triangles in 3-space, the number of ara§{(P) can still be©(n?). For
some special classes of objects, however, the number ofsdingar. For example, one
can show that this number is linear for a set of disjoint petyta whose projections form

a set of polygonal pseudodisit?]. Here we concentrate on the case where the objects in
the given sef project onto fat convex objects. We show that in this casentimeber of
arcs is also linear. Since fat convex objects project toliggas, showing this also shows
that the number of arcs () (P) is small if the input is a set of fat objects. We start with
an auxiliary lemma

Lemma5.4 Let P, € P be an object and |62 (i) be the subset of object € P that
are aboveP; and wheresep(P;, P;) = 1. Then the projectionsroj(P;) of the objects
P; € P*(i) are pairwise disjoint.

Proof. Suppose not. Then there are objefts P, € P (i) such thatproj(P;) N
proj(Py) # 0 andsep(P;, P;) = 1 andsep(P;, Pr) = 1. Sinceproj(P;) andproj(Px)
intersect, they must share at least one point, so there reust larc betweeﬁ’j and Py

in G(P). Therefore, eithesep(FP;, P;) > 1 or sep(P;, P;) > 1, either case being a con-
tradiction. O

Theorem 5.5 LetP be a collection of, disjoint objects irR? that project to conves-fat
objects. Then the number of edgesiit) (P) is O(n/3).

Proof. We will charge each arc ig")(P) to an object, and then use a packing argument
to show that the number of arcs@i") (P) charged to each object®(1/0).

We project all objects onto they-plane, making them convex fat objects. In this setting,
we say that one object is above another if the original objsatisfy this relationship.

Recall that for a planar objeet its size is defined as the radius of its smallest enclosing
disk. Consider an ar¢P;, P;) in G (P). We charge the arc to the smaller of the two
objects. That is, we charge the arcRpif size(proj(P;)) < size(proj(P;)) and toF;
otherwise, breaking ties arbitrarily. We claim that anyeubjis charged?(l /) arcs.

To prove this, take an arbitrary objeEt such that(P;, P;) is charged taP;. Letp =
size(proj(P;)). If there is an arc i5(!) (P) betweenp; andP,, thenproj(P;) intersects
proj(P;). Letp be a point in this intersection. Then a circle centereg &ith radiusp

is centered itproj(P;) and does not fully enclogeroj(P;), or elseproj(P;) would have

a smallest enclosmg circle that is smaller or equal to thatroj(7;). Thus this circle
contains at leasmp? units of area oproj(P;) by the definition of fatness. Also, this
circle is completely enclosed in a circle of radﬂpscentered at the center of the smallest
enclosing disk obroj(F;). This is illustrated in Figur®.1

Since all objectproj(P;) whereP; is aboveP; andsep(P;, P;) = 1 must be disjoint
by Lemmabs.4, and because each must have at I@ast> units of area inside a disk that
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Figure 5.1 lllustration of the packing argument.

has47p? units of area, there can only d¢3 edges ofG(!) (P) charged taP;. We must
double this number to account for obje@sbelow P; such tha{ P;, P;) is charged tdP;.
Therefore, we get an upper bound on the number of arcs chéwgedof 8/5. Finally,
since there are objects G (P) can have at mostn/3 edges, which i©)(n/3). O

5.4 Computing depth orders

We now present the algorithm for finding the depth order oftaPse- { Py, ..., P,} of
n disjoint g-fat convex polyhedra. In contrast to Theor&rh, we require the complexity
of the projection of each object to be constant.

Witness edges. One of the basic steps that we need to perform repeatedlyrinlga-
rithm will be to find polyhedra that are above a query polyloadrTo facilitate this, we
will add so-calledwitness edgemside the projection of eack;. They are defined as
follows.

Let 5’ be defined so that each memberofoj(P;) | P, € P} is 5'-fat. By Lemmab.1
we know that3’ = Q(8). Also letC = {0,«,2a,...,ca} wherea = (3'w)/8 and
¢ = |27 /a]. We call the directions i@ canonical directionss in Chaptel. We require
the witness edges to have the following properties.WeandV; be the sets of witness
edges constructed fdr; and P; respectively.

(i) Each witness edge has one of the canonical directions.
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(if) For any pair of polyhedraP; and P;, we have thaproj(P;) intersectgproj(F;) if
and only if at least one of the following is true:

e A vertex of proj(F;) is insideproj(F;), or a vertex ofproj(P;) is inside
proj(F).
e A witness edge iit¥/; crosses a witness edgelir;.

The construction of the sét/; of withess edges foP; is done as follows. For each
edgee = vw of proj(P;) we add tolV; two witness edges’ ande” that are incident
to v andw, respectively, extend into the interior &f, and form a triangle witke. The
directions of the witnesses are chosen from the canonidtibns, such that the interior
angles that’ ande” make withe are minimal—see Figurg.2 We claim that if we add

Figure 5.2 A projection of a polyhedron with witness edges added

the witness edges in this manner, they have the requirecepiep. The first property
holds by construction, so it remains to prove the secondeastpp We first argue that
the witness edges lie completely insigej(P;), which implies that the “if”-part of the
second property holds.

Lemma 5.6 The witness edges W, lie completely insideroj(P;).

Proof. Let e be the edge for which we are adding witness edgesp betthe midpoint of
e and consider the circl€' with centerp and diameter equal to the lengtheofSuppose
an edge obroj(P;) intersects the triangle formed lay¢’, ande”. Note that this region
must be inside the isosceles triangle with anglemnd base—the lighter region in Fig-
ure5.3by the minimal-angle condition which implies that the aisgleate makes withe’
ande” are at mostv. Then, by convexity oproj(P;), we know thatproj(F;) N C must
be completely inside the union of the triangular wedges guFé5.3. These wedges have
area at most'r|e|?/8 insideC. Hence area(proj(P;) N C) < B'w|e|?/4, contradicting
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Figure 5.3 No edge of the polygon may enter the light gray region.

our assumption thatroj(P;) is 5’-fat. O

The following lemma, which follows directly from Lemnta2, finishes the proof that the
witness edges have the required properties.

Lemma 5.7 If proj(F;) intersectsproj(P;) andproj(F;) does not contain a vertex of
proj(P;) or vice versa, then a witness edge frélnintersects a witness edge fra.

The algorithm. The general idea of our algorithm is as follows. By Lem®ait is
sufficient to find all pairs of objectB;, P; of separation 1 in the depth-order graph. Such
a pair of objects must, of course, intersect in the projectithus ideally we would like

to find among all pairg’;, P; whose projections intersect the ones of separation 1. Our
algorithm does not quite achieve this—it will find more paiisut the number of extra
pairs we find will be small. LemmA&.7 suggests that the task of finding the intersecting
pairs of projections can be broken into two parts: findingg#ir which there is a vertex

of the projection of one polyhedron inside the projectiomobther, and finding crossing
pairs of witness edges.

Below we give a more detailed description of the algorithmhe Rlgorithm will find
a setA of arcs—a superset of the ar¢B;, P;) for objects of separation 1—and then
topologically sort the grapg* = (P, A). Initially A is empty.

1. For every vertex of each object’; € P, find the objects”®(v) and P%(v) that
are directly below and above respectively, and add the ar¢®’(v), P;) and
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(P, P%(v)) to A.

2. Sortthe objects by decreasing size so $hafproj(P;)) > --- > size(proj(F,)),
and defineS; = {Py,..., P;}.

3. For every witness edgeassociated with each;, find a setP(e) consisting of
objectsP; € S, with the following properties:

(P1) EachP; € P(e) has a withess edge that intersects
(P2) EachP; € P(e) is aboveP;.

(P3) EachP; € S;_; with sep(P;, P;) = 1 that satisfies (P1) and (P2) is a member
of P(e).

ForeachP;, add the setof arg P;, P;) : P; € P(e) ande is a witness edge a¥; }
to A.

4. Repeat stef with “below” substituted for “above” and the directions dietarcs
added reversed.

5. Topologically sort the grapfi* = (P, A) and report the order.

Lemma 5.8 The order reported by the algorithm is a valid depth ordefpif a depth
order exists.

Proof. Assume a depth order exists fBr. It follows directly from the construction that
every arc added to the sdtis also an arc in the depth-order gra@tP). It remains to
argue thatd is a superset of the set of arcs in the grgph (P).

Consider an ar¢P;, P;) in GV (P). If there is a vertex ofroj(P;) in proj(P;) (or vice
versa) then, becausep(P;, P;) = 1, that vertex is directly belowP; (resp. above?;).
Hence, the arc is found in Stdp By Lemmab.7, the remaining case is that a witness
edge ofproj(P;) intersects a witness edge fropnoj(P;). Without loss of generality,
assumeP; is smaller thanP;. Hence,P; € S;_;. Since(F;, P;) is an arc ing(l)(P),
sep(P;, P;) = 1. By condition (P3), the arc will be found in St&oor 4, depending on
whetherP; is above or below?;. O

Step1 can be carried out efficiently using the vertical ray-shogtilata structure pre-
sented in Chaptet. Hence, it remains to describe St&m more detail. This step will be
performed as follows. We will treat eaéh, . . ., P, in order. When we have to handig,
we will make sure we have a data structure available that wejaary with each witness
edgee of P; and that will then report the s@t(e). After having queried with all witness
edges ofP;, we insertP; into the data structure and proceed with ;. Next we describe
this data structure.
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The witness-edge-intersection data structure. Consider the set of all witness edges of
the objects inP;_;. These witness edges have canonical directions, so we catiopa
them into|C| subsets depending on their directions. The query segméas one of
the canonical directions as well. Hence, we construct focheaibsetC| different data
structures, one for each query direction. We now describesttucture for one such
subset, let’s call itV, and a fixed query direction.

