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Abstract

Blockchains have starred an outstanding increase in interest from both business and research
since Nakamoto’s 2008 Bitcoin. Unfortunately, many questions in terms of results that establish
upper-bounds, and of proposals that approach these bounds. Furthermore, the sudden hype
surrounding the blockchain world has led to several proposals that are either only partially
public, informal, or not proven correct.

The main contribution of this dissertation is to build upon works that steer clear of blockchain
puffery, following research methodology. The works of this dissertation converge towards a
blockchain that for the first time formally proves and empirically shows deterministic guaran-
tees in the presence of classical Byzantine adversaries, while at the same time pragmatically
resolves unlucky cases in which the adversary corrupts an unprecedented percentage of the
system. This blockchain is decentralized and scalable, and needs no strong assumptions like
synchrony.

For this purpose, we build upon previous work and propose a novel attack of synchronous
offchain protocols. We then introduce Platypus, an offchain protocol without synchrony. Sec-
ondly, we present Trap, a Byzantine fault-tolerant consensus protocol for blockchains that also
tolerates up to less than half of the processes deviating. Thirdly, we present Basilic, a class of
protocols that solves consensus both against a resilient-optimal Byzantine adversary and against
an adversary controlling up to less than 2/3 of combined liveness and safety faults. Then, we
use Basilic to present Zero-loss Blockchain (ZLB), a blockchain that tolerates less than 2/3 of
safety faults of which less than 1/3 can be Byzantine. Finally, we present two random beacon
protocols for committee sortition: Kleroterion and Kleroterion+, that improve previous works
in terms of communication complexity and in the number of faults tolerated, respectively.



Foreword

The title, The Blockchain of Oz, derives not only from the fact that Oz is often used to refer
to Australia, where the author did the works of this dissertation, but also from the magical
country introduced in the novel The Wonderful Wizard of Oz. Some characters of the novel
are in a quest to find a missing piece of their own, such as a scarecrow, a cowardly lion, or a
tin woodman, longing for brains, courage, or a heart, respectively. Other characters claim false
promises, such as the so-called wizard who is actually a man pretending to have supernatural
powers.

The current blockchain ecosystem greatly resembles this novel. First, because of the hetero-
geneity of its inhabitants. Second, because some of these blockchains, while already useful, lack
important properties intrinsic to their design. Third, because the blockchain ecosystem is sub-
ject to a significant amount of false, unproven, or yet-to-be-fulfilled claims in an effort to gain
funding and influence. The title thus depicts the journey of the author towards a blockchain
that delivers its promises, with proven properties and claims.
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Chapter 1

Introduction

Since Nakamoto’s 2008 Bitcoin proposal [1], the field of blockchains has grown steadily in both
financial and research interests. The popularity of blockchains and cryptocurrencies, and their
interest as an investment option, has however led to an abuse of the term and disregard of its
foundations in the design of several works in the blockchain ecosystem. At the time of writing,
blockchains are the central dedication of several experts from various fields, such as distributed
systems, graph theory, networks, game theory, economy or cryptography, but also business,
law, policy-making, or even journalism and sociology. However, unlike other technologies, such
as the Internet or the first computers, that originated from multiple funded research efforts,
blockchains arose in a community forum of technological enthusiasts that decided to experiment
with their ideas. These unusual beginnings have led to many works going to market without
a clear understanding of the implications of these proposals, in terms of security, usability or
originality. Examples of this are the multiple blockchains that are in fact almost identical forks
of Bitcoin [2, 3, 4, 5], some of which are driven by memes (the so-called memecoins) [6, 7],
many of them holding market caps well over US$1 billion at the time of writing. In fact, as of
November 2021, the number of cryptocurrencies set at 70, 000, with about 100 new ones created
every day [8].

Most blockchains do, however, share a common backbone: a distributed append-only ledger
that orders blocks of transactions. Although all blockchains are relatively young, their funda-
mentals can be traced back to the second half of the 20th century. For example, the afore-
mentioned definition of a blockchain fits as a particular case of a State Machine Replication
(SMR) [9, 10], whereby a set of processes execute the SMR protocol to output ordered com-
mands that are proposed as inputs. Blockchains also share an immediate connection with the
problem of consensus [11, 12, 13], in which a set of processes execute a consensus protocol in
order to agree on the same output, given multiple proposed inputs.

Unlike SMRs, which are general solutions intended for both privately related entities (e.g.
data centers of the same company) and sets of independent entities (e.g. voting systems),
blockchains are intended to be executed by a large number of independent processes, each with
their own interests and incentives. This characteristic of blockchains asks for an analysis of
them from different fields, like distributed systems, cryptography, game theory, or economy.

The most significant conjecture specific to blockchains is the so-called blockchain trilemma [14].
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The trilemma states an impossibility of designing a blockchain guaranteeing the following three
properties:

• Security, in that blockchains should provide their service in the presence of system and
network failures,

• Scalability, in that users should not be affected by an increase of demand of the service,
and

• Decentralization, in that all users of the service can also offer it.

This unproven, although intuitive, conjecture of blockchains exemplifies the broad range of
research directions existing in the blockchain ecosystem. Security thus considers the properties
that are ensured in the presence of network and system failures, scalability focuses on the
performance of the blockchain and its capacity to provide its service to millions of users, and
decentralization ensures that the service does not belong to and is not controlled by any subset
of these users.

Common security considerations involve the network model in the presence of an adver-
sary that can either cause crashes (crash faults) or arbitrary faults (Byzantine faults). Dwork
et al. [13] already showed that it is only possible to solve consensus if less than half of the
processes crash. This result applies even assuming authenticated messages and synchronous
communication, in which all sent messages are delivered within a known bounded time ∆.
Prior, Lamport et al. [12] had already proven that it is impossible to solve consensus even in
the presence of just one crash fault in asynchrony, i.e. without a bound on the delivery of sent
messages. Dwork et al. [13] also proved that it is impossible to solve consensus if there are n/3
Byzantine faults in a partially synchronous network, where n is the number of processes. Par-
tial synchrony defines an unknown bound on the delay of messages. These results for consensus
are relevant for blockchains because it has recently been shown that a secure blockchain has
consensus number +∞ [15], meaning that it must solve consensus, and thus the impossibility
results that apply to consensus also apply to blockchains.

First generation blockchains were designed with Proof-of-Work (PoW) [1, 16, 6, 4, 2, 3]. PoW
enables decentralization, as any user has a chance of being the first to solve a cryptographic
puzzle, and thus offering the service. However, Bitcoin and other PoW-based blockchains are
known to be either not scalable, deciding only up to 7 transactions per second (tps), or not
secure if the scalability is increased by reducing the difficulty of the puzzle. In addition to this,
the Bitcoin scalability problem 1 cites that the requirement of all users to store all transactions
of the blockchain poses a risk of centralization of these blockchains, as many users would not
be able to implement full nodes of the network.

For this reason, newer generation blockchains tend to build upon the results on consensus
protocols from the state of the art [17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. These blockchains
normally have a dedicated set of processes, a committee, that executes a consensus protocol in
order to agree on the current block. The performance of these solutions is significantly better

1https://en.wikipedia.org/wiki/Bitcoin_scalability_problem

https://en.wikipedia.org/wiki/Bitcoin_scalability_problem
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than that of Bitcoin, with results as high as 60,000tps [27, 28]. These results are achieved even
if they are limited by the need to execute consensus, which is known to require to exchange
at least O(n2) bits per decision [29]. While these proposals are normally safe and scalable,
the challenge comes from the decentralization side. Decentralization is normally obtained by
executing a committee rotation protocol that rotates the committee such that all users can
be selected. However, committee rotation protocols are believed to offer decentralization at a
trade-off with security and scalability [14].

A committee rotation protocol can either rely on (i) a deterministic rotation [22, 21] (by
means of iteratively hashing a seed, for example), (ii) a rotation based on an election [18,
30], or (iii) randomness [31, 32, 33, 17], or a mix of these. Deterministic committee sortition
protocols are vulnerable to an adversary as the adversary can predict the output (and use it to
its own advantage). Protocols based on an election are vulnerable to an adversary iteratively
strictly increasing the proportion of the committee it controls, a direct consequence of fairness
being impossible in the presence of just 2 Byzantine faults [34]. The third approach based
on randomness relies on the implementation of a distributed random beacon protocol that
periodically generates random outputs [35, 36, 37, 38, 39, 24, 40]. Random beacons have been
proven at least as hard to solve as consensus [41], with some resilient-optimal solutions ensuring
its correctness as long as the committee contains at most n/3 − 1 Byzantine faults in partial
synchrony, some of these solutions also being optimal in the communication complexity lower
bound of consensus [29]. The drawback of these protocols is that there is however a probability
of one iteration of this protocol selecting a committee containing at least n/3 Byzantine faults,
after which all committees are selected by the adversary.

In this dissertation, we focus on blockchains based on consensus and random beacons in par-
tial synchrony. The works that we present here represent meaningful improvements on security
and decentralization while offering competitive performance and complexity measures compared
with the state of the art. The combined solutions of this dissertation converge towards a novel
blockchain that provides an unprecedented level of security and decentralization, tolerating even
an adversary controlling up to less than 2n/3 processes of a committee, or even 50% of all users
with very high probability. We prove the optimal resilience of this blockchain in the classical
model, and take pragmatic approaches to prove its security in realistic, newer models, and in
the presence of rational players with realistic utilities for blockchain applications. We also prove
the optimal resilience of our protocols in these new models besides the classical tolerance to
Byzantine faults.

We hope that the models, problems, proofs, conjectures, protocols and implementations of
this dissertation bring more works for blockchains that are disruptive in nature, but that inherit
from the advances of previous works in their respective fields of research.

1.1 Objectives

The main objective of this thesis is to contribute to the design of safe, scalable and decentralized
blockchains. In doing so, we identify a number of objectives, that we list here below.
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Objective 1: formally define blockchains and its properties

Since blockchains arose from an Internet community, sometimes disconnected from previous
research, their first definitions were self-contained without referencing structures, properties
and systems from many works that preceded blockchains. The company-driven ecosystem of
blockchains has also prioritized the development of systems on the basis of conjectures and
visions at the cost of formality and lack of proven properties and claims.

One of the main objectives of this dissertation is thus to set an accurate formal model
of blockchains and their extensions (such as layer-2, sidechains or crosschain payments), and
abstracting properties that gather the views and goals of blockchains encompassing the hetero-
geneity of proposals in the blockchain community.

As a result, we list the three main properties for all public blockchains that constitute the so-
called blockchain trilemma [14], serving as the backbone of this dissertation, as sub-objectives.
Hence, we list as sub-objective to contribute towards the 1.1 security, 1.2 scalability, and 1.3
decentralization of blockchains through our research.

In addition, we will identify and formally define other problems and properties that directly
concern blockchains throughout this dissertation.

Objective 2: state and formally prove impossibility bounds and trade-offs,
and propose sensible metrics for comparison

A natural step after having formally stated a model and properties for a blockchain system is
to delimit the bounds under which a model can solve the desired problem. Formally proving
impossibility bounds that apply to all blockchains that want to satisfy a specific set of properties
is thus a central objective of this dissertation.

In fact, some of these properties compose trade-offs that require blockchains to make com-
promises. We also encompass in this objective to propose metrics that help parameterize where
each of these blockchains lies in these trade-offs, in an effort to properly analyze the blockchain
ecosystem and help the reader understand the advantages and drawbacks of design decisions.

Objective 3: design and prove solutions with competitive metrics and bounds

Having formalized the blockchain problem and properties, and after narrowing it down to impos-
sibility proofs and trade-offs, the main objective is that of designing protocols that are optimal,
making sensible design decisions that are properly justified. This is done by using the metrics
previously proposed for the known trade-offs to show that these solutions improve some of the
metrics and are competitive in all other metrics, compared to previous works.

Objective 4: implement and test proposed solutions in a real environment

The last objective of this dissertation is to implement the proposed solutions with the goal of
testing them in a real world environment, obtaining final validation from real tests. These tests
must include comparisons of sensible metrics for the desired properties with previous works,
which must all be tested in the same settings.
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1.2 Contributions

We present a myriad of contributions that address all of our objectives. The narrative of these
contributions is divided in the main property of the blockchain trilemma that each of these
contributions address. First, we concentrate on security to present a novel attack that rein-
forces previous research pointing out the dangers of assuming a synchronous communication
network. Then, we take this justification to present a scalable protocol for blockchains’ layer-2
networks that does not assume synchrony. We continue with security and successfully address
its trade-off with scalability by proposing a class of protocols that tolerates the strongest ad-
versary to date, at an optimal communication complexity. Finally, we aim at decentralization
by extending our previous results and proposals for secure scalable blockchains. Our goal is to
ensure decentralization at a sensible compromise between the trade-offs and impossibilities of
the blockchain trilemma. The outcome of our contributions converge thus towards a blockchain
that allows for a level of configuration to readjust the trade-offs between these three properties.

To summarize, this dissertation presents the following contributions:

1. The Lockdown attack. (Objectives 1, 1.1, 3 and 4.)
We extend the list of known problems of synchronous blockchain protocols by introducing
a novel attack against synchronous off-chain state channel networks that promote privacy.
The attack depicts a scenario whereby an adversary can lock the total funds directly
related to any node of the network with only 10% of them.

2. The Platypus offchain protocol. (Objectives 1, 1.2, 2, and 3.)
Following the Lockdown attack we present Platypus, an offchain protocol for blockchains
without synchrony. Platypus is a childchain, an offchain protocol that is also a blockchain.
We formalize the offchain, childchain, and sidechains problems, present the Platypus pro-
tocol and prove its correctness, as well as an impossibility proof showing Platypus’ optimal
resilience.

3. The Trap rational agreement protocol. (Objectives 1, 1.1, 2, and 3.)
The tolerance to faults and system failures of blockchains emerges from its consensus
protocol. Classical results show that it is impossible to solve consensus if more than a
third of participants are Byzantine. Nevertheless, we propose a game theoretical model
for blockchains in order to present the Trap protocol for consensus, a protocol that solves
consensus in the presence of an adversary controlling less than a third of Byzantine faults
and also up to less than half of rational participants interested in causing a disagreement.
We also prove that it is impossible to solve this problem without implement a baiting
strategy, a novel definition of a type of punishment strategy that requires collaboration
from within the coalition in order to succeed.

4. The Basilic class of consensus protocols. (Objectives 1, 1.1, 2, 3.)
While the Trap protocol provides a significant improvement for consensus in blockchain
applications, it requires a proper modeling of the incentives motivating rational players
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to cause a disagreement. For this reason, we present the novel Byzantine-deceitful-benign
failure model, in which deceitful faults will always be interested in causing a disagreement,
while benign faults can always prevent termination. Then, we present an impossibility
result that extends the traditional bounds of Byzantine fault tolerance to the BDB model.
Finally, we present the Basilic class of protocols, a resilient-optimal class of protocols for
the problem of consensus in both the BDB model and the classical model of tolerance to
Byzantine faults. We also prove the Basilic class protocols to have optimal communication
complexity.

5. The Zero-loss Blockchain (ZLB). (Objectives 1, 1.1, 2, 3 and 4.)
With the previous advances from presenting Basilic, we then present Zero-loss Blockchain
(ZLB), a blockchain that tolerates a majority of the system trying to cause a disagreement.
ZLB tolerates transient disagreements in partial synchrony by eventually resolving them
and punishing provably detected fraudsters responsible for the disagreement. We also
prove ZLB to ensure that only faulty users suffer the consequences of their attacks in
probabilistic synchrony.

6. The Kleroterion and Kleroterion+ random beacon protocols. (Objectives 1, 1.1, 2
and 3.)
While the previous results of Trap, Basilic and ZLB improve security, translating these
results to public, permissionless blockchains without assuming probabilistic synchrony re-
quires the use of a random beacon protocol in order to randomly rotate the committee of
the blockchain. We first formally justify the need for a random beacon protocol for com-
mittee sortition to then present Kleroterion, a resilient-optimal random beacon protocol
that exchanges a number of bits per network channel independent of the size of the partic-
ipants in the protocol without requiring a trusted setup. Then, we extend Kleroterion to
tolerate colluding majorities thanks to the advances from ZLB by proposing Kleroterion+.
Kleroterion+ concludes the blockchain trilemma of our proposed blockchain, which con-
tains Platypus for scalability, with Basilic, Trap and ZLB for security, and Kleroterion
or Kleroterion+ for decentralization.

1.3 Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 presents the background of previous works and introduces preliminary concepts,
formal definitions and assumptions that will be used throughout the dissertation.

• Chapter 3 begins by presenting the Lockdown attack for synchronous offchain channel
networks, as well as the problem of synchronous offchain protocols. Platypus is then
presented, an offchain protocol that does not require synchrony.

• Chapter 4 presents the rational agreement problem and Trap, a protocol to solve consen-
sus in the presence of an adversary controlling less than a third of Byzantine faults and
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also less than half of rational participants interested in causing a disagreement.

• Chapter 5 extends Trap by defining the BDB model, and introduces the Basilic class
of resilient-optimal protocols under this model. ZLB is then presented, a blockchain to
tolerate colluding majorities by tolerating partial disagreements.

• Chapter 6 consolidates the results of this dissertation by justifying the need for a random
beacon protocol for committee sortition. Kleroterion is then presented, a random beacon
protocol that provides the best complexity metrics to date with the standard tolerance
to faults for bias-resistance and unpredictability. Kleroterion exchanges a number of bits
per network channel independent of the size of the participants in the protocol, except for
one message of size n sent by the leader of the epoch and for the reconstruction phase,
and without requiring a trusted setup. We then present Kleroterion+, a random beacon
protocol that tolerates colluding majorities.

• Chapter 7 concludes the dissertation and discusses future work.
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Chapter 2

Background & Preliminaries

In this chapter, we first detail the related work of the blockchain ecosystem, to then formally
state definitions and assumptions that we use throughout this dissertation.

2.1 Background

Bitcoin [1] set the stage for an emergence of various blockchains, each with unique designs
tailored for different use cases. Bellow, the core concepts of these blockchains are detailed,
exploring their significance in system and protocol design, and how they fit into the related
work of this dissertation.

2.1.1 Consensus

The problem of a set of n processes (a committee) solving consensus, i.e. satisfying agreement,
termination and validity, has been central to distributed systems since the 1980s [11]. Typically,
consensus protocols are proven to tolerate at most a fraction t of faults, these being either
arbitrary (Byzantine) or crash faults. Consensus lies at the core of a myriad of blockchains [42,
43, 26, 17, 19, 18, 22, 20, 21, 25, 44] and, in fact, it has been proven necessary [45] in order to
provide certain features and properties of blockchains, such as irrevocably confirming blocks [15].
These blockchains are thus designed taking into account the assumptions and bounds of their
consensus protocols. Dwork et al. [13] showed that it is only possible to solve consensus if less
than half of the processes crash. This result applies even assuming authenticated messages and
synchronous communication, in which all sent messages are delivered within a known bounded
time ∆. Prior, Lamport et al. [12] had already proven that it is impossible to solve consensus
even in the presence of just one crash fault in asynchrony, i.e. without a bound on the delivery
of sent messages.

While an asynchronous protocol can not provide any guarantee in terms of tolerance to
faults, a synchronous one cannot provide tolerance to events that delay communication beyond
∆. A popular assumption that lies between synchrony and asynchrony is partial synchrony [13],
in which sent messages are delivered to their recipients within bounded, but unknown time.
The popularity of this model arises due to it closely reflecting the behavior of the Internet,
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where communications often perform as expected, but occasionally delay significantly. In this
model, Dwork et al. [13] proved that it is impossible to solve consensus if there are at least n/3
Byzantine faults, or instead at least n/2 crash faults.

2.1.1.1 Accountable consensus

Consensus protocols can be used for a broad range of applications, each facing different chal-
lenges. In order to maintain consistency and availability, blockchains must account for a poten-
tially greater amount of safety attacks than normally ensured by protocols designed to execute
consensus across data centers controlled by the same company [46]. In the case of blockchains,
The incentives intrinsic to their applications and decentralized nature have led to several works
studying other properties that can be guaranteed in the presence of stronger adversaries than
those defined by the aforementioned classical impossibility results. Recent works [47, 48] define
the property of accountability, stating that if honest processes fail to reach agreement, they can
then identify the faults responsible. Unfortunately, no previous work specifies how to resolve
the disagreement to satisfy agreement again and punish faulty processes.

The field of multi-party computation presents work that addresses accountability. Covert
security ensures that honest processes detect misbehavior with a minimum probability, in an
effort to deter an adversary from deviating (covert adversary) [49, 50, 51, 52]. Covert security
with public verifiability guarantees that honest processes can prove this misbehavior to other
honest processes [53, 54, 55]. This can be seen as a probabilistic case of accountability, since
faults are detected only with some probability. Unfortunately, none of these works in covert
security guarantee output delivery without synchrony in the presence of Byzantine faults.

2.1.1.2 Rationality for consensus

Besides other guarantees and properties in the presence of Byzantine adversaries, some works
assume an heterogeneity of processes, modeling particular applications in order to tolerate a
stronger adversary. The first natural step is to consider the rationality that motivates partic-
ipants. These works describe a protocol as a recommended strategy for all players within a
game, and try to design such protocol so as to make it an equilibrium in the game of all possible
deviations from the protocol.

Some works focused on the conditions under which termination and validity is obtained for a
non-negligible cost of communication and/or local computation [56, 57]. Several research results
focus more particularly on agreement, with some deriving from the BAR (Byzantine-Altruistic-
Rational) model. However, these works considered either no Byzantine players [58, 59], no
coalitions of rational players [60], synchrony [58, 61, 62, 63, 64] or solution preference [61].
By assuming a larger payoff for agreeing than for disagreeing, solution preference requires that
rational players never have an incentive to sabotage agreement.

Some results consider the problem of consensus in the presence of rational players but do
not consider failures [58]. Leader election [65], which can be used to solve consensus indirectly,
and consensus proposals [34] focus on ensuring fairness defined as all players having an equal
probability of their proposal being decided.
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Some proposals study consensus and mix faulty players with rational players [66, 67]. How-
ever, they consider the synchronous communication model. The idea of mixing rational players
with faulty players has already been extensively explored in the context of secret sharing and
multi-party computation [68, 69, 70, 71]. In particular, the central third-party mediator that is
typically relied upon was implemented with synchronous cheap talks [71], that are communica-
tions of negligible cost through private pairwise channels. This extension was indeed illustrated
with a secret sharing protocol for n > k +2t, where k is the number of rational players and t the
number of Byzantine processes. It was later shown [72] that mediators could be implemented
with asynchronous cheap talks if n > 3(k + t).

2.1.1.3 Other faults

Considering rational players requires defining their utilities, and thus some properties may not
be guaranteed if these utility functions do not correspond with those of the real players that
these rational models represent. As a result, some works introduce new faults that, contrary to
rational players, can always deviate, but whose set of possible deviations is restricted compared
to Byzantine faults. An example is the crash-fault process, restricted to only deviate into
crashing at any time, but not, for example, into equivocating.

Flexible BFT [73] offers a failure model and theoretical results to tolerate ⌈2n/3⌉ − 1 alive-
but-corrupt (abc) processes. An abc process behaves maliciously only if it knows it can violate
safety, but behaves correctly otherwise. Additionally, their fault tolerance requires a commit-
ment from users to not tolerate a single Byzantine fault in order to tolerate ⌈2n/3⌉−1 abc faults,
or to instead tolerate no abc faults if users decide to tolerate t = ⌈n/3⌉−1 Byzantine faults. Neu
et al.’s ebb-and-flow system [74] is available in partial synchrony for t < n/3 and satisfies finality
in synchrony for t < n/2, being t the number of Byzantine faults. They also motivate the design
of new faults to tolerate equivocations in their recent availability-accountability dilemma [75].
The recent YOSO (You Only Speak Once) [76] also follows this line of thought for permission-
less systems by envisioning protocols with committee sortition in which each processes only
communicates one with the rest.

Upright [77] tolerates n = 2u+r+1 faults, where u and r are the numbers of commission and
omission faults, respectively. Upright tolerates n/3 commission faults or n/2 omission faults.
Anceaume et al. [78] tolerate t < n/2 Byzantine faults for the problem of eventual consensus
(i.e. tolerating transient disagreements), at the cost of not tolerating even t = 1 Byzantine fault
for deterministic consensus.

2.1.2 Blockchain trilemma

The main challenges and desirable features of blockchains have widely been simplified into
a three-way trade-off, known as the blockchain trilemma [14]. This trilemma establishes a
trade-off between three properties: security, scalability, and decentralization. First, security
refers to the properties that a blockchain guarantees in the presence of attacks against the
underlying network, by members of the system, or a mix of both. Second, scalability defines the
capacity of a blockchain to produce high throughput, measured in decided values per second
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(usually transactions per second, or tps). Third, decentralization ensures that every user of the
blockchain service can also offer it. We formally define these properties in Section 2.2.

2.1.3 Scalability

The throughput of the Bitcoin mainnet has been measured at 7tps on average1. This poor
performance is in stark contrast to those of direct competitors that are centralized, with Visa
performing at around 7000 tps in any given year2. This scalability problem is no stranger to
other blockchains, mostly affected by the need to replicate state across hundreds or thousands of
processes before proceeding on to the next block to finalize. Several solutions aim at increasing
scalability, one of the biggest challenges of blockchains. In fact, most blockchains consume more
resources without offering better performance as the number of participants increases.

2.1.3.1 Layer-2

Although some research results demonstrated that blockchain performance can scale with the
number of participants [79, 31, 27, 80, 81, 23, 28], these rare solutions do not have other
appealing properties, like privacy, built in. As a result, blockchain extensions that offer scal-
ability and privacy have been put forward, in what is known as layer-2, or offchain protocols.
These protocols are characterized by allowing certain operations to take place outside of the
blockchain, whereas these operations would normally be written on the blockchain. Examples
of these protocols are state and payment channels [82] in which two parties can perform several
offchain payments with one another; channel networks [82] that allow users to relay payments
in a network of channels; channel factories [83] that open multiple channels in one transaction,
saving storage and fees; and childchains [84] which are secondary blockchains pegged to the
existing, so called “parent”, blockchain.

Offchain payment networks. The Lightning Network [82], a network of inter-connected 2-
party channels that can route state changes, known as payment or state channels, is the most
renowned layer-2 system. Unfortunately, the Lightning Network relies on synchrony, similarly
to other networks and channels [85, 86, 87]. This makes these systems vulnerable to a number
of attacks such as channel exhaustion and payment griefing attacks [88, 89].

Privacy issues are also reported in recent literature of payment channels. Tang et al. [90]
address the impact of using payment channels w.r.t. privacy preservation. Since users need to
route their transactions using other nodes (users in the payment network), they must find paths
through the payment network, and with enough pre-allocated funds to route their transactions.
This poses the problem of hiding the balance of each payment channel node. Our previous
work [91] shows the difficulty of hiding such balances, by uncovering a balance discovery attack
that can be used to deanonymize the precise balance of each network payment node, hence
leading to the de-anonymization of network transactions. Tang et al. and Malavolta et al. [90,
92] assume that the adversary is passive, i.e., the adversary observes only the public information

1https://en.wikipedia.org/wiki/Bitcoin_scalability_problem
2https://usa.visa.com/dam/VCOM/global/about-visa/documents/aboutvisafactsheet.pdf

https://en.wikipedia.org/wiki/Bitcoin_scalability_problem
https://usa.visa.com/dam/VCOM/global/about-visa/documents/aboutvisafactsheet.pdf
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released in the network, whereas previous works by Malavolta et al. and Ross et al. [93, 94]
consider active adversaries acting as corrupt relay nodes, trying to learn the destination of other
nodes transactions. The congestion attack [95] overloads payment routes during their expiration
time, which can mean up to 14 days.

Sidechains & childchains. A childchain is a blockchain whose creation and termination is
defined and performed in another blockchain (also known as the parentchain). Childchains
were introduced with the concept of sidechains [96]. A sidechain targets crosschain payments
not necessarily in the parent-child hierarchy. Childchains were first formalized for an efficient
childchain protocol in a semi-synchronous model [84, 97]. Unfortunately, their notion of semi-
synchronous communication considers that every message gets delivered in a non-null bounded
amount of time ∆, which remains a synchrony assumption [13]. The term ‘semi’ is used by
the authors to denote the fact that the bound ∆ is not null. This notion differs from partial
synchrony [13] where the bound is unknown.

2.1.3.2 Mainnet improvements

Sharding [98], hybrid consensus [99] and consensus on superblocks [23, 28] also aim at scaling
blockchains, with some partially synchronous proposals [100, 101]. Compared to sidechains and
childchains, however, these constructions hardly consider privacy requirements and crosschain
payments.

Set Byzantine consensus. Previous research works propose new blockchain and consensus
protocols that are specifically designed to tackle the scalability problem. The set Byzantine
consensus [102, 103, 23, 28] (SBC) problem was designed with applications like this in mind.
The SBC problem changes the property of validity to decide on an union of proposals, instead
of on just one proposal. This means that blockchains that solve SBC can decide a so-called
superblock per iteration of consensus that merges multiple proposals from different processes at
once, resulting in an even greater throughput than that of Visa.

Crosschain payments. Many protocols propose generic crosschain payments. Atomic cross-
chain swaps [104, 105, 106, 107] typically rely on synchronous Hashed Timelock Contracts [108],
while others focus on a crash model, rather than a Byzantine one [107]. Polkadot [43] reuses the
idea to manufacture a common parentchain, to perform payments asynchronously. Crosschain
deals [109] allow for auctions or relaying payments, with both a synchronous and a partially
synchronous protocol. The crosschain deals problem tolerates that the protocol aborts even if
the only processes proposing abort are Byzantine.

2.1.4 Security

The security of blockchains covers a broad range of attacks ranging from attacks on the com-
munication network [110, 111, 112, 113], to censoring the service for specific users [114], or even
writing the entire blockchain from scratch [16].

Explaining all attacks is out of the scope of this dissertation. Instead, we focus on those at-
tacks that are intrinsic to the blockchain problem abstraction. Following the CAP (consistency,
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availability, partition-tolerance) theorem [115], we show thus attacks that affect consistency
(agreement) and/or availability (termination).

Attacks on agreement try to split the state of the blockchain into two or more states, and
have two or more disjoint subsets of the processes and/or users disagree on the current state.
This attack is commonly known as a double-spending3, and the split of the blockchain into
multiple blockchain states is referred to as a fork.

This attack incarnates several forms and names depending on the particular way to cause
a disagreement (e.g. withholding blocks [116, 117, 118, 119], bribing processes [120], sending
conflicting transactions [121]), and in the type of blockchain wherein the attack is performed (e.g.
Proof-of-Work [122], Proof-of-Stake [123], Proof-of-Authority [124]). Some of these protocols
can reinforce agreement by requiring many (or even all) processes to confirm a particular state.
However, if processes wait for replies from other processes that have crashed, then the system
risks not being available [74, 115]. In fact, we have already mentioned the impossibility bounds
to satisfy both termination and agreement for consensus [13, 12], leading to the same bounds in
blockchains that execute consensus [23, 28, 125, 26, 25, 24, 19, 126], or in any blockchain that
satisfies strong prefix (i.e. irrevocable decisions) [15].

In an effort to discourage misbehavior, some blockchains ask for a deposit, also known as
stake, from each process. This stake is slashed from a process if honest processes can prove its
misbehavior. Although Buchman et al. [127] aimed at slashing processes without accountability,
the authors have recently incorporated accountability in [128]. Balance [129] adjusts the size of
the deposit to avoid over collateralizing but we are not aware of any system that implements
it. SUNDR [130] assumes honest users that communicate directly to detect Byzantine faults.
Polygraph [47] solves accountable consensus without slashing. FairLedger [131] assumes syn-
chrony in order to detect faulty processes. Sheng et al. [132] consider forensics support as the
ability to make processes accountable for their actions to users.

Freitas de Souza et al. [133] reconfigure processes in a lattice agreement after detection. The
Casper [134] algorithm incurs a penalty in case of double votes, while Shamis et al. [135] propose
to store signed messages in a dedicated ledger so as to punish processes in case of misbehavior.
However, both require less than n/3 faulty processes to terminate.

2.1.5 Decentralization

The third side of the blockchain trilemma is decentralization. Again, we focus here on decentral-
ization in consensus-based blockchains. In most of these blockchains the committee is intended
to be a subset of the total number of participants in the system [42, 43, 26, 17, 19, 18, 22, 20,
21, 25, 44]. This allows for a constant performance independent of the number of participants
in the system. Some of these blockchains keep a static committee [22, 28], in what is referred to

3In reality, a double-spending attacks involves the attackers misleading goods or service providers by spending
their funds multiple times (once per decided value in the disagreement) in exchange of goods or services imme-
diately after causing a disagreement. Once the fork is resolved/detected, the attackers have already gotten their
goods services in exchange and the victims of the attack cannot use the funds they were paid for (except one of
them). We however abuse notation by using interchangeably the term disagreement attack and double-spending
attack.
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as consortium blockchains. However, these solutions are not entirely decentralized: the subset
of processes in the committee is in control of the blockchain, and they are, in this sense, no
different from a system maintained by a handful of interconnected businesses.

As a result, in order to keep decentralization in these systems, several of these blockchains
implement committee sortition protocols to rotate the members of the committee. These com-
mittee sortition protocols are periodically executed in order to replace the processes in the com-
mittee, in an effort to prevent any subset of blockchain users from controlling the blockchain
except for a limited period of time.

There are three major types of distributed committee rotation protocols, which we refer to
as elected, random and deterministic.

2.1.5.1 Elected committee

The elected committee rotation consists in having some voting protocol in a committee (or
multiple committees) democratically elect the next committee [18, 30]. These approaches require
assuming fairness, in that all of the proposals from all processes have the same probability of
being decided, in order to guarantee that the adversary does not eventually control the rotation.
Halpern et al. [34] proved that fairness is impossible even in synchrony and in the presence of
only one rational player and one Byzantine player, and therefore the same result applies even in
the presence of just two Byzantine players. The implication of not ensuring fairness translates
in the adversary iteratively increasing its representation of the committee (as its input is more
likely to be selected as output than its relative power in the committee), until it controls the
entire committee.

2.1.5.2 Deterministic committee

A purely deterministic approach to committee sortition [22, 21] (by means of hashing a seed,
or leaving a static committee, for example) produces unbiased random rotations, but they are
predictable. This means that the adversary will know exactly in which consensus iterations
they will have control of the committee, and for how many rotations, which they can use to
their advantage to perform attacks (e.g. double-spending attack).

