169 research outputs found

    Game Theoretical Framework for Analyzing Blockchains Robustness

    Get PDF
    In this paper we propose a game theoretical framework in order to formally characterize the robustness of blockchains systems in terms of resilience to rational deviations and immunity to Byzantine behaviors. Our framework includes necessary and sufficient conditions for checking the immunity and resilience of games and an original technique for composing games that preserves the robustness of individual games. We prove the practical interest of our formal framework by characterizing the robustness of various blockchain protocols: Bitcoin (the most popular permissionless blockchain), Tendermint (the first permissioned blockchain used by the practitioners), Lightning Network, a side-chain protocol and a cross-chain swap protocol. For each one of the studied protocols we identify upper and lower bounds with respect to their resilience and immunity (expressed as no worse payoff than the initial state) face to rational and Byzantine behaviors

    Levels of Decentralization and Trust in Cryptocurrencies: Consensus, Governance and Applications

    Get PDF
    Since the apparition of Bitcoin, decentralization has become an ideal praised almost religiously. Indeed, removing the need for a central authority prevents many forms of abuse that could be performed by a trusted third party, especially when there are no transparency and accountability mechanisms in place. Decentralization is however a very subtle concept that has limits. In this thesis, we look at the decentralization of blockchains at three different levels. First we look at the consensus protocol, which is the heart of any decentralized system. The Nakamoto protocol, used by Bitcoin, has been shown to induce centralization through the shift to mining pools. Additionally, it is heavily criticized for the enormous amount of energy it requires. We propose a protocol, Fantômette, that incorporates incentives at its core and that consumes much less energy than Bitcoin and other proof-of-work based cryptocurrencies. If the consensus protocol makes it possible to decentralize the enforcement of rules in a cryptocurrency, there is still the question of who decides on the rules. Indeed, if a central authority is able to determine what those rules are then the fact that they are enforced in a decentralized way does not make it a decentralized system. We study the governance structure of Bitcoin and Ethereum by making measurements of their GitHub repositories and providing quantitative ways to compare their level of centralization by using appropriate metrics based on centrality measures. Finally, many applications are now built on top of blockchains. These can also induce or straightforwardly lead to centralization, for example by requiring that users register their identities to comply with regulations. We show how identities can be registered on blockchains in a decentralized and privacy-preserving way

    SoK: Consensus in the Age of Blockchains

    Get PDF
    The core technical component of blockchains is consensus: how to reach agreement among a distributed network of nodes. A plethora of blockchain consensus protocols have been proposed---ranging from new designs, to novel modifications and extensions of consensus protocols from the classical distributed systems literature. The inherent complexity of consensus protocols and their rapid and dramatic evolution makes it hard to contextualize the design landscape. We address this challenge by conducting a systematization of knowledge of blockchain consensus protocols. After first discussing key themes in classical consensus protocols, we describe: (i) protocols based on proof-of-work; (ii) proof-of-X protocols that replace proof-of-work with more energy-efficient alternatives; and (iii) hybrid protocols that are compositions or variations of classical consensus protocols. This survey is guided by a systematization framework we develop, to highlight the various building blocks of blockchain consensus design, along with a discussion on their security and performance properties. We identify research gaps and insights for the community to consider in future research endeavours

    The Blockchain Of Oz : Specifying Blockchain Failures for Scalable Protocols Offering Unprecedented Safety and Decentralization

    Get PDF
    Blockchains have starred an outstanding increase in interest from both business and research since Nakamoto’s 2008 Bitcoin. Unfortunately, many questions in terms of results that establish upper-bounds, and of proposals that approach these bounds. Furthermore, the sudden hype surrounding the blockchain world has led to several proposals that are either only partially public, informal, or not proven correct. The main contribution of this dissertation is to build upon works that steer clear of blockchain puffery, following research methodology. The works of this dissertation converge towards a blockchain that for the first time formally proves and empirically shows deterministic guarantees in the presence of classical Byzantine adversaries, while at the same time pragmatically resolves unlucky cases in which the adversary corrupts an unprecedented percentage of the system. This blockchain is decentralized and scalable, and needs no strong assumptions like synchrony. For this purpose, we build upon previous work and propose a novel attack of synchronous offchain protocols. We then introduce Platypus, an offchain protocol without synchrony. Secondly, we present Trap, a Byzantine fault-tolerant consensus protocol for blockchains that also tolerates up to less than half of the processes deviating. Thirdly, we present Basilic, a class of protocols that solves consensus both against a resilient-optimal Byzantine adversary and against an adversary controlling up to less than 2/3 of combined liveness and safety faults. Then, we use Basilic to present Zero-loss Blockchain (ZLB), a blockchain that tolerates less than 2/3 of safety faults of which less than 1/3 can be Byzantine. Finally, we present two random beacon protocols for committee sortition: Kleroterion and Kleroterion+ , that improve previous works in terms of communication complexity and in the number of faults tolerated, respectively

    Direct Acyclic Graph based Ledger for Internet of Things: Performance and Security Analysis

    Get PDF
    Direct Acyclic Graph (DAG)-based ledger and the corresponding consensus algorithm has been identified as a promising technology for Internet of Things (IoT). Compared with Proof-of-Work (PoW) and Proof-of-Stake (PoS) that have been widely used in blockchain, the consensus mechanism designed on DAG structure (simply called as DAG consensus) can overcome some shortcomings such as high resource consumption, high transaction fee, low transaction throughput and long confirmation delay. However, the theoretic analysis on the DAG consensus is an untapped venue to be explored. To this end, based on one of the most typical DAG consensuses, Tangle, we investigate the impact of network load on the performance and security of the DAG-based ledger. Considering unsteady network load, we first propose a Markov chain model to capture the behavior of DAG consensus process under dynamic load conditions. The key performance metrics, i.e., cumulative weight and confirmation delay are analysed based on the proposed model. Then, we leverage a stochastic model to analyse the probability of a successful double-spending attack in different network load regimes. The results can provide an insightful understanding of DAG consensus process, e.g., how the network load affects the confirmation delay and the probability of a successful attack. Meanwhile, we also demonstrate the trade-off between security level and confirmation delay, which can act as a guidance for practical deployment of DAG-based ledgers.Comment: accepted by IEEE Transactions on Networkin

    Rational Behavior in Committee-Based Blockchains

    Get PDF
    We study the rational behaviors of participants in committee-based blockchains. Committee-based blockchains rely on specific blockchain consensus that must be guaranteed in presence of rational participants. We consider a simplified blockchain consensus algorithm based on existing or proposed committee-based blockchains that encapsulates the main actions of the participants: voting for a block, and checking its validity. Knowing that those actions have costs, and achieving the consensus gives rewards to committee members, we study using game theory how strategic players behave while trying to maximizing their gains. We consider different reward schemes, and found that in each setting, there exist equilibria where blockchain consensus is guaranteed; in some settings however, there can be coordination failures hindering consensus. Moreover, we study equilibria with trembling participants, which is a novelty in the context of committee-based blockchains. Trembling participants are rational that can do unintended actions with a low probability. We found that in presence of trembling participants, there exist equilibria where blockchain consensus is guaranteed; however, when only voters are rewarded, there also exist equilibria where validity can be violated
    corecore