Assume without loss of generality that the witness edged/imre all horizontal, and
that the query edge is vertical. The structure is a multi-level data structuedied as
follows.

e The top level of the data structure is a segment feen the projections of the
edges inlW onto thexz-axis. Note that each nodein 7 corresponds to a vertical
slab in the plane.

e Let W (v) denote the edges i whose projection is in the canonical subset of
v. Such an edge crosses the slabvdbut not the slab of the parent of We
store the edges i/ (v) in a balanced binary treé€(v), ordered according to their
y-coordinates. We call this the “slab tree”. So far our suuets just a standard
two-level tree to perform intersection queries with vetisegments in a set of
horizontal segment in the planéZ).

e Lety beanodeiry (v). LetP(1) denote the subset of objects that have a witness
edge in the subtree rootedat The nodeu represents a rectangulaegion R(u)
that is bounded by two slab boundaries and the topmost atmhywiost edge stored
in the subtree rooted at We associate with: a reduced subs@?(y) C P(u) of
the objects, in the following wayP; € P(u) iff P; € P(n) andsize(proj(P;)) >
size(R(u))/2v/2.

By Lemma4.1we can find a sef(u) consisting ofO(1/%) points such the pro-
jection of any objec; € P(y) is stabbed. We arbitrarily assign eah € P(u)

to one of the pointg it contains, and we associate a balanced binary search tree
7 (q) with each poing on the associated objects, where the sorting order is defined

by the height of the objects along the vertical line throggh

This finishes the description of the data structure. Next escdbe the algorithms to
query the structure and to insert an object.

Lemma 5.9 With the structure described above, we can find théPse} referred to in
Step3 of the depth-order algorithm i®((1/3%) log® n) time. Furthermore, the s@t(e)
containgD((1/4°) log® n) objects.

Proof. Recall that we actually have to quefy| = O(1/3) different versions of the
structure. We focus on the time spent in one of these strestur

2This is only true because we assumed the edgd¥ iare horizontal and the query edge is vertical. In
general,u will represent a parallelogram, but this does not influehesarguments.
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To perform a query with a withess edgéelonging to an objeck;, we search withe

in the first two levels of the tree in the standard way. ThisgiusO(log® n) nodesyu
whose subtrees contain exactly those edges that intersédteach node:, we use the
treesT (q) for ¢ € Q(u) to find the lowest object that is aboy®. We can search i (¢)
sinceP; is known to intersect all objects iR(¢) in the projection. Hence, at, we find
|Q(u)| objects inO(|Q(w)]log n) time in total. The query time and the bound on the size
of P(e) follow.

It remains to argue that the reported set has the requirgzbpies. Properties (P1) and
(P2) follow immediately from the definition of the data stwe and query algorithm.
Furthermore, when we query a tré¢q) we can indeed restrict our attention to the lowest
object that is above’;, because the other objecty will either be belowP; or have
sep(P;, P;) > 1. Hence, to prove (P3) it is sufficient to argue that @hysatisfying (P1)

and (P2) and witlsep(P;, P;) = 1 will be a member of one of the se®(). We know
that the object will be a member &f(1.) for a visited node:.

Suppose for a contradiction th&f ¢ P (). This means we must hase(proj(P;)) <
size(R())/2v/2. This can only happen whesize(proj(P;)) is less thani/2, whered
is the distance between the top and bottom edg®&(ef), becauseP; crosses the slab
of which R(u) is a part. On the other hand, when we reach a node the slab tree
by querying with a witness edgeof P;, we havesize(proj(P;)) > lengthle)/2 > d/2.
This contradicts that when we query with a witness edgeP;, all objectsP; in the data
structure haveize(proj(P;)) > size(proj(F;)). O

Lemma 5.10 An objectP; can be inserted into the structureGri(1/3)log® n(logn +
1//3%)) time.

Proof. Each of theO(1) witness edges aP; has to be inserted int@¢| = O(1/0) struc-
tures. To insert a witness edge, we first find each nodea slab tree whose canonical
subset contains the witness edge. We tesizif( P;) > size(R(r))/2 and, if so, find a
pointg € Q(n) that is contained iproj(F;) and insertP; into the tree7 (¢). This takes
O(log® n(logn 4 1/42)) time per structure, s®((1/3) log® n(logn + 1/42)) time in
total. O

From the two lemmas above, we see that S&asd4 of the depth-order algorithm can
be performed irO((1/4%)n log® n) time in total. We get the following theorem.

Theorem 5.11 LetP be a collection of. disjoint constant-complexity-fat convex poly-
hedra inR*. Then we can compute a depth order®in time O((1/5%)nlog® n), if it
exists.
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5.5 \Verifying depth orders

In order for our algorithm to be complete, it should outpw torrect depth order if
one exists, but it should also not output an incorrect depdleraf no depth order exists.
Unfortunately the algorithm of the previous section doesnezessarily detect cycles in
the <-relation. Hence, we present an algorithm for checking et given order is
correct.

We use the general approach by De Betgal. [39] for verifying depth orders. Let
L = Py,..., P, be the given order. We define, = {P,..., P2} andLy =
{Pns2)41,- - > Pn}. We first check if any object i, is above any objectii;. Clearly,

if the answer is “yes” then the given ordering is not valid. h@wise, we verify the
lists L1 and Lo recursively. IfT'(3,n) is the amount of time to check the objectslin
against those i+, then the overall algorithm tak&s(7'(3, n) logn) time. We shall see
thatT'(3,n) = O((1/5%)nlog®n), so the algorithm for verifying the depth order takes
O((1/3%*)nlog® n) time. Next we describe how to check the objectginagainst those
in Lo.

First we introduce a new type of withess edge. The differevite the witness edges in
Section5.4is that the new witness edges will have canonical directioB®, rather than

in the projection. To achieve this we again use towers. Réwafollowing lemma from

Chapter3.

Lemma 3.11 Let o := [54v/3/3]. For any convex3-fat objecto in R?, there exist
concentric axis-aligned cubés (o) andC™ (o) with C~ (o) C o C CT(0) such that

size(C* (o))
size(C'~(0))

= 0.

Assume we are give@@~ (o) andC™ (o) for objecto. We partition each face af'* (o)
into squares with side length equal to the side lengifiofo). For each facef of C~ (o)
and each square on the corresponding facet ofo), we sweepf so that it coincides
with the square—see Figute4(a). The sweeping directions form the set of canonical
directions. There are at most different directions that a facet &~ (o) can be swept
in, so we have)(1//3?) canonical directions. We denote an arbitrary member ofsthis
of directions byd_: Note that the set of canonical directions thus obtained doedepend
ono, only on the valuer, which is specified by the fatness factarThis is precisely the
construction of towers for convex objects we gave in Chapter

For eachP; we construct a sdt/; of witness edges, as follows. First, we add the edges
of C~(P;) to W;. Second, for each silhouette verte>of P,—a silhouette vertex is a
vertex whose projection is a boundary vertex of the projectif ,—we add an edge,

that connects to one of the facets af — (F;). This edge is allowed to be in any of the
canonical directions as long as it reaches a faceét of ;). We can be certain that at
least one direction works farsince there must be at least one pair consisting of a facet
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Cc+

Figure 5.4 (a) One of the canonical directions. (b) Projection of thes métness edges
and witness vertices.

of C~(P;) and a square on a facet 6f" (P;) such thaw is hit when sweeping' to that
square.

We also add some verticesBthat we callwitness verticesas follows—see Figurg.4(b).
For each witness edgewe add the intersection point betweetw; (e) ando proj(C~ (F;)),
lifted back toe, to the set of witness vertices fét.. Moreover, if the projected witness
edges of two consecutive silhouette vertices interseen e lift the intersection points
to one of the two intersecting witness edges (choosingrarfijt), and make the result-
ing point a witness vertex. Finally, we add the vertices’of( ;) to the set of witness
vertices.

Lemma 5.12 The witness edges satisfy the properties that

(i) Each witness edge has one of the canonical directions.

(if) For any pair of polyhedr&; andP;, proj(P;) intersectproj(P;) if and only if at
least one of the following is true:

e A projected witness or silhouette vertex Bf is insideproj(FP;), or a pro-
Jjected witness or silhouette vertexBf is insideproj(F;).

o A projected witness edge Ifr; crosses a projected witness edgélip.

Proof. Property (i) is satisfied by construction. Also, if one of tfwe conditions in
property (i) is satisfied, then the projections/@fandP; must intersect since they share
a point. Therefore, we will concentrate on proving that gguoted withess edge iW/;
crosses a projected witness edgélin assuming thaproj(P;) N proj(P;) # 0, and that
no projected witness or silhouette vertexf®fis contained iproj(P;) (or vice versa).
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Sinceproj(F;) intersectproj(P;) and no projected silhouette vertex of one is inside the
projection of the other, there must be silhouette edges@f P;) andproj(P;) that cross.
Take one such pair of edges and call therande ;. Consider the arrangementinduced by
the projections of the silhouette edges and the witnessseafge, and letf(e;) denote
the (bounded) face in this arrangement witton its boundary—see Figuged(b). Define
f(e;) similarly for the arrangementinduced by the projectionthefsilhouette edges and
the witness edges d?;. By Lemma5.2, there must be an intersection between a pair of
edges fromf(e;) and f(e;), neither of which iproj(e;) or proj(e;). Hence, there must
be an intersection between two projected witness edges. O

It follows from Lemmab.12that there is an object fromi; below an object froni,
when at least one of the following conditions holds for somie p;, P; with P; € L, and
P; € Ly: awitness or silhouette vertex #f is belowP;, or a witness or silhouette vertex
of P; is aboveP;, or a witness edge af; is below a witness edge @;. To test for the
first condition, we construct a data structure for vertiegl shooting on the objects if»
and query it with upward rays from the witness and silhouetigices of the objects in
L,. The second condition can be tested similarly, namely bgiranting a data structure
for vertical ray shooting on the objects In and query it with downward rays from the
witness and silhouette vertices of the objecté.in By Theoremd.8and the fact that the
total number of witness and silhouette vertice®)ig:), this will take O((1/52) log® n)

in total. To test the third condition we proceed as followst W (L, ) andW (L2) denote
the set of all witness edges defined for the objects irand L, respectively. We will
preprocess$V (L2) into a data structure for querying with witness edges fiéiL, ),
according to the following lemma.

Lemma 5.13 We can preprocess the $ét(Ls) in O((1/3%)nlogn) time into a data
structure of sizé)((1/3%*)nlogn) such that, for any witness edge= W (L), we can
determine irD((1/?) log® n) time whether any witness edge frdii( L) is abover.