2.1.5.3 Random committee

Finally, random committee rotation approaches take inputs from processes as the source of
randomness [31, 32, 33, 17], implementing random beacon protocols. Compared to an elected
committee, this type of rotation is not vulnerable to the over-representation of a small adversary.
Nevertheless, it has the same vulnerability for a big enough adversary: since the outputs of these
protocols typically depend on the input from ⌈n/3⌉ processes, an adversary controlling just 1/3
of the committee in one iteration can take control of the source of randomness from that iteration
on.

Syta et al. [36] propose a random beacon tolerating less than n/3 Byzantine faults in asyn-
chrony relying on a setup based on distributed key generation (DKG). Contrary to random
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beacons with a setup based on common reference string (CRS), those relying on DKG require
executing the setup phase after every rotation. Many protocols implement a mix of purely
deterministic and random committee sortitions, where every R iterations there is a degree of
randomness, and the committees in all the R following iterations are deterministically selected
from the same random output, where R is typically large (e.g. R = 103 [26]). Regardless of
this determinism within the R consecutive iterations, even the random output can be predicted,
biased, or both. For example, random outputs based on VRFs to select valid proposers, such
as those of Algorand [26], Polkadot [19, 20], Ouroboros Praos [25] or Elrond [136], are subject
to an adversary selecting the random output that best fits their criteria among the available
ones. That is, these beacons are vulnerable to an adversary of size n/3, since they can influ-
ence the beacon output from among the valid proposers, without being held accountable for
it [137].Algorand [26] relies on a weak synchrony assumption for safety, and a strong synchrony
assumption for liveness. While strong synchrony refers to the classical synchronous definition
where there is a known bound for the communication delay, weak synchrony states the need
for synchronous periods of length sh (e.g. hours) for every non-synchronous periods of length
sd (e.g. a day). Aleph et al. [138] use DKG in order to implement an asynchronous random-
ness beacon, removing the requirement of a trusted dealer setup present in the HoneyBadger’s
common coin [139]. Gao et al. [140] propose a common coin with O(λn3) bits and constant
asynchronous rounds in order to solve asynchronous Byzantine agreement. RandSolomon [141]
propose a random beacon tolerating less than n/3 Byzantine faults with linear message complex-
ity, but it uses a non-standard deterministic encryption scheme, which could leak information
to an eavesdropper.

Synchronous random beacon protocols [142, 38, 39, 1, 24, 143, 40, 144, 145, 146, 147,
148, 41, 41] also range from a variety of primitives and setup assumptions, but all of them
tolerate at most n/2 Byzantine faults. Protocols based on Proof-of-Delay rely on strong and
new assumptions about verifiable time-lock puzzles or verifiable delay functions [149, 150, 144].

Some works implement random beacons, or varieties of the random beacon problem, under
a myriad of denominations, such as randomness beacons [138], global coins [151, 152], common
coins [139, 32, 140], random number generators [41, 141], or coin tossing protocols [148, 143].

2.1.5.4 Secret-sharing

Secret-sharing protocols allow processes to exchange information that is only revealed either
once the adversary has committed to certain information, or after it is too late for the adversary
to influence the output.

Secret-sharing as a source of randomness. These protocols have been proven useful
in blockchains for the implementation of random beacon protocols. Das et al. [31] propose a
publicly-verifiable secret sharing (PVSS) protocol based on a (⌈n/3⌉, n)-threshold secret sharing
scheme such that any n/3 processes can reconstruct the secret, but no n/3−1 of them can, with
a communication complexity of O(λn2) per beacon output. Unfortunately, it does not tolerate
n/3 Byzantine faults.

Kokoris Kogias et al. [32] present a high-threshold asynchronous verifiable secret sharing
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scheme with a dual threshold where the reconstruction threshold is some k for ⌈n/3⌉ < k ≤
⌈2n/3⌉ − 1. This way, the secret can only be reconstructed if k processes participate in the
reconstruction, while allowing honest processes that did not participate in the sharing phase
to recover their share with the help of ⌈n/3⌉ other processes. Unfortunately, an adversary
controlling ⌈n/3⌉ of the processes could recover k secret shares of other participants and recon-
struct the secret. Alhaddad et al. [33] propose an asynchronous verifiable secret sharing (AVSS)
protocol with optimal communication complexity in the same model. Tomescu et al. [153] pro-
pose a PVSS with share recovery solution with an optimistic constant number of cryptographic
operations per process, while Trek et al. [154] offer a resilient-optimal asynchronous complete
secret sharing protocol of quasi-linear computation and communication complexity. Boyle et
al. [148] present a synchronous VSS protocol that tolerates less than n/3 Byzantine faults,
while Schindler et al. [40] present a PVSS protocol under the same model and fault tolerance.
However, none of these works tolerate an adversary controlling ⌈n/3⌉ processes.

Secret-sharing in other applications. The ability to share secrets can be useful in more
aspects of the blockchain environment. For example, when considering rational players and
partial synchrony, ensuring to rational players that their strategy will not be discovered by
faulty processes, or by other rational players, provides assurance that the rational player will
not be discouraged from playing these strategies, as is showed by Breidenbach et al.’s submarine
commitments [155], in which players are rewarded for proving some knowledge, which players can
hide in a seemingly normal transaction, but that later is proven to hide the desired information.

Additionally, other protocols based on zero-knowledge proofs [156] provide a similar prop-
erty, although they explicitly reveal the existence of an information to prove, which gives an
additional advantage to other players to also claim the same knowledge.

2.2 Preliminaries

We formally state here the assumptions and definitions that we will use throughout this disser-
tation.

A protocol is a set of instructions that, when followed by all participants under the as-
sumptions listed by the protocol, implements a desired functionality F (such as implementing a
blockchain). A committee is the set N = {p0, p1, ..., pn−1} of |N | = n processes that execute the
protocol. We abuse notation by referring to a protocol σ for functionality F if σ implements
F . We speak of users to refer to participants that use the system, but that are not part of
the committee. We denote an element x sampled uniformly at random from a finite set S by
x

$←− S. We denote vectors using bold face lowercase letters such as y.

2.2.1 Fault model

Processes that always follow the protocol are honest. Typically, faulty processes are of one of
the following types: Byzantine and crash. Byzantine processes can behave in any arbitrary
way, whereas crash-fault processes follow the protocol, but they may crash at any point during
an execution, even having sent a broadcast message only to a subset of its intended recipients.
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Throughout this dissertation, we will reserve the symbol t to refer to the number of Byzantine
faults, or of crash faults when we explicitly state it, and also tℓ = ⌈n/3⌉−1 to denote the optimal
number of Byzantine faults tolerated by a protocol for consensus in partial synchrony [13]. As
we will define more types of faults later in this dissertation, as well as processes following rational
behavior, we use the term faulty to refer to all processes that are neither honest nor rational.
We will use f to denote the number of processes controlled by the adversary in the committee.

2.2.2 Communication network

The partially synchronous model sits in between the synchronous and asynchronous models by
assuming that all sent messages are delivered by its recipients within an unknown, but bounded
time. This model not only reflects the behavior of the Internet, but also balances tolerance
to faulty processes and to a faulty network, for a total of up to tℓ Byzantine faults tolerated
for the consensus problem, or ⌈n/2⌉ − 1 crash faults [13]. In contrast, assuming synchronous
communications means tolerating ⌈n/2⌉ − 1 Byzantine faults but being vulnerable to network
delays, while asynchrony is insufficient to solve consensus, as shown in Section 2.1. For these
reasons, we assume the partially synchronous model throughout this dissertation, except for the
Lockdown attack, in which we showcase a new type of attack that can be performed on to the
synchronous Lightning Network (see Chapter 3), further justifying the need for weaker com-
munication assumptions. In particular, our partially synchronous assumption specifies a known
bound ∆ on the communication delay that will hold after an unknown Global Stabilization
Time (GST) [13]. Processes communicate through private pairwise channels.

2.2.3 Authenticating messages

We make standard cryptographic assumptions [157, 158]. We assume a standard public-key
infrastructure (PKI), common to all processes, that associates the identities of processes with
their public-keys (one per process). We refer to λ as the security parameter, i.e., the number of
bits of the keys. We formalize negligible functions measured in the security parameter λ, which
are those functions that decrease asymptotically faster than the inverse of any polynomial.
Formally, a function ϵ(κ) is negligible if for all c > 0 there exists a κ0 such that ϵ(κ) < 1/κc

for all κ > κ0 [159]. Many of the claims and proofs of this dissertation require cryptography to
sign messages, meaning that they hold except with ϵ(λ) negligible probability of the messages
being decrypted without holding the decryption key.

2.2.4 Send, receive and deliver

Messages can be sent and received, but we also consider broadcast primitives that contain
two functions: a broadcast function that allows process pi to send messages through multiple
channels across the network, and a deliver function that is invoked at the very end of the
broadcast primitive to indicate that the recipient of the message has received and processed the
message. There could be however multiple message exchanges before the delivery can happen.
As we will specify some of these broadcast primitives, we attach the name of the protocol as
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a prefix to the broadcast and deliver function to refer to a message broadcast or delivered
using that protocol, such as AARB-broadcast, AARB-deliver, ABV-broadcast, ABV-deliver,
RBV-broadcast and RBV-deliver, as we detail later in this dissertation.

2.2.5 Adversary

We model processes as probabilistic polynomial-time interactive Turing machines (ITMs) [160,
35, 161]. A process is an ITM defined by the following protocol: it is activated upon receiving
an incoming message to carry out some computations, update its states, possibly generate some
outgoing messages, and wait for the next activation. The adversary M is a probabilistic ITM
that runs in polynomial time (in the number of message bits generated by honest parties). M
can control the network to read or delay messages, but not to drop them. It can also take control
and corrupt a coalition of processes, learning its entire state (stored messages, signatures, etc.).
It takes control of receiving and sending all their messages. Furthermore, it can deliver the
messages from honest processes and users instantly, and its messages can be delivered instantly
by any honest process or user.

2.2.6 Solving consensus

We define in this section problems that are critical to this dissertation. The building block for
this dissertation is the problem of a committee of processes reaching agreement on a value, i.e.
the consensus problem [12]. We detail this problem in Definition 2.2.1.

Definition 2.2.1 (Consensus). A protocol solves the consensus problem if it satisfies the fol-
lowing three properties:

• Termination. Every honest process eventually decides on a value.

• Agreement. No two honest processes decide on different values.

• Validity. If all honest processes propose the same value, no other value can be decided.

Termination and agreement ensure that honest processes terminate the protocol and agree
on the output, while validity excludes trivial solutions by protocols that ignore inputs.

2.2.6.1 Reliable broadcast

Some consensus protocols solve consensus by first executing an instance of another type of
protocol known as reliable broadcast [162, 23, 163]. Suppose a process ps, known as the source,
that wants to broadcast a value v to all honest processes, such that either all or none of the
processes deliver it. A protocol σ for reliable broadcast guarantees that if an honest process
delivers a value v from ps at the end of σ, then all other honest processes also delivered v and
only v. We formalize this problem in Definition 2.2.2. We have detailed part of the terminology
for reliable broadcasts protocol in Section 2.2.4.

Definition 2.2.2 (Reliable Broadcast). A protocol solves the reliable broadcast problem if it
satisfies the following properties:
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• RB-Unicity. Honest processes RB-deliver at most one value v from the source ps.

• RB-Validity. Honest processes RB-deliver v if v was previously RB-broadcast by ps.

• RB-Send. If ps is honest and RB-broadcasts v, then honest processes RB-deliver v.

• RB-Receive. If an honest process RB-delivers v, then honest processes RB-deliver v.

2.2.6.2 Accountable consensus

Previous work introduced signatures in consensus protocol messages, guaranteeing that for a
disagreement to occur, some processes must sign conflicting messages, and once these messages
are discovered by an honest process, such process can prove the fraudsters to the rest of honest
processes through proofs-of-fraud (PoFs) [47]. This is defined in the property of accountability,
one of the properties of the accountable consensus problem shown in Definition 2.2.3.

Definition 2.2.3 (Accountable Consensus). A protocol σ solves the accountable consensus
problem if σ solves consensus and it satisfies the following accountability property:

• Accountability. If two honest processes output disagreeing decision values, then all
honest processes eventually identify the processes responsible for that disagreement.

The problem of accountability applies to a situation that should not be possible if the
protocol σ solves consensus, since it must satisfy agreement. In general, though, accountability
for consensus protocols applies in the presence of a stronger adversary. This means that the
protocol would solve consensus in the presence of an adversary, typically controlling at most tℓ

Byzantine faults, and that it satisfies accountability when agreement is not satisfied, i.e. if the
adversary controls more than tℓ faults, typically ts = ⌈2n/3⌉ − 1. As with tℓ, we will use the
value ts = ⌈2n/3⌉ − 1 throughout this dissertation. We however keep the problem definition
abstract in this section, and will specify it later in this dissertation (Definition 5.3.1).

2.2.6.3 Set Byzantine consensus

Although the protocols present in this dissertation are abstracted and may be of independent
interest, the purpose of our proposals are intended primarily for the blockchain environment.
For this reason, when our solutions require to specify a particular consensus protocol, we often
choose to build upon an implementation of a variant of consensus (Definition 2.2.4) useful for
blockchains [23, 139, 164] where the validity property requires the decided value to be a subset
of the union of the proposed values, hence allowing us to decide more proposals per iteration
of consensus. Protocols that solve this variant can however easily solve consensus as defined in
Definition 2.2.1.

Definition 2.2.4 (Set Byzantine Consensus). Assuming that each honest process proposes a
set of values, the set Byzantine consensus (SBC) problem is for each of them to decide on a set
in such a way that the following properties are satisfied:

• SBC-Termination. every honest process eventually decides a set of values;
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• SBC-Agreement: no two honest processes decide on different sets of values;

• SBC-Validity: the decided set of values is a subset of the union of the proposed values;

• SBC-Nontriviality: if all processes are honest and propose the same value v, then the
decided set is {v}.

SBC-Termination and SBC-Agreement are common to their analogous in Definition 2.2.1,
while SBC-Validity states that the decided set must contain proposed values, and SBC-Nontriviality
is necessary to prevent trivial algorithms that decide a pre-determined value from solving the
problem.

2.2.6.4 Eventual consensus

The eventual consensus (3-consensus) abstraction [165] captures eventual agreement among
all participants. It exports, to every process pi, operations proposeEC1, proposeEC2, ... that
take multi-valued arguments (honest processes propose valid values) and return multi-valued
responses. Assuming that, for all j ∈ N, every process invokes proposeECj as soon as it returns
a response to proposeECj−1, the abstraction guarantees that there exists k ∈ N, such that the
following properties are satisfied:

• 3-Termination. Every honest process eventually returns a response to proposeECj for
all j ∈ N.

• 3-Integrity. No process responds twice to proposeECj for all j ∈ N.

• 3-Validity. Every value returned to proposeECj was previously proposed to proposeECj

for all j ∈ N.

• 3-Agreement. No two honest processes return different values to proposeECj for all
j ≥ k.

2.2.7 State machine replication

A State Machine Replication (SMR) [166, 167] is a replicated service that accepts deterministic
commands submitted by nodes and totally orders these commands, using a consensus protocol
so that, upon execution of these commands, every honest replica ends up with the same state
despite Byzantine or malicious replicas.

More formally, we follow the terminology of França Rezende et al. [168] to assume that each
user ui holds a possibly unbounded log, which contains entries, ordered starting from the entry
at position 0. We use ℓui [j] to refer to the log entry of ui at position j, the operator ℓui ∥ c

appends command c to ui’s log. For a command at position j of ui’s log to be executed by ui,
ui must execute first all commands at positions k < j.

• Validity. A command is appended once and only if it was submitted before.

• Stability. If ℓui [j] = c, c ̸= ⊥ holds at some point in time, it is also true at any later
time.



22 Chapter 2: Background & Preliminaries

• Consistency. For any two users ui and uj , if ℓui [k] and ℓuj [k] are both not ⊥, then they
are equal.

Notice that according to this definition, compliant with that of strong prefix [15], Bitcoin
does not deterministically satisfy the definition of SMR in partial synchrony. Also, notice that
in this dissertation we will allow temporarily breaking these properties to explore tolerance to
stronger adversaries, in what we will refer to as accountable SMR (ASMR).

2.2.7.1 Blockchain

Inspired by the model of Gazi et al. [97], we refer to a blockchain Ω = ⟨bi⟩ as an SMR maintaining
a sequence of blocks that determines its current state. We denote Ω[i] as the ith block of Ω, and
i as the block’s blockheight, Ω[−i] being the ith latest block of Ω, with −i its blockdepth. Decided
values are added to a block b that is then written in Ω. For ease of exposition, we further specify
blockchains by requiring the decided values of a block to be transactions, as most blockchains
decide on sets of transactions. Each process proposes blocks containing transactions, which can
later be decided and finalized. We speak of a block being final at blockheight i if it has been
appended to the blockchain in the aforementioned SMR terminology, i.e. such that it will not
be removed from that blockheight. We say that a block is decided when it has been appended
to a blockheight i of the blockchain, but it is not yet final, in that it can suffer reorganization
and be removed from that blockheight upon processes finalizing a different block at i.

Transactions. A transaction is a tuple tx = ⟨I, O⟩ where I is a list of inputs and O a list
of outputs [169]. Outputs are stored in an Unspent Transaction Output (UTXO) pool until a
transaction that consumes it as one of its inputs gets written in Ω. We model the outputs as
oi = ⟨si,¢oi⟩ where the set si = {(ui, condsui)} defines the conditions condsui for the user ui to
spend the coin ¢oi (¢oi ≥ 0). In order to spend a coin, the associated conditions condsui must
be fulfilled so that only one user, among multiple candidate ones, can spend this coin.

Ownership. We say that user ui owns coin ¢i if there exists a list of conditions condsui

such that ui can spend ¢i. As such, let C be the set of coins, T the set of discrete timeslots (e.g.
blockheight), and M the set of users, with m = |M |, then ownership is a function φ : C×T →M

that takes a coin and returns its owner at a particular time.
Accounts. We define an account z ∈ Z as an instance of only one user ui, γ(z) = ui,

where γ(z) is a function that returns the user that controls account z. An account belongs to a
particular blockchain, one account is controlled by only one user, but one user can have multiple
accounts, either in the same or in different blockchains.

Transferring coins. A transaction may transfer one or more coins. We refer to ui trans-
ferring a coin ¢i to uj if ui spends it to uj . We can define a transfer of a coin as a change
of ownership. That is, let ui, uj ∈ M , zi, zj ∈ Z such that γ(zi) = ui, and γ(zj) = uj , and
let ¢i ∈ C, δi ∈ T , such that φ(¢i, δi) = ui, then the transfer relation TR to uj is such that
zi TRδi+1,¢i

zj ⇐⇒ φ(¢i, δi+1) = uj.
Notice we can define the transitive closure of the transfer operation as follows:
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TR+ =
{

(zi, zj) ∈ Z2 : ∃¢i s.t. φ(¢i, δi) = ui and φ(¢i, δj) = uj ,

for some δi, δj ∈ T , i < j where γ(zi) = ui, γ(zj) = uj

}
(2.1)

2.2.8 Committee sortition

As we detailed in Section 2.1, several blockchains rotate the committee following the outputs of
a random beacon protocol, a distributed protocol that periodically outputs a random number.
The output Z of a random beacon is characterized by its randomness, in that Z is unpredictable
and unbiased. We define formally the random beacon problem in Definition 2.2.5 [40, 170, 36,
171].

Definition 2.2.5 (Random beacon). A protocol σ solves the random beacon problem if it
satisfies all of the following properties:

• Agreement: All honest processes agree on the same random output Z.

• Availability: Every honest process eventually outputs one value Z.

• Verifiability: If an honest process decides Z, then every honest process can verify it.

• Unpredictability: No process can predict the value of Z with probability greater than
randomly guessing the secret before at least one honest process decides Z.

• Bias-resistance: No process can fix c ≥ 0 bits of Z with probability greater than ϵ(c) +
ϵ(λ).

The first two properties, namely agreement and availability, are similar to the consensus
problem, although typically referred to as agreement and termination. Verifiability states that
all honest processes can verify the validity of the output, which extends the simpler property of
validity in the consensus problem. In fact, the well-known impossibility results for consensus [13]
are proven to also apply to the random beacon problem [41]. The properties of unpredictability
and bias-resistance guarantee the randomness of the output with respect to all processes.

Analogously to how many consensus protocols actually start by executing one or more
instances of a reliable broadcast protocol, many random beacons also start by executing n

instances of a publicly verifiable secret-sharing (PVSS) protocol, or a similar variant. Similarly
to how protocols for reliable broadcast allow a source process ps to reliably broadcast a value,
PVSS protocols allow a process known as the dealer pd to share a secret value s, ensuring that s

can only be revealed if enough processes are able to reveal it. We inspired from previous works
to formalize protocols for PVSS [172, 173, 40, 31].

PVSS protocols are structured in four phases [31]:

1. Setup: The dealer pd generates and publishes the parameters of the scheme. Every process
pi publishes a public key pki and withholds the corresponding secret key ski.

2. Distribution: The dealer creates one encrypted secret share cd = {ci,d} of the secret s

with pki for each process pi, along with a proof vd that these are indeed valid encrypted
shares of some secret.
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3. Verification: Each process (or an external verifier) verifies that the secret shares cd are
indeed valid shares of some secret.

4. Reconstruction: In this phase, each process pi decrypts their respective share ci,d with
their secret key ski, obtaining their decrypted share si,d = pk

ci,d

i , and shares si,d along
with a (non-interactive) zero-knowledge proof that si,d is a correct decryption of ci,d. Each
process (or an external verifier) verifies the decrypted shares, and applies a reconstruction
procedure to recover the original secret sd shared by the dealer pd.

We formalize the PVSS problem in Definition 2.2.6.

Definition 2.2.6 (Publicly verifiable secret-sharing). Let a dealer pd share a secret s with n−1
additional processes following a protocol σ. Then, σ solves the PVSS problem with security
parameter λ if it satisfies the following properties:

• Verifiability: If the check in the verification step returns 1, i.e. succeeds, then with
probability at least 1−ϵ(λ) the encryptions c are valid shares of some secret. Furthermore,
if the check in the Reconstruction phase passes then the communicated values c are indeed
the shares of a secret distributed by the dealer.

• Correctness: if pd is honest, then with probability at least 1 − ϵ(λ) the checks in the
verification and reconstruction steps succeed, and honest processes can reconstruct s.

• Secrecy: If pd is honest, then the probability of M learning any information about pd’s
secret s prior to the reconstruction phase is at most ϵ(λ).

• Agreement: Honest processes do not reconstruct different secrets, even if pd is faulty, with
probability at least 1− ϵ(λ).

2.2.9 Blockchain trilemma

In this section, we state the blockchain trilemma. For this purpose, we first define the blockchain’s
upload speed as the number of distinct transactions per second (tps) that a user sends to pro-
cesses, and we use Ωup to refer to the upload speed of the blockchain Ω (i.e. the number of
distinct transactions sent by any user to processes per second). We use Ωdo to refer to the
download speed of the blockchain, which is the number of finalized transactions per second. All
users can verify finalized blocks locally for correctness, in that all transactions in that block are
valid given the current state of the blockchain. One can then define the verification speed of
a user in transactions per second. We then speak of the verification speed of a blockchain Ω,
noted Ωver as the average of the verification speed of all of its users.

Having defined these terms, we now propose a definition of the blockchain trilemma. The
purpose of this definition is to set a goal for blockchains, in that a perfect blockchain would
guarantee these three properties.

Definition 2.2.7 (Blockchain trilemma). Let Ω be a blockchain. Then Ω solves the blockchain
trilemma if it satisfies the following properties:
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• Scalability. Ω finalizes blocks such that Ωdo ≥ min(Ωver,Ωup).

• Decentralization. Any user can become a process and have one of his proposed blocks
finalized with non-null probability.

• Security. Ω is an SMR.

Security and the definition of finalized blocks is the property that ensures that every
blockchain is also an SMR, while scalability measures performance and decentralization en-
sures the minimum requirement for the permissionless nature of blockchains. It is easy to see
that designing and implementing a non-trivial (i.e. such that the number of users is m > 1)
blockchain that satisfies these three properties in the presence of a Byzantine adversary control-
ling some of the users is not immediate. In fact, one could argue that it is impossible (as it has
been often done for the blockchain trilemma). However, two of the three properties are easily
obtainable. First, in order to satisfy scalability and decentralization without security, one can
simply let each process decide individually. Second, scalability and security can be satisfied by
relying on a trusted third party. Third, a trivial solution that does not ever finalizes any block
satisfies security and decentralization without scalability.

Thus, the blockchain trilemma intuitively applies as expected. In fact, a combination of
previous results already provide an intuition of the impossibility of the trilemma as defined in
this dissertation. We show this in the following conjecture.

Conjecture 2.2.1. It is impossible to solve the blockchain trilemma.

Intuition. A blockchain that guarantees that all users agree on the ordering of all finalized
blocks (security) has consensus number +∞ [15]. A protocol that solves distributed consensus
has bit complexity at least O(n2) [29]. A model that maps this lower-bound on bit complexity
to the size of each finalized block, and assumes a computation time to verify these blocks that
is less costly than exchanging O(n2) bits, would thus indicate that the three properties are
impossible to be satisfied together.

As such, we propose instead metrics that measure the scalability, security and decentraliza-
tion of blockchains.

Security metrics. We measure security by comparing the set of assumptions under which the
blockchain satisfies its properties. Particularly, we focus in this dissertation on the adversarial
model, and on the communication network. Our proposals start by at least tolerating tℓ Byzan-
tine faults in partial synchrony, but, as we will show, we extend beyond these classical bounds.
We also justify the need for partial synchrony and for tolerating powerful adversaries.

Decentralization metrics. A decentralization metric has already been slightly studied by
the state of the art [26]. Intuitively, this metric requires an analysis of the probability that
an adversary (possibly dynamic) controlling initially a percentage of users (and not processes),
manages to take control of the committee sortition protocol so that it can either predict or bias
future committees. We present such analysis in Chapter 6.
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Scalability metrics. In order to quantify the scalability of a blockchain, we inherit from
previous results and metrics that quantify the communication complexities of the protocol.
In particular, as already noted, a blockchain that is secure can only finalize blocks after its
processes exchange at least O(n2) bits. However, we follow the approach of recent works [79,
31, 27, 80, 81, 23, 28] in order to characterize specific metrics for the case of blockchains, in
addition to the classical bit, message and time complexities. We propose three modifications to
consider the complexities of blockchains:

1. Normalized complexities. Consider two blockchains, A and B, which have the same
bit and message complexities, but A finalizes Ω(n) blocks in one iteration of the protocol while B
finalizes O(1) (suppose all blocks have the same number of transactions). Clearly, A produces
more outputs for the same message and bit complexities. The normalized message and bit
complexities reflect this greater throughput of A by providing the complexity metrics divided
by the number of outputs in one iteration of the protocol. Thus, if A finalizes Ω(n) blocks in
an iteration of a protocol with a bit complexity of O(n3), while B produces O(1) outputs with
a bit complexity of O(n2), then these protocols have the same normalized bit complexity of
O(n2). This is the case of multiple recent proposals [27, 80, 81, 23, 28].

2. Amortized complexities. Similar to normalization, amortization looks at the number
of outputs produced after n iterations of the protocol, and divides the complexities by the
number of outputs. For example, some leader-based protocols can apply a round-robin rotation
of the leader every time the protocol fails to produce an output, meaning that if there are
tℓ = O(n) Byzantine processes (and assuming synchrony or after GST), then Ω(n) blocks are
produced in n iterations. In this example, however, this result requires an assumption on the
adversary being static, or slowly-adaptive [100], since otherwise in the worst-case the adversary
can always initially corrupt the leader. Amortization has already been presented by recent
works [79, 31, 132].

3. Per route complexities. Suppose two blockchains whose servers communicate via
the Internet. Suppose that both blockchains, A and B, have the same time, message and
communication complexity per output, even normalized and amortized, and suppose the bit
complexity is O(n2). However, protocol A uses O(n) of these pairwise channels, sending Ω(n)
bits through each of them, while protocol B distributes the bits sending O(1) bits across each
of the Ω(n2) network channels. In this case, protocol B is not affected by the bottleneck on
network bandwidth on the exploited network routes, meaning that it should scale better since
both are implemented on the Internet or, more generally, on a wide area network (WAN). This
is in fact the behavior that has been measured by recent works [27, 80, 81, 23, 28], which have
at-first comparable complexity metrics, but that scale better due to their distribution of shared
bits across more channels.

There are already a number of works that remark the importance of an implementation that
evenly scatters the bits exchanged across the entire network [27, 80, 81, 23, 28]. The protocols
of these proposals are either leader-less or democratic. The distinction between leader-less
and democratic protocols is that leader-based, democratic protocols may have a leader that
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proposes the output, as long as this proposed output output is a subset of the inputs, and
these inputs are provided by multiple processes [27, 80]. In contrast, leader-less protocols are
not only democratic but they also do not have a leader, i.e. a single process that proposes a
specific subset of the inputs. We argue in Chapter 6 the advantages of leader-based democratic
protocols compared to leader-less protocols [81, 23, 28].
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Chapter 3

Layer-2 Without Synchrony

The efforts of the blockchain community to design decentralized, secure and scalable blockchains
have led to many proposals. However, the vast majority of them came to light through mediums
without peer review, in many cases shared online in the form of an informal white paper. For the
problem of scaling blockchains, this has led to some works that scale at the cost of less security,
through the abuse of strong assumptions and threat models. Layer-2, or offchain protocols, were
created with the aim of connecting and scaling first generation blockchains. As we mentioned in
Chapter 2, previous works have already warned against the dangers of current layer-2 proposals,
specially due to their abuse of synchrony and their trade-off between a low synchrony bound
for scalability and a large synchrony bound for security.

In this chapter, we abstract the trade-off for synchronous offchain protocols derived from
an abuse of the synchrony assumption, to then introduce, implement and test on the Lightning
Network a novel attack, the Lockdown attack, that stems from our previous work [83, 91].
We then set the first stone towards secure offchain protocols by proposing and proving the
correctness and optimal resilience of the first offchain protocol without synchrony to date, the
Platypus protocol.

Summary. In summary, we present the following contributions in this chapter:

i) We outline the trade-off between security and scalability derived from synchrony in layer-2.

ii) We present the Lockdown attack, a novel attack against offchain payment channels, fac-
tories and networks.

iii) We implement the Lockdown attack in the Lightning Network testnet, showing that it
successfully prevents users from performing payments regardless of the implementation
and parameters of the Lightning Network.

iv) We present a novel formalization and definition of the offchain, childchain, and sidechains
problems.

v) We present the Platypus protocol, the first offchain protocol that is scalable and safe
without a synchrony assumption.
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vi) We prove the correctness of Platypus for the offchain, childchain, and sidechains problems,
and show that it is resilient optimal.

Chapter outline. We explain the vulnerabilities associated with synchrony in Section 3.1,
where we also present a novel attack against synchronous offchain protocols, the Lockdown
Attack. Section 3.2 extends the model to introduce the offchain problem. We present Platypus,
a novel childchain protocol that solves the offchain problem without assuming synchrony, in
Section 3.3, and show its correctness and optimal resilience in Section 3.4. We analyze Platy-
pus’ complexity in Section 3.5, and discuss improvements to Platypus and its applications to
sidechains in Section 3.6. Finally, Section 3.7 concludes the chapter.

3.1 Why layer-2 that rely on synchrony are more vulnerable

By relying on offchain computation, layer-2 (or offchain protocols) avoid communicating and/or
storing information directly in the blockchain, hence bypassing an important bottleneck, but
also limiting transparency of selected transactions to ensure privacy. Channel networks and
channel factories offer private and fast payments, but they can only perform payments if users
have an existing route of channels with one another. As a result, their scalability and privacy
are actually subject to proper handling of the network topology and vulnerable to routing
attacks [91].

There is, therefore, great interest in designing proper childchain protocols that allow blockchains
to host the creation and destruction of other smaller blockchains that depend on them. Un-
fortunately, as far as we know all childchains [96, 97] use timelocks that only work under the
assumption that the communication is synchronous, in that every message gets delivered in less
than a known bounded amount of time [13], an assumption that is known to be violated at
times over the internet. But more dramatically, assuming synchrony exposes offchain protocols
to various attacks, like Denial-of-Service or Man-in-the-Middle, that are common practice to
double spend [112].

3.1.1 Abstract vulnerability

To illustrate the problem of synchronous offchain protocols, consider an execution using time-
locks1 illustrated in Figure 3.1 in which time increases from top to bottom. First, Alice transfers
¢ coins to Bob outside of the chain, or offchain, before Bob acknowledges the transfer. Bob can
then take actions in response to this transfer thinking, wrongly, that he will have sufficient time
to prove the fraud if Alice tries to claim back the coins. Let us consider that Alice is Byzantine
and claims back the ownership of the coins, which triggers a timelock, a safe guard delay during
which the coins are locked to give an opportunity to other participants to prove fraudulent ac-
tivity before the coins are transferred back. As part of the protocol, Bob gets notified but due
to an unforeseen delay, he does not manage to prove the fraud before the end of the timelock.

1Although most implementations use timelocks like here presented, some other proposals are synchronous and
use no timelocks. Note however that synchronous protocols are inherently vulnerable to non-synchronous periods
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Figure 3.1: Alice can steal Bob’s coin if Bob messages are delayed such that Bob’s reply takes
longer than the timelock δ.
Its ¢ coins are thus stolen. In fact, the problem of synchronous offchain protocols derives in a
critical trade-off: timelocks should be as small as possible for scalability, but they should be
large to guarantee security.

3.1.2 Lockdown attack

More than just theorizing with the problems of synchrony, we illustrate the problem with an
attack on the first and most popular offchain payment network, the Lightning Network [82]
(LN), which we call the Lockdown attack. This attack is a continuation from our previous
work [91] to showcase the dangers of synchrony in layer-2 and question whether these proposals
allow for scalability and private transactions. We shortly describe the attack and results in this
section, and refer to Appendix A for a detailed description.

The LN is a separated peer-to-peer (p2p) network connected to the main Bitcoin p2p network
with users that run a LN software client [174, 175, 176]. Each user maintains multiple p2p
connections in the LN and also a connection in the Bitcoin main p2p network.