Proof. Let W{Ly) C W(L3) denote the subset of witness edges of canonical direction
d. Note that
Y WilLa)l = [W(L2)| = O(n).
d

DefineW (L) similarly. For each pair of directiong, d> we build a data structure on
Wz (L) for querying with edges fronV ;. (L1). (In fact, the structure can be queried

with any segment with directio@.) Assume without loss of generality thét is parallel

to thez-axis andds is parallel to they-axis. The structure is a multi-level data structure
similar to the structure of Sectidh4. The first two levels are exactly the same as for the
structure in Sectio®.4: the first level is a segment tree on theanges of the witness
edges, and the second level is a balanced binary searchrtrdeioy-values (in Sec-
tion 5.4this was called the slab tree). For each canonical subset@dain the slab tree,
we store the witness edge with the highgsioordinate. Note that the witness edge with
the highest-coordinate is a single edge since the witness edges in tieniaal subset
all have the same direction and the query edge will have a fikedtion as well.
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A query with a witness edgee W; (L;) can be answered if(log” n) time, as follows:
query with thex-coordinate of in the segment tree, for each noden the path query
with the y-range ofe in the associated slab tré&(v), and for each selected nogein
7 (v) check if the witness stored there is abeve

When we are querying with an edgewe actually have to query in the sétg;( L,) for

each canonical directiof Since there aré(1/3%) canonical directions this means that
the total query time i©)((1/3%) log® n).

Ifwe lets := [W; (L2)|, building the structure oW ;. (L) for a given query directiod,

can be done i (s log s) time. This is because the associated structures of the segme
tree (the slab trees) can be built in linear time if we prea-toe witness edges og+
cooordinate. After that we compute the highest edge for eacdke in a slab tree in a
bottom up fashion—the highest edge for a node is the high#teohighest edges of its
two children—in linear time. Hence, the overall preprogggsime is the same as the
amount of storage, which 9(slog s). Overall, the preprocessing is therefore

>4 OWg (L2)[log [Wg (L2)])
O(1/8%) - 32 g, O(Wg, (L2)|log Wy, (L2)])
O((1/3*)nlogn).

Putting everything together, we get the following theorem.

Theorem 5.14 We can verify whether a given order on a seb.@fisjoint convex constant-
complexity3-fat polyhedra irR? is a valid depth order i) ((1/5%)nlog® n) time.

5.6 Conclusion

We have presented new and improved solutions to two probbenfast convex polyhedra
in 3-space: computing depth orders, and verifying deptleiedOne open problem is to
see if the results can be extended to fat non-convex polghedfat curved objects.

Our algorithm for verifying depth orders uses a collectidnvitness edges that have
canonical directions in 3D and allow us to capture (togettidr a certain set of points
in the objects) the above-below relation between the abjdttwould be interesting to
investigate if these witness edges can be useful for otlodrigms on convex fat objects
as well.
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CHAPTER O

Visibility maps

6.1 Introduction

Hidden-surface removal is an important and well-studiethmotational-geometry prob-
lem with obvious applications in computer graphics. Thebpgm is to find those por-
tions of objects in a scene that are visible from a given vigwip There are two main
approaches to the hidden-surface removal problemintiage-space approachnd the
object-space approachn the former, one calculates the visible object for eactelpdf
the image; the well known Z-buffer algorithm is the standaxdmple of this. In the latter,
one computes the so-call@ibility mapof the scene, which gives an exact description
of the visible part of each object; this is the approach takeromputational geometry.

Formally, the visibility map of a seP of objects inR? with respect to a viewpoint is
defined as the subdivision of the viewing plane into maxiregions such that in each
region a single object if? is visible fromp, or no object is visible. We will assume in
this chapter, as is usual, that the objects are disjoint. viibility map of a set ofn
constant-complexity objects can be computedim?) time [67]. Since the (combina-
torial) complexity of the visibility map can b@(n?)—a set ofn long and thin triangles
that form a grid-like pattern when projected on the viewitane is an example—this is
optimal in the worst case. In most cases, however, the codityplef the visibility map
is much smaller than quadratic. Therefore the main chadlémghe design of algorithms
for computing visibility maps has been to obtautput-sensitivalgorithms: algorithms
whose running time depends not only on the complexity of tipeii, », but also on the
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Figure 6.1 (&) The visibility map of a scene with cyclic overlap. (b) TWisibility map
of fat boxes can have quadratic complexity. Left: the sc&ight: the visibility map for
p=(0,0,00).

complexity of the output (that is, the visibility map), Ideally the running time should
be near-linear im andk.

The first output-sensitive algorithms for computing vibipimaps only worked for poly-
gons parallel to the viewing plane or for the slightly moregel case that a depth order
on the objects exists and is givebs] 53, 54, 80, 81, 88]. Unfortunately a depth order
need not exist since there can be cyclic overlap among trextshi-see Figures.1 (a).
De Berg and Overmars3§] (see also 28]) developed a method to obtain an output-
sensitive algorithm that does not need a depth order. Wheliedgo axis-parallel boxes
(or, more generally;-oriented polyhedra) it runs i@((n + k) log n) time [38] and when
applied to arbitrary triangles it runs i@(n'+s 4+ n?/3+k2/3) time [6]. Unfortunately,
the running time for the algorithm when applied to arbitraigngles is not near-linear in
n andk; for example, wherk = n the running time iO(n*/3*¢). For general curved
objects no output-sensitive algorithm is knotnot even when a depth order exists and
is given.

In this chapter we study the hidden-surface removal prolitanso-calledfat objects—
see Chaptet for a definition of fatness. As illustrated in Figuel(b), the complexity
of the visibility map of fat objects can still b®(n?), so also here the main challenge is
to obtain an output-sensitive algorithm. Since hidderiasigr removal has been widely
studied in computational geometry, it is not surprising thaas also been studied for fat
objects: Katzt al.[60] gave an algorithm with running tim@((U (n) + k) log® n), where
U(m) denotes the maximum complexity of the union of the projectato the viewing
plane of any subset of. objects. Sincé/(m) = O(m loglogm) for fat polyhedra76]
andU(m) = O(\sy2(m)log?m) for fat curved objects30], their algorithm is near-

10ne might be tempted to try to cut the input objects until thaye a depth order. This is probably not such
a good idea becauge(n3/2) cuts are required for some exampl@g][ Also, it has recently been show]
that minimizing the number of cuts that removes a depth aeddP-complete.

2Some of the algorithms can be generalized to curved objesitg) standard techniques. The resulting
algorithms are not very efficient, however, and typicallwéaunning time close to quadratic even when the
visibility map has linear complexity.
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linear inn andk. (Here\yi2(n) is the maximum length of a(, s + 2) Davenport-
Schinzel sequence}; 2(n) is almost linear inn, for any constant.) However, the
algorithm only works if a depth order exists and is given.sllbads to the main question
we wish to answer: is it possible to obtain an output-sareshidden-surface removal
algorithm for fat objects that is near-linearrandk and does not need a depth order on
the objects? We answer this question affirmatively by giangalgorithm with running
time O((n + k) polylog n) for fat convex objects of constant complexity. More prelgise
the running time i9D((n log n(loglogn)? + k)log® n) when the objects are polyhedra,
and itisO((nlog”** n + k)log® n) when the objects are curved.

The only previously known method for output-sensitive l@desurface removal that can
handle objects without depth ord@8 38] needs an auxiliary data structure for ray shoot-
ing in so-callecturtains—these are semi-infinite surfaces, extending downward fham
edges of the input objects—and it appears to be difficult tdippfrom the fact that the
objects are fat when implementing this data structure. @lsis explains why there is cur-
rently no efficient output-sensitive algorithm for hiddsurface removal in curved objects:
there are no efficient data structures known for ray shodtuitty curved rays, in this case)
in curved curtains. Although our algorithm borrows someaglé&om this method—we
describe the necessary preliminaries in Sedbi@+—we therefore proceed differently. In-
stead of building a data structure for ray shooting in cagan 3D, we project the rays
and the objects onto planes “in between” the objects andayge iThen ray shooting boils
down to tracing the rays on these planes similar to the legvent-intersection algorithm
of Bentley and Ottmanrili]. To make this work, we need a collection of planes such that
for every ray and object one of the planes separates thenthiBare use a binary space
partition on the objects. Secti@3describes all of this in detail. We conclude the chapter
in Section6.4 by mentioning some open problems.

6.2 Preliminaries

Visibility maps. Next we define some notation and terminology relating tobilisy
maps. We assume from now on that we are looking at the scenedbmve with the
viewpoint atz = oo; hence, we are dealing with a parallel view. As already nosretil,
the visibility map M (P) of a setP of objects is the subdivision of the viewing plane into
maximal regions such that in each region a single objeBtimvisible from the viewpoint
p, Or NO object is visible. We assume without loss of generétiat the viewing plane is
thezy-plane.

Consider an object € P. We denote the (orthogonal) projection®bnto the viewing
plane byproj(o). Sinceo is convex, the boundary gfroj(o) consists of the projection
of all points of vertical tangency of. Let (o) denote the curveon the boundary ob
that projects onto the boundary pfoj(o). Note that ifo is polyhedralg (o) consists of

SFor simplicity of presentation we assumedoes not have any vertical facets, so thgb) is uniquely
defined. It is easy to adapt the definitions to the general case
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Figure 6.2 A scene consisting of two polyhedral objects, and theibilisy map. For one
of the objects, its silhouette curves and vertices are atditin bold. One arc and two
nodes of the visibility map are indicated explicitly, buttotal the visibility map has six
arcs and five nodes.

certain edges of. We cuto (o) into two pieces at the points of minimum and maximum
z-coordinate; we can assume without loss of generality tiestd points are unique. We
call these piecesilhouette curves Note that for polyhedral objects a silhouette curve
consists, in general, of multiple edges of the object—sgareb.2 The endpoints of the
silhouette curves are callegrtices

M(P) is a plane graph whos®desare intersection points of projected silhouette curves
and whosercsare portions of projected silhouette curves. Arcs of thivilisy map will

be denoted by, and silhouette curves lay The curve whose projection contains the arc
a is denoteck(a). Note that a single silhouette curve can induce more tharaoneso

for two arcsa, a’ we can have(a) = e(a’). It will be convenient to also consider the
projections of visible endpoints of silhouette curves{(ibavisible vertices) as nodes, as
indicated in Figurés.2 Since we cut (o) into two pieces when it changes direction with
respect to the-axis, the arcs of(P) arez-monotone.

Curtains. For a curvee in R? define thecurtain of e, denotedcurt(e), as the ruled
surface constructed by taking a vertical ray pointing doardrvand moving its starting
point from one end oé to the other. Thus, it is a segment theaurt(e) is an infinite
polygon defined by and two unbounded edges, each parallel to:tagis. For a sef
of curves we leturt(E) := {curt(e) | e € E}.

Computing visibility maps. Our algorithm is based on the existing output-sensitive
hidden-surface removal algorithm frorag]. Hence, we give a brief overview of this
algorithm.

The algorithm is a plane-sweep algorithm. It sweeps ovewniteeing plane from left
to right, detecting the arcs of the visibility map along thayw There are two types of
event points: projections of object vertices (these arevknim advance), and nodes of
the visibility map (these will be computed as the sweep @ssgs).
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Figure 6.3 The endpoint of ara is the intersection oproj(e(a)) andproj(e’), and it
corresponds to the ray alor@u) hitting curt(e’). (Note that the objects pictured here are
not fat, but could be the top surfaces of fat polyhedra. Wevdh& objects in this way to
ease visualization.)

When the projection of an object vertexis reached by the sweep line, the algorithm
checks whether is visible. This is done by shooting a ray franvertically upward. The
vertexw is visible if and only if no object is hit by the ray. (Thus thigarithm needs a
supporting data structure that can answer vertical raytgigpqueries such as the one in
Chapter4.) If v is visible, its projection is a node of the visibility map. i$mode will
then be treated as an event for the sweep, as described next.

When a node of the visibility map is reached by the sweep thealgorithm proceeds as
follows. First the arcs ending at that node—this informaiian easily be maintained—
are reported. Next it is determined whether any new arcsatttre node, that is, whether
any arcs have the node as their left endpoint. This can belel@diased on the two

silhouette curves defining the node. For each newsaits right endpoint is computed

and inserted into the event queue.

It remains to explain how to compute the right endpoint of\eegiarca of the visibility
map. An arca can end for two reasons. One is that the silhouette cefwg defining

a ends. The other is thairoj(e(a)) intersects some other projected silhouette curve
proj(e’) such that eithee(a) becomes invisible o¢’ becomes visible—see Figufe3
This can be detected by a ray shooting in a set of curtainsgesitted next. Whea(a)
becomes invisible because it disappears below some abjien the ray along(a) must

hit the curtain hanging from one efs silhouette curves. When some other silhouette
curvee’ becomes visible, something similar holds. To this end, wWinda ray p(a) for

an arcq of the visibility map as follows. Leg be the point ore(a) projecting onto the left
endpointofa. Project the portion of(a) to the right ofg onto the objecb(q) immediately
belowgq. (If there is no such object, we project onto a plane belowlgjiécts.) This gives
us a ray on the surface ofq) whose projection contains It can be argued?g] that

the point wherep(a) hits curt(e’) corresponds to the point where the silhouette cufve
becomes visible. Since any curtain hit by the ray alefg) is also hit byp(a)—after

4Note that in case of curved objects, the ray will be curved.
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all, p(a) is belowe(a)—we can detect events wherg:) becomes invisible by shooting
alongp(a) as well.

The next lemma summarizes the discussion above.

Lemma 6.1 (De Berg R8]) Let E be the set of silhouette curves of the objectpinThe
right endpoint of an ara of M(P) is the leftmost of the following event points:

e The projection of the right endpoint efa).

e The projection of the first intersection pfa) with a curtain incurt(E).

6.3 The algorithm

As mentioned in the introduction to this chapter, it seentsl ba implement a structure
for ray shooting in curtains that profits from the fact that tibjects are fat. Therefore we
use the following idea.

Consider a collection of curtains hanging from the silhtaietirves of some set of objects
that are all above a plarfe Now suppose we want to do ray shooting in those curtains
with a query ray(a) that lies belowh. Then we can project all objects and the ray dato
and shoot with the projected ray in the union of the projeotgdcts; the point where the
ray first hits a curtain then corresponds to the point whezetbjected ray hits the union.
This is true because in our application the ray will alwaysvisible, so the projected
ray cannot start inside the union. Unfortunately two-disienal ray shooting is still too
costly. If, however, we have to answer many queries, thenameproject all of them
ontoh, and perform a sweep to detect when they intersect the u@boourse there will
not be a plané that separates all objects from all rays. Therefore we cocish binary
space partition (8SP, for short) on the objects. This will give us a collection@flog n)
planes that together separate any ray from all the objetts.rdy will then be traced on
each of these planes. Below, we make this idea more precise.

We start by describing the BSP in Secti6r3.1 then discuss in Sectioh3.2the corre-
spondence between ray shooting in curtains and tracingaassuitable set of planes,
and finally we give the details of the algorithm in Sect&B.3

6.3.1 The data structure

Recall that dalanced aspect ratio tre@r BAR-treefor short) is a special type of BSP for
storing points. The variant known as thbject BAR-tre¢40] stores objects rather than
points and has proved especially useful in designing datatsires for fat objects. It has
been used as a basis for vertical ray shooting in Chdmead [31] as well as approximate
range searching and nearest neighbor searchibg [
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We denote the region associated with a nodethe object BAR-tree foP by region(v),
and we letP, denote the set of all objects € P intersectingregion(v), clipped to
region(v). The following lemma states the properties of the object BAd® we will
need.

Lemma 6.2 (De Berg and Streppel40]) Let P be a set of 3-fat disjoint convex ob-
jects inR?. An object BAR-tree ofP is a BSP tred for P with the following properties:
(i) the tree ha®)(n) leaves and each leaf region interseets /3) objects frompP;

(ii) the depth of the tree i©(log n);

(iii) for each nodev, region(v) has constant complexity and fatness.

De Berg B1] has shown how to augment an object BAR-tfesith secondary structures,
so that vertical ray shooting can be performed efficienthe @ugmentation is as follows.

e For each leaf nodg of 7', we store the se®, inalistL,,.

e For aninternal node, let h,, denote the splitting plane stored:.at

— If h, is vertical, then we store the sgt, No : 0 € P, }—that is, the cross-
sections of the polyhedra iR, with h,—in a structureZ,,, which is an opti-
mal point-location structuresp] on the trapezoidal map defined by N P,,.

— If h, is not vertical, then has two associated data structurgs, and7,,,
defined as follows.
Let P;f denote the set of object parts frafy lying aboveh,,. ThusP, =
P, wherey is the child of v corresponding to the region abo¥g. Let
proj(P;) denote the set of vertical projections of the object®jnontoh,,.
Then7Z" is an optimal point-location structure fof(proj(P;")), the union
of proj(P;5). In our application, we not only store the point-locatiomsture
for U(proj(P;!)), but also an explicit list of all union edges.
The associated structu®- is defined similarly, but this time for the object
parts belowh,, .

Lemma 6.3 (De Berg B1]) The augmented object-BAR-tree data structure above re-
quiresO((% log? %)n log® n(loglogn)?) storage and)((% log? %)n log* n(loglogn)?)
preprocessing time for convexfat polyhedral objects, an@(zznlog’ " n) storage
and O(ﬁnloggﬁ n) preprocessing time for convex-fat curved objects. With this
structure, we can answer vertical ray-shooting queri€¥(ing® n + 1/3) time.

Recall that we want to use the structure not only to answeicatray-shooting queries
in the given set of objects, we also want to use it for ray shgadh the curtains hanging
from the objects’ silhouette curves. The idea is as folldBigppose that the query rays
located inside the region of some lgafThen any object above(except for theD(1/5)
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objects stored at:) will be separated fronp by some of the splitting planes stored at
nodes on the path {@. Hence, the ray shooting query can be answered by tradimthe
unions stored at these nodes.

There is one problem with this approach, however. The quayg are along the pro-
jections of (parts of) silhouette curves onto the object gdiately below them. These
objects and, hence, the query rays can be cut into many digdée BSP. At the points
where a ray is cut into pieces, it moves to a different leafareg Then we would have
to trace the ray on a different set of planes, because thefgaththe root changes—
something we cannot afford.

To avoid this problem we proceed as follows. L&t,(0) denote the top surface of
an objecto, that is, the part of the boundary ofvisible from above. For each object
o € P we will store the union of the projection of a certain subBéb) C P onto
Owop(0). The subsetP(o) is defined as follows. Call an objeotlarge at a nodev
of 7 if o intersectsregion () and the following two conditions are met: &ze(o) <
size(region(parent(r))) and (i) eithersize(o) > size(region(v)) or v is a leaf. Now we
define

P(o) :={ o' € P :thereis anode such thav is large at,
o’ intersectsregion(v), ando’ is aboven }

Finally, we also store the union of the projections of all tigects in’? onto thexy-
plane. (Thery-plane can be seen as a dummy object added below the whole sdginoh
is large at the root of .)

Next we analyze the cost of the additional information. Wechthe following lemma.

Lemma 6.4 Any objecto € P is large atO(logn) nodes, and at any nodethere are
O(1/B) large objects.

Proof. By Lemma®6.2(iii) we know that every cell of7 is O(1)-fat. Lemmal.5 then
implies that any collection of disjoint cells has dengityl ). Therefore, since the cells at
any level of the BAR-tree are disjoint, the number of nod@sany level of the BAR-tree
intersecting some € P with size(region(v)) > size(o) is O(1). An objecto can only
be large at the node if size(region(parent(v))) > size(o). Thus, the number of cells
per level at whictv can be large i©)(1). Finally we know thaZ hasO(log n) levels by
Lemma6.2, proving the first part of the lemma.

To prove the second part of the lemma, we note that a set dfinligj-fat objects has
densityO(1/3) by Lemmal.5. This immediately proves that there are oily1/53)
large objects at any internal node. For leaf nodes thisvi@lfsom Lemmas.2(i). O

Using Lemmab.4we can prove a bound on the total size of all $e{s).

5The fact that the objects may be cut into many pieces als@ptgws from applying the following simple
strategy: compute the object BAR-tree, use it to find a depdleroon the resulting set of pieces, and apply the
algorithm of Katzet al.[60]. The problem is that the visibility map of the pieces may b&clnmore complex
than the visibility map of the original objects.
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Lemma 6.5 3, |[P(0)| = O((1/8) - nlogn).