The core underlying concept for our proposed attack is the multihop approach. Payments
in the LN between users that do not share a direct payment channel have to be routed through
a multihop path, also known as a payment route. Since this describes a graph, we speak in
this section of a node to refer to the LN client run by a user. The source node of a payment is
the payer, and the end node is the recipient. In all current LN implementations, such a route
is constructed by the source node that performs the payment. To allow these constructions,
nodes in the LN maintain a topology structure of the LN graph that is used for route discovery.
LN implementations, given a target node, return the most suitable route based on the number
of hops and the fees each hop charges for routing the payment. However, being the LN a p2p
environment, there is no deterrent for a source node to compute the payment route at his choice
with the information he has available.

In the multihop approach, payments at each individual payment channel cannot be per-
formed exactly in the same way than that with a single hop. An intermediate user has to
enforce he would receive the payment from the preceding node once he has performed the pay-
ment to the next one, otherwise he would lose the amount of the payment. The enforcement
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of this type of atomic exchange between all the nodes of the path (i.e., all simple one-hop pay-
ments have to be completed or none can be processed) is performed using Hashed Timelock
Contracts (HTLCs) [86]. In a (synchronous) HTLC between the sender A and the receiver B,
A can deposit coins that can be redeemed by B if B can perform a digital signature and provide
a preimage of a hash value. Furthermore, the deposit performed by A has an expiration date
after which A can retrieve the deposit providing a digital signature. For a two-hop payment,
A ↔ B ↔ C, the idea is that C generates a random value x and sends h(x) to A where h(x)
returns the hash of a value x. A performs the single hop payment to B with an HTLC based on
h(x) and B also performs the single hop payment to C with an HTLC based on the same value
h(x). In that way, since C knows x, he can redeem the transaction from B, but redeeming the
transaction implies revealing the value of x. This implies that B may also redeem the payment
from A.

When node B1 performs a payment to node Bm in the LN using the route B1 → B2 →
· · · → Bm, the atomicity needed in such operation implies that all route payments cannot be
executed until the last node of the route, Bm, provides the corresponding preimage x of the h(x)
included in the HTLC. In a normal scenario, Bm reveals this preimage as soon as he receives
the payment in his channel, because he wants to collect the payment. However, if the payment
gets stuck for any reason in node Bi, all payments from node B1 to node Bi will be locked.
To bound the locking time, B1 sets a total timelock, dependent on the synchrony bound. The
time frame for the payment, determined as an absolute blockheight value, and known as its
expiration blockheight, θ, limits the time that these funds will be locked in case the payment
does not succeed.

When the payment is being routed, every node of the route also decreases the value θ. Each
node of the LN advertises for each of its channels, the value δ that will be used for decreasing θ

at each hop. With this public information, the payer creates the route with an initial θ ensuring
that after subtracting each δ of each intermediate node, the last node will not obtain a expired
time, that is (θ −∑m

i=2 δi) > 0. Notice that this mechanism allows the payer to bound the
time a payment will be locked but, without any other mechanism, a malicious payer could lock
the funds of intermediate nodes by setting a large initial value θ. To avoid this situation, each
node sets his own Tmax value that bounds the locking time of a payment. Then, when a node
receives a payment as an intermediate node route, if θ > Tmax the node will refuse to route the
payment and the payer will have to choose another route.

3.1.2.1 Attack overview

The proposed attack is focused on a target victim A, a node of the LN. The goal of the adversary
is to block the victim A as a middle node in multipath payments. By achieving this goal, an
adversary may obtain a dominant position in the LN, given that blocking some selected nodes
may let the adversary be the main gateway to route payments. This allows the adversary to
have a dominant position that can be exploited either in order to gather information or just
to increase the benefits as a LN gateway node. We defer to Appendix A a formal specification
of the design of the attack and the adversarial knowledge to deploy it (Section A.1). Also, to
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simplify the description of the attack, we delay to Appendix A some of the maximum values
that LN implementations introduce (Section A.3), and how these values impact the cost of real
attacks (Section A.2). For the remainder of this chapter, we use the following notation: we
assume that the victim node is A, the adversary isM and A has open channels with a list of n

different nodes, denoted by Bi for i = 1, · · · , n. Furthermore, we denote by CABi the capacity of
the channel that A and Bi have opened, i.e. how many coins are placed in the channel, and by
balanceABi (resp. balanceBiA) the balance that A (resp. Bi) has in this channel, i.e. how many
of the coins belong to whom. We denote Cattack the capacity that M has to hold in channels
in the LN to perform the attack.

To describe our attack, we use a simple scenario where the victim A is a hub between
two users, B1 and B2, as depicted in Figure 3.2. Capacity values are CAB1 = o1 + o4 and
CAB2 = o2 + o3, being oi the balances in each direction for each channel. The objective of the
adversary M is to disrupt the availability of A by blocking the availability of either incoming
links or outgoing links, that is rendering o1 = 0 and o3 = 0 or o2 = 0 and o4 = 0.

AB1 B2

o1

o4

o2

o3

Figure 3.2: Example scenario of the Lockdown attack, where victim A is a hub between two
users B1 and B2. The objective of the adversary M is to disrupt the availability of A, by
blocking the availability of either incoming links or outgoing links, that is, rendering o1 = 0 and
o3 = 0 or o2 = 0 and o4 = 0.

To perform the attack, M opens a channel with A as depicted in Figure 3.3a. The attack
complexity depends on the balances between A and Bi and we can distinguish the two following
cases:

Shorter loop – The first case is when o1 ≤ o4 and o3 ≤ o2. Notice that with these conditions,
o1 + o3 ≤ o2 + o4, which means that M would prefer to block incoming paths to A, as this
way Cattack is lower than by blocking outgoing connections. As such,M can block all incoming
paths by performing two single payments with a short loop. The first payment will follow the
route M → A → B1 → A → M with value o1 and the second payment will follow the route
M→ A→ B2 → A→M with value o3. With these payments balanceB1A = balanceB2A = 0.
Notice that with this scenario the channel that M has to open with A to perform the attack
needs a capacity2 Cattack = CMA = 2(o1 + o3).

Longer loop – In case either o1 > o4 or o3 > o2, then the adversary needs to proceed
in a different way.3 Without loss of generality, assume that o1 > o4 and o3 ≤ o2 and also
that o1 + o3 ≤ o2 + o4 so M would prefer to block incoming paths to A. With this balance
distribution,M can perform the aforementioned short loop to block the incoming path from B2

2The capacity that M has to open with A is the double of the payment value, as the payment is performed
by M but also has to return to M to extend the time that the payment is blocked for.

3Notice that if both inequations hold, then o1 + o3 > o2 + o4 and M would prefer to block outgoing paths as
in the “Shorter loop” case.
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Figure 3.3: (a) Simple scenario of the Lockdown attack, in which the adversary M opens
channels with A to lock its funds with B1 and B2. (b) Simple scenario with an external node,
in which the adversary can use the external node D to lock the remaining balances.

by performing the payment of value o3 following the routeM→ A→ B2 → A→M. However,
given that o1 > o4, M cannot perform a payment route M→ A → B1 → A →M with value
o1 since the channel AB1 has balanceAB1 = o4 < o1. At most, M can perform a payment with
value o4 through the path M→ A→ B1 → A→M. This payment locks o4 but some balance
is still available in the channel, precisely o4 − o1. For M to lock that capacity of the channel,
as the path A → B1 is already exhausted, M needs another path from A to B1 with capacity
o4 − o1 and that exact direction. Figure 3.3b shows a simple example in which there exists
a node D with open channels with A and B1 and such that balanceAD = o7 ≥ o4 − o1 and
balanceDB1 = o8 ≥ o4 − o1. In that case, M can perform a second payment with value o4 − o1

with route M → A → D → B1 → A → M. This payment will lock the remaining funds of
B1 → A.

The hard assumption of the existence of node D can be relaxed with the existence of multiple
possible paths that all together can route the total o4 − o1 value. Notice, however, that the
payment graph topology hardly determines the existence of such paths.

3.1.2.2 Attack results

We perform a test in a simnet controlled environment to validate that our claims are correct
and that the routes generated in our attack containing loops can effectively be deployed in the
three most relevant available implementations of the Bitcoin LN, namely lnd [175], cl [176] and
eclair [177].

For the network topology, we take a snapshot of the topology of the LN4 of the Bitcoin
mainnet on July, 9th, 2019 at 12:00 CET time. To execute the attack algorithm, the adversary
needs to complement the information of the network graph with further data. The information
needed is: the balance of each channel and the values Tmax for each node of the network.

Regarding the balances, they can be obtained by executing the attack we described in
our previous work [91]. However, instead of performing such an attack, we have assigned the

4This can be obtained, for instance, with the instruction describegraph of the lnd implementation.
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balances of each channel using different statistical distributions, trying to reproduce the different
scenarios that could be found in the network. In order to assign balances to channels, we proceed
in the following way: for each channel, first the balance of one of the nodes is randomly selected
using one of the selected distributions, and taking the capacity of the channel as the maximum
possible value to generate. Then, the balance of the other node in the channel is set as the
remaining balance (that is, the capacity minus the balance). Five different distributions are
used to assign balances to channels: deterministic, uniform, normal, exponential, and beta. The
deterministic distribution always assigns half of the capacity of the channel to each of the nodes;
the normal distribution is used with µ = 0.5 and σ = 0.2; the exponential distribution uses
α = 1; and the beta distribution α = β = 0.25. We detail further the setup for the simulations
in Appendix A (Section A.2.2).

Blocked Channels
Distribution Implementation AER capacity needed T̃BT

Beta lnd 0.291 86.86 % 67.8 0.31
c-lightning 0.203 82.23 % 49.7 0.07
eclair 0.584 86.30 % 133.8 0.05

Deterministic lnd 0.200 100.00 % 52.0 0.44
c-lightning 0.100 80.40 % 26.0 0.13
eclair 0.500 100.00 % 129.0 0.09

Exponential lnd 0.229 92.55 % 55.1 0.36
c-lightning 0.135 80.22 % 34.0 0.09
eclair 0.512 92.30 % 123.4 0.07

Normal lnd 0.230 96.79 % 62.5 0.39
c-lightning 0.149 84.26 % 39.0 0.11
eclair 0.479 96.89 % 134.9 0.08

Uniform lnd 0.268 93.05 % 69.4 0.35
c-lightning 0.149 82.87 % 45.6 0.09
eclair 0.557 93.02 % 140.3 0.07

Table 3.1: Attack results for different balance distributions.

Table 3.1 shows that the attack is effective in all scenarios (implementations and balance
distribution). Notice that in the worst-case, for a Beta distribution in which the node runs an
eclair implementation, the Attack Effort Ratio (AER), which describes the ratio between the
capacity needed to perform the attack and the capacity that the attack blocks, is 0.584. This
means that half of the capacity of the victim suffices for the attacker to block 86.30% of the
victim’s capacity. In fact, the percentage of the victim capacity blocked is large for all the
scenarios, never below 80%. Moreover, Table 3.1 also shows the Normalized Total Blocked Time
(T̃BT ). We detail how we calculate these values in Appendix A (Section A.1), which results in 0
if the attack does not lock any balance, and in 1 if the attack maximizes the time during which
the balance is locked (per implementation). The T̃BT also shows that lnd implementations
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allow the adversary to block more capacity over time.
We provide more simulation results in Appendix A (Section A.2.2), as well as possible

countermeasures (Section A.4). Nevertheless, as we have already noted, this attack and others
stem directly from the abuse of the synchrony assumption. For this reason, we present first
a model that we will use to formalize the offchain problem in Section 3.2, and illustrate the
Platypus protocol in Section 3.3, the first offchain protocol without synchrony.

3.2 Model

In this section, we define additional assumptions to the model already defined in Section 2.2,
that we will use throughout this chapter.

• Threshold signatures. Our model requires accounts to authenticate with a cryptographic
primitive enabling non-interactive aggregation, such as those of previous works [97, 178]. For
simplicity, and without loss of generality, we assume that accounts are not reusable. In partic-
ular, the same coins should not go back to the same process in the same account, to prevent a
variant of the ABA problem (see Section 3.6). In the remainder of this chapter, we abuse the
term process as an account that the process owns, unless stated otherwise.

• Minimal transfers. Given a sequence seq = {zj TRδj+1,¢i
zj+1}d−1

j=c of transfers over some
time range [δc, δd], between creation time δc and destruction time δd, for coin ¢i, we refer to
the minimal transfer as the single transfer zc TR[δc,δd],¢i

zd, which is always an element of the
transitive closure (see Section 2.2.7.1). For a set of operations defined over all coins within a
time range [δc, δd], we denote the minimal transfer set TR− as the set of all minimal transfers,
which is at least a set of idempotent transfers of the form zi TR zi.

• Offchain problem. Given a blockchain Ω of P processes, the offchain protocol consists of
executing a sequence seq of transfers offchain. First, processes Q ⊊ P must create an offchain
protocol Γ by writing a transaction in the original chain Ω—effectively depositing funds from Ω

into Γ . Then they transfer coins offchain between themselves using Γ . Finally they can destroy
this protocol Γ . To this end, the offchain protocol consists of at least two main procedures,
creation and bulk close. We will explain later how the participation in Γ is made dynamic using
splice in and splice out procedures to accept new participants and for existing participants to
leave Γ , respectively. After a series of transfers in Γ , processes can propose to bulk close it
by proposing COMMIT. Processes decide to COMMIT, in that they effectively agree to accept
these transfers and to close and destroy Γ , or decide to ABORT, in that they disagree with the
transfers and refuse to close Γ . We formalize this offchain problem in Definition 3.2.1.

Definition 3.2.1 (Offchain). A protocol solves the offchain problem if it satisfies the following
properties:

– Termination. Every honest process decides COMMIT or ABORT on some sequence of
transfers seq for which some process proposed COMMIT.

– Agreement. no honest process decides COMMIT on two different sequences seq and seq′.
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– ABORT-Validity. if an honest process proposes ABORT for a sequence seq, then all
honest processes decide ABORT for this sequence seq.

– COMMIT-Validity. if no honest process proposes ABORT for sequence seq for which
some process proposed COMMIT, then all honest processes decide COMMIT for sequence
seq.

Notice that, in our definition, aborting is implicit and proposing ABORT is not an input of
our algorithm as we will see in Algorithm 3. In particular, COMMIT-Validity can be ensured
by requiring a process to provide a valid proof of fraud (PoF) when proposing to abort, the
invalidity of the PoF allows honest processes to ignore the ABORT proposal and its validity
guarantees that all honest processes will observe this PoF. Finally, note that our termination
does not imply that the offchain protocol gets closed. Instead, it means that all honest processes
decide either to COMMIT and close the protocol or to ABORT, not closing the protocol. This
is not a problem since, as we will explain in Algorithm 5, any honest process can cash out the
coins that it knows it owns at any moment.

In order to achieve privacy, we introduce another property stating that some decisions of
the offchain protocol do not have to be written in the blockchain:

– COMMIT-Privacy/Lightness: If honest processes decide COMMIT on a sequence seq of
transfer operations made in Γ between δc and δd, then ∀p ∈ P\Q, p only learns/stores
TR−, the minimal transfer set of seq.

A childchain Ψ is a particular class of offchain protocol in that it is a blockchain Ψ that is
created by another blockchain Ω, known as its parentchain, and that implements an offchain
protocol Γ .

3.3 Secure childchains without synchrony

In this section we present Platypus, a novel childchain protocol that solves the offchain problem
without assuming synchrony. Platypus consists of both an offchain protocol and a childchain
that are denoted respectively Γ and Ψ in the remainder of the chapter. Given a parentchain Ω,
processes can use the protocol Γ by depositing funds from Ω to Ψ, that effectively creates the
childchain. Then transfers can be done directly on Ψ offchain before the bulk close takes place.

As Platypus interacts with two blockchains, each with a different set of users and committee,
we extend the model of Section 2.2.1 in this section. The parentchain Ω and childchain Ψ have
a set MΩ of |MΩ| = mΩ users and MΨ of |MΨ| = mΨ users, respectively, with a committee
NΩ ⊆ MΩ of |NΩ| = nΩ processes and a committee NΨ ⊆ MΨ ⊆ MΩ of |NΨ| = nΨ processes,
respectively. Note that nΨ is the number of all processes joining the Platypus protocol. The
consideration of two committees also requires an adaptation of the aforementioned tℓ for Byzan-
tine behavior (see Section 2.2.1). The adversary M is thus bound to two constraints, which
limit the maximum number of Byzantine faults that it can control, being these t0 = ⌈nΩ/3⌉− 1
and t1 = ⌈nΨ/3⌉ − 1.



38 Chapter 3: Layer-2 Without Synchrony

Although we do not provide an implementation of the blockchain Ψ (resp. Ω), we assume
that Ψ (resp. Ω) is secure (i.e. it uses deterministic consensus to not fork): a blockchain
assuming partial synchrony and t1 (resp. t0) Byzantine processes suffices [23, 28].

3.3.1 Overview

Γ is depicted in three main procedures: a creation (Algorithm 1), a bulk close (Algorithm 2)
and an abort (Algorithm 3). (Splice in and splice out procedures are deferred to Section 3.6).
Processes can ABORT or COMMIT sequences of transfers done in Ψ. In particular, a process
proposes ABORT by creating an abort transaction (and sharing it) in line 7 of Algorithm 3
and proposes a COMMIT in line 9 of Algorithm 2. A process decides COMMIT at line 10
(Algorithm 2) only after a number of processes propose COMMIT and decides ABORT at
line 11 (Algorithm 2) only when there exists a valid abort transaction.

3.3.2 Creating a Platypus chain

Users can create a Platypus chain by publishing a transaction on Ω. After that transaction is
final, the funds referred to in this transaction are locked and ready to be used by the Platypus
protocol Γ . In general, a Platypus creation transaction (txplcr) is a transaction that:

• Has a new Platypus id (plid) that uniquely identifies it.

• Specifies a consensus protocol for the Platypus blockchain Ψ to decide on a new block.
W.l.o.g., we assume DBFT [23] to be the default protocol.

• Specifies a number h0 > f of processes required to create Ψ, where f is the total number of
faults. For simplicity and to match with the optimal result (see Theorem 3.9), we choose
h0 = ⌊2nΨ/3⌋+ 1.

• Defines a new function abort(...) that specifies when a user can decide ABORT on the
protocol (such as a Platypus bulk close transaction being aborted).

• Specifies a set of processes and their balances that go in Ψ through this transaction.

• Once written in Ω, the funds can only be spent in Ψ.

Algorithm 1 shows the protocol to create a Platypus chain. The call to num_signers(tx) re-
turns the amount of signers of tx, while the call to verify(tx, {msg}) verifies the validity of
the transaction and signed messages. We define two main interactions of the Platypus proto-
col with both the childchain and the parentchain: sending transactions and reading transac-
tions. The Platypus protocol Γ sends transactions to Ω or Ψ by invoking send({Ω, Ψ}, tx) and
acsend({Ω, Ψ}, tx)—standing for “atomic commit send”. In the former, the function returns
once the transaction is written in the corresponding blockchain or a transaction that spent the
same funds has been written (meaning this transaction became invalid), while the latter returns
ABORT or COMMIT and the respectively written transaction in a response message. This
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response is received by all processes as it is a result of the Platypus blockchain. Reading trans-
actions is performed by the call to is_written({Ω, Ψ}, tx) that returns True or False depending
on whether the transaction was written or not in the blockchain. Messages are signed to prevent
Byzantine processes from adding third parties without the agreement of honest processes.

3.3.3 Closing a Platypus chain

A Platypus bulk close transaction splices all funds out of the Platypus blockchain without
compromising its security (agreement), and without requiring all processes to join together
in its destruction (termination). It is still a normal transaction in the Platypus blockchain,
meaning that it requires enough processes h0 to agree with writing it in Ψ. Algorithm 2 shows
the protocol to bulk close a Platypus chain. A Platypus bulk close transaction signed by some
processes returns back the updated balances of all processes in the parentchain Ω, unless it is
aborted. Once written in both Ψ and Ω, the coins can be spent only in Ω.

3.3.4 Aborting a closing attempt

A Platypus bulk close transaction with insufficient signatures can either be a valid, ongoing
Platypus bulk close, or an attempt to commit fraud. To prevent this, and guarantee termination
and ABORT-validity, we introduce the abort transaction.

A transaction may be invalid if it spends a coin formerly owned by a user, but that was
transferred to another user later in Ψ. The abort function runs for every Platypus bulk close
transaction received that is not valid, i.e. that spends some input already spent. If the transac-
tion is not valid due to signatures not matching, then it will not be written in the parentchain,
so the abort function ignores this case.

Therefore, a user can see that a transaction tx is not valid if an old owner claims own-
ership of a spent coin in tx, as checked by coins_spent(...), shown in Algorithm 3. Notice
that, while a COMMIT requires h0 processes to commit to the transaction (such as a Platy-
pus bulk close transaction), any user u ∈MΨ can create a valid abort transaction. The call to
extract_spent(tx) returns the coins that were spent. The call to get_block_min_blockheight(CS)
returns the block of minimum blockheight out of all the blocks that store a transaction spending
each of the spent coins, i.e. proofs-of-fraud (PoFs). Finally, processes(b/tx) returns the set of
processes that signed block b or transaction tx.

Intuitively, this algorithm proves invalidity by iterating through Ψ, looking for processes that
validated both this bulk close and some progress in Ψ that conflicts with it (i.e. some blocks
that spent some of the coins). This set of processes is the set of fraudsters. Other processes
that only validated the transaction might simply have had an old view of the Platypus chain,
under the partially synchronous model. Nonetheless, the existence of such block is enough to
create the abort transaction, even if the set of fraudsters is empty.

The iteration starts from the block with minimum blockheight of all the blocks that show
that some coin ¢ was transferred from pi to pj , for some pi that claims ownership of ¢ , in line
3. The algorithm then continues to account for fraudsters.
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Algorithm 1 Platypus creation procedure.
▷ State of the algorithm
Ω, the parentchain
Γ , the Platypus protocol
MΩ, the set of users in the parentchain
MΨ ← ⊥, the set of users in the Platypus chain
NΨ ← ⊥, the set of processes in the Platypus chain
nΨ, the amount of processes required in Ψ
Ci, coins that belong to process pi

jobi, Boolean defining if pi is PROCESS or just USER
plid, the Platypus chain identifier
msgi = ⟨Ci, plid, jobi σi⟩, signed message to join.
σi, signature of msgi by pi

txplcr ← ⊥, the Platypus creation transaction

▷ PHASE 1: process p0 initiates request
1: msg0 ← sign(⟨C0, plid, job0⟩)
2: multicast(msg0) to MΩ

3: ▷ PHASE 2: Rest of processes who want to join reply
4: when msg0 is received from p0

5: msgi ← sign(⟨Ci, plid, jobi⟩)
6: multicast(msgi) to MΩ

▷ PHASE 3: Process pi ∈ NΨ gathers enough processes
7: when msgj is received from pj and pj ̸∈MΨ

8: {MΨ,CMΨ} ← {MΨ ∪ {pj}, CMΨ ∪msgj .Cj}
9: if (msgj .jobj = PROCESS and pj ̸∈ NΨ) then

10: {NΨ,CNΨ} ← {NΨ ∪ {pj}, CNΨ ∪msgj .Cj}
11: if (|NΨ| = nΨ) then � enough processes to start transaction

12: txplcr ← createPlatypusTx(CMΨ ,CNΨ , plid)
13: txplcr ← signi(txplcr)
14: multicast(txplcr, {msgk}pk∈MΨ) to NΨ

▷ PHASE 4: pi ∈ NΨ signs and broadcasts until it gets enough signatures
15: when (txplcr, {msgj}pj∈MΨ) is received and not is_written(Ω, txplcr, plid)
16: if (verify(txplcr, {msgj})) then txplcr ← signi(txplcr)
17: if (num_signers(txplcr) < ⌊2nΨ/3⌋+ 1) then
18: multicast(txplcr, {msgj}) to NΨ

19: else Γ .send(Ω, txplcr) � enough signatures
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Algorithm 2 Platypus bulk close procedure.
▷ State of the algorithm
Ω, Ψ, Γ , the blockchain, Platypus blockchain and protocol
MΨ,NΨ, the set of users and processes in Ψ
Ci, the coins that belong to process pi

txplcl ← ⊥

▷ PHASE 1: Some process p0 creates and broadcasts
1: txplcl ← createBulkCloseTx(CMΨ)
2: txplcl ← signi(txplcl)
3: multicast(txplcl) to NΨ

▷ PHASE 2: pi ∈ NΨ signs and broadcasts transaction
4: when txplcl is received and not is_written(Ψ, txplcl)
5: verify(txplcl)
6: txplcl ← signi(txplcl)
7: if (num_signers(txplcl) < ⌊2|NΨ|/3⌋+ 1) then
8: multicast(txplcl) to NΨ

9: else r ← Γ .acsend(Ψ, txplcl) � get back txplcl, or txabort

▷ PHASE 3: Γ .acsend(Ψ, txplcl) generates a response, any pi can send to Ω

when r is received
10: if (r.type = ABORT) then Γ .send(Ω, r.txabort)
11: else if (r.type = COMMIT) then Γ .send(Ω, r.txplcl)
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Algorithm 3 Abort procedure.
▷ State of the algorithm
Ω, Ψ, Γ , the blockchain, Platypus blockchain and protocol.
CS ← ⊥, the subset of spent coins from C

bp ← ⊥, integer s.t. Ψ[bp] proves some coin was spent
vPoF ← ⊥, proofs-of-fraud of processes
txabort ← ⊥

1: function abort(txplcl)
2: CS ← extract_spent(txplcl)
3: bp ← get_block_min_blockheight(CS)
4: vPoF ← ∅
5: for each block in Ψ[bp, ...,−1] do
6: vPoF .append(processes(block) ∩ processes(txplcl))
7: txabort ← createAbortTx(txplcl , bp, vPoF)
8: Γ .send(Ω, txabort)
9: Γ .send(Ψ, txabort)

10: end function

▷ all ui ∈MΨ run abort when receiving any invalid txplcl

11: when txplcl is received
12: if coins_spent(txplcl) then � some coins in txplcl were spent, invalid

13: abort(txplcl)

3.4 Correctness & optimal resilience

In this Section, we analyze the correctness of the protocol. To consider its correctness, we must
prove that the protocol satisfies all the properties of offchain protocols, as defined in Section 3.2.
We start by proving the proper bootstrapping of a Platypus chain, i.e. the adversary never
locks the algorithm or gains enough relative power in the committee, in Theorems 3.1 and 3.2,
Corollary 3.1 and Lemma 3.1. Then, we prove the properties of offchain protocols when closing
a Platypus chain in Theorems 3.3, 3.4, 3.5 and 3.6, and Lemmas 3.2 and 3.3. Following,
we prove COMMIT-Privacy/Lightness in Theorem 3.7, and prove that the Platypus protocol
solves the offchain problem in Theorem 3.8. Finally, we show that Platypus is resilient-optimal
in Theorem 3.9.

Theorem 3.1. Algorithm 1 terminates.

Proof. The algorithm waits for enough Platypus creation signed messages {msgi} from processes
(line 11) and to get enough signatures from processes for the Platypus creation transaction
(line 17). Since we assume there are at least nΨ processes that explicitly state that want to get
in Ψ as processes by the bounds t1 and t0, the first condition is met to terminate. That is, an
honest process will eventually produce and broadcast a valid Platypus creation transaction with
signed {msgi} messages of each of the users that committed to participate in such transaction.

As for the signatures of the txplcr transaction, notice only h0 of the nΨ are required to sign the
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transaction for it to become valid and create the Platypus blockchain Ψ. Since f < n−h0, and
only one transaction can be written in Ω, we have that this condition is guaranteed if and only
if there are enough signatures from honest processes. Therefore, the protocol terminates.

Theorem 3.2. Let Ψ be a Platypus blockchain created by Algorithm 1, and let ui ∈ MΩ be
an honest user. If ui ∈MΨ then ui explicitly stated to be in MΨ by sharing a signed Platypus
creation message msgi.

Proof. We prove this by contradiction. Suppose a txplcr creation transaction such that some
coins Coinsi from process ui are included, without ui sending a signed Platypus creation message
msgi. Suppose that transaction was written in Ω, creating the Platypus blockchain Ψ. For such
transaction to be written in Ω, it must be valid, i.e. it must hold at least h0 signatures from
processes. Since f < h0, at least h0 − f honest processes signed and verified such transaction
(line 16). However, honest processes could not validate such transaction without verifying its
content (line 16), which includes verifying all the signed messages from all processes whose
coins are involved in txplcr. Therefore, this is impossible without ui sending a signed Platypus
creation message msgi.

Corollary 3.1. Let Ψ be a Platypus blockchain created by Algorithm 1, and let ui ∈ MΩ be
an honest process. If ui ∈MΨ then ui explicitly stated to be in MΨ.

Notice that, in Algorithm 1, the ’only if’ direction of Theorem 3.2 and Corollary 3.1 is not
necessarily true, should there be more than nΨ processes that reply to join. This does not affect
the correctness of the protocol though.

Lemma 3.1. Let Ψ be a Platypus blockchain created by Algorithm 1, then its Platypus creation
transaction txplcr has |NΨ| = nΨ processes and was signed by h0 of them.

Proof. Given f < h0 and h0 signatures from distinct processes are required for a Platypus
creation transaction to be valid, we have that some honest processes validated it. These honest
processes verify that there are nΨ processes, and by Theorem 3.2 all processes explicitly stated
they wanted to join as processes. Without enough signatures the algorithm does not terminate,
since messages keep being sent (line 18), and txplcr is not yet written in Ω (which is a condition
in line 15). By Theorem 3.1 we know that the algorithm terminates. Thus, a valid txplcr

receives h0 signatures, of which some processes could only have signed if nΨ processes were in
the transaction as processes.

Theorem 3.3. Algorithm 2 guarantees the termination property.

Proof. The protocol only waits for responses 4 times: to get coins from at least h0 signatures
(line 7), and for the transaction to get in the Platypus blockchain and parentchain (lines 9, 10
and 11). All these steps are independent of one another, i.e. not the same processes are required
in each step. Therefore, we consider them independently. Since n−f ≥ h0 ≥ 2nΨ/3+1, we have
that, regardless of what the adversary decides to do, h0 honest processes will eventually send
enough signatures, and coins. Since both the Platypus blockchain and parentchain consensus
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protocols tolerate tℓ Byzantine faults, the calls that wait for a reply will terminate if f ≤ t1

and f ≤ t0, thus generating a response in the Platypus protocol (line 9), which could be either
a COMMIT or an ABORT. Therefore, an honest process decides COMMIT or ABORT as the
result of the call to acsend(...) in line 9. In either case, the protocol continues sending the proper
transaction to the parentchain (lines 10 and 11), which also terminates.

Lemma 3.2. In Algorithm 2, given a bulk close transaction listing a sequence seq that process
pi proposed to COMMIT, either all honest processes of the Platypus chain Ψ decide ABORT
to include the transaction in the Platypus blockchain, or all honest processes decide COMMIT.

Proof. We prove this by contradiction. First, notice that, for a process to propose COMMIT
on a Platypus bulk close transaction, it is necessary to provide a block where that transaction
was written in the Platypus blockchain. We consider the following network partition into three
sets: F , the set of the coalition of size f ≤ t1, Q1 and Q2. We consider that, at some point,
all processes in Q1 signed a block b1 to validate a Platypus bulk close transaction, whereas
processes in Q2 validated a different block b2 that spent from one of the same outputs (conflicting
transactions). For one honest process to propose COMMIT, it is necessary that b1 was validated
by at least h0 ≥ 2nΨ/3 + 1 processes. Analogously, for one process to propose ABORT, it has
to provide valid proof through a block b2 validated by at least h0 ≥ 2nΨ/3 + 1 processes, in
which some coins were spent from the owners claimed in the Platypus bulk close. A COMMIT
proposal is undecided for as long as a valid ABORT is proposed, or enough processes validate
the COMMIT attempt.

In this case, we consider that one honest process proposes ABORT, meaning that it has
a valid abort transaction, i.e. b2 was validated by at least 2nΨ/3 + 1 processes. Therefore,
|Q2 ∪ F | ≥ 2nΨ/3 + 1. However, if another honest process committed to block b1, then block
b1 has 2nΨ/3 + 1 processes. Thus, |Q1 ∪ F | ≥ 2nΨ/3 + 1. Recall that |F | = f ≤ t1 and
therefore |Q1| > t1 and |Q2| > t1, but this is impossible since F ∪Q1∪Q2 = NΨ and Q1∩Q2 =
Q1 ∩ F = F ∩Q2 = ∅, and each account is only used once. It follows that only Q2 or only Q1

had enough processes, and thus there are two possible outcomes: either some honest processes
propose and decide ABORT (after which all will decide ABORT), or instead some processes
decide COMMIT (leading all other processes to decide COMMIT once they update their view
of the childchain, since they do not decide ABORT).

Lemma 3.3. A Platypus bulk close transaction (COMMIT) can only be valid in Ω if it is
already written in Ψ.

Proof. For this, we assume that the transaction is sent to the parentchain without it being
fully signed (i.e. beyond the threshold h0) in the Platypus chain. A Byzantine process can try
to send directly to the parentchain a not fully signed Platypus bulk close transaction (i.e. a
Platypus bulk close transaction that was not written in the Platypus blockchain). However,
this transaction is not valid in the parentchain until it receives enough signatures. Notice that
any process in the parentchain (i.e. Platypus blockchain processes too) can eventually see
this transaction, and generate a valid ABORT proof, or try to get it written in the Platypus
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blockchain and then generate a valid COMMIT. Therefore, this proof is analogous to that of
Lemma 3.2.

Theorem 3.4. Algorithm 2 guarantees the agreement property.