Proof. We have

Y. 1P()] < > _{(#large objects at) - (# objects intersectingegion(v))}
< 0(1/8)- X, IP < O((1/B) - nlogn),
where the last inequality follows fron3{]. O

Together with the known bounds on the union of fat obje8 76| this is easily seen

to imply that the total amount of storage and preprocessing heeded to construct the
unions of the projections dP(o) onto the top surfaced;., (o) is upper bounded by the
boundsin Lemm#.3

6.3.2 Tracing an arc

Recall that the right endpoint of an arcan be found by shooting with(a) in curt(E).
Next we explain how to find the right endpoint@ising the unions stored ifi and the
unions on the objects’ top surfaces. The key is to find a cdlef O(logn) unions
such that the first point whegga) hits a curtain corresponds to the first point where one
of the unions is hit.

To this end we first define for a nodea collectionS™ () of O(log n) splitting planes:
ST(v) := {splitting planesh, : v/ is an ancestor af andregion (v) is belowh, }.

Lete(a) be the silhouette curve defining an at@nd letp € e(a) be the point projecting
onto the left endpoint ofi. Recall thatp(a) is a ray on the top surface of the object
directly belowp. We denote the projection @fontoo by 5. The first curtain hit by (a)
can now be found using the following lemma.

Lemma 6.6 Let p(a) be a ray orb,,(0) and letp be the starting point of(a). Letv
be the node ir” such thap € region(v) ando is large at,. Then the first curtain from
curt(E) insideregion(v) hit by p(a) corresponds to the first of the following events:

(i) p(a) hits the union of the projection of the objectsfifo) ontod,,(0);

(i) the projection ofp(a) ontoh,, hits the union stored oh,,, for some/’ € S*(v).

Proof. Note that the node referred to in the lemma is unique and must exist, since we
consider thery-plane to be a dummy object below the whole scene.

Let ¢ be the first point wherg(a) intersects a curtain inurt(E), let e be the silhouette
curve defining the curtain, and lgte e be the point directly abové. If g € region(v)
then the object containing the silhouette curi®a member o (o) and we are in case (i).
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Figure 6.4 p(a) hits a curtain ircurt(E) at pointqg when its projection intersects a silhou-
ette curve of a union stored &t (v).

Otherwise there is a splitting plag. stored at some ancestarof v with ¢ aboveh,
andq below h,,. Then the relevant portion ef must be part of the union stored at the
first such node’ (as seen from the root &f). See Figure.4.

Conversely, since all the unions considered are genergtéodstions of) objects above
o, we know thaip(a) cannot hit such a union before it hits a curtain. O

6.3.3 Details of the algorithm

We now describe our algorithm for computing the visibilitapofa seP = {o;,...,0,}

of convex, disjoint, constant-complexity;fat objects. The algorithm is a space-sweep
algorithm that moves a sweep plah@arallel to theyz-plane from left to right through
space. The space sweep induces a plane sweep for each ofdhe stored ir7. Thus,
instead of thinking about the algorithm as a 3D sweep, onealsythink about it as a
number of coordinated 2D sweeps. That is, while we swR&mvith h, we also sweep
each (non-vertical) splitting plarig, with the lineh N h,. Such a 2D sweep is performed
to detect intersections of the union bp with certain rays (projected ontg,). The same
holds for the unions stored for each object: while we swRémwith 1, we sweep the
top surfacel;op (0) of each object with the curveh N d;op(0). Finally, the sweep ok
induces a sweep on the viewing plane. As in the algorithm ff28h the visibility map
will be computed as we go, so that at the end of the sweep tlire ergibility map has
been computed.

The space-sweep algorithm is supported by the following datictures:
e There is a global event quedg where the priority of an event is its-coordinate.
Initially, all vertices of the objects (that is, all endptsrof silhouette curves) are

placed intoQ. In addition, all vertices of any of the unions storedZirare placed
into Q. During the sweep, new event points will be inserted iQtofor example
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endpoints of arcs of the visibility map. Itis also possililattevents will be removed
before they are handled.

e For every splitting plané,, (and the top surface of every objegtwe maintain a
balanced binary tree, which we will call thietersection-detection data structure
This tree will store the edges of the union on the splittirenel (respd;.p (0)) that
intersect the sweep lifeN h,, (resp.hNdkop(0)) as well as the rays traced on it that
intersect the sweep line; the edges and rays are storeden afrtheir intersection
with the sweep line. Thus we are essentially running thedstahline-segment
intersection algorithm of Bentley and Ottmardd] on the union edges and rays.

Next we discuss the events that can take place, and how tedyaadled. The first two
events are essentially subroutines that we use in the otbate

(i) The sweep reaches the left endpoint of anarc
Let e(a) be the silhouette curve defining and letp € e(a) be the point whose
projection is the left endpoint of. Let o be the first object that a vertical ray
downward fronp hits, and lefp € o be the point where is hit. Finally, letv be the
node where is large such thai € region(v). DetermineST (v), and insert the
portion ofe(a) starting atp into each of the intersection-detection data structures
associated with the splitting planesSr (v). (More precisely, the projection of the
silhouette curve onto the plane is added.) Also add the giojeof the silhouette
curve ontod.p, (0) to the intersection-detection structure §orDetermine any new
events using these data structures in the standard wayigthay checking new
pairs of adjacent elements); add any new event3.td-inally, add the following
three events tQ): the right endpoint oé(a), the (first) intersection gé(a) with the
boundary ofregion(v), and the (first) intersection @f a) with the silhouette 0.

(i) The sweep reaches the right endpoint of anarc
Determiner ando as above. Remowe from all intersection-detection data struc-
tures inS™ (v) and the intersection-detection data structure assocwgtad. Re-
move all events associated withfrom (). Check for new events in each of the
intersection-detection data structures; add any new s¥e}. Outputa as an arc
of M. (Note that the right endpoint of an arc may be the left englpafione or two
other arcs; in this case the left endpoints will be sepanagats, which are handled
according to casf).)

(i) The sweep reaches the left verteaf a silhouette curve.
(In other words, we reach the leftmost point of an objeet P.) Determine ifv is
visible by shooting a ray vertically up from it. ifis visible, two arcs start at the
projection ofv onto the viewing plane. Run the actions from cé$dor each of
these arcs.

(iv) The sweep reaches the right vertexf a silhouette curve it is currently tracing
defining an arc currently intersected by the sweep line.
Run the actions from cag@) for the arc ending at the projection of
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e e

Figure 6.5 Casegiii) and(iv)

Figure 6.6 CasegqV) and(vi)

(V) The sweep reaches the intersection point of the union bayrarasome splitting
plane (or top surface of an object) and an artraced on the plane (or top surface).
This case correspondsdditting a curtain ircurt(E). Now the are: ends. Run the
actions from cas@i) for a. One or two new arcs may start at this point, at most one
along the silhouette curvga), and one along the silhouette curve corresponding
to the curtain that is hit. Run the action from cggdor the new arc(s).

(vi) The sweep reaches a pointvhere the projection of a currently visible silhouette
curve onto the object below hits the boundary of a cellwhereo is large.
Leta be the arc defined by the silhouette curve. Remofrem all the intersection-
detection data structures 51" (v) and all events associated withfrom Q. Run
the action for cas@) for the continuation ofi. (The only thing that happens here is
that the sefS™(-) changes, because the ray that we are tracing moves out df a cel
where the object on which the ray is traced is large.)

(vii) The sweep reaches the point where the ohjéatmediately below a currently visi-
ble silhouette curve changes.

94



Figure 6.7 CaseqVii) and(viii)

This can be detected because the visible silhouette cutvacisd ord;, (o), and
therefore we also know where it reaches the boundary of fheudace. Note that

the projection of the poinp where the curve reaches the boundary of the top sur-

face is the right endpoint of an atic Run the actions from cag#) for a. At most
two new arcs start at, one that is the continuation af and one that is along a
silhouette curve ob (which became visible or stops being visible). Run the astio
for case(i) on these curve(s).

(viii) The sweep reaches a point on a splitting plane (or top surfd@a object), where
a union edge starts or ends.
In this case we only have to update the relevant intersed@eaction data structure,
check for new events in the intersection-detection datecires, and add any new
events taQ.

Lemma 6.7 The number of events of tyg@—(vii) is O(n+ klog n), wherek is the com-
plexity of M, and the number of events of typai) is O(( 35 log” &)nlog’ n(loglogn)?)
for fat polyhedra an@(gr=n log""¢ n) for fat curved objects.

Proof. Clearly, the number of events of typ@) (i), (iv), (v), and(vii) is O(k), since they
can be charged to a vertex. 6. The number of events of tyg#i) is O(n). It remains to
bound the number of events of typé). Consider the portion of a silhouette curve:)
defining some are. This portion has a unique objecimmediately below it. Since is
large atO(logn) cells by Lemmé5.4and the projection of(a) ontoo can leave any cell
only a constant number of times, we can conclude that thererdy O(log n) type (vi)
events for any arae, this givingO(k log n) such events in total.

The bound on the number of events of typ#i) follows from Lemmab.3. O

Lemma 6.8 The time taken for each event of tygig—~(vii) is O(log® n), and the time
taken for each event of tyieiii) is O(logn).
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Proof. In all event types, we may need to perform several actiongice¢ray shooting,
updating intersection-detection data structures, deténga setS™ (), and updating).

By Lemma6.3, the time taken for the vertical ray shootingl$log® n). Each event needs
to do only a constant number of ray shooting queries, so $hi¥log® n) in total. The
intersection-detection data structures are balancedybirees, so updates tak¥log n)
time. At each event we have to updé€log n) intersection-detection data structures, so
the total time taken for updating @(log® n). Determining new events in the intersection-
detection data structures take$l) per data structure, so the total amount of time taken
for events of typdiii) is O(log2 n). Determining a sef* () can be done i (logn)
time by searching iff . At each event we may have to remavdog n) event points from

@, each removal takin@(log n) time. Hence, all events of tyd@—(vii) can be handled

in O(log® n) time, as claimed.