Proof. By Lemma 3.3 we know that all COMMIT decisions are firstly written in Ψ. Then,
Lemma 3.2 shows that all processes in MΨ reach the same decision to write in Ψ. We only have
left the case that an ABORT is decided without it being written in the Platypus blockchain
Ψ. We need to prove that if that ABORT is decided then no process decided COMMIT.
An ABORT outside of Ψ can only happen if a process pi tried to COMMIT directly to Ω a
Bulk close transaction that is not valid. Then, another process pj generated a valid proof of
fraud included in an abort transaction, that ended up in an ABORT decision. Analogously to
the proof of Lemma 3.2, we have a valid proof of fraud that gathers at least one conflicting
transaction written in a previous block in Ψ, and therefore validated by at least h0 processes.
With the same approach used in Lemma 3.2, it is possible to prove that it is not possible for
pj to propose a valid ABORT if one honest process pi decided COMMIT. Once a COMMIT is
decided by enough processes, the funds go back to the blockchain in the bulk close transaction of
the sequence committed. Therefore, another sequence in another bulk close transaction will not
be COMMIT-decided by any honest process. Hence, the agreement property is guaranteed.

Theorem 3.5. Algorithm 2 guarantees the COMMIT-validity property.

Proof. Lemma 3.3 shows that the only way to get something committed is to first write it in Ψ,
while Lemma 3.2 proves that either all or no honest process decide COMMIT on a sequence.
If no honest process proposes ABORT and, by Theorem 3.3, they guarantee termination, then
they must COMMIT.

Theorem 3.6. Algorithm 2 guarantees the ABORT-validity property.

Proof. If an honest process proposes ABORT in Ψ, then by Lemma 3.2 all honest processes
decide ABORT. All honest processes in Ψ also agree on an ABORT generated to a COMMIT
outside of Ψ, as already shown in the proof of the agreement property (Theorem 3.4).

Theorem 3.7. Algorithm 2 guarantees the COMMIT-Privacy/Lightness property.

Proof. First, we consider the case that a Platypus bulk close transaction was successfully written
in the parentchain (i.e. a COMMIT). W.l.o.g. we assume this to be the second transaction (after
the Platypus creation transaction) to be written in the parentchain relating this Platypus chain
Ψ, i.e. that no previous abort transactions were written. Let δc be the time when the Platypus
chain was created, δd the time when the Platypus chain was closed. This Platypus bulk close
transaction has been validated in the Platypus blockchain Ψ, verifying all the operations were
correct. The parentchain processes that are not in the Platypus chain have no knowledge of the
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Platypus chain other than its Platypus creation transaction that was written in Ω. Therefore,
a Platypus bulk close transaction with enough signatures from processes, and valid signatures,
seems correct from the point of view of Ω. Therefore, only this information, along with the
list of coins and owners, is provided to the parentchain. This means that parentchain processes
only stored the list of owners and coins at δc, and received a different list of owners and their
coins at δd. They can tell which coins changed ownership between δc and δd, but they cannot
tell if there were more owners in between. Thus, they can only see the minimal transfer set.

Whereas the COMMIT-Privacy/Lightness property considers COMMITs, if abort transac-
tions took place in between δc and δd, a few more operations might be revealed to the parentchain
to prove invalidity in abort transactions. However, changing δc to the time of the last ABORT,
the proof remains valid.

Theorem 3.8 (Correctness). The Platypus Protocol solves the offchain problem.

Proof. The proofs for Algorithm 1 guarantee that nΨ processes are requested at all times
(Lemma 3.1), all of which explicitly stated to participate as processes (Corollary 3.1), with
guaranteed termination if there are enough processes nΨ (Theorem 3.1), i.e. the Platypus chain
is properly bootstrapped and the security assumptions remain at the end of Algorithm 1. Once
this bootstrapping takes place, the inner consensus of Ψ guarantees the consensus properties
given the assumption f ≤ t1, with the same set nΨ of processes and using the same h0 as
threshold for Byzantine behavior. Finally, given this bootstrapping and consensus protocol,
we showed above that Algorithm 2, which closes the Platypus chain, guarantees termination,
agreement, ABORT-validity, COMMIT-validity and COMMIT-lightness/privacy. Therefore,
Platypus solves the offchain problem.

The following theorem shows that our construction works in the strongest coalition the
adversary can form.

Theorem 3.9 (Optimal resilience). It is impossible to perform a transfer operation in a
(consensus-based) offchain protocol with partial synchrony if f > t1 or f > t0.

Proof. If f > t0 then the adversary can corrupt the consensus protocol [13], and thus the
offchain protocol would not be correct. Hence, suppose f > t1 while still f ≤ t0. Let there be
at least one coin ¢ transferred from account za to account zb in transaction tx in the offchain
protocol Γ (i.e. not the trivial case of closing after opening), and also suppose there is another
transaction tx′ that transfers the same coin ¢ from account za to zc, zc ̸= zb. It is clear that
only one can be decided.

We proceed by contradiction. We assume that there exists a correct offchain protocol that
decides to perform a transfer operation. Consider a partition of processes NΨ into three disjoint
sets Q1, Q2, Q3, with each of them containing between 1 and f processes. First consider the
following scenario A: processes in Q1 and Q3 are honest and propose to perform transaction
tx, and processes in Q2 are Byzantine. It follows that Q1 ∪ Q3 must decide tx at some time
TA, for if they did not decide tx there would be a scenario in which processes in Q2 are honest
and also propose to decide tx, but messages sent from processes in Q2 are delivered at a time
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greater than TA, having processes in Q1 ∪ Q3 already decided abort. This would break the
COMMIT-validity property.

Consider now scenario B: processes in Q1 are Byzantine, and processes in Q2 and Q3 are
honest and propose to perform transaction tx′. By the same approach, Q3 ∪ Q2 decide to
perform tx′ at a time TB.

Now consider scenario C: processes in Q1 and Q2 are honest, and processes in Q3 are
Byzantine, the messages sent from processes in Q1 are delivered by processes in Q2 at a time
greater than max(TA, TB), and the same for messages sent from processes in Q2 to processes in
Q1. Then, for processes in Q1 this scenario is identical to scenario A, deciding to perform tx,
while for processes in Q2 this is identical to scenario B, deciding to perform tx′, which leads to
a disagreement. This yields a contradiction.

3.5 Theoretical analysis

In this section, we analyze the communication, message and time complexity of the Platy-
pus protocol, ignoring the complexity of the underlying blockchain. We consider the calls to
acsend(Ψ, tx) and send({Ψ,Ω}, tx) to have the same complexities as one multicast to all pro-
cesses N{Ψ,Ω} of the blockchain that receives the transaction tx.

Message complexity. The message complexity of Algorithms 2, 4 and 5 is O(n2
Ψ) and that

of Algorithm 3 is O(mΨ · nΨ). We conjecture that the complexity could however be reduced to
O(nΨ) at some points, leveraging non-interactive aggregation of the processes signatures and
messages, but certain calls to acsend(...) and send(...) would still have a complexity of O(n2

Ψ),
as they can be executed by all processes. The same applies to Algorithm 1, with the exception
that Phase 2 has a message complexity of O(mΨ ·mΩ), thus being the complexity of Platypus.

Communication complexity. The message size is O(mΨ) in lines 18 and 14 of Algorithm 1,
leading to a communication complexity of O(max{mΨ · mΩ, n3

Ψ}), because of phases 2 and
3 of the algorithm. Line 7 of Algorithm 3 also has a message size of O(nΨ), leading to a
communication complexity of O(mΨ · n2

Ψ), although the set of processes can be removed if no
punishments are considered. The rest of messages have constant size in all algorithms, thus
their communication complexity is the same as their message complexity.

Time complexity. The time complexity is O(nΨ) due to Phase 4 of Algorithm 1 and Phase
2 of Algorithm 2. Algorithms 3, 4 and 5 have constant time complexity. Again, we conjecture
that, leveraging non-interactive aggregation, the time complexity can be reduced to constant
time.

3.6 Improvements & discussion

In this section, we consider additional features of the Platypus chain, and its usage for the
general sidechains problem, which we also define.
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3.6.1 Crosschain payments

A crosschain payment can be of two types, either a payment to a parentchain, or a payment
through a parentchain to another childchain. With the above-shown protocol, a payment to
a parentchain would require a Platypus bulk close transaction, and a new Platypus creation
transaction. We describe an extension of the protocol to perform payments without closing and
reopening Platypus chains.

3.6.1.1 Users’ splice-in & splice-outs

Splice-in and Splice-out transactions allow users to get their funds into and out of the Platypus
chain, respectively.
− Splice in. Splicing in allows users to join a Platypus chain. Algorithm 4 shows the Splice

in protocol for a process pi that wants to join Ψ. A splice in transaction txspin must be written
in both Ω and Ψ, after which the funds can only be spent in Ψ. Since this transaction takes
place after the Platypus chain has been created, it requires some validation by both sets of
processes.

Algorithm 4 Splice in algorithm for process pi.
▷ State of the algorithm
Ω, Ψ, Γ , the blockchain, Platypus blockchain and protocol
Ci, coins that belong to process pi

plid, the Platypus chain identifier
txspin ← ⊥, the splice in transaction

▷ pi creates and waits for transaction to write
1: txspin ← createSpliceInTx(Ci, plid)
2: txspin ← signi(txspin)
3: Γ .send(Ω, txspin)
4: Γ .send(Ψ, txspin)

− Splice out. The same way users can splice into an existing Platypus chain, they can get
their funds back in the parentchain. Again, this is a sensible operation that requires proper
synchronization between both Platypus chain and parentchain so as to protect against fraud.

The splice out transaction allows processes to leave a Platypus chain before it is closed,
retrieving their funds back in the parentchain. In this case, we require first the transaction to
be finalized in Ψ before being considered for the parentchain. Algorithm 5 shows the splice out
protocol for a process pi. This protocol is rather a simplification of Algorithm 2. It creates and
tries to write a splice out transaction txspou, that can be aborted with an abort transaction
txabort.

3.6.1.2 Processes’ splice-in & splice-outs

Notice that the adversary could gain enough relative power either by splicing in or by honest
processes splicing out. One way to prevent this is by keeping the set of processes intact regardless
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Algorithm 5 splice out for process pi.
▷ State of the algorithm
Ω, Ψ, Γ , the blockchain, Platypus blockchain and protocol
Ci, the coins that belong to process pi

txspou ← ⊥, the splice out transaction

▷ pi creates and waits for transaction to write in Ψ
1: txspou ← createSpliceOutTx(Ci)
2: txspou ← signi(txspou)
3: r ← Γ .acsend(Ψ, txspou) � get back txspou or txabort

4: if (r.type = ABORT) then Γ .send(Ω, r.txabort)
5: else if (r.type = COMMIT) then Γ .send(Ω, r.txspou)

of the funds each process has after Platypus creation. An additional feature of the protocol might
provide explicit delegation of the process set to other users by means of a committee sortition
protocol (Section 2.2.8). We explore further a protocol for committee sortition in Chapter 6.

Another alternative may allow users and the set of processes to splice in and splice out at will.
In this set, processes should take great care at identifying the probability of an adversary gaining
enough relative power depending on the protocol that sorts the committee (Section 2.1.5). If
the probability of an adversary gaining enough relative power reaches a certain threat threshold,
either by the set of processes reducing significantly, based on the funds at stake or any other
information used for heuristics, processes can generate a Platypus bulk close transaction and
safeguard all users’ funds. In practice, this information is probably based on heuristics (e.g.
total stake left, percentage of stake held by one account, etc.). From a theoretical perspective,
this variation requires the assumption that the adversary never gains enough relative stake such
that stake(f) ≥ stake(nΨ)/3.

3.6.1.3 Crosschain payments with splice-in & splice-outs

A crosschain payment in between two blockchains with Platypus is a payment of one user
from/into an existing Platypus chain to/from its parentchain, or in between two Platypus chains
that share a common parentchain. In Section 3.6.2, we generalize such definition. Regardless
of the particular conditions and assumptions for splice-ins and splice-outs, we illustrate in this
section how these transactions would work.
∗ Crosschain payment from/to parentchain. This case is trivial using Algorithm 4 or 5,

respectively.
∗ Crosschain payment between childchains. This is performed with a splice out into the

common parentchain, followed by a splice in into the recipient.

3.6.2 Platypus for sidechains

The childchain definition from Section 3.2 can easily be generalized for sidechains by clearly
decoupling Ψ from the protocol, and stating different committees P ̸= Q instead of P ⊊ Q. We
define sidechain protocols as a superset of offchain protocols, defined in Section 3.2. A sidechain
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protocol facilitates a payment across blockchains, i.e. a crosschain payment. If two or more
blockchains intend to perform crosschain payments, we refer to them as being sidechains. They
may or may not be in a parent-child hierarchy.
∗ Sidechain protocol. Given two blockchains, Ω of P processes and Ψ of Q, P ̸= Q a sidechain

protocol Π is an offchain protocol that enables transfers in between all accounts zq, zp such that
γ(zq) = q ∈ Q, γ(zp) = p ∈ P . To reflect Ω and Ψ being independent, and this possibility of
transferring, we define the following property:
− COMMIT-Matching Knowledge: If an honest process decides COMMIT on a sequence seq

of transfer operations in Π between Ω and Ψ, then ∀p ∈ P, p knows a subset seq1 and ∀q ∈ Q, q

knows a subset seq2, such that seq1 and seq2 are two minimal transfer sets, seq2∩seq1 = ∅, and
it exists one surjective application f : seq1 × seq2 → TR−(seq1 ∪ seq2) ∪ {0} defined as follows:

f(za TR zb, zc TR zd) =
{

(za TR zd) if γ(zb) = γ(zc)
0 otherwise

}
(3.1)

Also, since the coins are different in different blockchains, we identify coins by their value
when calculating the minimal transfer set TR−. Intuitively, for a transaction in seq1 exists a
transaction in seq2 such that both are transitive (that is, the receiver of one is the sender of
the other). If that was not to happen, some of the transactions in seq1, or in seq2, would have
nothing to do with a payment in between two sidechains.

If Q ⊊ P then seq1 is just a set of idempotent transfers of the form za TR zb, with γ(za) =
γ(zb), since all p ∈ Q are also in P , and thus COMMIT-Privacy/Lightness is a particular case
scenario of the COMMIT-Matching Knowledge property.

Similarly, if P ̸⊇ Q, P ̸⊆ Q then Ω and Ψ are not in the parent-child chain hierarchy.
∗ Crosschain payments. This is solved by our protocol if both sidechains have a common

parentchain, as shown in Section 3.6.1.3. In general, for a crosschain payment between two
unrelated blockchains Ω1 and Ω2, with sets of processes NΩ1 and NΩ2 , they can perform the
payment manufacturing an additional blockchain Φ:
− Create a common parentchain Φ with NΦ ⊇ NΩ1 ∪NΩ2 , extend both their blockchains

to adopt the Platypus protocol, and perform the payment as explained in Section 3.6.1.3. In
this case, if the adversary tries to double spend the crosschain payment in Ω2, or in Ω1, then,
as long as f < |NΦ|/3, the funds will remain in the parentchain Φ.
− Create a common Platypus chain Φ, with NΦ ⊆ NΩ1 ∩NΩ1 , and perform the payment.

In such a case, should f < |NΩ1 | and f < |NΩ2 |, then the adversary could not double spend
the funds in Φ and splice out to both Ω1 and Ω2.

3.6.3 Attacks

Many of the common attacks for synchronous offchain protocols are not applicable in the par-
tially synchronous Platypus [82, 91, 83]. Theorem 3.9 shows how if the adversary is such that
f > t1 then it can perform a colluding processes attack. We also introduce the ABA-transfer
attack. If a coin ¢ was transferred from process p to process q, and later on again to process
p, q can try to ABORT any close/splice out in which ¢ does not belong to him, by using as
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proof the deprecated transfer. To cope with this attack, we use session keys in this document, as
mentioned in Section 3.2, thus having two different accounts. Another possible solution involves
committing to merkle trees and requiring any ABORT to provide a merkle tree T such that the
merkle tree T ′ of the COMMIT attempt is included T ′ ⊆ T as part of the PoF.

3.7 Summary

In this chapter, we outlined the problem of synchrony for layer-2 protocols, in that assuming
synchrony for layer-2 derives in a trade-off between security and scalability. We further exempli-
fied this trade-off in a novel attack, the Lockdown attack. We showed that the Lockdown attack
is present in a variety of synchronous offchain protocols, from payment channels, factories, net-
works to even childchains. Then, we presented a formalization of the offchain problem, as well
as of the childchain problem and the sidechains problem. Following, we presented Platypus, a
novel offchain protocol without synchrony.

Platypus solves the childchain problem, and can also be used to solve the sidechains problem.
We proved the correctness of Platypus, and its optimal resilience, and showed its message,
bit and time complexities. Platypus lays the first stone towards obtaining both security and
scalability solving consensus without synchrony. In Chapter 4, we continue this line of work by
focusing on designing protocols for consensus that increase the traditional tolerance to faults
by considering rational behavior.



52 Chapter 3: Layer-2 Without Synchrony



Chapter 4

Rationality for Blockchains’
Consensus

In Chapter 3, we explored a general solution that could be attached to any blockchain to
increase scalability without sacrificing security. The Platypus protocol allows blockchains to
be extended via a childchain, and to perform secure payments between sidechains. We further
justified the need for scalable solutions without synchrony by outlining attacks and performing
a novel attack, known as the Lockdown attack.

However, Platypus is a protocol that ensures scalability and security via transfers between
two blockchains, but only provided these blockchains ensure the same level of security. There are
a number of consensus protocols that developed into blockchains with the well-known resilient-
optimal results of at most tℓ Byzantine faults without synchrony (recall that we defined tℓ =
⌈n/3⌉ − 1 in Section 2.2.1) . Unfortunately, this tℓ bound is constraining blockchains, where
participants’ decisions on assets can incur large sums of assets being stolen anonymously. For
example, in 2020, these assets incentivized players to deviate from their blockchain protocol by
forcing a disagreement to fork the blockchain, leading to a double-spending of US$70, 0001 and
US$182 million in Bitcoin Gold and US$5.6 million in Ethereum Classic3.

Interestingly, some blockchains already require participants to deposit cryptocurrency as-
sets in the form of staking, which could be used by the consensus protocol to disincentivize
misbehavior (Section 2.1.4). Unfortunately, these blockchains do not prove the correctness of
their protocols in the presence of rational players, only arguing that their incentives should
suffice. Furthermore, previous works did not explore the intrinsic characteristics of blockchains
in order to propose blockchain-specific consensus protocols that would allow for greater tol-
erance to coalitions trying to double spend, perhaps due to the complexity of this problem,
that requires a mixture of knowledge from distributed systems, game theory and cryptography.
In this chapter, we successfully address this challenge to propose the first consensus protocol
without synchrony that tolerates up to less than half of the participants colluding together, by
reusing the recent advances in cryptography that allowed for accountability in consensus, and

1https://news.bitcoin.com/bitcoin-gold-51-attacked-network-loses-70000-in-double-spends/
2https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
3https://news.bitcoin.com/5-6-million-stolen-as-etc-team-finally-acknowledge-the-51-attack-on-network/

https://news.bitcoin.com/bitcoin-gold-51-attacked-network-loses-70000-in-double-spends/
https://news.bitcoin.com/bitcoin-gold-hacked-for-18-million/
https://news.bitcoin.com/5-6-million-stolen-as-etc-team-finally-acknowledge-the-51-attack-on-network/
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considering the rationality of players alongside faulty players.
Considering rational players alongside the well-known Byzantine faults to ensure the agree-

ment property of the consensus problem allows us to evaluate protocols against coalitions of
players that are incentivized to deviate for their own benefit or to break the system, rather than
just because of their faulty nature.

Our result. In this chapter, we show that a baiting strategy, that incentivizes rational players
to bait deviating players into a trap, is necessary and sufficient to solve this rational agreement
problem by offering a consensus protocol that is robust to a coalition of up to k rational players
and t Byzantine faults. Our first contribution is thus to formalize the notion of a baiting strategy
and show that this baiting strategy is necessary to solve the rational agreement problem.

We implement this solution in a new protocol, called Trap (Tackling Rational Agreement
through Persuasion), that bypasses the requirement of 2n/3 honest participants [11], by solving
consensus when n > max(3

2k + 3t, 2(k + t)). For example if n = 7 players, then our solution
solves consensus with only 4 honest participants, hence tolerating k = 1 rational player and
t = 2 Byzantine faults. Trap rewards a single player to expose its coalition by generating PoFs
thanks to building upon an accountable consensus protocol (such as Polygraph [47]).

Making initially colluding players decide on whether to betray the coalition regardless of the
behavior of the rest is analogous to reducing the extensive-form game into a normal-form game
for this particular decision (where a normal-form game defines a game in which all participants
must decide without before knowing what the rest decide). In addition, if the reward for
exposing the coalition is greater than the individual payoff for causing a disagreement, rational
players find that the colluding strategy is strictly dominated by the baiting strategy in the
extensive-form game. This shows similarities with the well-known prisoner’s dilemma, that
is, a game in which all rational players prefer to betray the coalition than to collude, even if
cooperation benefits the sum of the gains of the coalition.

More specifically, our protocol “pre-decides” the decisions from an accountable consensus
protocol (i.e. Polygraph [47]) that it extends with the Byzantine Fault-Tolerant Commit-Reveal
protocol (BFTCR), which consists of two reliable broadcasts and one additional broadcast. As
we show in Figure 4.1, by offering a reward the Trap protocol can convince e rational players to
betray the coalition after they helped cause a disagreement on predecisions. First, the coalition
exposes itself causing a disagreement on predecisions. Second, the e rational players from the
coalition that decide to betray are enough to pause termination of the BFTCR protocol. Third,
these players can wait to gather enough PoFs of the disagreement on predecisions, which they
will get by the property of accountability (since they caused a disagreement on the output of
the Polygraph protocol). Fourth and finally, once they get PoFs to prove the disagreement to
honest players and get the reward, these e players commit and reveal the PoFs by sharing them
during the BFTCR protocol, after which one will be selected at random to get the reward. We
defer further details of this example to Appendix B (Section B.1).

Adding this BFTCR phase ensures the existence of a baiting strategy (baiting dominance)
and that the protocol still solves agreement even after playing the baiting strategy (baiting
agreement). We also add an additional property, lossfree reward, which states that the increase
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➃ ➃

➃ partitions of honest players A and B (i) discover disagreement
(ii) select a winner of the reward at random out of the e baiters,

(iii) punish the rest of t + k − 1 deviants, and
(iv) resolve the disagreement on predecisions to agree on decision

Figure 4.1: Example execution of the Trap protocol. First, ➀ all t Byzantine and k rational
players collude to cause a disagreement on the output of the accountable consensus protocol,
resulting in A and B predeciding different outputs. Then, ➁ e of the k rational players decide to
bait while executing the BFTCR protocol, preventing A and B from deciding their disagreeing
predecisions. As such, ➂ the e baiters wait until they receive proof of the disagreement on
predecisions, to then ➃ prove the disagreement by committing to and revealing the proofs-of-
fraud in the BFTCR protocol. Hence, neither A nor B decide their conflicting predecisions,
but instead reward one of the e baiters, punish the rest of t + k − 1 players responsible for
the disagreement on predecisions, and resolve the disagreement, deciding one of vA or vB, or,
depending on the application, merging both.
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in utility for baiting rational players comes at no cost to non-deviating players. For this purpose,
we introduce a deposit per player, so that the system can always pay the reward by taking the
deposits of the proven coalition at no cost for non-deviating players.

Summary. In summary, the work presented in this chapter is:

i) We adapt previous rational models to the consensus problem in partial synchrony, and to
the crash fault model.

ii) We model baiting strategies as a new type of punishment strategies, and show their
relevance to the consensus problem.

iii) We extend the well-known impossibility proof of consensus in partial synchrony in the
Byzantine fault model [13] to show that it is impossible to solve consensus without a
baiting strategy in the presence of k rational players and t Byzantine faults for k + t > tℓ,
unless there is a baiting strategy.

iv) We extend the well-known impossibility proof of consensus in partial synchrony in the
crash fault model [13] to show that it is impossible to solve consensus without a baiting
strategy in the presence of k rational players and t crash faults for k + 2t ≥ n.

v) We present Trap, a protocol that solves consensus in the presence of k rational players
and t Byzantine faults for n > max(3

2k + 3t, 2(k + t)).

vi) We establish a parametrizable, bidirectional relation between tolerating rational players
with Byzantine faults and with crash faults, concluding that our Trap protocol also solves
consensus in the presence of k + t rational players and t crash faults for the same values
of k and t.

Chapter outline. In Section 4.1 we present our rational model. Section 4.2 presents the
formalization of baiting strategies and the new impossibility results. We present the Trap
protocol and its correctness in Section 4.3. Section 4.4 establishes a parametrizable, bidirectional
relation between protocols that tolerate crash faults and protocols that tolerate Byzantine faults
in the presence of rational players. Finally, we conclude the chapter in Section 4.5.

4.1 Rational model

We adapt the synchronous and asynchronous models of Abraham et al. [71, 72] to our partially
synchronous model. In this chapter, we speak of players instead of processes, and speak of
player i ∈ [n], instead of process pi.

We consider a game played by a set N of |N | = n players, each of type in T = {Byzantine,
rational, honest}. The game is in extensive form, described by a game tree whose leaves are
labeled by the utilities ui of each player i. We introduce the scheduler as an additional player
that will model the delay on messages derived from partial synchrony.

We assume that players alternate making moves with the scheduler: first the scheduler
moves, then a player moves, then the scheduler moves, and so on. The scheduler’s move consists
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of choosing a player i to move next and a set of messages in transit to i that will be delivered just
before i moves (so that i’s move can depend on all the messages i delivers). Every non-leaf node
is associated with either a player or the scheduler. The scheduler is bound to two constraints.
First, the scheduler can choose to delay any message msg up to a bound, known only to the
scheduler, before which he must have chosen all recipients of msg to move and provided them
with this message, so that they deliver it before making a move. Second, the scheduler must
eventually choose all players that are still playing. That is, if player i is playing at time x, then
i is chosen to play at time x′ ≥ x.

Each player i has some local state at each node, which translates into the initial information
known by i, the messages i sent and received at the time that i moves, and the moves that
i has made. The nodes where a player i moves are further partitioned into information sets,
which are sets of nodes in the game tree that contain the same local state for the same player
i, in that i cannot distinguish them. We assume that the scheduler has complete information,
so that the scheduler’s information sets consist of the singletons.

Since we do not assume synchrony, we need our game to be able to continue even if a faulty
player decides not to reply. As such, w.l.o.g. we assume that players that decide not to play
will at least play the default-move, which consists of notifying the scheduler that this player
will not move, so that the game continues with the scheduler choosing the next player to move.
Thus, in every node where the scheduler is to play a move, the scheduler can play any move that
combines a player and a subset of messages that such player can deliver before playing. Then,
the selected player moves, after which the scheduler selects again the next player for the next
node, and the messages it receives, and so on. The scheduler alternates thus with one player
at each node down a path in the game tree until reaching a leaf. A run of the game is then a
downward path in the tree from the root to a leaf.

Strategies. We denote the set of actions of a player i (or the scheduler) as Ai (or As), and
a strategy σi for that set of actions is denoted as a function from i’s information sets to a
distribution over the actions. We denote the set of all possible strategies of player i as Si. Let
SI = Πi∈ISi and AI = Πi∈IAi for a subset I ⊆ N . Let S = SN with A−I = Πi ̸∈IAi and
S−I = Πi ̸∈ISi. A joint strategy #»σ = (σ0, σ1, ..., σn−1) draws thus a distribution over paths in
the game tree (given the scheduler’s strategy σs), where ui( #»σ , σs) is player i’s expected utility if
#»σ is played along with a strategy for the scheduler σs. A strategy θi strictly dominates τi for i if
for all #»

ϕ−i ∈ S−i and all strategies σs of the scheduler we have ui(θi,
#»

ϕ−i, σs) > ui(τi,
#»

ϕ−i, σs).
A protocol in this model is thus the recommended joint strategy #»σ whose outcome satisfies

the functionality F for all strategies σs of the scheduler, and an associated game Γ for that
protocol is defined as all possible deviations from the protocol [71]. Note that both the scheduler
and the players can use probabilistic strategies.

Failure model. k players out of n can be rational and up to t can be faulty (either all Byzantine
or all crash); while the rest of the players are honest. Honest players follow the protocol: the
expected utility of honest player i is greater than 0 for any run in which the outcome satisfies
consensus and they have followed the protocol, and 0 for any other run. Rational players can
deviate to follow the strategy that yields them the greatest expected utility at any time they are
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to move, while Byzantine players can deviate in any way, even not replying at all (apart from
notifying the scheduler that they will not move). Rational players prefer to terminate and to
guarantee validity, but may have an interest in preventing agreement. That is, rational players
may see their expected payoff increased if they have a chance at causing a double-spending
attack without any punishment associated to it (if, for example, no accountability is ensured
by the executed consensus protocol). If the protocol manages to incentivize agreement beyond
the benefit from a disagreement attack (via rewards or via punishments if caught through
accountabiliy), then rational players prefer to ensure agreement as well. We will detail further
the utilities of rational players in Section 4.3.3. A crash player i behaves exactly as an honest
player, except that it can crash at any time of any run. If i crashes at time x of run y, then it
may send a message to some subset of players at time x, but from then on, it sends no further
messages (except for playing the default-move).

Bounded gain. We assume that if a coalition manages to cause a disagreement, then it
obtains a payoff of at most G, which we call the total gain. Nevertheless, this total gain may
be, for example, the entire market value of the system. In a payment system application in
which players agree on a set of transactions to be decided (e.g. blockchains), the total gain G is
exactly the sum of all the amounts spent in all transactions of a block. We also assume, w.l.o.g.,
that a coalition with k rational players and t Byzantine players split equally the total gain into
k parts, which we call the gain g = G/k. That is, Byzantine players are willing to give all the
total gain from causing a disagreement to the rational players that collude (to incentivize the
deviation for these rational players). Note that a protocol that tolerates a maximum gain G

equally split into k parts also tolerates any gain such that the maximum share of the split is
G/k, but we assume the equal split for ease of exposition.

Disagreements. We speak of the disagreeing strategy as the strategy in which players collude
to produce a disagreement, and of a coalition disagreeing to refer to a coalition that plays
the disagreeing strategy. A disagreement of consensus can mean two or more disjoint groups
of non-deviating players deciding two or more separate, conflicting decisions [46]. For ease of
exposition, we consider in this work only disagreements into two values. Nonetheless, if the size
of the coalition is less than half the total number of players k + t < n/2 (as is the case for the
work that we present) then the coalition can only cause a disagreement into two values [46],
whereas greater sizes of a coalition can cause disagreements into multiple values, as we show in
Chapter 5.

We let rational players in a coalition and Byzantine players (in or outside the coalition)
know the types of all players, so that they know which players are the other faulty players,
rational players and honest players, while the rest of the players only know the upper bounds
on the number of rational and faulty players, i.e., k and t respectively, and their own individual
type (that is, whether they are rational, Byzantine, crash or honest).

Communication cost. As we are in a fully distributed system, without a trusted central entity
like a mediator, we assume cheap-talks, that is, private pairwise communication channels which
incur a negligible communication cost. Honest players are also only interested in reaching
consensus, and not in the number of messages exchanged. Similarly, we assume the cost of
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performing local computations (such as validating proposals, or verifying signatures) to be
negligible.

Cryptography. We require the use of standard cryptography, for which we reuse the as-
sumptions of Goldreich et al. [179]: polynomially bounded players (see Section 2.2.5) and the
enhanced trapdoor permutations. In practice, these two assumptions mean that players can
sign unforgeable messages, and that they can perform oblivious transfer. Each player has a
public key and a private key, and public keys are common knowledge (see Section 2.2.3).

4.1.1 Robustness

Given that a Nash equilibrium [180] only protects against single-player deviations, and our
distributed system may be susceptible of a coalition of k rational and t Byzantine players,
it is important to consider tolerating multi-player deviations. We thus restate Abraham’s et
al. [71] definitions of t-immunity, ϵ-(k, t)-robustness and the most recent definition of k-resilient
equilibrium [72]. The notion of k-resilience is motivated in distributed computing by the need
to tolerate a coalition of k rational players that can all coordinate actions. A joint strategy is
k-resilient if not all rational members of a coalition of size at most k can gain greater utility by
deviating in a coordinated way.

Definition 4.1.1 (k-resilient equilibrium). A joint strategy #»σ ∈ S is a k-resilient equilibrium
(resp. strongly k-resilient equilibrium) if, for all K ⊆ N with |K| ≤ k, all #»τ K ∈ SK , all strategies
σs of the scheduler, and for some (resp. all) i ∈ K we have ui( #»σ K , #»σ −K , σs) ≥ ui( #»τ K , #»σ −K , σs).

The notion of t-immunity is motivated in distributed algorithms by the need to tolerate t

Byzantine players. An equilibrium #»σ is t-immune if non-Byzantine players still prefer to follow
#»σ despite the deviations of up to t Byzantine players.

Definition 4.1.2 (t-immunity). A joint strategy #»σ ∈ S is t-immune if, for all T ⊆ N with
|T | ≤ t, all #»τ ∈ ST , all i ̸∈ T and all strategies of the scheduler σs, we have ui( #»σ −T , #»τ T , σs) ≥
ui( #»σ , σs).

A joint strategy is an ϵ-(k, t)-robust equilibrium if no coalition of k rational players can
coordinate to increase their expected utility by ϵ regardless of the arbitrary behavior of up to
t Byzantine players, even if the Byzantine players join their coalition. We illustrate it however
with ϵ because of the use of cryptography, that is, in order to account for the (negligible)
probability of the coalition breaking cryptography, as was done previously [71]:

Definition 4.1.3 (ϵ-(k, t)-robust equilibrium). A joint strategy #»σ ∈ S is an ϵ-(k, t)-robust
(resp. strongly ϵ-(k, t)-robust) equilibrium if for all K, T ⊆ N such that K ∩ T = ∅, |K| ≤ k,

and |T | ≤ t, for all #»τ T ∈ ST , for all #»

ϕK ∈ SK , for some (resp. all) i ∈ K, and all strategies of
the scheduler σs, we have ui( #»σ −T , #»τ T , σs) ≥ ui( #»σ N−(K∪T ),

#»

ϕK , #»τ T , σs)− ϵ. We speak instead
of a (k, t)-robust equilibrium if ϵ = 0.

We use a recent definition of k-resilient equilibrium [72], which varies slightly the definition
of ϵ-(k, t)-robustness. We define here strong resilience and strong robustness to refer to the
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stronger versions of these properties [71]. Byzantine fault tolerance in distributed computing is
equivalent to our definition of t-immunity in game theory.