The events of typégviii) require onlyO(logn) time, since they only involve a constant
number of operations on a single intersection-detectita staucture. O

The correctness of the algorithm follows from Lemnéakand6.6as well as the correct-
ness of the algorithm ir2@]. We conclude with the following theorem.

Theorem 6.9 The visibility map of a set of. disjoint constant-complexity convexfat
polyhedra iriR? can be computed in tim@((gs log” 5)(n log n(loglogn)*+ k) log® n),
wherek is the complexity of the visibility map. When the objects ateved (and dis-
joint, constant-complexity, convex, apdfat) the visibility map can be computed in time

O(gr=(n log” ™ n 4 k) log® n).

6.4 Conclusion

We presented the first algorithm to compute the visibilityprofa set of fat convex objects
that does not need a depth order and that ruri¥(im + k) polylogn) time.

One obvious open problem is to further reduce the running,tgither by getting rid of
some logarithmic factors or by reducing the dependency erfdtness factof (which
is currently quite bad). A second open problem is to exterdrésults to non-convex
objects. Finally, it would be very interesting to come uphnain approach that works for
low-density scenes, and not just for fat objects. The maitlem here is that the union
complexity of the projection of a low density scene carf{e?), so the approach would
need to use a different data structure than the one presiertgd chapter.
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CHAPTER [

Concluding remarks

In this thesis, we have looked at some computational-gegmpeiblems in the context of
fat objects. We first studied decompositions in two and tliieeensions. We then gave
algorithms and data structures related to three differesttlpms inspired by computer
graphics: ray shooting, depth orders, and hidden-surtmeval.

We introduced the technique of decomposing objects intetsin Chapte8. We showed
its utility in ray shooting, range searching, and in venifyidepth orders. We believe
that this technique has potential for use in other situat@amwell. Also, given that any
(«, 8)-covered polyhedron can have its boundary covere@hly towers, it seems likely
that any algorithm that operates on towers can be extendgd t®)-covered polyhedra
without any extra asymptotic cost. This provides extra imive to work with towers,
since most algorithms for fat objects only apply to objebts fire also convex—often an
unreasonable extra restriction.

Other techniques that could potentially be useful in thariare the witness edges from
Chapterb that give us an easy test of the above/below relation fordgthedra and the
simulation of a space sweep by plane sweeps that we employ@dapte6. Moreover,
we believe that the technique of designing algorithms fdygans that have a small set
of guards, such as in Chap®rcould be interesting on its own.

We conclude by stating some problems that have arisen frisnabrk that would be
exciting to see solved.
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Vertical ray shooting. Our first open problem concerns vertical ray-shooting in-non
convex objects. We would like to have a data structure thatgnaperties (in terms of
guery time and space complexity) similar to those in Secficd This would greatly
improve the algorithms that we have for hidden-surface rexthand depth-order compu-
tation in the context of non-convex objects. Our currentioh relies on covering the
boundaries of the input by convex fat objects. At the momeatcan only do this for
constant-complexityc, 3)-covered polyhedra. We think that it should be possible te pe
form these queries in a more general input model. There dmaitdvo ways of achieving
this. One possibility is that we could improve the result€bapter3. Another possibility

is that a different algorithm could be devised that operdiextly on non-convex objects.

Kinetic data structures. All of the problems that we have studied in this thesis have
been for objects that are stationary. In many applicatisash as in video games and
movies, the objects in the scene move. One way of dealingsuith motion is known

as a kinetic data structur&d. A strategy that is perhaps more commonly used, known
as time-slicing, is to recompute everything in regular @ments (such as for every new
frame). In contrast, a kinetic data structure attempts watg only when a change is
required.

As an example, one popular application for kinetic datacstmes is collision detection.
A kinetic data structure for collision detection keeps adfatertificatesthat the objects
in the scene have not collided as well as a queue of times wiegdrtificates could
potentially fail (the objects could change course, for egln When a time in the queue
is reached, the data structure is updated. Kinetic datatstes have been studied in the
context of realistic input models before—a kinetic dataicture for collision detection
amongst fat objects iR? has recently been proposei].|

We would like to know whether it is possible to create an effitkinetic data structure for
realistic input in any of the problems we studied relatedatimputer graphics. Clearly the
problems would need to be changed slightly in order to makees@ a kinetic context:
a kinetic data structure for the visibility-map problemy gxample, would need to be
updated only when the visibility map changes combinatlyrial

We feel the problem that has the most potential in this regatioat of finding the depth
order of a set of objects. This is because of the result in@e6t3. Since, as we showed
in that section, the size of the transitive reduction of tptt-order graph is not too large,
it might be possible to compute the graph and only change énthe comparability (in
the above/below relation) of a pair of objects changes.

Dynamic data structures. Related to the question of whether a kinetic data structure
can be built, we also wonder whether dynamic data structamse built for any of the
computer-graphics problems that we studied. A dynamic stacture would need to
support insertion and deletion operations. In some casgaantic data structure can be
easily turned into a kinetic data structure. The method &dngl this is to update the data
structure as needed by deleting and reinserting affectiettisb
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Practicality. Finally, it remains to be seen which of the algorithms anédatuctures
presented here are of practical interest. With the possitideption of the data structure
for performing ray-shooting queries in arbitrary direasofrom Chapte#d (which uses
parametric search), all the data structures that we presentertainly implementable.
We would like to see experiments comparing these algorithitis the current state of
the art.

Such experiments might give extra insight into how realistiir realistic input models
actually are. For example, some of the algorithms that wegpriein this thesis have time
complexities with rather high dependencies on the fatneasstant—O(1/3'4) in one
case. In some cases, the dependence on the fatness comg@therént in the algorithm:
making a data structure for every pair of canonical direiio our depth-order algorithm,
for example, can not be helped. In other cases, the depemdertbe fatness constant is
partially an artifact of a proof. Performing experiment®ise way to evaluate whether
these proofs should be targeted for improvement.

99



Index

e-good polygon23
(«, 8)-covered objectl 4

base49
binary space partitior,8

canonical directionsl5, 75
cap,49

Chazelle’s polyhedrorg7
convex hull,3

curtain,87, 88

cyclic overlap,71

density,14
depth ordery1
depth-order graptv,3

edge-visibility polygon31
extended edge-visibility polygoB1

fat object,13

geodesic31
gift-wrapping algorithm3

kinetic data structure},00

locally-v-fat object,13
low density,14

object BAR-tree58, 63, 90

100

output-sensitive algorithn5

pocket,23
pure subpolygor23

ray shooting53
realistic input model6

separation73
silhouette curve8
size,14

star-shaped polygo23
Steiner point23
subpolygon23

tower,48, 81

vertical decompositior26
vertical extension26
vertical projection26
vertical ray shootings3
visibility map, 85
visibility polygon, 23

weakly edge-visible polygor23
window, 23

witness edgeg,5

witness vertices32



References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

Mohammad Ali Abam, Mark de Berg, Sheung-Hung Poon, antliilBe Speckmann.
Kinetic collision detection for convex fat objects. In Yoggar and Thomas Er-
lebach, editorsilgorithms - ESA 2006, 14th Annual European SymposiumgRuri
Switzerland, September 11-13, 2006, Proceedivgjsme 4168 of_ecture Notes in
Computer Scieng@ages 4-15. Springer, 2006.

Pankaj K. Agarwal. Range searching. In Jacob E. GoodmdnJaseph O’Rourke,
editors,Handbook of Discrete and Computational Geome@RC Press, 1997.

Pankaj K. Agarwal, Mark de Berg, Dan Halperin, and Michwa8r. Efficient genera-
tion of k-directional assembly sequences SI@DA '96: Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithipages 122-131, Atlanta,
Georgia, 28-30 January 1996.

Pankaj K. Agarwal and Jeff Erickson. Geometric rangeadgag and its relatives.
In Bernard Chazelle, Jacob E. Goodman, and Richard Pokatitqrs,Advances in
Discrete and Computational Geometmolume 23, pages 1-56. American Mathe-
matical Society, 1998.

Pankaj K. Agarwal, Matthew J. Katz, and Matthew Shariron@puting depth or-
ders for fat objects and related problemSomputational Geometry: Theory and
Applications 5:187-206, 1995.

Pankaj K. Agarwal and Jifi MatouSek. Ray shooting gadametric searchSIAM
Journal on Computing22(4):794-806, 1993.

Pankaj K. Agarwal and Jifi MatouSek. On range-semghvith semi-algebraic sets.
Discrete and Computational Geometfyl:393—-418, 1993.

101



[8] Boris Aronov, Mark de Berg, and Chris Gray. Ray shooting intersection search-
ing amidst fat convex polyhedrain 3-spaceSI@G '06: Proceedings of the Twenty-
Second Annual Symposium on Computational geompéiyes 88—94, New York,
NY, USA, 2006. ACM Press.

[9] Boris Aronov, Mark de Berg, and Chris Gray. Ray shooting intersection search-
ing amidst fat convex polyhedra in 3-spacgomputational Geometry: Theory and
Applications 41:68-76, 2008.

[10] Boris Aronov, Mark de Berg, Chris Gray, and Elena MunaforCutting cycles of
rods in space: hardness and approximatiorS@DA '08: Proceedings of the Nine-
teenth Annual ACM-SIAM Symposium on Discrete Algorithpages 1241-1248,
Philadelphia, PA, USA, 2008. Society for Industrial and Apg Mathematics.

[11] Boris Aronov, Alon Efrat, Vladlen Koltun, and Micha Stra On the union ofk-
round objects in three and four dimensioDsscrete and Computational Geometry
36:511-526, 2006.

[12] Boris Aronov and Micha Sharir. On translational motjganning of a convex poly-
hedron in 3-spaceSIAM Journal on Computin@6(6):1785-1803, 1997.

[13] Julien Basch, Leonidas J. Guibas, and John Hershbddgéa structures for mobile
data.Journal of Algorithms31(1):1-28, April 1999.

[14] Jon L. Bentley and Thomas A. Ottmann. Algorithms foragmg and counting
geometric intersectionsEEE Transactions on Compute23(9):643-647, 1979.

[15] Marshall Bern. Hidden surface removal for rectangldsurnal of Computer and
System Science$0(1):49-69, February 1990.

[16] John F. CannyThe complexity of robot motion planninghD thesis, Massachussetts
Institute of Technology, 1988.

[17] Donald R. Chand and Sham S. Kapur. An algorithm for cap@ytopes.Journal
of the ACM 17(1):78-86, January 1970.

[18] Bernard Chazelle. Convex partitions of polyhedra: #véo bound and worst-case
optimal algorithm.SIAM Journal on Computing.3(3):488-507, August 1984.

[19] Bernard Chazelle. Triangulating a simple polygon imehr time. Discrete and
Computational Geomety(5):485-524, 1991.

[20] Bernard Chazelle. Cutting hyperplanes for divide-aodquer.Discrete and Com-
putational Geometry9:145-158, 1993.

[21] Bernard Chazelle, Herbert Edelsbrunner, Leonidas uib&, Richard Pollack,
Raimund Seidel, Micha Sharir, and Jack Snoeyink. Countimgy @utting cycles
of lines and rods in spaceComputational Geometry: Theory and Applicatipns
1(6):305-323, 1992.

102



[22] Bernard Chazelle, Herbert Edelsbrunner, Leonidasulb&s, Micha Sharir, and
Jorge Stolfi. Lines in space: Combinatorics and algorithmalgorithmica
15(5):428-447, 1996.

[23] Bernard Chazelle and Joel Friedman. Point locationragrtyperplanes and unidi-
rectional ray-shootingComputational Geometry: Theory and ApplicatipAs53—
62, 1994.

[24] Bernard Chazelle and Leonidas J. Guibas. Fractiorsalading: |. A data structuring
technique Algorithmicg 1(2):133-162, 1986.

[25] Bernard Chazelle and Leonidas J. Guibas. Fractionsdading: Il. Applications.
Algorithmica 1(2):163-191, 1986.

[26] Bernard Chazelle, Leonidas J. Guibas, and Der-Tsai Oée power of geometric
duality. BIT, 25(1):76-90, 1985.

[27] Bernard Chazelle and Janet Incerpi. Triangulation sinape-complexity. ACM
Transactions on Graphi¢8(2):135-152, 1984.

[28] Mark de Berg.Ray Shooting, Depth Orders and Hidden Surface Rem&gminger-
Verlag New York, LNCS 703, 1993.

[29] Mark de Berg. Linear size binary space partitions focluttered scenesAlgorith-
mica, 28:353-366, 2000.

[30] Mark de Berg. Improved bounds on the union complexityfatfobjects. In Ra-
maswamy Ramanujam and Sandeep Sen, edi&83,TCS 2005: Foundations of
Software Technology and Theoretical Computer Sciencéy Hérnational Con-
ference, Hyderabad, India, December 15-18, 2005, Procegdivolume 3821 of
Lecture Notes in Computer Scienpages 116-127. Springer, 2005.

[31] Mark de Berg. Vertical ray shooting for fat objects.3€G '05: Proceedings of the
Twenty-First Annual Symposium on Computational geompéges 288—295, 2005.

[32] Mark de Berg, Otfried Cheong, Herman J. Haverkort, J@&um Lim, and Laura
Toma. |/O-efficient flow modeling on fat terrains. In FrankH. A. Dehne, Jorg-
Rudiger Sack, and Norbert Zeh, editofdgorithms and Data Structures, 10th In-
ternational Workshop, WADS 2007, Halifax, Canada, AugGst, 2007, Proceed-
ings volume 4619 of_ecture Notes in Computer Scienpages 239-250. Springer,
2007.

[33] Mark de Berg, Haggai David, Matthew J. Katz, Mark Oversjd. Frank van der
Stappen, and Jules Vleugels. Guarding scenes againsviebgpercubesCompu-
tational Geometry: Theory and Applicatiqrizs:99-117, 2003.

[34] Mark de Berg and Chris Gray. Vertical ray shooting anchpating depth orders
for fat objects. INSODA '06: Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithpmges 494-503, 2006.

103



[35] Mark de Berg and Chris Gray. Computing the visibility pnaf fat objects. In Frank
K. H. A. Dehne, Jorg-Rudiger Sack, and Norbert Zeh, edjtdigorithms and Data
Structures, 10th International Workshop, WADS 2007, ldajiCanada, August 15-
17, 2007, Proceedingsolume 4619 olecture Notes in Computer Scienpages
251-262. Springer, 2007.

[36] Mark de Berg and Chris Gray. Vertical ray shooting anthpating depth orders for
fat objects.SIAM Journal on Computin@®8(1):257-275, 2008.

[37] Mark de Berg, Herman J. Haverkort, Shripad Thite, andraaloma. 1/0-efficient
map overlay and point location in low-density subdivisioirs Takeshi Tokuyama,
editor, Algorithms and Computation, 18th International Symposil®AAC 2007,
Sendai, Japan, December 17-19, 2007, Proceedivmame 4835 of_ecture Notes
in Computer Scieng@ages 500-511. Springer, 2007.

[38] Mark de Berg and Marc H. Overmars. Hidden-surface reahfor c-oriented poly-
hedra.Computational Geometry: Theory and Applicatiph®47-268, 1992.

[39] Mark de Berg, Mark Overmars, and Otfried Schwarzkopgin@uting and verifying
depth ordersSIAM Journal on Computin@®3(2):437-446, April 1994.

[40] Mark de Berg and Micha Streppel. Approximate ranged@ag using binary space
partitions. InProc. 24th Conference on Foundations of Software Techycdogl
Theoretical Computer Sciengeages 110-121, 2004.

[41] Mark de Berg, A. Frank van der Stappen, Jules Vleugeis, Matthew J. Katz.
Realistic input models for geometric algorithn#dgorithmica 34(1):81-97, 2002.

[42] Mark de Berg, Mark van Kreveld, Mark Overmars, and @ifriSchwarzkopfCom-
putational Geometry Algorithms and ApplicatiorSpringer-Verlag, Berlin Heidel-
berg, 3 edition, 2008.

[43] David P. Dobkin and David G. Kirkpatrick. Fast detectiaf polyhedral intersection.
Theoretical Computer Scienc27(3):241-253, 1983.

[44] Christian A. Duncan, Michael T. Goodrich, and Stephenk@bourov. Balanced
aspect ratio trees: Combining the advantages of k-d tregtectrees. ['ODA '99:
Proceedings of the Tenth Annual ACM-SIAM Symposium on @ed&lgorithms
pages 300-309, 1999.

[45] Rex A. Dwyer. On the convex hull of random points in a fojye. Journal of
Applied Probability 25(4):688-699, 1988.

[46] Alon Efrat. The complexity of the union oty (3)-covered objectsSIAM Journal
on Computing34(4):775-787, 2005.

[47] Alon Efrat, Matthew J. Katz, Franck Nielsen, and Michla8ir. Dynamic data
structures for fat objects and their applicatio@mputational Geometry: Theory
and Applications15:215-227, 2000.

104



[48] Hossam A. El Gindy and David Avis. A linear algorithm fasmputing the visibility
polygon from a pointJournal of Algorithms2:186-197, 1981.

[49] Jeff Erickson. New lower bounds for Hopcroft's probleliscrete and Computa-
tional Geometry16:389-418, 1996.

[50] Jeff Erickson. Local polyhedra and geometric grapamputational Geometry:
Theory and Applications31:101-125, 2005.

[51] Esther Ezra and Micha Sharir. Almost tight bound for timéon of fat tetrahedra in
three dimensions. IROCS '07: Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Scienpages 525-535, Washington, DC, USA, 2007.
IEEE Computer Society.

[52] James D. Foley, Andries van Dam, Steven K. Feiner, ahd FoHughesComputer
Graphics, Principles and Practice, Second Editidwddison-Wesley, Reading, Mas-
sachusetts, 1990.

[53] Michael T. Goodrich, Mikhail J. Atallah, and Mark H. Owears. An input-
size/output-size trade-off in the time-complexity of itear hidden surface re-
moval. In M. S. Paterson, editd®yoceedings of the 17th International Colloquium
on Automata, Languages and Programming, ICALP’90 (Warwlokversity, Eng-
land, July 16-20, 1990)volume 443 ofLNCS pages 689-702. Springer-Verlag,
Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong g 1990.

[54] Ralf Hartmut Giting and Thomas Ottmann. New algorigHior special cases of the
hidden line elimination problen€Computer Vision, Graphics, and Image Processing
40(2):188-204, November 1987.

[55] Peter Hachenberger. Exact minkowksi sums of polyhadihexact and efficient
decomposition of polyhedra in convex pieces. In Lars Argéhdel Hoffmann,
and Emo Welzl, editorgAlgorithms - ESA 2007, 15th Annual European Symposium,
Eilat, Israel, October 8-10, 2007, Proceeding®lume 4698 of_ecture Notes in
Computer Scieng@ages 669—-680. Springer, 2007.

[56] Paul J. Heffernan and Joseph S. B. Mitchell. Structwisibility profiles with ap-
plications to problems in simple polygons (extended abgtrain SCG '90: Pro-
ceedings of the Sixth Annual Symposium on Computationategey pages 53—62,
1990.

[57] Stefan Hertel and Kurt Mehlhorn. Fast triangulatiosiohple polygons. liProc. 4th
Conf. Foundations of Computation Theppages 207-218. Springer-Verlag, LNCS
158, 1983.

[58] Matthew J. Katz. 3-d vertical ray shooting and 2-d p@intlosure, range searching,
and arc shooting amidst convex fat objedBmputational Geometry: Theory and
Applications 8:299-316, 1997.

105



[59] Matthew J. Katz. personal communication, 2005.

[60] Matthew J. Katz, Marc Overmars, and Micha Sharir. Edfitihidden surface re-
moval for objects with small union sizeComputational Geometry: Theory and
Applications 2:223-234, 1992.

[61] J. Mark Keil. Polygon decomposition. In J.-R. Sack antdifutia, editorsHand-
book of Computational Geomefrshapter 11, pages 491-518. Elsevier, 2000.

[62] David Kirkpatrick. Optimal search in planar subdivies. SIAM Journal on Com-
puting, 12:28-35, 1983.

[63] David Kirkpatrick. Guarding galleries with no nooksn Proceedings of the 12th
Canadian Conference on Computational Geometry (CCCGii@yes 43—-46, 2000.