Given some game Γ and desired functionality F , we say that a protocol #»σ is a k-resilient
protocol for F if #»σ implements F and is a k-resilient equilibrium. For example, if #»σ is a k-
resilient protocol for the consensus problem, then in all runs of #»σ , every non-deviating player
terminates and agrees on the same valid value. We extend this notation to t-immunity and
ϵ-(k, t)-robustness. The required functionality of our protocol is reaching agreement.

4.1.2 Punishment strategy

We also restate the definition of a punishment strategy [71] as a threat that honest and rational
players can play in order to prevent other rational players from deviating. The punishment
strategy guarantees that if k rational players deviate, then t + 1 players can lower the utility of
these rational players by playing the punishment strategy.

Definition 4.1.4 ((k, t)-punishment strategy). A joint strategy #»γ is a (k, t)-punishment strat-
egy with respect to #»σ if for all K, T, P ⊆ N such that K, T, P are disjoint, |K| ≤ k, |T | ≤
t, |P | > t, for all #»τ ∈ ST , for all #»

ϕK ∈ SK , for all i ∈ K, and all strategies of the scheduler σs,
we have ui( #»σ −T , #»τ T , σs) > ui( #»σ N−(K∪T ∪P ),

#»

ϕK , #»τ T , #»γ P , σs).

Intuitively, a punishment strategy represents a threat to prevent rational players from de-
viating, in that if they deviate, then players in P can play the punishment strategy #»γ and the
deviating rational players decrease their utility with respect to following #»σ . For example, crime
sentences are an effective punishment strategy against committing crimes. Not terminating a
protocol if just one player deviates can also be a punishment strategy against deviating from
the protocol.

We extend the above-defined terms to their analogous crash fault tolerant counterparts by
replacing Byzantine players by crash players in all their definitions, in what we refer to as
t-crash-immunity, (k, t)-crash-robustness, and (k, t)-crash-punishment strategy.

4.1.3 Rational agreement

In the remainder of this chapter, we are interested in proposing a consensus protocol that is
immune to up to tℓ = ⌈n/3⌉ − 1 Byzantine failures and robust to a coalition of up to k rational
and t Byzantine players in what we refer to as the rational agreement problem.

Definition 4.1.5 (Rational Agreement). Consider a system with n players, a protocol #»σ solves
the rational agreement problem if #»σ is a tℓ-immune protocol for consensus, and is also ϵ-(k, t)-
robust for some k > 0, t > 0 such that n ≤ 3(k + t).

4.2 Impossibility results

In this section, we first present a new type of punishment strategy, called a baiting strategy.
We then prove that baiting strategies are pivotal for the rational agreement problem, as the
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problem cannot be solved by a protocol unless it implements a baiting strategy. Finally, we
prove the analogous impossibility result in the crash model by replacing Byzantine for crash
players, showing that resilient-optimal crash fault-tolerant protocols do not tolerate even one
rational player.

4.2.1 Baiting strategies

Our solution to agreement in the presence of rational and Byzantine players, presented in
Section 4.3.3, consists of rewarding rational players for betraying the coalition. One may wonder
whether rewarding rational players in a coalition is the only way to obtain ϵ-(k, t)-robustness
that tolerates coalitions of size n ≤ 3(k + t) in partial synchrony. To demonstrate the need for
a reward, we first formalize a type of (k, t)-punishment strategy, which we call a (k, t, e)-baiting
strategy. A (k, t, e)-baiting strategy is a (k − e, t)-punishment strategy such that k ≥ e > 0,
and these e rational players prefer to actually play the baiting strategy than to deviate with the
rest of the players in the coalition. That is, e players of the coalition have to play the baiting
strategy for it to succeed, and at least e rational players in the coalition prefer to play the
baiting strategy than to deviate with the coalition. An example is offering a crime reduction
for a criminal to cooperate with law enforcement into catching the criminal group to which it
belongs.

Definition 4.2.1 ((k, t, e)-baiting strategy). A joint strategy #»η is a (k, t, e)-baiting strategy
with respect to a strategy #»σ if #»η is a (k − e, t)-punishment strategy with respect to #»σ , with
0 < e ≤ k and for all K, T, P ⊆ N such that K ∩ T = ∅, |P ∩ K| ≥ e, P ∩ T = ∅, |K\P | ≤
k − e, |T | ≤ t, |P | > t, for all #»τ ∈ ST , all #»

ϕK\P ∈ SK\P − { #»σ K}, all #»

θ P ∈ SP , all i ∈ P , and
all strategies of the scheduler σs, we have:

ui( #»σ N−(K∪T ∪P ),
#»

ϕK\P , #»τ T , #»η P , σs) ≥ ui( #»σ N−(K∪T ∪P ),
#»

ϕK\P , #»τ T ,
#»

θ P , σs).

Additionally, we speak of a strong (k, t, e)-baiting strategy in the particular case where for all
rational coalitions K ⊆ N such that |K| ≤ k, |K ∩ P | ≥ e and all #»

ϕK\P ∈ SK\P we have:∑
i∈K ui( #»σ N−(K∪P ),

#»

ϕK\P , #»η P , σs) ≤∑i∈K ui( #»σ , σs). We write (strong) (k, t)-baiting strategy
instead to refer to a (strong) (k, t, e)-baiting strategy for some e, with 0 < e ≤ k.

A baiting strategy illustrates a situation where at least e rational players in the coalition
may be interested in baiting other k + t − e rational and Byzantine players into a trap: the
k + t of them collude to deviate initially, just so that these e players can prove such deviation by
playing the baiting strategy, and get a reward for exposing this deviation. Such a strategy has
a significant impact in a protocol to implement agreement. A strong baiting strategy consists
of a baiting strategy whereby e deviating players following the baiting strategy does not yield
greater payoff to the entire coalition as a whole (if such a coalition consists purely of rational
players), compared to following the protocol. This prevents a coalition of rational players from
colluding together so as to play the baiting strategy on themselves only with the purpose of
splitting the baiting reward among the colluding members. Notwithstanding, neither a baiting
strategy nor a strong baiting strategy show that if these e players play the baiting strategy,
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then the protocol implements the desired functionality. We illustrate the efficacy of baiting
strategies to influence the outcome of a protocol in the example of the rational generals, shown
in Figure 4.2. We also speak of a (k, t, e)-crash-baiting strategy to refer to the case in which
the t players are crash players, and not Byzantine.

4.2.2 Rational agreement is impossible without a baiting strategy

The reason why a (k, t, e)-baiting strategy is relevant to the consensus problem is that without
such a strategy it is not possible to obtain a consensus protocol that is (k, t)-robust where
k + t > tℓ. We show this result in Theorem 4.1. The proof is similar to that of the impossibility
of t-immune consensus under partial synchrony for t > tℓ [13], since a partition of rational and
Byzantine players can exploit two disjoint partitions of honest players to lead them to different
decisions. Let us recall that we do not assume solution preference, and thus the payoffs from
a disagreement can be significantly greater than those of agreeing for rational players. For the
proof of Theorem 4.1, we first show the more general proof of Lemma 4.1.

Lemma 4.1. It is impossible to obtain a protocol #»σ that implements agreement, is tℓ-immune
and (k, t)-robust, with k ≥ 0 and t = max(tℓ−k+1, 0), unless there is a (k, t, e)-baiting strategy
with respect to #»σ , for e > k+t−n

2 + tℓ.

Proof. We refer to Dwork et al.’s [13] work for the impossibility of increasing t > tℓ and obtaining
agreement (i.e., for k = 0). For k > 0 with t ≤ tℓ, assume the contrary: let #»σ be a protocol
such that there is no (k, t, e)-baiting strategy with respect to #»σ and #»σ is (k, t)-robust, for
t = max(tℓ − k + 1, 0), k > 0. Since the protocol is tℓ-immune and it works under partial
synchrony, the protocol must not require more than n− tℓ players participating in it in order to
take a decision, or else the Byzantine players could prevent termination. Consider a partition
of the network between 4 disjoint subsets N = K ∪A∪B ∪F , where K are the rational players
(there is at least one), F are the Byzantine players, i.e., |F |+ |K| = t + k ≥ tℓ + 1, and A and
B are the rest of the players such that |A|+ |B| ≤ n− tℓ − 1 and both |A|+ |F |+ |K| ≥ n− tℓ

and |B| + |F | + |K| ≥ n − tℓ hold. Let #»

θ be the strategy in which the rational players in
K deviate with Byzantine players in F and achieve a disagreement between players in A and
players in B. If the players in F and K are all Byzantine and rational players, then such a
disagreement is always possible and the utility for each rational player is, by definition of the
model, greater than that of reaching agreement. Notice also that since t = max(tℓ − k + 1, 0),
if e > k+t−n

2 + tℓ rational players do not deviate to cause such disagreement, we have that at
least one of |A| + |F | + |K| − e < n − tℓ and |B| + |F | + |K| − e < n − tℓ holds, or both: for
this value of e the deviants cannot cause a disagreement. However, this is not true if instead
e ≤ k+t−n

2 +tℓ. It follows that it is necessary to encourage at least e > k+t−n
2 +tℓ rational players

to not deviate into causing a disagreement, which means, by definition, that a (k, t, e)-baiting
strategy is necessary.

Theorem 4.1. It is impossible to obtain a protocol #»σ that implements rational agreement
unless there is a (k, t, e)-baiting strategy with respect to #»σ , for e > k+t−n

2 + tℓ.
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Rational generals example. We illustrate the intuition behind baiting strategies with an
example inspired from the Byzantine generals problem [11] that we refer to as the ‘rational
generals’ problem: suppose n = 7 Ottoman generals need to agree on whether to attack or
retreat. If all generals agree on attacking, they will succeed, if they agree on retreat, they
can succeed another day. However, if only some of the generals attack, they will lose. There
are two Byzantine generals, i.e., t = 2 , whose goal is for the Ottomans to disagree on their
decision for them to lose, and another rational general, i.e., k = 1, who has been offered a bribe
G in order to contribute to the disagreement, but who is willing to betray the Byzantines for
a greater income from the Ottomans. Because of accountability, the generals will eventually
be able to track the disagreement to both the t Byzantine and k rational generals, but by
then the k rational generals will be enjoying their reward G in Constantinople, out of reach.

The generals suspect that there might be a bribed rational general (k = 1). In an attempt
from them to make the rational general talk, they offer a reward R > G as a bounty for proving
the fraud of every other Byzantine and rational general, that is, if the rational general reveals
his identity and that of the t Byzantine generals with proofs, then this rational general is
spared and rewarded with R, while the t Byzantine generals lose all of their capital (i.e.,
properties and savings) that they own in the Ottoman empire. In this case, the rational
general sees a greater incentive to expose both himself and the Byzantine generals. This is
an example of a baiting strategy. Additionally, the Ottoman generals will pay R with the
capital taken from the t Byzantine generals, so the Ottoman empire will not even pay for the
reward.

Notice that Ottoman generals must guarantee to the rational general that they will rec-
ognize him as the first to expose the coalition (and the only rightful owner of the reward), so
that the rational general is not influenced by a threat from the Byzantine generals to steal
the reward if he betrays the coalition. That is, the rational general will only bait the coalition
if the protocol ensures that the Byzantine generals will not be able to steal the reward from
the rational general after seeing that he betrayed the coalition. This is in order to prevent
the Byzantine generals from rushing to bait as soon as they learn the rational general is
starting to bait, creating a situation in which both Byzantine and rational generals seem to
be legitimate baiters of the coalition.

In the extensive game, this means that the rational general must first behave and make
moves as if he would cause the disagreement. Then, the rational general will only bait if
he gets both enough evidence of the fraud of the deviants and assurance that the Byzantine
generals will not outpace him and steal the reward.

Figure 4.2: Rational generals example.
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Proof. By definition, every (k, t)-robust protocol for n ≤ 3(k + t) must also be (k, t)-robust, for
some k ≥ 0 and t = max(tℓ − k + 1, 0). Therefore it derives from Lemma 4.1.

Theorem 4.1 shows the need for a baiting strategy to solve rational agreement. In Sec-
tion 4.3.2 we show the implementation of an additional phase to an accountable consensus
protocol in order to provide the functionality of a baiting strategy. In Section 4.3.3 we illustrate
the values of a reward and deposit per player to make a strong baiting strategy that at least e

rational players will play.

4.2.3 Impossibility in the presence of rational and crash players

In this section, we show that resilient-optimal, crash fault-tolerant (CFT) protocols cannot
tolerate even one rational player. Previous results showed that a resilient-optimal CFT protocol
tolerates up to t < n/2 crash faults [13]. We show in Lemma 4.2 and Theorem 4.2 that this
number of crash faults does not allow the protocol to tolerate even one rational player.

Lemma 4.2. Let #»σ be a protocol that implements consensus such that there is no (k, t, e)-
crash-baiting strategy with respect to #»σ . Then, it is impossible for #»σ to be t-crash-immune
and k-resilient for k + 2t ≥ n, e > k−n

2 + t.

Proof. If a protocol is t-crash-immune, that means that the protocol must terminate even if
t players do not participate in it at all, since t players may have crashed from the beginning.
Therefore, the protocol must terminate and decide with the participation of n− t players.

Since the protocol must be able to terminate with the participation of at most n− t players,
consider now that there are no crash players and there are exactly k rational players. Let us
find a disjoint partition of honest players A and B such that k + |A|+ |B| = n. If k + |A| ≥ n− t

and k + |B| ≥ n − t then the k rational players can cause a disagreement, which can occur if
k + 2t ≥ n. There is only left to prove that k rational players will try to cause a disagreement.
For this, let us consider the minimum number of rational players e that must not try to cause a
disagreement for the remaining deviating rational players to not be able to cause a disagreement.
That is, for which values we have k− e + |A| < n− t and k− e + |B| < n− t, hence resulting in
e > k−n

2 + t. Therefore, the utilities for rational players from causing a disagreement are greater
than from causing agreement. This means that at least enough rational players will deviate
and cause the disagreement unless there is a (k, t, e)-baiting strategy that prevents e rational
players from deviating into a disagreement.

Theorem 4.2 follows directly from Lemma 4.2 because every (k, t)-crash-robust protocol
must also be t-crash-immune and k-resilient.

Theorem 4.2. Let #»σ be a protocol that implements consensus such that there is no (k, t)-
crash-baiting strategy with respect to #»σ . Then, it is impossible for #»σ to be (k, t)-crash-robust
for k + 2t ≥ n.

Proof. The proof is analogous to that of Lemma 4.2, since by definition every (k, t)-crash-robust
protocol must also be t-crash-immune and k-resilient.
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Corollary 4.1. Let #»σ be a protocol that implements consensus such that there is no (1, t)-
crash-baiting strategy with respect to #»σ and is t-crash-immune for t < n/2. Then, #»σ is not
1-resilient.

The results from Lemma 4.2, Theorem 4.2 and Corollary 4.1 show that it is necessary to
consider new bounds for CFT protocols in terms of their crash fault tolerance, since their
resilient-optimal bounds make them vulnerable to even one rational player. In Section 4.4, we
explore the link between crash-robustness and immunity, so as to obtain results for this model
with the Trap protocol that we describe in Section 4.3.

4.3 Trap: reaching rational agreement

In this section, we present the Trap (Tackling Rational Agreement through Persuasion) pro-
tocol, which solves rational agreement. The Trap protocol comprises three components:

1. A financial component, consisting of a deposit per player L, taken at the start of the
protocol from each participating player, and a reward R, which is given to a player in the
event that it provides PoFs for a disagreement on predecisions.

2. An accountable consensus component, that pre-decides outputs from an accountable
consensus protocol.

3. A baiting component, embodied in a novel Byzantine Fault-Tolerant commit-reveal (BFTCR)
protocol that executes after the accountable consensus protocol. This component termi-
nates either deciding one output (predecision) of the accountable consensus protocol, or
resolving a disagreement on predecisions by rewarding one of the deviating players that
exposed the disagreement and punishing the rest of deviating players.

We first provide an overview of the properties that we aim at for the Trap protocol in Sec-
tion 4.3.1, and the possible runs of the game that derive from implementing a strong baiting
strategy for the rational agreement problem with the aforementioned components. We then
introduce and prove the correctness of the baiting component, the BFTCR protocol, in Sec-
tion 4.3.2. Finally, we analyze the financial component, that is, the specific values of reward
and deposits, in Section 4.3.3. The accountable consensus component can be any accountable
consensus protocol [47, 132, 181], and thus we treat this component as a black box, for the sake
of generality.

4.3.1 Overview: consensus with a baiting strategy

We proved in Section 4.2.2 that we need a baiting strategy for a protocol to solve the rational
agreement problem.

Before we present the implementation of such a baiting strategy in Section 4.3.2, with
additional configurations of the required deposits and reward sizes in Section 4.3.3, we present
in this section the basics of our baiting strategy. For this purpose, we focus first on the properties
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that we aim at for such a baiting strategy. Then, we showcase all the possible runs of a protocol
for consensus that provide such a strong baiting strategy.

Given a protocol #»σ that implements accountable consensus and is tℓ-immune, we will extend
it to implement rational agreement, in that we will prove the three following properties:

• Baiting dominance: There is a (k, t, e)-baiting strategy #»η with respect to #»σ , for e > k+t−n
2 +

tℓ.

• Baiting agreement: #»η implements agreement.

• Lossfree reward: #»η is a strong baiting strategy.

Baiting dominance states the necessary condition that a baiting strategy exists, while baiting
agreement guarantees that playing such a baiting strategy still leads to agreement. Lossfree
reward guarantees that such a baiting strategy is a strong baiting strategy. Coming back to the
rational generals example of Figure 4.2, baiting dominance states the existence of the reward
for the rational general, baiting agreement guarantees that generals will still decide whether to
attack or retreat after paying the reward to the rational general, and lossfree reward guarantees
that only the slashed capital of the Byzantine generals will be used to pay the reward to the
rational general.

Reward for baiting. Since the protocol is accountable, we add a baiting reward R for player
i if i can prove to the rest of the players that a coalition of at least tℓ + 1 players are trying to
cause a disagreement, but before they succeed at causing the disagreement. If multiple players
are eligible for the baiting reward, then only one is chosen at random to win the reward, and the
rest are treated as fraudsters that did not bait. We select the winner at random in an additional
winner consensus in which the winner is decided from among the candidates to win proposed
by honest processes in this winner consensus. We explain further the winner consensus later in
this section. Players can prove that a coalition is trying to cause a disagreement through PoFs
which undeniably show two conflicting messages signed by the same set of players. The reward
is only given to i if i exposes this coalition before the coalition causes the disagreement (i.e.,
before both partitions of honest players decide different decisions).

Funding the reward with deposits. we require all players to place a minimum deposit
L. We also require such deposit to be big enough so that the deposit taken from the exposed
coalition is enough to pay the reward, satisfying lossfree reward. Our goal is to set R and L

so that we implement a baiting strategy for a set R of rational players in the coalition, such
that if others in the coalition bait, then for all i ∈ R, player i is better off also trying to bait
and getting the reward, while if the rest of the players in the coalition do not bait, then if i

baits then i gets the greatest expected utility that it can in that information set. We analyze in
Theorem 4.4 the required values for such deposit and reward necessary to incentivize at least
|R| = e > k+t−n

2 +tℓ rational players in a coalition to follow a baiting strategy, depending on the
size k+t of the coalition and on the maximum total gain from disagreeing G. For now, however,
let us ignore the values of L and R and focus on the protocol that solves the rational agreement
problem, by assuming that these values of L and R are enough to make e > k+t−n

2 + tℓ rational
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players bait the coalition, instead of terminating a disagreement. We will come back to specify
proper values for L and R in Section 4.3.3. If these PoFs expose at least tℓ +1 players including
the winner of the baiting reward R, then the tℓ (or more) remaining colluding players lose the
deposit amount L.

Dominating disagreements. We explore here the possible runs, assuming that we already
have such a baiting strategy, and what each of these runs means for the payoffs of a rational
player i:

1. Rational players including i contribute to reaching agreement and follow the protocol #»σ ,
getting some utility ui( #»σ −T , #»τ T ) ≥ ϵ where ϵ > 0.

2. Some rational players collude with i and deviate to disagree, playing strategy #»

ϕ with
some Byzantine players T and other rational players K such that |K ∪ T | ≥ n/3, K ∩ T = ∅,
obtaining utility ui( #»σ N−K−T ,

#»

ϕK∪T ) = g.

3. Player i deviates to bait other rational players into colluding with some Byzantine players
such that |K ∪T | ≥ n/3, K ∩T = ∅, and this deviation consists of playing strategy #»η to expose
the colluding players via PoFs, obtaining the baiting reward. As a result, player i obtains utility
ui( #»σ N−K−T ,

#»

ϕK∪T −R, #»η R) = ρ(e)R− ρ(e)L, where R is the set of players of the coalition that
bait, i.e., i ∈ R, with |R| = e. ρ(e) = 1/e represents the probability of winning the reward,
while ρ(e) = 1− ρ(e) = (e− 1)/e the probability of not winning it after baiting.

4. Player i deviates to disagree only to suffer a trap baited by another rational player (or
group of rational players), obtaining utility ui( #»σ N−K−T ,

#»

ϕK∪T −R, #»η R) ≤ −L.

5. In any run where the protocol does not terminate, player i obtains negative utility.

6. Player i contributes to reaching agreement but a coalition causes a disagreement. In
this case, i is one of the victims of a disagreement (for example, a double-spending). Hence, i

obtains negative utility.

Notice that runs 4, 5 and 6 are strictly dominated by run 1 (following the protocol). Our
goal is to make runs represented by 3 runs that also implement agreement and that strictly
dominate runs represented by 2.

4.3.2 Baiting component: the BFTCR protocol

In this section, we present an implementation of a baiting strategy for rational agreement. As
such, we extend an accountable consensus protocol with a Byzantine Fault-Tolerant commit-
reveal (BFTCR) phase in order to solve consensus even if there is a disagreement at consensus
level, if at least e rational players decide to betray the coalition so as to try to win a reward. We
show in Algorithm 6 the BFTCR phase. As such, we speak of a predecision for a decision of the
accountable consensus protocol, whereas a decision now refers to the outcome of the BFTCR
protocol. The BFTCR phase consists of 5 main parts:

1. a reliable broadcast, in which players share their encrypted commitment (line 11),
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2. a second reliable broadcast, in which players share the first (n−tℓ) encrypted commitments
that they delivered in the first reliable broadcast (line 15),

3. a regular broadcast, in which players share the key to reveal their commitment (line 19),

4. an additional consensus to select the winner of the reward, if some players reveal a list of
PoFs (line 35), and

5. a slashing of the deposits from the fraudsters, payment of the reward to the winner and
resolution of the disagreement on predecisions (line 36).

Commit and reveal. The purpose of the first group of reliable broadcasts is to reliably
broadcast the encrypted PoFs, should a player own them, or an encrypted hash of a predecision
otherwise. We say that the commitment is the encrypted content that each player decides to
broadcast in this first reliable broadcast. In line 15 each player i then starts the second reliable
broadcast by broadcasting a list of the first (n − tℓ) delivered commitments that i delivered
in the first reliable broadcast. The purpose of the calls to broadcast in lines 19 and 21 is to
deliver the keys to decrypt the encrypted messages. A player i thus reveals his commitment by
broadcasting the key. A player i decrypts the commitment of player j in line 22. Then, player
i adds this decrypted message to the list of decided hashes in lines 24 to 27, or to the list of
PoFs received in lines 29 to 31.

Termination. The BFTCR phase of the Trap protocol terminates in one of two ways:

• either there is no disagreement on predecisions, and then the protocol terminates when
at least (n− tℓ) messages are decrypted with the same hash of the predecisions in line 27; or

• some players reveal a disagreement on predecisions through PoFs, and then the protocol
terminates when at least tℓ+1 messages are decrypted (without counting players that are proven
fraudsters through PoFs) with a reward to a chosen baiter and a punishment to the remaining
players that are listed in the PoFs from lines 32 to 36.

Note that accountability does not guarantee that a baiter will gather enough PoFs before a
disagreement takes place. We prove that baiters will gather enough PoFs before a disagreement
takes place as part of the proof of Theorem 4.3. The idea is that e rational players will wait to
receive enough PoFs to be able to commit to bait, where e is big enough to prevent termination
of either of the partitions of honest players.

Valid candidates of the winner consensus. We define a valid candidate to win the reward as
a member of a deviating coalition that committed to bait the coalition (by sending a commitment
to a list of PoFs of the coalition in line 11) independently of whether other e players of the
coalition also committed to bait, for e > k+t−n

2 + tℓ. The objective of the BFTCR protocol is to
distinguish valid candidates from players who try to win the reward only after they learn that
the disagreement will not succeed. An honest player i considers a baiter j as a valid candidate if
i can see j’s commitment to bait in at least tℓ + 1 messages from the second reliable broadcast.
We refer to this tℓ + 1 messages as a proof-of-baiting (PoB). The BFTCR protocol selects the
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winner of the bait among the list of valid candidates by executing an additional consensus, in
the call to select_winner in line 35, in which all participating players propose the PoFs they
know about and the valid candidates, along with the PoBs. We detail further this call later in
this section.

Note that a rational player i that commits to bait a coalition may deviate from Algorithm 6 in
order to hinder other deviants from becoming valid candidates after i reveals its commitment.
This is because this way i maximizes its chances of winning the reward (by minimizing the
number of valid candidates for the reward). This is an expected deviation of a baiting rational
player, which consists on waiting to deliver as many messages from the second reliable broadcast
as possible from both partitions of honest players that suffered the disagreement on predecisions,
and we show the correctness of this approach as part of the proof of Theorem 4.4.

Correctness and randomness of the winner consensus. We show in Theorem 4.5 that
no deviating player can win the reward without being a valid candidate, i.e., no player can bait
and win the reward after learning that other e (or more) players baited. Additionally, note
that the winner consensus solves consensus for n > 9/5(k + t) because at least tℓ + 1 provably
fraudulent players of the coalition will not participate in it, and we consider n > 2(k + t). That
is, at most n′ = n − (tℓ + 1) < 2n/3 players participate in the winner consensus. Since the
maximum coalition size is k + t < n/2, then the remaining players of the coalition that could
participate in the winner consensus are t′ = n/2 − (tℓ + 1) < n/6, and thus t′ < n′/3 and the
winner consensus solves consensus. Notice this is true even if honest players disagree on the
initial tℓ + 1 provably fraudulent players, since eventually they agree on the set of fraudulent
players, as we detail in Chapter 5.

Furthermore, the winner consensus only terminates once at least n− t′ proposals have been
decided, which can be optimized through a democratic consensus protocol [23, 47]. Finally,
after n − t′ proposals are decided upon, the participants execute an iteration of a random
beacon that tolerates t′ < n′/3 Byzantine faults [36, 31, 32], in order to select the winner of the
baiting reward randomly from among any of the valid candidates that were in any of the decided
proposals. We present two random beacons that can be used for this purpose in Chapter 6.

Following the winner consensus, in line 36, fraudsters are punished and the baiter is re-
warded, respectively. The call to resolve(...) resolves the two disagreeing predecisions by deter-
ministically choosing one of them (i.e., lexicographical order) or, depending on the application,
merging both to solve SBC (Definition 2.2.4).

Resolving a disagreement on consensus predecisions with BFTCR. It is clear that
if there is no disagreement on the predecisions, the BFTCR phase will terminate and satisfy
consensus. We consider here the output of the BFTCR phase in the case where there is a
disagreement into two predecisions. We speak of a disagreement on predecisions being finalized
if it becomes a disagreement on decisions (that is, on the output of the BFTCR phase). We
will show in Theorem 4.3 that if e > k+t−n

2 + tℓ rational players commit to bait instead of
finalizing the disagreement on predecisions, then the Trap protocol still satisfies consensus.
For this purpose, we define e(k, t) = ⌊k+t−n

2 + tℓ⌋ + 1 (i.e., the smallest natural value that
satisfies e > k+t−n

2 + tℓ). Then, we first show in Lemma 4.3 that if e(k, t) rational players bait,
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Algorithm 6 BFT commit-reveal protocol for (honest) player i.
1: State:
2: enc_msgs, list of delivered encrypted messages from the first group reliable broadcasts, initially ∅
3: list_enc_msgs, list of delivered encrypted messages from the first group of reliable broadcasts, initially ∅
4: decrypted_msgs, list of delivered decrypted messages from the first group of reliable broadcasts, initially ∅
5: {RB1

j}n
j=0, the first group of reliable broadcasts where j is the source

6: {RB2
j}n

j=0, the second group of reliable broadcasts where j is the source
7: hashes, a dictionary, keys are hashes and values are integers, initially {}
8: local_hash, local hash of the predecided value, according to this player
9: POF_received, Boolean, initially False

10: i, i_msg, i_key, i_enc_msg, player’s id, message, key, and encrypted message

11: RB1
i .start(i_enc_msg) � start first group of reliable broadcasts

12: Upon RB-delivering enc_msg from reliable broadcast RB1
j :

13: enc_msgs[j]← enc_msgs

14: if (size(enc_msgs) ≥ n− tℓ) then
15: RB2

i .start(enc_msgs) � start second reliable broadcast sharing these delivered commitments

16: Upon RB-delivering enc_msgsj from reliable broadcast RB2
j :

17: list_enc_msgs[j]← enc_msgsj

18: if (size(list_enc_msgs) ≥ n− tℓ and size(enc_msgs) ≥ n− tℓ) then
19: broadcast(i_key, i) � reveal i’s commitment by broadcasting decryption key

20: Upon delivering key from j and RB-delivering from RB1
j and RB2

j :
21: broadcast(key, j)
22: decrypted_msgs[j]← decrypt(enc_msgs, key) � decrypt j’s commitment
23: if (decrypted_msgs[j].type = HASH) then � if it is the hash of a predecision
24: hash ← decrypted_msgs[j].get_hash()
25: hashes[hash] += 1 � add to count
26: if (hashes[hash] ≥ n− tℓ and local_hash = hashes[hash]) then
27: decide(hash) � if count for this hash reaches threshold, then decide it

28: else if (decrypted_msgs[j].type = POFS) then � if instead list of PoFs
29: PoFs ← decrypted_msgs[j].get_PoFs()
30: if (verify(PoFs)) then list_PoFs[j]← PoFs � verify PoFs are valid
31: POF_received ← True
32: if (POF_received) then
33: msgs_filtered ← keys(decrypted_msgs) \ keys(PoFs) � count honest decryption keys received
34: if (size(msgs_filtered) ≥ tℓ + 1) then � punish fraudsters, reward winner, and resolve the (pre-)disagreement
35: baiter , frauds, predec1 predec2 ← select_winner(list_enc_msgs, lPoFs) � winner consensus
36: punish(frauds); reward(baiter); resolve(predec1 , predec2 )
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then the only possible outcome is to resolve a disagreement on predecisions.

Lemma 4.3. Let n players play the associated game of the Trap protocol #»σ , out of which k

can be rational and t Byzantine, with n > 2(k + t). Suppose a run in which a coalition causes
a disagreement on predecisions, and consider the start of the BFTCR phase. Then, if e(k, t)
rational players of the coalition commit to bait then the only possible outcome is to pay the
reward and resolve the disagreement on predecisions.

Proof. First, we show that e(k, t) deviating players committing to bait suffices to prevent the
disagreement on predecisions to be finalized in a disagreement on decisions. This is analogous
to the proof of Lemma 4.1. Then, we show that if e(k, t) players commit to bait, then the
BFTCR phase safely terminates resolving predecisions, with all honest players that start the
winner consensus terminating it and agreeing. Finally, we show that deviating players cannot
get the reward and also cause a disagreement, i.e., if one player terminates the winner consensus
then all honest players start it.

Suppose two predecisions vA, vB that two partitions of players not in the coalition A and B

predecided, such that A∩B = ∅, and |A|+ |B|+k+t ≤ n. For A to decide vA (resp. B to decide
vB), players in A (resp. B) must be able to decide without hearing from players in B (resp.
A). Therefore, |A| + k + t ≥ n − tℓ and also |B| + k + t ≥ n − tℓ to finalize the disagreement.
We consider now how many e rational players out of k must bait (i.e., must not contribute to
finalizing the disagreement) for a disagreement to necessarily fail. This value must be such that
|A|+(k−e)+ t < n− tℓ and same for B’s partition, which solves to e > k+t−n

2 + tℓ (analogously
to Lemma 4.1).

Then, we recall that the BFTCR phase resolves predecisions, rewards and punishes players
if at least tℓ + 1 players have been exposed through PoFs. Thus, every non-deviating player can
ignore messages received from a set containing at least tℓ + 1 players. All non-deviating players
eventually converge to the same set of detected fraudsters (see Chapter 5), as all honest players
broadcast the PoFs they hear from and update their detected fraudsters accordingly. As such,
let F represent the set of detected fraudsters, then for all |F | ∈ [tℓ + 1, k + t] it follows that
n′/3 > k + t− |F | for n′ = n− |F |, and thus the winner consensus tolerates deviations from the
rest of rational and Byzantine players not yet detected.

Finally, we show that if the reward is paid, then it is not possible to cause a disagreement
at decision level. We have shown in the previous paragraph that all non-deviating players that
execute the winner consensus terminate agreeing. We must thus prove that if an honest player
terminates the winner consensus, then no honest player can terminate deciding a predecision
without executing the winner consensus. Since n′/3 > k + t − |F |, the winner consensus
terminates with the participation of just 2n′/3 players, of which at least 2n′/3− (k + t−|F |) are
honest. Since there are n− k− t honest players in total, if the winner consensus terminates for
some honest player, then there are at most c = n−k−t−(2n′/3−(k+t−|F |)) = (n−|F |)/3 honest
players that have neither learned about the disagreement nor executed the winner consensus
yet. Thus, for these remaining honest players to not be able to decide without executing the
winner consensus, it is necessary that c + t + k < n− tℓ ⇐⇒ t + k < n/2.

Hence, as long as at least e(k, t) = ⌊k+t−n
2 +tℓ⌋+1 rational players play the baiting strategy,
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the only possible outcome is for one of them to get the reward, and to resolve the disagreement
on predecisions.

Theorem 4.3 (Baiting agreement). Let n players play the associated game of the Trap
protocol #»σ , of which k can be rational and t Byzantine, with n > 2(k + t). Suppose that
e(k, t) = ⌊k+t−n

2 + tℓ⌋+ 1 rational players in the coalition play the baiting strategy committing
to bait if they participate in a disagreement on predecisions. Then the Trap protocol solves
rational agreement.

Proof. The proof of tℓ-immunity follows from the fact that the consensus component is tℓ-
immune and the fact that the additional BFTCR phase consists of two Byzantine fault-tolerant
reliable broadcasts and one additional broadcast per player, terminating each of them if n− tℓ

players follow the protocol.
For ϵ-(k, t)-robustness, it is clear that if there is no disagreement on predecisions, then

rational and honest players are more than n−tℓ and thus the protocol terminates and guarantees
validity and agreement. If there is instead a disagreement on predecisions then, as long as e(k, t)
players commit to bait, by Lemma 4.3 the only outcome is to pay the reward and resolve the
disagreement.

We show in Theorem 4.3 that, provided e(k, t) rational players commit to bait if there is a
disagreement on predecisions, the Trap protocol solves the rational agreement problem. We
only have left to prove for which values of L and R we can guarantee that the strategy to bait
the coalition strictly dominates that of terminating a disagreement for at least e(k, t) rational
players in the coalition. We do this in Section 4.3.3.

4.3.3 Financial component: deposits & reward

In this section, we focus on the key idea of this chapter: what are the values required for a
deposit per player and a reward to players for baiting the coalition that make a strong baiting
strategy. In particular, and derived from the BFTCR algorithm of Section 4.3.1, we focus on
a baiting strategy that at least e(k, t) rational players will play in Theorem 4.4. Then, we
prove that the proposed Trap protocol implements rational agreement and is ϵ-(k, t)-robust for
n > 3

2k + 3t and n > 2(k + t) in Theorem 4.5 and Corollary 4.2.
We show in Theorem 4.4 which values of L and R make the disagreeing strategy a strictly

dominated strategy by the baiting strategy for at least e(k, t) rational players (i.e., a dominated
strategy even if player i already knows that e(k, t)− 1 other players are also baiting at the time
that i has to decide whether to bait or not). In other words, we show in Theorem 4.4 under
which values of R and L such strategy #»η is a strong (k, t, e(k, t))-baiting strategy that satisfies
baiting dominance and lossfree reward.

The result of Theorem 4.4 is the key part of the Trap protocol for two reasons. First,
because it shows that the first e − 1 baiters do not even prevent a disagreement from taking
place, and thus if the rest of t + k− (e− 1) colluding players want to finalize the disagreement,
they can. Second, because it shows that if e − 1 players commit to bait, then the remaining
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t + k − (e − 1) must take the decision on whether to commit to bait or not independently of
what the rest of them are doing. Thus, this is analogous to a reduction from the extensive-form
game into a normal-form game for this case, played by the t+k− (e−1) remaining rational and
Byzantine players, in which all rational players’ dominating strategy is to bait the coalition,
regardless of what the rest are doing. Without this proof, Byzantine players in the coalition
could threat rational players to also bait if they see them baiting, creating a deterrent and
changing the equilibrium of rational players into colluding to finalize the disagreement.

We first show in Lemma 4.4 that the Trap protocol guarantees that no player can decide
to join the baiting strategy #»η and become a valid candidate for the winner consensus after
learning that another e(k, t) players played #»η : they must take that decision before they know
whether e(k, t) other players will play #»η or not.

Lemma 4.4. Let n players play the associated game of the Trap protocol #»σ , out of which k

can be rational and t Byzantine, with n > 3
2k + 3t and n > 2(k + t). Suppose a run in which

a coalition causes a disagreement on predecisions and players start the BFTCR phase. Then,
deviating player i in the coalition cannot become a valid candidate for the reward unless it
commits to bait before it learns that e(k, t) other players commit to bait.

Proof. We show that if e(k, t) rational players in the coalition play the baiting strategy, becoming
valid candidates to win the reward, then the remaining k+t−e(k, t) cannot obtain valid PoBs to
become candidates of the winner consensus after learning that e(k, t) players become candidates.
Given that the non-baiting members of the coalition are trying to finalize a disagreement, they
will still split non-deviating players into two partitions A and B for the BFTCR protocol.
Hence, we look at how many rational players must take part in both partitions of the BFTCR
protocol. Notice that |A|+ |B|+ t + k ≤ n, |A|+ k + t ≥ n− tℓ and |B|+ k + t ≥ n− tℓ. Thus,
analogous to how we calculate e in Lemma 4.1, we have that c ≥ (n− tℓ)− n−t−k

2 is the number
of members of the coalition that must participate in a partition for it to terminate deciding
a predecision, with A ∩ B = ∅, as their predecisions differ. We are interested in calculating
c − t, the minimum number of rational players out of these c members of the coalition, this is
why we include as many Byzantine players as possible. Notice also that we want to see how
many rational players must take part in both partitions, meaning that we are interested in
c− t− k

2 = (n− tℓ)− n+t
2 ≥ e(k, t) for n > 3

2k + 3t.
Hence, both partitions will include at least e(k, t) repeated rational players. What is left

to prove is that if these e(k, t) players commit to bait, then by the time they reveal their
commitment, the remaining players cannot collude to try and obtain PoBs to become valid
candidates of the winner consensus too. Since |A| + k + t ≥ n − tℓ and |B| + k + t ≥ n − tℓ,
there are |D| ≥ 2(n− tℓ)− 2k− 2t honest players that delivered at least e(k, t) commitments to
bait, for |D| ≤ |A| + |B|, if these e(k, t) repeated rational players commit to bait. Notice that
|D| ≥ tℓ + 1 for n > 2(k + t). Then, each of the e(k, t) players can wait for n − tℓ deliveries
of the second reliable broadcast before revealing their commitment by broadcasting their key
without compromising termination. Thus, we must calculate for which values of k and t the
remaining players cannot obtain PoBs to become valid candidates, that is, for which values
of k and t other players that did not bait yet cannot include the new commitment to bait in
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tℓ + 1 valid second reliable broadcasts. Since the remaining set of honest players C such that
|C| = n− t− k− |D| are |C| ≥ n− k− t− (2(n− tℓ)− 2k− 2t), we calculate for which values of
k and t we have |C|+ k + t− tℓ ≤ tℓ, which results in n > 2(k + t). This means that the e(k, t)
baiters can be sure that no deviating player can commit to bait and win the reward without
being a valid candidate for the winner consensus.

We use the result from Lemma 4.4 to prove lossfree reward and baiting dominance in The-
orem 4.4.

Theorem 4.4 (lossfree reward and baiting dominance). Let #»σ be the Trap protocol, executed
by n players of which exactly k are rational and t Byzantine, for some values of k, t satisfying
n > max(3

2k + 3t, 2(k + t)). Let #»η be the strategy in which e(k, t) rational players reveal PoFs
of the coalition if there is a disagreement on predecisions. Then, #»η is a strong baiting strategy
if:

1. each player is required to deposit L = µ ·G, with µ > e(k,t)
k(tℓ−e(k,t)+1) , and

2. the baiting reward R is such that R = tℓL.

Proof. Recall that the gain is split equally among all k rational players in the coalition g = G/k.
To guarantee lossfree reward, the sum of losses from the coalition must always be equal or greater
than the reward given for the coalition to always lose funds while failing to disagree, that is
tℓL ≥ R ⇐⇒ L ≥ R

tℓ
.

As a result, the baiting strategy #»η must strictly dominate the strategy to disagree for rational
players, even if a rational player knows another e− 1 other rational players also play the same
strategy #»η committing to bait. Since the probability of winning the bait between e players is
uniformly distributed ρ(e) = 1

e we have that the utility for a player to play the baiting strategy
knowing that another e(k, t)−1 players are playing the same strategy is ρ(e(k, t))R−ρ(e(k, t))L.
If, instead, the player disagrees then the player’s utility is G

k . As such, and since Lemma 4.4
shows that no rational player can become a valid candidate to win the reward after learning
that e(k, t) other players commit to bait, we obtain that #»η strictly dominates the disagreeing
strategy if ρ(e(k, t))R− ρ(e(k, t))L > G

k and replacing R by tℓL, and L by µG we obtain:

µ>

(
k
(
tℓρ(e(k, t))− ρ

(
e(k, t)

)))−1
⇐⇒ µ>

e(k, t)
k(tℓ − e(k, t) + 1) .

As for the reward, tℓL ≥ R for the slashed deposits to always cover the reward, and thus
we set tℓL = µGtℓ = R.

Hence, e(k, t) will play the baiting strategy (baiting dominance) of which one will be re-
warded, and the reward will be paid with the deposits of the fraudsters (lossfree reward).

Notice that any two values L and R suffice if they satisfy ρ(e(k, t))R−ρ(e(k, t))L > G
k (4.1),

so that rational players prefer to bait than to disagree, and tℓL ≥ R (4.2), so that the reward
is always less than the slashed deposits.

The key to these two equations lies in the trade-off between R and L, that is: R must be
sufficiently large compared to L so that players prefer to bait than to disagree (Equation 4.1),
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but R must be sufficiently small compared to L so that the slashed deposits can always pay for
the reward (Equation 4.2).

It is already possible to derive from Theorem 4.4 results for the number of Byzantine players
tolerated for ϵ − (k − t, t)-robustness, given a deposit. That is, suppose that #»η only requires
e(k, t) = 1 rational player to satisfy agreement, and let L = µ ·G, then every coalition of size at
least tℓ +1 players has at least k ≥ tℓ +1− t rational players, and thus the maximum amount of
Byzantine players tolerated for ϵ-(k− t, t)-robustness is t < tℓ + 1− 1

tℓµ . For example, let us set
the deposit L = µG to µ = 1

n , i.e., the total deposit is D = L · n = G, and n = 100, it follows
that the Trap protocol is ϵ-(k − t, t)-robust and t ≤ 30. If instead µ = 1

3n , then t ≤ 24.
Finally, we gather all results together in Theorem 4.5, and Corollary 4.2.

Theorem 4.5. Let #»σ be the Trap protocol, executed by n players of which k are rational and t

Byzantine, for all values k, t satisfying n > max(3
2k+3t, 2(k+t)). Let #»η be the strategy in which

e(k, t) rational players reveal PoFs of the coalition if there is a disagreement on predecisions.
Then, #»η is a strong (k, t, e(k, t))-baiting strategy if:

1. each player is required to deposit L = µ ·G, where µ > max(k,t)
( e(k,t)

k(tℓ−e(k,t)+1)
)
, and

2. the baiting reward is R = tℓL.

Proof. Theorem 4.3 uses the proof of baiting agreement from Lemma 4.3 to show that if e(k, t)
play the baiting strategy in the event of a disagreement on predecisions, then the Trap protocol
solves the rational agreement problem. Theorem 4.4 shows that e(k, t) will play the baiting
strategy (baiting dominance) of which one will be rewarded, and the reward will be paid with
the deposits of the fraudsters (lossfree reward).

Finally, we consider all possible values of k and t analogously to Theorem 4.4, deriving a
value of µ that holds for all possible values of k and t: µ > max(k,t)

( e(k,t)
k(tℓ−e(k,t)+1)

)
.

Notice that the greater the size of the coalition, the greater µ must be in order for the
protocol to be ϵ-(k, t)-robust. However, for n > 3

2k + 3t and n > 2(k + t), since for every two
rational players that join the coalition one Byzantine must leave, the coalition that maximizes
the total deposit D = Ln = µGn is a coalition of k = 1 rational player and t = tℓ Byzantine
players, and that means µ > 1

⌈ n
3 ⌉−1 . Corollary 4.2 shows such particular robustness.

Corollary 4.2. Let #»σ be the Trap protocol. Then #»σ is ϵ-(k, t)-robust for the rational agree-
ment problem for n > 3

2k + 3t and n > 2(k + t) if the following predicates hold:

1. Each player is required to deposit L = µ ·G + ϵ, where µ = 1
⌈ n

3 ⌉−1 and ϵ > 0, and

2. the baiting reward is R = tℓL.

Thus, there are two possible outcomes for the Trap protocol:

• if the coalition is made by so many rational players that deviating does not compensate
the risk of losing their deposits, then the Trap protocol will provide agreement at predecision
level without paying a reward R, or
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• if the coalition has enough Byzantine players to make the deviation into two predecisions
profitable, then enough e(k, t) rational players in the coalition will bait so that the disagreement
on predecisions can safely be resolved and decided, and one rational player among the baiters
will receive a reward R, paid entirely by the deposits of the rest of the provably fraudulent
players.

In both scenarios, the Trap protocol implements rational agreement, being ϵ-(k, t)-robust for
n > max

(
3
2k + 3t, 2(k + t)

)
.

4.4 Bridging the gap: crash and rational as Byzantine players

In this section we bridge the gap between games that are robust against Byzantine players
and games that are robust against crash players, showing that the Trap protocol is not only
(k, t)-robust for consensus for n < max(3

2k + 3t, 2(k + t)) but also (k + t, t)-crash-robust for the
same values of k and t.

More generally, we show, on the one hand, that a (k, t)-robust consensus protocol becomes
(k + t, t)-robust in the crash model. On the other hand, we show that the existence of a (k, t)-
robust consensus protocol in the crash model that does not make use of a baiting strategy
implies the existence of a ϵ-(k − t, t)-robust consensus protocol in the Byzantine model, with
the help of cryptography.

4.4.1 From Byzantine to crash players

It is immediate that a protocol that tolerates up to t Byzantine faults also tolerates up to t

crash faults, the question lies with the inclusion of rational players. We propose in Lemma 4.5
a first relation between Byzantine fault tolerance and crash-fault tolerance in the presence of
rational players.

Lemma 4.5. Let #»σ be a protocol that implements consensus and is ϵ-s-immune. Then #»σ is
also ϵ-(s, s)-crash-robust.

Proof. We prove this by contradiction. Let r be the minimum number of players that must
participate in the protocol for it to terminate, it is clear that r ≤ N − s since the protocol is
ϵ-s-immune. As such, let A and B be two disjoint sets of honest players. Since the protocol
must also guarantee agreement, it follows by contradiction that if agreement was not satisfied
then |A| + s ≥ r and |B| + s ≥ r, but this is only possible if r ≤ n+s

2 . Therefore, we have
N − s ≥ r > n+s

2 .
We define sc ≤ s and sk ≤ s as the maximum number of tolerated crash and rational

faults, respectively. It is immediate that termination is guaranteed, since rational players will
participate and r ≤ N − s ≤ N − sc. For agreement, we have |A| + |B| + sc + sk < n, with
sc ≤ s and sk ≤ s. We consider that sc crash players crash after having sent some messages only
to players in |A| and the sk rational players, which is the best case for the deviating coalition
(otherwise they crash sending the same message to the entire set of honest players and thus they
do not contribute to disagreeing). For the sk rational players to lead players in B to a different
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decision than the decision of players in A plus the crash players sc, both sk + sc + |A| ≥ r and
sk+|B| ≥ r must hold. This means that |A|+|B|+2sk+sc ≥ 2r ⇐⇒ n+sk ≥ 2r ⇐⇒ n+s

2 ≥ r,
however, this is a contradiction: we already showed that n+s

2 < r for #»σ to be ϵ-s-immune. It
follows that if a protocol that implements consensus is ϵ-s-immune then it is also ϵ-(s, s)-crash-
robust.

Notice that the statement of Lemma 4.5 does not require to assume cryptography, and thus
the same result takes place by considering ϵ = 0, i.e., (k, t)-robustness. The same occurs with
Theorem 4.6. Lemma 4.5 establishes a surprising yet meaningful relation between t-immunity
and (k, t)-crash-robustness, further extended by Theorem 4.6: if a protocol is (k, t)-robust then
it is also (k + t, t)-crash-robust. This means that our Trap protocol is (k + t, t)-crash-robust for
n < max(3

2k + 3t, 2(k + t)), since we showed in Section 4.3 that it is (k, t)-robust for the same
values of k and t. We omit the proofs of Theorems 4.6 and 4.7 as they are immediate from the
proof of Lemma 4.5.

Theorem 4.6. Let #»σ be a protocol that implements consensus and is ϵ-(k, t)-robust. Then, #»σ

is also ϵ-(k + t, t)-crash-robust.

By Lemma 4.5 and Theorem 4.6, it is possible to take existing protocols, bounds and other
results that apply to immunity and robustness and apply them directly to crash-immunity
and crash-robustness. Moreover, Lemma 4.5 establishes a parametrizable hierarchy between
crash faults and Byzantine faults: for every Byzantine fault tolerated by a protocol that solves
consensus, the same protocol tolerates instead one crash fault and one rational player.

Interestingly, an analogous proof provides the same result for a protocol that tolerates instead
crash and Byzantine players. We show this result in Theorem 4.7. However, we first define ϵ-
(t′, t)-immunity to combine tolerance to a number of crash and Byzantine players together:

Definition 4.4.1 (ϵ-(t′, t)-immunity). A joint strategy #»σ ∈ S is ϵ-(t, t′)-immune if, for all sets
T of Byzantine players such that T ⊆ N with |T | ≤ t, all sets T ′ of crash players such that
T ′ ⊆ N , T ∩T ′ = ∅, all #»τ ∈ ST , all #»

θ ∈ ST ′ , all strategies σs of the scheduler, and all i ̸∈ T ∪T ′,
we have:

ui( #»σ −{T ∪T ′}, #»τ T ,
#»

θ T ′ , σs) ≥ ui( #»σ , σs)− ϵ.

Theorem 4.7. Let #»σ be a protocol that implements consensus and is ϵ-(t′, t)-immune. Then,
#»σ is also ϵ-(t, t′ + t)-crash-robust.

4.4.2 From crash to Byzantine players

One may wonder if the same result listed in Lemma 4.5 is true in the opposite direction, that is,
whether a protocol #»σ that is ϵ-(k, t)-crash-robust is also ϵ-fun(k, t)-immune where fun(k, t) = s

for some s > 0.
We prove in Lemma 4.6 that we can construct a protocol that implements consensus and

is ϵ-s-immune based on a protocol that is ϵ-(k, t)-crash-robust for s = min(k, t), assuming
cryptography and that the protocol does not implement a (k, t)-crash-baiting strategy.
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Lemma 4.6. Let #»σ be an ϵ-(k, t)-crash-robust protocol that implements consensus without a
(k, t)-crash-baiting strategy with respect to #»σ . Then, assuming cryptography and a public-key
infrastructure scheme, there is an ϵ-min(k, t)-immune protocol #»σ ′ that implements consensus.

Proof. We show how we create the protocol #»σ ′ from #»σ to tolerate the new deviations that
Byzantine players can perform. We list the possible deviations of t Byzantine players in a
protocol #»σ ′:

1. Byzantines players force disagreement by sending equivocating messages.

2. Byzantine players stop replying.

3. Byzantine players reply only to a subset of the honest players.

4. Byzantine players reply wrongly formatted messages.

5. Byzantine players force non-termination by sending equivocating messages.

6. Byzantine players force non-decision (empty decision) by sending equivocating messages.

Protocol #»σ already tolerates coalitions of up to min(k, t) players performing deviation 2, since
t crash players can stop replying. For deviation 1, we show that if the k rational players are not
enough to cause a disagreement, then k Byzantine players would also not be enough. Consider
instead that k rational players can make a coalition big enough to cause a disagreement, then it
is clear that they would cause a disagreement unless there is a (k, t)-crash-baiting strategy that
prevents it, by definition. Therefore, since #»σ does not implement a (k, t)-crash-baiting strategy,
if the protocol tolerates k rational players trying to deviate then it also tolerates deviation 1
from Byzantine players. We now show how to construct #»σ ′ to be robust against the rest of the
deviations. To tolerate deviation 4, honest players in #»σ ′ ignore wrongly formatted messages,
converting deviation 4 into the same deviation as 2. Now, we consider deviations 5 and 6.
Since up to min(k, t) rational players cannot force a disagreement, these players would not even
deviate to not terminate or to not decide (their expected utilities from playing such strategies is
less than from following #»σ ), however, min(k, t) Byzantine players can have a greater expected
utility from such deviations.

First, we require every player to broadcast any signed message newly delivered. This makes
deviation 3 not a deviation anymore, since every honest player eventually verifies and delivers
all messages. Also, in the event of an impasse between two partitions (that is, deviations 5 and
6), this makes it possible for honest players to gather enough evidence of which processes are
responsible for such an event, in that they signed conflicting messages. If protocol #»σ decides
an empty proposal in the absence of agreement, then we construct #»σ ′ so that it instead repeats
the protocol in a new round. This way, we make deviations 5 and 6 the same deviation.

What is left to prove is that it is impossible for a coalition of up to min(k, t) Byzantine
players to force non-termination by leading honest players into a next round sending equivocat-
ing messages. For this purpose, recall that every message sent to a non-empty subset of honest
players eventually reaches all honest players thanks to transferable authentication [182], i.e. all
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honest relay to the rest all signed messages they deliver. As such, honest players are eventu-
ally able to gather two conflicting, equivocating messages from each of the deviating players,
identifying such set as responsible for the attempted equivocation. Thus, we describe the final
modification of #»σ ′ with respect to #»σ : once an honest player i identifies (via conflicting signed
messages) a player j that sent equivocating messages, i ignores any message coming directly
from j from that moment on. Notice that this modification thus converts deviations 5 and 6 into
either deviation 3 or 2, and we already showed that #»σ ′ tolerates such deviations as long as the
number of Byzantine players is at most min(k, t). Therefore, we have constructed

#»

σ′ extending
#»σ so that every above-shown deviation from up to min(k, t) Byzantine players converts into a
deviation that #»σ already tolerates, meaning that

#»

σ′ is ϵ-min(k, t)-immune.

Lemma 4.6 establishes a relation in the opposite direction from Lemma 4.5. We conjecture
that this is possible to prove even without the help of cryptography. Nevertheless, we do need
to restrict the protocol #»σ to be ϵ-(k, t)-crash-robust without the help of (k, t)-crash-baiting
strategies. This is because we can only consider k rational players that behave as Byzantine
faults in terms of equivocation, that is, that try to cause a disagreement. The existence of a (k, t)-
crash-baiting strategy means that some rational players will not try to cause a disagreement,
and thus we could not rule out deviation 2 as a deviation that Byzantine players can follow
in order to break safety. Nevertheless, this is not surprising, since Byzantine players represent
many more deviations by players whose utilities are not even defined, it is expected that more
assumptions are required by the direction of Lemma 4.6 than by that of Lemma 4.5. Since
the proof of Lemma 4.6 is constructive in providing

#»

σ′, we refer to the resulted
#»

σ′ as the BFT-
extension of #»σ .

We show in Theorem 4.8 the analogous result to Lemma 4.6 as Theorem 4.6 is to Lemma 4.5.
The proofs of theorems 4.8 and 4.10 are analogous to that of Lemma 4.6.

Theorem 4.8. Let #»σ be an ϵ-(k, t)-crash-robust protocol that implements consensus without a
(k, t)-crash-baiting strategy with respect to #»σ , where k ≥ t. Then, assuming cryptography and
a public-key infrastructure scheme, there is an ϵ-(k − t, t)-robust protocol #»σ ′ that implements
consensus.

Theorem 4.8 excludes protocols that make use of a (k, t)-crash-baiting strategy #»η to be
ϵ-(k, t)-crash-robust, we show in Theorem 4.9 that if #»η is both an effective (k, t)-crash-baiting
strategy and an effective (k − t, t)–baiting strategy, where effective means that playing the
baiting strategy still implements consensus, then there is a protocol that is ϵ-(k − t, t)-robust.

Theorem 4.9. Let #»σ be an ϵ-(k, t)-crash-robust protocol that implements consensus such that
there is an effective (k, t)-crash-baiting strategy #»η with respect to #»σ , where k ≥ t. Let

#»

σ′ be the
BFT-extension of #»σ , assuming cryptography and a public-key infrastructure scheme. If there
is

#»

η′ such that
#»

η′ is also an effective (k − t, t)-baiting strategy with respect to
#»

σ′, then
#»

σ′ is an
ϵ-(k − t, t)-robust protocol that implements consensus.

Proof. The proof is analogous to that of Lemma 4.6, with the addition that since #»η ′ is an
effective (k− t, t)-baiting strategy with respect to

#»

σ′, in every scenario where #»η is played in #»σ ,
then

#»

η′ is also played in
#»

σ′, and since
#»

η′ is effective, it implements consensus.
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We make use of cryptography in Lemma 4.6 in order to offer a constructive proof that is
useful for both Theorem 4.8 and Theorem 4.9. Notice however that it is trivial from Theorem 4.2
that k + 2t < n and thus min(k, t) < n/3.

Again, notice that the results from Theorems 4.8 and 4.9 assume k ≥ t, if instead t ≥ k, then
we obtain the result from theorems 4.10, for which we reuse the definition of ϵ-(t, t′)-immunity
from Section 4.4.1.

Theorem 4.10. Let #»σ be an ϵ-(k, t)-crash-robust protocol that implements consensus without
a (k, t)-crash-baiting strategy with respect to #»σ , where t ≥ k. Then, assuming cryptography and
a public-key infrastructure scheme, there is an ϵ-(t−k, k)-immune protocol #»σ ′ that implements
consensus.

4.5 Summary

In this chapter, we first justified baiting strategies by showing that, both in the Byzantine and
in the crash fault model, it is impossible to solve the consensus problem beyond their classical
impossibility bounds by introducing rational players unless baiting strategies are implemented.

To this end, we proposed Trap, a protocol that bypasses these bounds by implementing a
baiting strategy to be (k, t)-robust and (k + t, t)-crash-robust for n > max

(
3
2k + 3t, 2(k + t)

)
.

Trap builds upon an accountable consensus protocol by extending it with a reward and deposit
per player, and an additional novel BFTCR phase that we present in this chapter, ensuring the
existence of a baiting strategy that solves consensus and in which the reward is paid with the
slashed deposits from proven deviants.

These results are prosperous for applications like blockchains where players are often found
to display rational behavior to maximize their profits while minimizing their risks. Moreover,
our model only assumes that rational players deviate if their expected gain from causing a
disagreement is greater than the gain from exposing the coalition, or that of following the
protocol. These gains are easily calculable in blockchains by simply adding up the outputs of
all transactions in a block.

Nevertheless, the results of this chapter can not be met if rational players are not properly
bounded by this calculation of the expected gain of a disagreement. This problem becomes
evident when considering repeated consensus: rational players can expose the coalition and get
rewarded once, after which the coalition cannot try to perform an attack, or they can misbehave
with the coalition for as many iterations of consensus as they can.

For this reason, we take our model one step further in Chapter 5 presenting a new type of
fault that models any player that is interested in causing a disagreement, but not in preventing
termination, in what we call the Byzantine-deceitful-benign (BDB) failure model. This model
offers guarantees even when our rational model does not properly asses the benefits of a dis-
agreement for rational players. Interestingly, this model will also allow for a consensus protocol
that, even if it does not implement a baiting strategy, exposes a flexibility to different faults that
enriches its tolerance to faults compared to classical resilient-optimal, Byzantine fault-tolerant
consensus protocols.
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Additionally, we take a first step in the solution to repeated consensus for the rational model
with Byzantine faults in Chapter 6 by proposing a novel random beacon protocol that produces
random outputs in the presence of a coalition of ts processes trying to control the randomness
of these outputs.
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Chapter 5

ZLB, a Blockchain Tolerating
Colluding Majorities

In Chapter 4, we showed Trap, a protocol for consensus that overcomes the classical bound of
BFT consensus protocols by exploiting the rationality of players in blockchains.

Trap ensures that a disagreement on predecisions does not materialzie into a disagreement
on decisions (the output of the new BFTCR phase) as long as at most tℓ decide to disagree on
decisions, and achieves so by incentivizing rational players not to participate with Byzantine
players.

However, rational players might be motivated by more complex utility functions against
which the properties guaranteed by the Trap protocol may break, because if tℓ + 1 or more
processes decide to disagree on decisions then there will be a disagreement on the output of the
BFTCR protocol. In fact, rational players can even be bribed [120]. As noted in Section 4.5, this
is a notorious problem when extending the analysis from a single-shot consensus to a repeated
consensus problem, the natural step to extend the results from the Trap consensus protocol
for blockchains.

For this reason, in this chapter we explore protocols and show results even in the pres-
ence of rational players that prefer to cause a disagreement and have no interest in preventing
termination, but whose exact utility functions are unknown otherwise.

Our result. To this end, we present the Byzantine-deceitful-benign (BDB) failure model,
introducing two new types of processes, characterized by the faults they commit. First, a
deceitful process is a process that sends some conflicting messages (messages that contribute
to a violation of agreement). Second, a benign process is a faulty process that never sends
any conflicting messages, contributing to non-termination. For example, a benign process can
crash or send stale messages, or even equivocate as long as its messages have no effect on the
agreement property. These two faults lie at the core of the consensus problem.

We present a new lower bound on the solvability of the Byzantine consensus problem by
precisely exploring these two additional types of faults (that either prevent termination or
agreement when t ≥ n/3). Our lower bound states that there is no protocol solving consensus
in the partially synchronous model [13] if n ≤ 3t+d+2q with t Byzantine processes, d deceitful
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processes, and q benign processes.
Furthermore, we show that this lower bound is tight, in that we present the Basilic1 class

of protocols that solves consensus with n > 3t + d + 2q. Like Trap, Basilic builds upon
accountability, but unlike previous accountable solutions, processes executing Basilic exclude
detected fraudsters immediately after detection. Recipients also cross-check the messages they
received with other recipients. Thanks to this exclusion, Basilic satisfies a new property, active
accountability, which guarantees that deceitful processes can not prevent termination.

Basilic is a class of consensus protocols, each parameterized by a different voting threshold
or the number of distinct processes from which a process receives messages in order to progress.
For a voting threshold of h ∈ (n/2, n], Basilic satisfies termination if h ≤ n − q − t, and
agreement if h > d+t+n

2 . This means that for just one threshold, say h = 2n/3, Basilic tolerates
multiple combinations of faulty processes: it can tolerate t < n/3, q = 0 and d = 0; but also
t = 0, q < n/3 and d < n/3; or even t < n/6, q < n/6 and d < n/6. This voting threshold can
be modified by an application in order to tolerate any combination of t Byzantine, d deceitful
and q benign processes satisfying n > 3t + d + 2q.

The generalization of Basilic to any voting threshold h thus allows us to pick the best suited
protocol depending on the application requirements. If, on the one hand, the application runs
in a closed network (e.g., data center) dominated by benign processes, then the threshold will be
lowered to ensure termination. If, on the other hand, the application runs in an open network
(e.g., blockchain) dominated by deceitful processes, then the threshold will be raised to ensure
agreement.

After presenting Basilic, we propose the Zero-Loss Blockchain (or ZLB for short), a blockchain
that simultaneously solves consensus in the presence of a Byzantine adversary controlling a third
of the processes and eventually solves consensus in the presence of an adversary controlling more
than half of the processes with the purpose of causing a disagreement, both without assuming
synchrony. The key breakthrough of ZLB is that it falls back to eventual consensus only for a
finite amount of time, after which consensus can be solved again until the adversary changes
the processes it corrupts. We call this property convergence. More specifically, ZLB solves
consensus for t + d < n/3 while also falling back to the eventual consensus problem only in a
bounded amount of unlucky cases where n/3 ≤ t + d < 2n/3.

To demonstrate the efficiency of ZLB, we implement it with Bitcoin transactions, and com-
pare its performance to modern blockchain systems. We show that, on 90 machines spread
across distinct continents, ZLB outperforms by 5.6 times the HotStuff [79] state machine repli-
cation that inspired Facebook’s Libra [183], and obtains comparable performance to the recent
Red Belly Blockchain [28]. Our empirical results also show an interesting phenomenon in that
the impact of the attacks decreases rapidly as the system size increases, due to the increased
message delays.

Furthermore, we also develop a Zero-Loss Payment application on top of ZLB, in which we
guarantee that the financial losses from potential disagreements caused by attackers are canceled

1The name “Basilic” is inspired from the Basilic cannon that Ottomans used to break through the walls of
Constantinople. Much like the cannon, our Basilic protocol provides a tool to break through the classical bounds
of Byzantine fault tolerance.
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out by the deposit taken from the same attackers to fund the effects of the disagreement.

Summary. In summary, in this chapter:

i) We present the novel BDB failure model, compare it with previous models and justify it.

ii) We extend the classical impossibility bounds of BFT consensus to the BDB model.

iii) We introduce the Basilic class of consensus protocols that we prove resilient-optimal in
both the BFT and the BDB model.

iv) We show that protocols of the Basilic class have optimal communication complexity.

v) We introduce the Longlasting Blockchain (LLB) problem designed to solve the blockchain
problem in situations where the adversary can cause a disagreement.

vi) We present the Zero-Loss Blockchain (ZLB), a blockchain that solves LLB using the Basilic
class.

vii) We build ZLB and compare its performance with the state of the art, showing that it
is faster than Facebook’s Libra blockchain, and competitive with the recent Red-Belly
blockchain that is not accountable.

viii) We build a zero-loss payment application on top of ZLB in which no honest process or
user loses any funds resulting from disagreement attacks.

Chapter outline. In Section 5.1 we introduce the BDB model. Section 5.2 shows the new
impossibility bounds of consensus in the BDB model. In Section 5.3 we present the Basilic
class of protocols, prove its correctness and complexities, and that it also solves 3-consensus.
Section 5.4 presents the LLB problem and ZLB, shows ZLB’s correctness and proofs and its
experimental evaluation with previous works. Section 5.5 shows the zero-loss payment applica-
tion in which no honest process or user loses any fund resulting from temporary disagreements.
We finally conclude in Section 5.6.

5.1 Byzantine-deceitful-benign fault model

We introduce in this section formal definitions needed for our novel Byzantine-deceitful-benign
(BDB) fault model.

Conflicting messages. Basilic detects and removes faulty processes that try to cause a dis-
agreement, even if they do not succeed at causing the disagreement. For this reason, Basilic
must be able to detect processes that send distinct messages to different processes where they
were expected to broadcast the same message to different processes [158], we refer to these
messages as conflicting. Given a protocol σ, we say that a message, or set of messages, msg
sent by process p conforms to an execution σE of the protocol σ, if σE belongs to the set of all
possible executions where p sent m and p is an honest process. Also, a faulty process p sending
two messages msg, msg′ contributes to a disagreement if there is an execution σE of σ such
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that (i) sufficiently many faulty processes sending msg, msg′ (and possibly more messages) to
a disjoint subset of honest processes, one to each, leads to a disagreement, and (ii) σE does not
lead to a disagreement without p sending msg, msg′. Two messages msg, msg′ are conflicting
with respect to σ if:

1. msg, msg′ individually conform to algorithm σ for some execution σE , σE′ , respectively,
σE ̸= σE′ ,

2. there is no execution σE′′ of σ such that both messages together conform to σE′′ , and

3. if p sending msg, msg′ to a disjoint subset of honest processes, one to each, contributes to
a disagreement.