[64] David G. Kirkpatrick, Maria M. Klawe, and Robert Endrarfan. Polygon triangula-
tion in O(nloglogn) time with simple data structure®iscrete and Computational
Geometry7:329-346, 1992.

[65] Jifi MatouSek, Janos Pach, Micha Sharir, Shmu&b8y, and Emo Welzl. Fat
triangles determine linearly many holeSIAM Journal on Computind23(1):154—
169, February 1994.

[66] Jifi MatouSek. Efficient partition trees. BCG '91: Proceedings of the Seventh
Annual Symposium on Computational geomgiages 1-9, 1991.

[67] Michael McKenna. Worst-case optimal hidden surfagaaeal. ACM Transactions
on Graphic$6:19-28, 1987.

[68] Avraham A. Melkman. On-line construction of the convexl of a simple polyline.
Information Processing Letter@5(1):11-12, April 1987.

[69] Joseph S. B. Mitchell, David M. Mount, and Subhash Su@uery-sensitive ray
shooting. International Journal of Computational Geometry and Apations
7(4):317-347,1997.

[70] Esther Moet. Computation and complexity of visibility in geometric eomiments
PhD thesis, Department of Computer Science, Utrecht Usitye2008.

[71] Esther Moet, Marc van Kreveld, and A. Frank van der Seapn realistic terrains.
In SCG '06: Proceedings of the Twenty-Second Annual Sympasiu@omputa-
tional geometrypages 177-186, New York, NY, USA, 2006. ACM.

[72] Shai Mohaban and Micha Sharir. Ray shooting amidst igshie three dimensions
and related problem$&IAM Journal on Computing@6(3):654—-674, 1997.

[73] Joseph O'RourkeArt Gallery Theorems and Algorithm®xford University Press,
New York, NY, 1987.

106



[74] Joseph O’Rourke.Computational Geometry in.C Cambridge University Press,
1994.

[75] Marc H. Overmars and A. F. van der Stappen. Range sedyamd point location
among fat objects. IfProc. 2nd European Symposium on Algorithipages 240—
253. Springer Verlag, LNCS 885, 1994.

[76] Janos Pach and Gabor Tardos. On the boundary corpleikihe union of fat
triangles.SIAM Journal on Computing1(6):1745-1760, 2002.

[77] Mike Paterson and F. Frances Yao. Efficient binary spzaxtitions for hidden-
surface removal and solid modelingiscrete and Computational Geometb;485—
503, 1990.

[78] Marco Pellegrini. Ray shooting on triangles in 3-spadégorithmica 9:471-494,
1993.

[79] Marco Pellegrini. Ray shooting and lines in space. koleE. Goodman and Joseph
O’Rourke, editorsHandbook of Discrete and Computational Geomgbgges 599—
614. CRC Press, Boca Raton-New York, 1997.

[80] Franco P. Preparata, Jeffrey Scott Vitter, and Mai&ttinec. Computation of the
axial view of a set of isothetic parallelepiped&\CM Transactions on Graphigcs
9(3):278-300, July 1990.

[81] John H. Reif and Sandeep Sen. An efficient output-seasitdden-surface removal
algorithm and its parallelization. ISCG '88: Proceedings of the Fourth Annual
Symposium on Computational geomepages 193-200, June 1988.

[82] Jim Ruppert and Raimund Seidel. On the difficulty of ngalating three-
dimensional nonconvex polyhedrBiscrete and Computational Geometi227—
253,1992.

[83] E. SchonhardtUber die Zerlegung von Dreieckspolyedern in Tetraetiathema-
tische Annalen98:309-312, 1928.

[84] Anneke A. Schoone and Jan van Leeuwen. Triangulatingustseaped polygon.
Technical Report RUU-CS-80-03, Institute of InformatiavdaComputing Sciences,
Utrecht University, 1980.

[85] Ottfried Schwarzkopf and Jules Vleugels. Range saagcim low-density environ-
ments.Information Processing Letter60:121-127, 1996.

[86] Raimund Seidel. A simple and fast incremental randeahialgorithm for com-
puting trapezoidal decompositions and for triangulatiotygons. Computational
Geometry: Theory and Applications:51-64, 1991.

[87] Micha Sharir and Pankaj K. Agarwadbavenport-Schinzel sequences and their geo-
metric applications Cambridge University Press, New York, NY, USA, 1996.

107



[88] Micha Sharir and Marc H.Overmars. A simple method fotput-sensitive hidden
surface removalACM Transactions on Graphic$1:1-11, 1992.

[89] Micha Sharir and Hayim Shaul. Ray shooting and stonewirg. InProc. 11th
European Symposium on Algorithnpages 470-481. Springer-Verlag, LNCS 2832,
2003.

[90] Micha Sharir and Hayim Shaul. Ray shooting amid balistHest point from a line,
and range emptiness queries. S®DA '05: Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithmpages 525-534, 2005.

[91] Csaba D. Toth. A note on binary plane partitions.SIi@G '01: Proceedings of the
Seventeenth Annual Symposium on Computational gegmpatygs 151-156, New
York, NY, USA, 2001. ACM.

[92] Godfried T. Toussaint. A new linear algorithm for trgulating monotone polygons.
Pattern Recognition Letter2:155-158, 1984,

[93] Godfried T. Toussaint and David Avis. On a convex hujjaithm for polygons and
its application to triangulation problemBattern Recognitionil5(1):23—-29, 1982.

[94] Godfried T. Toussaint and Hossam El Gindy. A countenapie to an algorithm for
computing monotone hulls of simple polygoriattern Recognition Letterd:219—
222,1983.

[95] Pavel Valtr. Guarding galleries where no point sees allsanea. Israel Journal of
Mathematics104:1-16, 1998.

[96] A.Frankvan der StappeMotion Planning Amidst Fat ObstacleBhD thesis, Dept.
of Computer Science, Utrecht University, 1994.

[97] A. Frank van der Stappen, Dan Halperin, and Mark. H. @aas. The complexity
of the free space for a robot moving amidst fat obstadlEsnputational Geometry:
Theory and Applications3:353-373, 1993.

[98] Marc van Kreveld. On fat partitioning, fat covering atié union size of polygons.
Computational Geometry: Theory and Applicatio@&):197-210, 1998.

108



Summary

Algorithms for Fat Objects:
Decompositions and Applications

Computational geometry is the branch of theoretical commpstience that deals with
algorithms and data structures for geometric objects. Tbst fnasic geometric objects
include points, lines, polygons, and polyhedra. Comporteati geometry has applications
in many areas of computer science, including computer gecaptobotics, and geographic
information systems.

In many computational-geometry problems, the theoreticakt case is achieved by in-
put that is in some way “unrealistic”. This causes situatiarhere the theoretical run-
ning time is not a good predictor of the running time in preetiln addition, algorithms
must also be designed with the worst-case examples in mihthveauses them to be
needlessly complicated. In recent yeaeslistic input modelfiave been proposed in an
attempt to deal with this problem. The usual form such sohgitake is to limit some
geometric property of the input to a constant.

We examine a specific realistic input model in this thesig rtiodel where objects are
restricted to bdat. Intuitively, objects that are more like a ball are more &atd objects
that are more like a long pole are less fat. We look at fat dbjecthe context of five
different problems—two related to decompositions of inphbjects and three problems
suggested by computer graphics.

Decompositions of geometric objects are important bectheseare often used as a pre-
liminary step in other algorithms, since many algorithms oaly handle geometric ob-
jects that are convex and preferably of low complexity. e main issues in developing
decomposition algorithms are to keep the number of piecadyzed by the decomposi-
tion small and to compute the decomposition quickly. Themupiestion we address is
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the following: is it possible to obtain better decompositidor fat objects than for general
objects, and/or is it possible to obtain decompositionskiy? These questions are also
interesting because most research into fat objects hagowedt objects that are convex.

We begin bytriangulating fat polygons. The problem of triangulating polygons—that
is, partitioning them into triangles without adding anytie¥s—has been solved already,
but the only linear-time algorithm is so complicated thdtas never been implemented.
We propose two algorithms for triangulating fat polygondiiear time that are much
simpler. They make use of the observation that a small setiafds placed at points
inside a (certain type of) fat polygon is sufficient to seetibandary of such a polygon.

We then look at decompositions of fat polyhedra in three disitns. We show that
polyhedra can be decomposed into a linear number of conewegiif certain fatness
restrictions are met. We also show that if these restristaye not met, a quadratic number
of pieces may be needed. We also show that if we wish the otdphg fat and convex,
the restrictions must be much tighter.

We then study three computational-geometry problemsriedfgy computer graphics.

First, we studyray-shootingamidst fat objects from two perspectives. This is the pnoble
of preprocessing data into a data structure that can ansWiehwbject is first hit by
a query ray in a given direction from a given point. We presemiew data structure
for answering vertical ray-shooting queries—that is, gggewhere the ray’s direction
is fixed—as well as a data structure for answering ray-shgatgueries for rays with
arbitrary direction. Both structures improve the best knoesults on these problems.

Another problem that is studied in the field of computer grepis thedepth-orderprob-
lem. We study it in the context of computational geometryisTithe problem of finding
an ordering of the objects in the scene from “top” to “bottomhere one object is above
the other if they share a point in the projection to theplane and the first object has a
higherz-value at that point. We give an algorithm for finding the depitder of a group
of fat objects and an algorithm for verifying if a depth oradra group of fat objects is
correct. The latter algorithm is useful because the forraarreturn an incorrect order if
the objects do not have a depth order (this can happen if iheeételow relationship has
a cycle in it). The first algorithm improves on the resultsviwasly known for fat objects;
the second is the first algorithm for verifying depth orderiabobjects.

The final problem that we study is tiédden-surface removalroblem. In this problem,
we wish to find and report the visible portions of a scene fragivan viewpoint—this is
called thevisibility map The main difficulty in this problem is to find an algorithm wd®
running time depends in part on the complexity of the outpat.example, if all but one
of the objects in the input scene are hidden behind one large® then our algorithm
should have a faster running time than if all of the objects\asible and have borders
that overlap. We give such an algorithm that improves on timning time of previous
algorithms for fat objects. Furthermore, our algorithm lideato handle curved objects
and situations where the objects do not have a depth ordesfemtures missing from
most other algorithms that perform hidden surface removal.
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