When combined in one message and signed by the sender, conflicting messages constitute
a PoF, as we explained in Section 2.2.6.2. An example of two conflicting messages is a faulty
process sending two different proposals for the same round (the proposer should only propose
one value per round).

Our definition of conflicting messages differs from previous similar concepts in that conflict-
ing messages allow for any process p to verify if two messages are conflicting: an honest process
can always construct a PoF from two conflicting messages alone, but it cannot do so with all
mutant messages [184], as p would need to also learn the entire execution, or with messages
sent from an equivocating process [182], as these do not necessarily contribute to disagreeing.

Fault model. There are three mutually exclusive classes of faulty processes: Byzantine, deceit-
ful and benign, in what we refer to as the Byzantine-deceitful-benign (BDB) failure model. Each
faulty process belongs to only one of these classes. Byzantine, deceitful and benign processes
are characterized by the faults they can commit. A fault is deceitful if it contributes to breaking
agreement, in that it sends conflicting messages violating the protocol in order to lead two or
more partitions of processes to a disagreement. We allow deceitful processes to constantly keep
sending conflicting messages, even if they do not succeed at causing a disagreement, but instead
their deceitful behavior prevents termination. As deceitful processes model processes that try
to break agreement, we assume also that a deceitful fault does not send conflicting messages for
rounds or phases of the protocol that it has already terminated at the time that it sends the
messages. Deceitful processes can alternate between sending conflicting messages and following
the protocol, but cannot deviate in any other way. A benign fault is any fault that does not ever
send conflicting messages. Hence, benign faults cover only faults that can break termination,
e.g. by crashing, sending stale messages, etc.

As usual, Byzantine processes can act arbitrarily. Thus, Byzantine processes can commit
benign or deceitful faults, but they can also commit faults that are neither deceitful nor benign.
A fault that sends conflicting messages and crashes afterwards is, by these definitions, neither
benign nor deceitful. We denote t, d, and q as the number of Byzantine, deceitful, and benign
processes, respectively. We assume that the adversary is static, in that the adversary can choose
up to t Byzantine, d deceitful and q benign processes at the start of the protocol, known only
to the adversary. The total number of faulty processes is thus f = t + d + q.
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In order to distinguish benign (resp. deceitful) processes from Byzantine processes that
commit a benign (resp. deceitful) fault during a particular execution of a protocol, we formalize
fault tolerance in the BDB model. Let Eσ(t, d, q) denote the set of all possible executions of
a protocol σ given that there are up to t Byzantine, d deceitful and q benign processes. We
say that a protocol σ for a particular problem P is (t, d, q)-fault-tolerant if σ solves P for all
executions σE ∈ Eσ(t, d, q). We abuse notation by speaking of a (t, d, q)-fault-tolerant protocol
σ as a protocol that tolerates t, d and q Byzantine, deceitful and benign processes, respectively.

Note that, given a protocol σ, then Eσ(0, d + k, q) ⊂ Eσ(k, d, q) by definition. Thus, if σ is
(k, d, q)-fault-tolerant then σ is (0, d + k, q)-fault-tolerant, and also (0, d, q + k)-fault-tolerant.
However, the contrary is not necessarily true: a protocol σ that is (0, d + k, q)-fault-tolerant
is not necessarily (k, d, q)-fault tolerant, as Eσ(k, d, q) ⊈ Eσ(0, d + k, q), because Byzantine
participants can commit more faults than deceitful or benign. Finally, honest processes follow
the protocol, as mentioned in Section 2.2.1.

Compared to commission and omission faults, notice that not all commission faults con-
tribute to causing disagreements. For example, some commission faults broadcast an invalid
message that can be discarded. In our BDB model, this type of fault would categorize as benign,
and not deceitful, since invalid messages never contribute to a disagreement, but can instead
prevent termination (by only sending invalid messages that are discarded). All omission faults
are however benign faults, while the contrary is also not true (as per the same aforementioned
example). Compared to the alive-but-corrupt failure model [73], deceitful faults are not re-
stricted to only contribute to a disagreement if they know the disagreement will succeed, but
instead we let them try forever, even if they do not succeed. Hence, while a protocol might
tolerate d < n/3 abc faults along with q < n/3 benign faults, it would not necessarily tolerate
d < n/3 deceitful faults along with q < n/3 benign faults. The contrary direction always holds.

We believe thus the BDB model to be better suited for consensus, as it establishes a clear
difference in the types of faults depending on the type of property that the fault jeopardizes
(agreement for deceitful, termination for benign), without restricting the behavior of these faults
to the cases where they are certain that they will cause a disagreement. We restate that the
property of validity is defined only to rule out trivial solutions of consensus in which all processes
decide a constant, and this property can be locally checked for correctness.

5.2 Impossibility of consensus in the BDB model

In this section, we extend Dwork et al.’s impossibility results [13] on the number of honest
processes necessary to solve the Byzantine consensus problem in partial synchrony by adding
deceitful and benign processes. First, we prove in Section 5.2.1 lower bounds on the size of the
committee of any consensus protocol. Then, we prove in Section 5.2.2 lower bounds depending
on the voting threshold of that protocol, which we define in the same section.
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5.2.1 Impossibility bounds

First, we consider the case where t = 0, i.e., there are only deceitful and benign processes. In
particular, we show in Lemma 5.1 that if a protocol solves consensus then it tolerates at most
d < n − 2q deceitful processes and q < n/2 benign processes. The intuition for the proof is
analogous to the classical impossibility proof of consensus in partial synchrony in the presence
of tℓ + 1 Byzantine processes. Lemma 5.1 extends to the BDB model the classical lower bound
for the BFT model [13], by tolerating a stronger adversary than the classical bound (e.g. an
adversary causing d = tℓ deceitful faults and q = tℓ benign faults). By contradiction, we show
that in the presence of a greater number of faulty processes than bounded by Lemma 5.1, in some
executions all processes would either not terminate, or not satisfy agreement, if maintaining
validity.

Lemma 5.1. Let a protocol σ solve consensus for all executions σE ∈ Eσ(t, d, q) for some
t, d, q > 0. Then, d + t < n− 2(q + t).

Proof. First, we show q < n/2 by contradiction, as done by previous work for omission faults [13].
Suppose q ≥ n/2, d = 0, t = 0 and consider processes are divided into a disjoint partition P, Q

such that P contains between 1 and q processes and Q contains n−|P |. First, consider scenario
A: all processes in P are benign and the rest honest, and all processes in Q propose value 0.
Then, by validity all processes in Q decide 0. Then, consider scenario B: all processes in Q are
benign and the rest honest, and all processes in P propose value 1. Then, by validity all pro-
cesses in P decide 1. Now consider scenario C: no process is benign, and processes in P propose
all 1 while processes in Q propose all 0. For processes in P scenario C is indistinguishable from
scenario B, while for processes in Q scenario C is indistinguishable from scenario A. This yields
a contradiction.

It follows that q < n/2. Hence, for n = 2, and since q < 1, it is immediate that for d + t ≥ 2
it is impossible to solve consensus. As such, we have left to consider d + t ≥ n− 2(q + t) with
n ≥ 3. We will prove this by contradiction.

Consider processes are divided into three disjoint partitions P, Q, R, such that P and Q

contain between 1 and q + t processes each, and R contains between 1 and d + t. First consider
the following scenario A: processes in P and R are honest and propose value 0, and processes in
Q are benign. It follows that P ∪R must decide value 0 at some time TA, for if they decided 1
there would be a scenario in which processes in Q are honest and also propose 0, but messages
sent from processes in Q are delivered at a time greater than TA, having processes in P ∪ R

already decided 1. This would break the validity property. Also, they must decide some value
to satisfy termination tolerating q + t benign faults.

Consider now scenario B: processes in P are benign, and processes in R and Q are honest
and propose value 1. By the same approach, R ∪Q decide 1 at a time TB.

Now consider scenario C: processes in P and Q are honest, and processes in R are deceitful,
the messages sent from processes in Q are delivered by processes in P at a time greater than
max(TA, TB), and the same for messages sent from processes in P to processes in Q. Processes
in P propose 0, processes in Q propose 1, and processes in R propose 0 to those in P and 1 to
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those in Q. Then, for processes in P this scenario is identical to scenario A, deciding 0, while
for processes in Q this is identical to scenario B, deciding 1, which leads to a disagreement.
This yields a contradiction.

Corollary 5.1 (Impossibility of consensus with t = 0). It is impossible for a consensus protocol
σ to tolerate d deceitful and q benign processes if d ≥ n− 2q or q ≥ n/2.

Proof. This is immediate from Lemma 5.1 since σ is (0, d, q)-fault-tolerant if σ solves P for all
executions σE ∈ Eσ(0, d, q).

We prove the impossibility result of Theorem 5.1 by extending the result of Corollary 5.1:
it is impossible to solve consensus in the presence of t Byzantine, q benign and d deceitful
processes unless n > 3t + d + 2q.

Theorem 5.1 (Impossibility of consensus). It is impossible for a consensus protocol to tolerate
t Byzantine, d deceitful and q benign processes if n ≤ 3t + d + 2q.

Proof. This is immediate from Lemma 5.1 since σ is (t, d, q)-fault-tolerant if σ solves P for all
executions σE ∈ Eσ(t, d, q).

5.2.2 Impossibility bounds per voting threshold

The proofs for the impossibility results of Section 5.2.1 (and for the classical impossibility
results [13]) derive a trade-off between agreement and termination. In some scenarios, processes
must be able to terminate without delivering messages from a number of processes that may
commit benign faults. In other scenarios, processes must be able to deliver messages from
enough processes before terminating in order to make sure that no disagreement caused by
deceitful faults is possible. We prove in this section the impossibility results depending on this
trade-off.

A protocol that satisfies both agreement and termination in partial synchrony must thus
state a threshold that represents the number of processes from which to deliver messages in
order to be able to terminate without compromising agreement. If this threshold is either too
small to satisfy agreement, or too large to satisfy termination, then the protocol does not solve
consensus. We refer to this threshold as the voting threshold, and denote it with h. Typically,
this threshold is h = n − tℓ = ⌈2n

3 ⌉ to tolerate tℓ = ⌈n
3 ⌉ − 1 Byzantine faults [23, 47, 167, 79].

We prove however in Lemma 5.2 and Corollary 5.2 that h > d+t+n
2 with h ∈ (n/2, n] for safety.

Lemma 5.2 (Impossibility of Agreement (t = 0)). Let σ be a protocol with voting threshold
h ∈ (n/2, n] that satisfies agreement. Then σ tolerates at most d < 2h− n deceitful processes.

Proof. The bound h ∈ (n/2, n] derives trivially: if h ≤ n/2 then two subsets without any faulty
processes can reach the threshold for different values (Lemma 5.1). We calculate for which
cases it is possible to cause a disagreement. Hence, we have two disjoint partitions of honest
processes such that |A| + |B| ≤ n − d. Suppose that processes in A and in B decide each a
different decision vA, vB, vA ̸= vB. This means that both |A| + d ≥ h and |B| + d ≥ h must
hold. Adding them up, we have |A| + |B| + 2d ≥ 2h and since |A| + |B| ≤ n − d we have
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n + d ≥ 2h for a disagreement to occur. This means that if h > n+d
2 then it is impossible for d

deceitful processes to cause a disagreement.

The proof of Lemma 5.2 can be straightforwardly extended to include Byzantine processes,
resulting in Corollary 5.2.

Corollary 5.2. Let σ be a protocol with voting threshold h ∈ (n/2, n] that satisfies agreement.
Then σ tolerates at most d + t < 2h− n deceitful and Byzantine processes.

Next, in Lemma 5.3 and Corollary 5.3 we show the analogous results for the termination
property. That is, we show that if a protocol solves termination while t = 0, then it tolerates
at most q ≤ n− h benign processes, or q + t ≤ n− h benign and Byzantine processes.

Lemma 5.3 (Impossibility of Termination (t = 0)). Let σ be a protocol with voting threshold
h that satisfies termination. Then σ tolerates at most q ≤ n− h benign processes.

Proof. If n − q < h, then termination is not guaranteed, since in this case termination would
require the votes from some benign processes. This is impossible if h ≤ n− q, as it guarantees
that the threshold is lower than all processes minus the q benign processes.

Corollary 5.3. Let σ be a protocol with voting threshold h that satisfies termination. Then,
σ tolerates at most q + t ≤ n− h benign and Byzantine processes.

Combining the results of corollaries 5.2 and 5.3, one can derive an impossibility bound for
a consensus protocol given its voting threshold. We show this result in Corollary 5.4.

Corollary 5.4. Let σ be a protocol that solves the consensus problem with voting threshold
h ∈ (n/2, n]. Then, σ tolerates at most d + t < 2h − n and q + t ≤ n − h Byzantine, deceitful
and benign processes.

We show in Figure 5.7 the threshold h to tolerate a number d of deceitful and q of benign
processes. For example, for a threshold h = ⌈5n

9 ⌉ − 1, then d < n
9 for safety and q < 4n

9 for
liveness, with t = 0. The maximum number of Byzantine processes tolerated with d = q = 0 is
the minimum of both bounds, being for example t < n

9 for h = ⌈5n
9 ⌉ − 1. In the remainder of

this chapter, we assume the adversary satisfies the resilient-optimal bounds of h ≤ n− q− t and
h > d+t+n

2 , given a particular voting threshold h. The result of Theorem 5.1 holds regardless of
the voting threshold. Thus, a protocol that satisfies both h ≤ n− q − t and h > d+t+n

2 can set
its voting threshold h ∈ (n/2, n] in order to solve consensus for any combination of t Byzantine,
q benign and d deceitful processes, as long as n > 3t + d + 2q holds.

5.3 Basilic, resilient-optimal consensus in the BDB model

In this section, we introduce the Basilic class of protocols, a class of resilient-optimal protocols
that solve, for different voting thresholds, the actively accountable consensus problem in the
BDB model. In particular, all protocols within the Basilic class tolerate t Byzantine, d deceitful
and q benign processes satisfying n > 3t + d + 2q, and, given a particular protocol σ(h) of the
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Figure 5.1: Number of deceitful processes d and benign processes q tolerated for safety and
liveness, respectively, per voting threshold h and with t = 0 Byzantine processes.

class uniquely defined by a voting threshold h ∈ (n/2, n], then σ(h) tolerates a number n of
processes satisfying d + t < 2h− n and q + t ≤ n− h. In this section, we first need to introduce
few definitions in Section 5.3.1. Second, we present the overview of the Basilic class and show
its components in Section 5.3.2.

5.3.1 Actively accountable consensus problem

The accountable consensus problem [47] includes the property of accountability in order to
provide guarantees in the event that deceitful and Byzantine processes manage to cause a
disagreement. This property is however insufficient for the purpose of Basilic. We need an
additional property that identifies and removes all deceitful behavior that prevents termination.
Faulty processes can break agreement in a finite number of conflicting messages, but once they
send a pair of these conflicting messages, they leave a trace that can result in their exclusion
from the system. Our goal is to exploit this trace to make sure that deceitful processes cannot
contribute to breaking liveness. As a result, we include the property of active accountability,
stating that deceitful faults do not prevent termination of the protocol.

Definition 5.3.1 (Actively accountable consensus problem). A protocol σ with voting threshold
h solves the actively accountable consensus problem if the following properties are satisfied:

• Termination. Every honest process eventually decides on a value.

• Validity. If all honest processes propose the same value, no other value can be decided.

• Agreement. If d + t < 2h− n then no two honest processes decide on different values.

• Accountability. If two honest processes output disagreeing decision values, then all
honest processes eventually identify at least 2h − n faulty processes responsible for that
disagreement.

• Active accountability. Deceitful behavior does not prevent liveness.
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We generalize the previous definition of accountability [47] by including the voting threshold
h. That is, the previous definition of accountability is the one we present in this work for the
standard voting threshold of h = 2n/3.

5.3.2 Basilic Internals

Basilic is a class of consensus protocols, all these protocols follow the same pseudocode (Algo-
rithms 7–10) but differ by their voting threshold h ∈ (n/2, n]. The structures of these protocols
follow the classic reduction [102] from the consensus problem, which accepts any ordered set of
input values, to the binary consensus problem, which accepts binary input values.

5.3.2.1 Basilic Overview

More specifically, Basilic has at its core the binary consensus protocol called actively accountable
binary consensus or AABC for short (Algorithm 8–9) and presented in Section 5.3.2.3. We
show in Figure 5.2 an example execution with n = 4 processes in the committee. First, each
process pi selects their input value vi, which they share with everyone executing an instance of
a reliable broadcast protocol called actively accountable reliable broadcast or AARB for short
(Algorithm 10). Then, processes execute one instance AABCi of the binary consensus protocol
for each process pi to decide whether to select the associated input value from process pi.
Finally, processes locally process the minimum input value from the values whose associated
AABC instance output 1.

This Basilic binary consensus protocol shares similarities with Polygraph [47], as it also
detects guilty processes, but goes further, by excluding these detected processes and adjusting
its voting threshold at runtime to solve consensus even in cases where Polygraph cannot (n/3 ≤
t + q + d). We will summarize the comparison of Basilic with the state of the art in Table 5.2
(Section 5.3.5.2). Similarly to Polygraph, Basilic can perform the superblock optimization [23,
28] to solve SBC (Definition 2.2.4) simply by deciding the union of both v0 and v2 in the
example, instead of the minimum. This provides a better normalized communication complexity
of the protocol (per decision). Finally, the rest of the reduction is depicted in Algorithm 7 and
invokes n actively accountable reliable broadcast instances or AARB (Algorithm 10) described
in Section 5.3.2.4, followed by n of the aforementioned AABC instances.

Certificates and transferable authentication. Basilic uses certificates in order to validate
or discard a message, and also to detect deceitful processes by cross-checking certificates. A
certificate is a list of previously delivered and signed messages that justifies the content of the
message on which the certificate is piggybacked. Thus, honest processes perform transferable
authentication [182]. That is, process pi can deliver msg from pj by verifying the signature of
msg, even if msg was received from pk, for k ̸= i ̸= j.

Detected deceitful processes. A key novelty of Basilic is to remove detected deceitful
processes from the committee at runtime. For this reason, we refer to dr as the number of
detected deceitful processes, and define a voting threshold h(dr) that varies with the number of
detected deceitful processes. Therefore, processes start Basilic with an initial voting threshold
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Basilic’s multi-valued consensus

Figure 5.2: Basilic execution example for a committee of n = 4 processes. First, each process pi

selects their input value vi, which they share with everyone executing their respective instance
AARBi of AARB. Then, processes execute one instance AABCi of the binary consensus pro-
tocol to decide whether to select the associated input value from process pi. Finally, processes
locally process the minimum input value from the values whose associated AABC instance out-
put 1.

h(dr = 0) = h0, e.g., h0 = ⌈2n
3 ⌉, but then update the threshold by removing detected deceitful

processes, i.e. h(dr) = h0 − dr. This way, detected deceitful processes break neither liveness
nor safety, as we will show. Certificates must always contain h(dr) signatures from distinct
processes justifying the message (after filtering out up to dr signatures from detected deceitful
processes), or else they will be discarded. Recall that the adversary is thus constrained to the
bounds from Corollary 5.4 depending on the voting threshold. As Basilic uses a threshold that
updates at runtime starting from an initial threshold h(dr) = h0 − dr, we restate these bounds
applied to the initial threshold h0 ≤ n − q − t and h0 > d+t+n

2 , or to the updated threshold
h(dr) ≤ n− q − t− dr and h(dr) > d+t+n

2 − dr.

5.3.2.2 The general Basilic protocol

We bring together the n instances of the AABC protocol with the n instances of the AARB
protocol in Algorithm 7, where we show the general Basilic protocol. The protocol derives from
Polygraph’s general protocol [47], which in turn derives from DBFT’s multi-valued consensus
protocol [23]. Note that, as is the case for Polygraph’s and DBFT’s pseudocode, Algorithms 7,8
assume that each call to AABC-propi is concurrent (non-blocking). We omit the specification
of access to shared resources between concurrent executions and note instead that the shown
algorithms may not have strictly sequential semantics.

Honest processes first start their respective AARB instance (for which they each are the
source) by proposing a value in line 2. Delivered proposals are stored in a message msg with the
index corresponding to the source of the proposal. A binary consensus at index k is started with
input value 1 for each index k where a proposal has been recorded (line 6). Notice that we can
guarantee to decide 1 on at most h(dr) proposals (line 7), where dr can be up to d and is set by
update-committee in Algorithm 9, meaning that, for the standard threshold h(dr) = ⌈2n

3 ⌉ − dr,
the minimum number of decided proposals is ⌈n

3 ⌉, since dr < n
3 . Once honest processes decide 1

on at least h(dr) AABC instances, honest processes start the remaining AABC instances with
input value 0 (line 9), without having to wait to AARB-deliver their respective values.
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Finally, once all AABC instances have terminated (line 10), honest processes can output a
decision. As such, processes take as input a list of AARB-delivered values and their associated
index and output a decision selecting the AARB-delivered value with the lowest associated
index whose binary consensus with the same index output 1 (line 13).

Algorithm 7 The general Basilic with initial threshold h0.
1: Basilic-gen-proposeh0 (vi):
2: msgs ← AARB-broadcast(est, ⟨vi, i⟩) � deliver ’EST’ messages, Algorithm 10
3: repeat:
4: if (∃v, k : (est, ⟨v, k⟩) ∈ msgs) then � proposal AARB-delivered
5: if (BIN-CONSENSUS[k] not yet invoked) then � Algorithm 8
6: bin-decisions[k]← BIN-CONSENSUS[k].AABC-prop(1)� Non-blocking concurrent call in dedicated process

7: until |bin-decisions[k] = 1| ≥ h(dr) � decide 1 on at least h(dr)

8: for all k such that BIN-CONSENSUS[k] not yet invoked do
9: bin-decisions[k]← BIN-CONSENSUS[k].AABC-prop(0)

10: wait until for all k, bin-decisions[k] ̸= ⊥
11: j ← min{k : bin-decisions[k] = 1}) � select minimum value (or union for SBC)
12: wait until ∃v : (est, ⟨v, j⟩) ∈ msgs
13: decide v

5.3.2.3 Actively accountable binary consensus

We show in Algorithm 8 the Basilic actively accountable binary consensus (AABC) protocol
with initial threshold h0 ∈ (n/2, n], along with some additional components and functions in
Algorithm 9. First, note that all delivered messages are correctly signed (as wrongly signed
messages are discarded) and stored in sig_msgs, along with all sent messages (as we detail in
Rule 3 of Algorithm 8).

The Basilic’s AABC protocol is divided in two phases, after which a decision is taken. A key
difference with Polygraph is that when a timer for one of the two phases reaches its timeout,
if a process cannot terminate that phase yet, then it broadcasts its set of signed messages for
that phase and resets the timer, as detailed in Rule 4. This allows Basilic to prevent deceitful
processes from breaking termination by trying to cause a disagreement and never succeeding.
For example, for n = 4 and h0 = ⌈2n/3⌉ = 3, if q = 1 and d = 1, the deceitful process
could prevent the 2 honest processes from terminating by constantly sending them conflicting
messages, even if none of these honest processes will reach the threshold for the disagreeing
values. Thus, once the timer is reached, processes exchange their known set messages and
can update the committee removing processes that sent conflicting messages. It is important
that processes wait for this timer before taking a decision for the phase, or before exchanging
signed messages, since only waiting for that increasing timer guarantees that all sent messages
will be received before the timer reaches its timeout, after GST (instead the timer can be left
unchanged assuming synchronization of processes’ internal clocks). Each process maintains an
estimate (line 15), initially given as input, and then proceeds in rounds executing the following
phases:
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Algorithm 8 Basilic’s AABC with initial threshold h0 for pi.
14: AABC-proph0 (vi):
15: est ← vi

16: r ← 0
17: timeout ← 1
18: cert[0]← ∅
19: bin_vals ← ∅
20: repeat:
21: r ← r + 1
22: timeout ← timeout · 2∆ � set timer, for termination after GST
23: coord← ((r − 1)mod n) + 1 � rotate coordinator

24: ▶ Phase 1:
25: timer ← start-timer(timeout) � start timer
26: abv-broadcast(est[r], est, cert[r − 1], i, bin_vals)
27: if (i = coord) then
28: wait until bin_vals[r] = {w}
29: broadcast(coord[r], w)
30: wait until bin_vals[r] ̸= ∅ ∧ timer expired
31: ▶ Phase 2:
32: timer ← timeout � reset timer
33: if ((coord[r], w) ∈ sig_msgs ∧ w ∈ bin_vals[r]) then
34: aux ← {w} � prioritize coordinator’s value

35: else aux ← bin_vals[r] � else use any received value

36: broadcast(echo[r], aux) � broadcast signed echo message
37: wait until (vals = comp-vals(sig_msgs, bin_vals, aux)) ̸= ∅ ∧ timer expired
38: ▶ Decision phase:
39: if (|vals| = 1) then est ← vals[0] � if only one, adopt as estimate
40: if (est = (r mod 2) ∧ pi not decided before) then
41: decide(est); returnest � if parity matches, decide the estimate

42: else est ← (r mod 2) � otherwise, the estimate is the round’s parity bit

43: cert[r]← compute-cert(vals, est, r, bin_vals, sig_msgs)
44: Upon receiving a signed message s_msg:
45: pofs ← check-conflicts({s_msg}, sig_msgs) � returns ∅ or PoFs
46: update-committee(pofs) � remove fraudsters

47: Upon receiving a certificate cert_msg:
48: pofs ← check-conflicts(cert_msg, sig_msgs) � returns ∅ or PoFs
49: update-committee(pofs) � remove fraudsters

50: Upon receiving a list of PoFs pofs_msg:
51: if (verify-pofs(pofs_msg)) then � if proofs are valid then
52: update-committee(pofs_msg) � remove fraudsters from committee

53: Rules:

1. Every message that is not properly signed by the sender is discarded.

2. Every message that is sent by abv-broadcast without a valid certificate after Round 1, except for messages
with value 1 in Round 2, are discarded.

3. Every signed message received is stored in sig_msgs, including messages within certificates.

4. Every time the timer reaches the timeout for a phase, and if that phase cannot be terminated, processes
broadcast their current delivered signed messages for that phase (and all messages received for future phases
and rounds) and reset the timer for that phase. These messages are added to the local set of messages and
cross-checked for PoFs on arrival.
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1. In the first phase, each process broadcasts its estimate (given as input) via an accountable
binary value reliable broadcast (ABV-broadcast) (line 26), which we present in Algorithm 9,
lines 67–82 and discuss in Section 5.3.2.3. Decision and abv-broadcast messages are discarded
unless they come with a certificate justifying them.

The protocol also uses a rotating coordinator (line 23) per round which carries a special
coord message (lines 27-29). All processes wait until they deliver at least one message from
the call to abv-broadcast and until the timer, initially set to ∆, expires (line 30). (Note that
the bound on the message delays remains unknown due to the unknown GST.) If a process
delivers a message from the coordinator (line 33), then it broadcasts an echo message with the
coordinator’s value and signature in the second phase (line 36). Otherwise, it echoes all the
values delivered in phase 1 as part of the call to abv-broadcast (line 35).

2. In the second phase, processes wait till they receive h(dr) echo messages, as shown in
the call to comp-vals (line 37), which returns the set of values that contain these h(dr) signed
echo messages. Function comp-vals is depicted in Algorithm 9 (lines 83–92). Processes then
try to come to a decision in lines 39-43. As it was the case for phase 1, when the timer expires
in phase 2, all processes broadcast their current set of echo messages. Then, they update their
committee if they detect deceitful processes through PoFs (lines 44-52) and recheck if they reach
the updated h(dr) threshold, after which they reset the timer.

3. During the decision phase, if there is just one value returned by comp-vals and that
value’s parity matches with the round’s parity, process pi decides it (line 41) and broadcasts
the associated certificate in the call to compute-cert. If the parity does not match then process
pi simply adopts the value as the estimate for the next round (line 39). If instead there is
more than one value returned by comp-vals then pi adopts the round’s parity as next round’s
estimate (line 42). Adopting the parity as next round’s estimate helps with convergence in
the next round, in this case where processes are hesitating between two values. The call to
compute-cert (depicted at lines 93–102 of Algorithm 9) gathers the signatures justifying the
current estimate and broadcasts the certificate if the estimate was decided in this round.

Detecting and removing deceitful processes. Upon receiving a signed message, honest
processes check if the received message conflicts with some previously delivered message in
storage in sig_msgs by calling check-conflicts (line 45). This function returns pofs = ∅ if there
are no conflicting messages, or a list pofs of PoFs otherwise. Then, at line 46, honest processes
call update-committee (depicted at lines 54–66 of Algorithm 9) to remove the |pofs| detected
deceitful processes at runtime. In the call to update-committee, process pi removes all processes
that are proven deceitful via new PoFs, and updates the committee N , its size n, and the
voting threshold h(dr). After that, pi rechecks all delivered messages in that phase in case it
can now terminate the phase with the new threshold h(dr) (and after filtering out messages
delivered by the dr removed deceitful processes) by calling recheck-certs-termination() in line 65
of Algorithm 9. Finally, it resets the timer for the current phase by calling reset-current-timer()
in line 66 of Algorithm 9.
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Algorithm 9 Helper components.
54: update-committee(new_pofs): � function that removes fraudsters
55: if (new_pofs ̸= ∅ ∧ new_pofs ̸⊆ local_pofs) then
56: new_pofs ← new_pofs\local_pofs � consider only new PoFs
57: local_pofs ← local_pofs ∪ new_pofs � store new PoFs
58: broadcast(pof, new_pofs) � broadcast new PoFs
59: new_deceitful ← new_pofs.get_processes() � get deceitful from PoFs
60: new_deceitful ← new_deceitful\local_deceitful
61: local_deceitful ← local_deceitful ∪ new_deceitful
62: N ← N\{new_deceitful}; n← |N | � remove new deceitful
63: dr ← |local_deceitful| � update number of detected deceitful
64: h(dr)← recalculate-threshold(N, dr)
65: recheck-certs-termination() � check termination of current phase
66: reset-current-timer() � reset timer of current phase

67: abv-broadcast(msg, val, cert, i, bin_vals):
68: broadcast(bvecho, ⟨val, cert, i⟩) � broadcast message
69: if ( r = 3 or (r = 2 and val = 1)) then discard all messages received without a valid certificate
70: Upon receipt of (bvecho, ⟨v, ·, j⟩)
71: if ((bvecho, ⟨v, ·, ·⟩) received from ⌊n−q−t

2 ⌋−dr +1 processes and bvecho, ⟨v, ·, i⟩) not broadcast) then
72: Let cert be any valid certificate cert received in these messages
73: broadcast(bvecho, ⟨v, cert, i⟩)
74: if ((bvecho, ⟨v, ·, ·⟩) received from h(dr) processes and (bvready, ⟨v, ·, ·⟩) not yet broadcast) then
75: Let cert be any valid certificate cert received in these messages
76: Construct bv_cert a certificate with h(dr) signed bvecho
77: bin_vals ← bin_vals.add(bvready, ⟨v, cert, j, bv_cert⟩)
78: broadcast(bvready, ⟨v, cert, j, bv_cert⟩)
79: if ((bvready, ⟨v, cert, j, bv_cert⟩) received from 1 process) then
80: bin_vals ← bin_vals.add(bvready, ⟨v, cert, j, bv_cert⟩)
81: if ((bvready, ⟨v, cert, j, bv_cert⟩) not yet broadcast) then
82: broadcast(bvready, ⟨val, cert, i, bv_cert⟩)

83: comp-vals(msgs, b_set, aux_set): � check for termination of phase 2
84: If ∃S ⊆ msgs where the following conditions hold:
85: (i) |S| contains h(dr) distinct echo[r] messages
86: (ii) aux_set is equal to the set of values in S � h(dr) with same est
87: then return(aux_set)
88: Else If ∃S ⊆ msgs where the following conditions hold:
89: (i) |S| contains h(dr) distinct echo[r] messages
90: (ii) Every value in S is in b_set � h(dr) messages with different est
91: then return(V = the set of values in S)
92: Else return(∅) � else not ready to terminate

93: compute-cert(vals, est, r, bin_vals, msgs): � compute and send cert
94: if (est = (r mod 2)) then
95: if (r > 1) then
96: to_return ← (cert : (est[r], ⟨v, cert, ·⟩) ∈ bin_vals)
97: else to_return ← (∅)
98: else to_return ← (h(dr) signed msgs containing only est)
99: if (vals = {(r mod 2)}∧ no previous decision by pi) then
100: cert[r]← h(dr) signed messages containing only r mod 2
101: broadcast(est, r, i, cert[r]) � broadcast decision

102: return(to_return)
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Termination and agreement of Basilic’s AABC. We show the detailed proofs of agreement
and termination in Lemmas 5.17 and 5.19. The idea is that removing deceitful processes has
no effect on agreement, while it facilitates termination, since the threshold h(dr) = h0 − dr

decreases the initial threshold h0 with the number of removed deceitful processes. Also, since
all honest processes broadcast their delivered PoFs and thanks to the property of accountability,
eventually all honest processes agree on the same set of removed deceitful processes.

Then, if a process pi terminates broadcasting certificate certi while another process pj

already removed newly detected deceitful processes new_dr present in certi, then |certi| −
new_dr ≥ h(dr + new_dr) by construction. As such, either an honest process terminates
and then all subsequent honest processes can terminate, even after removing more deceitful
processes, or honest processes eventually reach a scenario where all deceitful processes are
detected dr = d and removed, after which honest processes terminate.

Note that removing processes at runtime can result in rounds whose coordinator is already
removed. For the sake of correctness, we do not change the coordinator for that round even if it
has already been removed. This guarantees that all honest processes eventually reach a round
in which they all agree on the same coordinator, which is an honest process. If this round is the
first after GST and after all deceitful processes have been removed from the committee, then
honest processes will reach agreement.

Accountable binary value broadcast. The ABV-broadcast that we present in Algorithm 9
is inspired from the E protocol presented by Malkhi et al. [185] and the binary broadcast
presented in Polygraph [47]. If honest processes add a value v to bin_vals (lines 77 and 80) as a
result of the ABV-broadcast, we say that they ABV-deliver v. Processes exchange bvecho and
bvready messages during ABV-broadcast. bvecho messages are signed and must come with a
valid certificate certi justifying the value, as shown in lines 68 and 73. bvready messages carry
the same information as bvecho messages plus an additional certificate bv_cert containing
h(dr) bvecho messages justifying the bvready message, constructed in line 76. This way, as
soon as a process receives a bvready message with a value (line 79), it already obtains h(dr)
bvecho messages too, meaning it can ABV-deliver that value adding it to bin_vals (lines 77
and 80). Honest processes broadcast signed bvecho messages for their estimate (line 68) and
for all values for which they receive at least ⌊n−q−t

2 ⌋ − dr + 1 signed bvecho messages from
distinct processes. Waiting for this many bvecho messages for a value v guarantees that all
honest processes ABV-deliver v, as we show in Section 5.3.4.

In particular, we show that our ABV-broadcast satisfies the following properties: (i) ABV-
Termination, in that every honest process eventually adds at least one value to bin_vals; (ii)
ABV-Uniformity, in that honest processes eventually add the same values to bin_vals; (iii)
ABV-Obligation, in that if ⌊n−q−t

2 ⌋ − dr + 1 honest processes ABV-broadcast a value v, then
all honest processes ABV-deliver v; (iv) ABV-Justification, in that if an honest process ABV-
delivers a value v then v was ABV-broadcast by an honest process; and (v) ABV-Accountability,
in that every ABV-delivered value contains a valid certificate from the previous round.

We show in Lemma 5.4 that Basilic’s AABC satisfies AABC-active accountability, but we
defer the rest of the proofs of actively accountable binary consensus to Section 5.3.4.
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Lemma 5.4 (AABC-Active accountability). Basilic’s AABC satisfies active accountability.

Proof. We show that if a faulty process pi sends two conflicting messages to two subsets A, B ⊆
N , each containing at least one honest process, then eventually all honest processes terminate,
or instead they receive a PoF for pi and remove it from the committee, after which they all
terminate. The proof is analogous if there are instead more than two conflicting messages and
subsets containing at least one honest process.

First, we observe that no process gets stuck in some round. Process pi cannot get stuck in
phase 1 since, by ABV-Termination (Lemma 5.5), every honest process eventually ABV-delivers
a value.

A process also does not get stuck waiting on phase 2. First, notice that every value that is
included in an echo message from an honest process is eventually delivered to bin_vals. Then,
note that all honest processes eventually deliver h(dr) echo messages, or instead, when the
timer expires, processes will exchange their echo messages and be able to construct PoFs and
remove dr deceitful processes that are preventing termination. In the latter case, after removing
all deceitful processes from the committee and updating the threshold, they will deliver enough
echo messages to terminate phase 2, since h(dr) ≤ n − q − t − d for dr = d. Note that there
is no need for any assumption other than partial synchrony for this to be guaranteed (i.e. all
messages eventually get delivered).

Then, we show that all honest processes always hold a valid certificate to broadcast a proper
message, which could otherwise prevent termination during the ABV-broadcast in phase 1. For
an estimate whose parity is the same as that of the finished round r − 1, process pi must have
received a valid certificate for the round (otherwise it would not have terminated such round). If
the parity matches, then it can always construct a valid certificate from the delivered estimates
in round r − 1.

As a result, all processes always progress infinitely in every round. Consider the first round r

after GST where (i) the coordinator is honest and (ii) all deceitful processes have been detected
and removed by all honest processes. In this case, every honest process will prioritize the
coordinator’s value, adopting it as their echo message adding only that value. Hence, every
process adopts the same value, and decides either in round r or round r + 1 (by Lemma 5.16).

5.3.2.4 Actively accountable reliable broadcast

Algorithm 10 shows Basilic’s actively accountable reliable broadcast (AARB). The protocol is
analogous to the secure broadcast presented in previous work [185], with the difference that we
also introduce a timer that honest processes use to periodically broadcast their set of delivered
echo messages, in order to detect deceitful processes. The protocol starts when the source
broadcasts an init message with its proposed value v (line 104). Upon delivering that message,
all honest processes also broadcast a signed echo message with v (line 106). Then, once a
process pi delivers h(dr) distinct signed echo messages for the same value v, pi first broadcasts
a ready message (line 109) with a certificate containing the h(dr) echo messages justifying
v (constructed in line 108), and then AARB-delivers the value (line 110). The same occurs if
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instead a process delivers just one valid ready message containing a valid certificate justifying
it in lines 111-115.

As it occurs with Basilic’s AABC protocol presented in Algorithms 8 and 9, upon cross-
checking newly received signed messages with previously delivered ones (lines 117 and 120),
honest processes can detect deceitful faults and update the committee (lines 118 and 121),
removing them at runtime, by calling update-committee. This can also occur when receiving a
list of PoFs (line 122). Note that this is the same call to the same function as in the AABC
protocol shown in Algorithm 8, because honest processes update the committee across the
entire Basilic protocol, and not just for that particular instance of AARB or AABC where the
deceitful process was detected. We show in Section 5.3.4 that Basilic’s AARB protocol satisfies
the following properties of actively accountable reliable broadcast:

• AARB-Unicity. honest processes AARB-deliver at most one value.

• AARB-Validity. honest processes AARB-deliver a value if it was previously AARB-
broadcast by the source.

• AARB-Send. If the source is honest and AARB-broadcasts v, then honest processes
AARB-deliver v.

• AARB-Receive. If an honest process AARB-delivers v, then all honest processes
AARB-deliver v.

• AARB-Accountability. If two honest processes AARB-deliver distinct values, then all
honest processes receive PoFs of the deceitful behavior of at least 2h(dr)−n processes including
the source.

• AARB-Active accountability. Deceitful behavior does not prevent liveness.

5.3.3 Basilic’s fault tolerance in the BDB model

We show in Figure 5.3a the combinations of Byzantine, deceitful and benign processes that
Basilic tolerates, depending on the initial threshold h0. The solid lines represent the variation
in tolerance to benign and deceitful processes as the number of Byzantine processes varies for a
particular threshold. For example, for h0 = 2n

3 , if t = 0 then d < n
3 and q < n

3 . As t increases,
for example to t = ⌈n

6 ⌉ − 1, then d < n
6 and q < n

6 .
We compare our Basilic’s fault tolerance with that of previous works in Figure 5.3b. In

particular, we represent multiple values of the initial threshold h0 ∈ {5n/9, 2n/3, 3n/4, 5n/6}
for Basilic. First, we show that classical Byzantine fault-tolerant (BFT) protocols tolerate
only the case t < n/3 with a triangle dot ( ) in the figure. This is the case of most partially
synchronous BFT consensus protocols [23, 47, 167, 79]. Second, we represent Flexible BFT [73]
in their greatest fault tolerance setting in partial synchrony. As we can see, such setting overlaps
with Basilic’s initial threshold of h0 = 2n/3. However, the difference lies in that while Basilic
tolerates all the cases in the solid line h0 = 2n/3, Flexible BFT only tolerates a particular dot
of the line, set at the discretion of each user. That is, Flexible BFT’s users must decide, for
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Algorithm 10 Basilic’s AARB with initial threshold h0.
103: AARB-broadcasth0 (vi): � executed by the source
104: broadcast(init, vi) � broadcast to all
105: Upon receiving (init, vi) from pj and not having sent echo:
106: boadcast(echo, v, j) � echo value to all

107: Upon receiving h(dr) (echo, v, j) and not having sent a ready:
108: Construct certi containing at least h(dr) signed msgs (echo, v, j)
109: broadcast(ready, v, certi, j) � broadcast certificate
110: AARB-deliver(v, j) � AARB-deliver value

111: Upon receiving (ready, v, cert, j), and not having sent a ready:
112: if (verify(cert) = F alse) then continue

113: Set certi to be one of the valid certs received (ready, v, cert, j)
114: broadcast(ready, v, certi, j) � broadcast certificate
115: AARB-deliver(v, j) � AARB-deliver value

116: Upon receiving a signed message s_msg:
117: pofs ← check-conflicts({s_msg}, sig_msgs) � returns ∅ or PoFs
118: update-committee(pofs) � remove fraudsters

119: Upon receiving a certificate cert_msg:
120: pofs ← check-conflicts(cert_msg, sig_msgs) � returns ∅ or PoFs
121: update-committee(pofs) � remove fraudsters

122: Upon receiving a list of PoFs pofs_msg:
123: if (verify-pofs(pofs_msg)) then � if proofs are valid then
124: update-committee(pofs_msg) � exclude from committee

125: Rules:

1. Processes broadcast their current delivered signed init and echo messages once a timer timer, initially
set to ∆, reaches 0, and reset the timer to ∆.

example, whether they tolerate either ⌈2n/3⌉ − 1 total faults, being none of them Byzantine,
or instead tolerate ⌈n/3⌉ − 1 Byzantine faults, not tolerating any additional fault. Basilic can
however tolerate any range satisfying both h0 > n+d+t

2 for safety and h0 ≤ n− q− t for liveness,
which allows our users and processes to tolerate significantly more combinations of faults for one
particular threshold h0 ∈ (n/2, n]. For this reason, we represent the line of Flexible BFT as a
dashed line, whereas Basilic’s lines are solid. For each initial voting threshold h0, the maximum
number of Byzantine processes Basilic tolerates is t < min(2h0 − n, n− h0), which is obtained
by setting q = d = 0 and resolving both bounds for safety and liveness.

5.3.4 Basilic’s correctness

In this section, we prove the properties of Basilic, including its ABV-broadcast, AABC and
AARB protocols. We summarize all proofs in the result shown in Theorem 5.2 to show that
Basilic protocol with initial threshold h0 solves consensus if d + t < 2h0− n and q + t ≤ n− h0.
This result translates in the Basilic class of protocols solving consensus if n > 3t + d + 2q, as
we show in Corollary 5.5.

Theorem 5.2 (Consensus per threshold). The Basilic protocol with initial threshold h0 solves
the actively accountable consensus problem if d + t < 2h0 − n and q + t ≤ n− h0.
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Figure 5.3

Corollary 5.5 (Consensus). The Basilic class of protocols solves actively accountable consensus
if n > 3t + d + 2q.

5.3.4.1 Accountable binary value broadcast

We first start with the properties that ABV-broadcast satisfies. We say process pi ABV-
broadcasts value v to refer to pi sending a bvecho message containing v and a valid cer-
tificate justifying v. We prove ABV-termination in Lemma 5.5, ABV-uniformity in Lemma 5.6,
ABV-obligation in Lemma 5.7, ABV-justification in Lemma 5.8, and ABV-accountability in
Lemma 5.9.

Lemma 5.5 (ABV-Termination). Every non-faulty process eventually adds at least one value
to bin_vals.

Proof. Note that all non-faulty processes broadcast a bvecho message with value v when they
receive ⌊n−q

2 ⌋ − dr + 1 bvecho messages with v. First, let us consider that t = d = 0, in
that case, non-faulty processes broadcast a bvecho message with v if they receive ⌊n−q−t

2 ⌋+ 1
bvecho messages with v. Also recall that v ∈ {0, 1}. As such, let us consider a partition of
non-faulty processes A, B ⊆ N such that A ∩ B = ∅, and let us consider that processes in A

initially sent a bvecho message with v = 0 while processes in B sent a bvecho message with
v = 1. It is clear that |A|+|B| ≥ n−q−t and thus either |A| ≥ ⌊n−q−t

2 ⌋+1 or |B| ≥ ⌊n−q−t
2 ⌋+1.

W.l.o.g. let us assume that |A| ≥ ⌊n−q−t
2 ⌋ + 1, then processes in B eventually receive enough

bvecho messages with value v = 0 to also broadcast a bvecho message with v = 0. Thus,
since h(dr) ≤ n−q−t−dr, eventually all non-faulty processes receive enough bvecho messages
to add at least the value 0 to bin_vals.

Suppose instead that d > 0 and t = 0. Then, if the dr ≤ d deceitful processes that behave
deceitful at a particular phase are enough to prevent termination, this means that dr processes
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have sent at least two conflicting messages to at least two non-faulty processes. As such, when
the timer expires and non-faulty processes broadcast their received signed bvecho messages,
all non-faulty processes will eventually receive enough bvecho messages to send a bvecho
message. Thus, the case d > 0 is analogous to the case d = 0 since bvecho messages are
relayed when the timer expires, and we have proven in the previous paragraph that termination
is guaranteed in that case. The same analogy takes place if t > 0.

Note additionally that if dr detected deceitful processes have been removed, then the thresh-
olds decrease by the same factor dr, preserving termination.

Lemma 5.6 (ABV-Uniformity). If a non-faulty process pi adds value v to the set bin_vals,
then all other non-faulty processes also eventually add v to their local set bin_vals.

Proof. This proof is straightforward: pi adds v to the set bin_vals if it holds h(dr) signed
bvecho messages with v. In that case, it also constructs a certificate bv_cert with these mes-
sages and broadcasts bv_cert as part of the bvready with v before adding v to bin_vals.
Therefore, all other non-faulty processes will eventually receive pi’s bvready message along
with bv_cert containing enough bvecho messages to also add v to their local bin_vals. Fi-
nally, recall that all non-faulty processes broadcast their bvready message before adding v to
bin_vals, which solves the case that pi is faulty and sends bvready only to a subset of the
non-faulty processes.

Lemma 5.7 (ABV-Obligation). If ⌊n−q−t
2 ⌋−dr +1 non-faulty processes ABV-broadcast a value

v, then all non-faulty processes ABV-deliver v.

Proof. This proof is analogous to that of Lemma 5.5.

Lemma 5.8 (ABV-Justification). If process pi is non-faulty and ABV-delivers v, then v has
been ABV-broadcast by some non-faulty process.

Proof. Assume first t = 0 and suppose the contrary: pi ABV-delivers v and all non-faulty
processes ABV-broadcast v′, v ̸= v′. Since benign processes may either send v′ to a subset of
the non-faulty processes or nothing at all, this means that d− dr > ⌊n−q

2 ⌋ − dr + 1 for deceitful
alone to be able to make pi ABV-deliver v. But using the bound d− dr < n− h(dr) we obtain
that q ≥ 2h(dr)− n, which contradicts our assumption on the number of benign faults (i.e. the
bound q < 2h(dr)− n). As a result, it follows that at least some non-faulty process must have
ABV-broadcast v. The prove is analogous if t > 0.

Lemma 5.9 (ABV-Accountability). If process pi adds value v to bin_vals then associated with
v is a valid certificate cert from the previous round.

Proof. Since every bvecho and bvready message without a valid certificate is discarded, it
follows immediately that when a value v is added to bin_vals then pi has access to a valid
certificate.
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5.3.4.2 Actively accountable reliable broadcast

In this section, we prove the properties of Basilic’s reliable broadcast, AARB. We prove AARB-
unicity in Lemma 5.10, AARB-validity in Lemma 5.11, AARB-send in Lemma 5.12, AARB-
receive in Lemma 5.13, AARB-accountability in Lemma 5.14 and AARB-active accountability
in Lemma 5.15.

Lemma 5.10 (AARB-Unicity). Non-faulty processes AARB-deliver at most one value.

Proof. By construction all non-faulty processes AARB-deliver at most one value.

Lemma 5.11 (AARB-Validity). If non-faulty process pi AARB-delivers v, then v was AARB-
broadcast by ps.

Proof. Process pi AARB-delivers v if it receives h(dr) messages ⟨echo, v, ·, ·⟩. Non-faulty pro-
cesses only send an echo message for v if they receive ⟨init, v⟩. Thus, since d + t < h(dr), ps

AARB-broadcast v to at least one non-faulty process.

Lemma 5.12 (AARB-Send). If ps is non-faulty and AARB-broadcasts v, then all non-faulty
processes eventually AARB-deliver v.

Proof. Deceitful processes either broadcast v or multicast v′ to a partition A and v to a partition
B. In the first case (in which all deceitful behave like non-faulty processes), since the number
of benign and Byzantine processes is q + t ≤ n− h(dr) it follows that at least h(dr) non-faulty
processes will echo v, being that enough for all processes to eventually AARB-deliver it.

Consider instead some dr ≤ d + t deceitful processes behave deceitful echoing different
messages to two different partitions each containing at least one non-faulty process. Then when
the timer expires and non-faulty processes exchange their delivered echo messages, all processes
will update their committee removing the dr detected deceitful. Thus, since processes also
recalculate the thresholds and recheck them after updating the committee, this case becomes the
aforementioned case where no deceitful process behaves deceitful. The same occurs if one of the
partitions AARB-delivers a value while the other does not and reaches the timer (Lemma 5.13).

Lemma 5.13 (AARB-Receive). If a non-faulty process AARB-delivers v from ps, then all
non-faulty processes eventually AARB-deliver v from ps.

Proof. First, since d + t < 2h(dr)− n it follows that deceitful and Byzantine processes can not
cause two non-faulty processes to AARB-deliver different values (analogously to Lemma 5.2).
Then, before a process pi AARB-delivers a value v, it broadcasts a ready message containing
the certificate that justifies delivering v. Thus, when pj receives that ready message, it also
AARB-delivers v.

Lemma 5.14 (AARB-Accountability). If two non-faulty processes pi and pj AARB-deliver v

and v′, respectively, such that v ̸= v′, then all non-faulty processes eventually receive PoFs of
the deceitful behavior of at least 2h(dr)− n processes (including ps).
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Proof. Non-faulty processes broadcast the certificates of the values they AARB-deliver, contain-
ing h(dr) signed echo messages from distinct processes. Therefore, analogous to Lemma 5.2,
at least 2h(dr)−n processes must have sent conflicting echo messages, and they will be caught
upon cross-checking the conflicting certificates. Also, some non-faulty processes must have re-
ceived conflicting signed init messages from ps in order to reach the threshold h(dr) to AARB-
deliver conflicting messages, meaning that ps is also faulty.

Lemma 5.15 (AARB-Active accountability). The Basilic’s AARB protocol satisfies active
accountability.

Proof. We prove here that if a number of faulty processes send conflicting messages to two
subsets A, B ⊆ N , each containing at least one non-faulty process, then:

• eventually all non-faulty processes terminate without removing the faulty processes, or

• eventually all non-faulty processes receive a PoF for these faulty processes and remove
them from the committee, after which, if the source is non-faulty, they terminate.

The proof is analogous if there are instead more than two conflicting messages and subsets
containing at least one honest process. W.l.o.g. we consider just pA ∈ A and pB ∈ B. If they
both terminate despite the conflicting messages, we are finished. Suppose instead a situation
in which only one of them, for example pA, terminated AARB-delivering a value v. Then pA

broadcast a ready message with enough h(dr) echo messages in the certificate cert for pB

to also AARB-deliver v and terminate. Let us consider w.l.o.g. only one faulty process pi.
If a signature from pi in cert conflicts with a local signature from pi stored by pB, then pB

constructs and broadcasts a PoF for pi, and then updates the committee and the threshold.
Then, it rechecks the certificate filtering out the signature by pi, which would cause pB to also
AARB-deliver v (since the threshold also decreased accordingly).

Suppose neither pA nor pB has terminated yet. Then, when the timer is reached and they
both broadcast the init and echo messages they delivered, they will both be able to construct
a PoF for pi, after which they update the committee and the threshold. Then, if the source was
non-faulty, non-faulty processes can terminate analogously to the previous case.

5.3.4.3 Basilic binary consensus

We focus in this section on the properties of Basilic’s binary consensus, AABC. We first prove
that if all non-faulty processes start a round r with the same estimate v, then all non-faulty
processes decide v in round r or r + 1 in Lemma 5.16. Then, we prove AABC-agreement
in Lemma 5.17, AABC-strong validity in Lemma 5.18 and AABC-validity as Corollary 5.6 of
Lemma 5.18, AABC-active accountability in Lemma 5.4, AABC-termination in Lemma 5.19,
and AABC-accountability in Lemma 5.20. This thus makes AABC the first actively accountable
binary consensus protocol, as we show in Theorem 5.3.

Lemma 5.16. Assume that each non-faulty process begins round r with the estimate v. Then,
every non-faulty process decides v either at the end of round r or round r + 1.
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Proof. By Lemma 5.7, v is eventually delivered to every non-faulty process. By Lemma 5.8, v is
the only value delivered to each non-faulty process. As such, v is the only value in bin_vals and
the only value echoed by non-faulty processes, since deceitful processes that prevent termination
are removed from the committee when the timer expires (and the threshold is updated). This
means that v will be the only value in vals. If v = r mod 2 then all non-faulty processes decide
v. Otherwise, by the same argument every non-faulty process decides v in round r + 1.

Lemma 5.17 (AABC-Agreement). If d+t ≤ 2h−n, no two non-faulty processes decide different
values.

Proof. W.l.o.g. assume that the non-faulty process pi decides v in round r. This means that pi

received h(dr) echo messages in round r, and that vals = {v}. Consider the echo messages
received by non-faulty process pj in the same round. If v is in pj ’s vals then pj adopts estimate v

because v = r mod 2. If instead pj ’s vals = {w}, w ̸= v, then pj received h(dr) echo messages
containing only w.

Analogously to Lemma 5.2, it is impossible for pj and for pi to receive h(dr) echo messages
for v and for w, respectively. We then conclude, by Lemma 5.16, that every non-faulty process
decides value v in either round r + 1 or round r + 2.

Lemma 5.18 (AABC-Strong Validity). If a non-faulty process decides v, then some non-faulty
process proposed v.

Proof. This proof is identical to Polygraph’s proof of strong validity [47].

Corollary 5.6 (AABC-Validity). If all processes are non-faulty and begin with the same value,
then that is the only decision value.

Lemma 5.19 (AABC-Termination). Every non-faulty process eventually decides on a value.

Proof. This proof derives directly from Lemma 5.4.

Lemma 5.20 (AABC-Accountability). If two non-faulty processes output disagreeing deci-
sion values, then all non-faulty processes eventually identify at least 2h − n faulty processes
responsible for that disagreement.

Proof. This proof is identical to Polygraph’s proof of accountability [47], with the a generaliza-
tion to any threshold h(dr) analogous to the one we make in Lemma 5.14.

Theorem 5.3. Basilic’s AABC solves the actively accountable binary consensus problem.

Proof. Corollary 5.6 and Lemmas 5.17, 5.4, 5.19, and 5.20 prove AABC-validity, AABC-agreement,
AABC-active accountability, AABC-termination and AABC-accountability, respectively.
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5.3.4.4 General Basilic protocol

We gather all the results together in this section, showing the proofs for the general Basilic
protocol. We prove active accountability in Lemma 5.21, validity in Lemma 5.22, termination
in Corollary 5.7, agreement in Lemma 5.23, and accountability in Lemma 5.21. Finally, we
prove that Basilic solves the actively accountable consensus problem in Theorem 5.4.

Lemma 5.21 (Active accountability). Basilic satisfies active accountability.

Proof. We show w.l.o.g. that if a faulty process pi sends two conflicting messages to two subsets
A, B ⊆ N , each containing at least one honest process, then eventually all honest processes
terminate, or instead they receive a PoF for pi and remove it from the committee, after which
they all terminate. The proof is analogous if there are instead more than two conflicting messages
and subsets containing at least one honest process.

First, analogously to Lemma 5.4, all conflicting messages that can be sent in Basilic are
messages of Basilic’s AARB or AABC, that already satisfy active accountability (see Lemmas 5.4
and 5.15). This means that if dr > 0, then honest processes eventually update the committee
and threshold, after which they recheck if they hold enough signed messages to terminate. Next,
we prove termination. By the AARB-Send property (Lemma 5.12), all honest processes will
eventually deliver the proposals from honest processes. Eventually all honest processes propose
1 in all binary consensus whose index corresponds to an honest proposer, and by AABC-Validity
decide 1. Since eventually h(dr) ≤ n− q − d− t if enough dr prevent termination and are thus
detected and removed, we can conclude that at least h(dr) binary consensus instances will
terminate deciding 1.

Once honest processes decide 1 on at least h(dr) proposals, they propose 0 to the rest, and
by AABC-Termination (Lemma 5.19) all remaining binary consensus instances will terminate.
Next, we show that for every binary consensus upon which we decided 1, at least one honest
process AARB-delivered its associated proposal. For the sake of contradiction, if no honest
process had AARB-delivered its associated proposal, then all honest processes would have pro-
posed 0, meaning by AABC-Validity that the final decision of the binary consensus would have
been 0, not 1. As a result, by the AARB-Receive property (Lemma 5.13), eventually all honest
processes will deliver the proposal for all binary consensus that they decided 1 upon. Finally,
processes decide the value proposed by the proposer with the lower index.

Corollary 5.7 (Termination). The Basilic protocol satisfies termination.

Proof. Trivial from Lemma 5.21.

Lemma 5.22 (Validity). Basilic satisfies validity.

Proof. This is trivial by Corollary 5.6 and the proofs of AARB. Suppose all processes begin
Basilic with value v. If all processes are non-faulty then every proposal AARB-delivered was
AARB-sent by a non-faulty process, and since all processes AARB-send v, only v is AARB-
delivered.
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Since initially processes only start an AABC instance for which they can propose 1, this
means that eventually all processes start one AABC instance proposing 1. By Corollary 5.6,
this instance will terminate with all processes deciding 1. Since the rest of the AABC instances
will eventually terminate by Lemma 5.19, this means that processes will terminate at least one
instance of AABC outputting 1. Upon calculating the minimum of all values (which are all v)
whose associated bit is set to 1, all processes will decide v.

Lemma 5.23 (Agreement). The Basilic protocol satisfies agreement.

Proof. The proof is immediate from Lemmas 5.17 and 5.13.

Lemma 5.24 (Accountability). If two non-faulty processes output disagreeing decision values,
then all non-faulty processes eventually identify at least 2h− n faulty processes responsible for
that disagreement.

Proof. The proof is immediate from Lemmas 5.4 and 5.15.

Theorem 5.4 (Theorem 5.2). The Basilic protocol with initial threshold h0 ∈ (n/2, n] solves
the actively accountable consensus problem if d + t < 2h0 − n and q + t ≤ n− h0.

Proof. Corollary 5.7 and Lemmas 5.21, 5.22, 5.23, and 5.24 satisfy termination, active account-
ability, validity, agreement, and accountability, respectively.

Corollary 5.8 (Corollary 5.5). The Basilic class of protocols solves the actively accountable
consensus problem if n > 3t + d + 2q.

Proof. The proof is immediate from Theorem 5.2 after removing h0 from the system of two
inequations defined by d + t < 2h0 − n and q + t ≤ n− h0.

5.3.5 Basilic’s complexities

In this section, we show the complexities of Basilic. We execute one instance of Basilic’s AARB
reliable broadcast and of Basilic’s AABC binary consensus per process.

5.3.5.1 Naive Basilic

We summarize the complexities of the three protocols without optimizations in Table 5.1, that
we prove in Lemmas 5.25 and 5.26, and Theorem 5.5.

Complexity AARB AABC Basilic

Time O(1) O(n) O(n)
Message O(n2) O(n3) O(n4)
Bit O(λn3) O(λn4) O(λn5)

Table 5.1: Complexities of naive implementations of Basilic protocols.
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Lemma 5.25 (Basilic’s AARB Complexity). After GST and if the source is non-faulty, Basilic’s
AARB protocol has time complexity O(1), message complexity O(n2) and bit complexity O(λ ·
n3).

Proof. After GST, all non-faulty processes will have received a message from each non-faulty
process and from each deceitful processes by the time the timer reaches 0. Thus, either non-
faulty processes can terminate, or they broadcast their current list of echo and init messages,
after which they remove the detected deceitful processes, and they can terminate too. Thus, the
time complexity is O(1). Then, the message complexity is O(n2), as each non-faulty process
broadcasts at least one echo and ready message, and, in some executions, a list of echo
messages that they delivered by the time the timer reaches 0. Since both this list and ready
messages contain O(n) signatures, or O(λn) bits, the bit complexity of Basilic’s AARB is
O(λn3).

Lemma 5.26 (Basilic’s AABC Complexity). After GST, Basilic’s AABC protocol has time
complexity O(n), message complexity O(n3) and bit complexity O(λ · n4).

Proof. After GST, Basilic’s AABC protocol terminates in the first round (i) whose leader is a
non-faulty process and (ii) after having removed enough deceitful faults so that they cannot
prevent termination. Since t + d + q < n, we have that (i) holds in O(n). As for every added
round in which deceitful faults prevent termination, a non-zero number of deceitful faults are
removed, we have that (ii) holds in O(n) as well. This means that Basilic terminates in O(n)
rounds after GST. In each round during phase 1 of AABC, non-faulty processes execute an
ABV-broadcast of O(n2), obtaining O(n3) messages. The bit complexity is O(λn4) as each
message may contain up to two ledgers of O(n) signatures, or O(λn) bits. The complexities of
phase 2 are equivalent and obtained analogously to those of phase 1, as non-faulty processes
may broadcast O(n) signatures if deceitful faults prevent termination of phase 2, or a certificate
if they decide in this round.

Theorem 5.5. The Basilic protocol has time complexity O(n), message complexity O(n3) and
bit complexity O(λ · n5).

Proof. The proof is immediate from Lemma 5.26 and Lemma 5.25 since Basilic executes n

instances of AARB followed by n instances of AABC.

5.3.5.2 Optimized Basilic

The complexities of Basilic after GST share the same asymptotic complexity of other recent
works that are not actively accountable [47, 132], some of them not being accountable ei-
ther [166], as we show in Table 5.2. This is because the adversary cannot prevent termination
of any phase. Thus, after GST, all processes can continue to the next phase or terminate the
protocol by the time the timer for that phase expires, resulting in an execution equivalent to
that of Polygraph (apart from one additional message broadcast in ABV-broadcast). In this
table, naive Basilic represents the protocol we show in Algorithm 7, whereas the following row,
multi-valued Basilic, shows the analogous optimizations shown in Polygraph and applicable to
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the Basilic protocol as well [47]. The rows containing ’superblock’ refer to the result of applying
the additional superblock optimization [23, 47, 27, 80, 81, 28], which consists on deciding on
the union of all h(dr) (O(n)) proposals whose associated AABC instance output 1, solving SBC
(Definition 2.2.4) instead of just consensus. This optimization is only available to democratic
protocols in which all processes provide an input [23, 47, 27, 80, 81, 28] (i.e. DBFT, Polygraph
and Basilic in Table 5.2), as noted in Section 2.2.9. After these optimizations, the resulting
normalized bit complexity (i.e. per decision) of Basilic is as low as those of other works that are
only accountable and not actively accountable, such as BFT Forensics [132] or Polygraph [47].
Furthermore, since this is the minimum complexity for accountability [47], this means that this
is also optimal in the bit complexity. Note that other optimizations present in other works, such
as the possibility to obtain an amortized complexity of O(λn2) in BFT Forensics per decision
after n iterations of the protocol [186], are orthogonal to our optimizations, and thus they also
apply to Basilic.

An additional advantage of Basilic, as well as of other democratic protocols [47, 23], com-
pared to non-democratic protocols [132, 186], is that the distribution of proposals scatters the
bits throughout multiple channels of the network, instead of bloating channels that have the
leader as sender or recipient. That is, while BFT Forensics’ normalized an amortized per route
complexity (Section 2.2.9) is Ω(λn), as this is the number of bits that must be sent through the
Θ(n) channels to and from the leader, Basilic’s is instead O(λ), which are instead sent through
each of the Θ(n2) pairwise channels of the network.

Finally, not only are the rest of the protocols in Table 5.2 not actively accountable, but
also this means that they only solve consensus tolerating at most t < n/3 faults in the BDB
model, whereas Basilic with initial threshold h0 = 2n/3 solves consensus where d + t < n/3 and
q + t ≤ n/3 faults, hence tolerating the strongest adversary among these works.

5.3.6 Solving eventual consensus with Basilic

In this section, we adapt Basilic to solve eventual consensus in the BDB model, and then prove
that the Basilic protocol is resilient optimal. We detail thus 3-Basilic (BEC), an adaptation
of Basilic for the 3-consensus problem (see Section 2.2.6.4). Process pi executes 3-Basilic with
the following steps:

1. BEC first executes Basilic-gen-proposeh0(vi), whose output is returned by pi as BEC’s
output of proposeEC0.

2. If pi finds no disagreement between operations k and k′, then for all operations proposeECj , k′ >

j ≥ k, the output is that of proposeECj−1.

3. If pi finds a new disagreement at operation j for some index r ∈ [0, n− 1], then:

(a) If the disagreement is between AARB-delivered values, BEC resolves it as follows:
let (est, ⟨u, r⟩) be the value that differs with the locally AARB-delivered value (est, ⟨v, r⟩),
then, for proposeECj , pi applies y = min(v, u) to the disagreeing value. Next, if the output of
proposeECj−1 was v, pi replaces the AARB-delivered value with y, and outputs y instead for
proposeECj .
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Table 5.2: Complexities of Basilic compared to other works.

Algorithm Msgs Bits Accountable Actively accountable

PBFT [166] O(n3) O(λn4) ✗ ✗

Tendermint [187] O(n3) O(λn3) ✗ ✗

HotStuff [186] O(n2) O(λn2) ✗ ✗

DBFT superblock [23] O(n3) O(n3) ✗ ✗

BFT Forensics [132] O(n2) O(λn3) ✓ ✗

Polygraph’s binary [47] O(n3) O(λn4) ✓ ✗

Naive Polygraph [47] O(n4) O(λn5) ✓ ✗

Polygraph Multi-v. [47] O(n4) O(λn4) ✓ ✗

Polygraph superblock [47] O(n3) O(λn3) ✓ ✗

Basilic’s AABC O(n3) O(λn4) ✓ ✓

Naive Basilic O(n4) O(λn5) ✓ ✓

Multi-valued Basilic O(n4) O(λn4) ✓ ✓

Basilic superblock O(n3) O(λn3) ✓ ✓

(b) If the disagreement is between values 1 and 0 decided at AABC’s protocol, then pi sets
bin-decisions[r] to 1. Then, pi recalculates if the minimum decided value changed after adding
this binary decision (i.e., pi re-executes lines 11-13 of Algorithm 7), and outputs this decision
for proposeECj .

(c) Finally, pi broadcasts the values (and certificates) of all the disagreements that pi has
not yet broadcast.

We show in Theorem 5.6 that 3-Basilic with initial threshold h0 solves the 3-consensus problem
if d + t < h0 and q + t ≤ n− h0, where t, d and q are the numbers of Byzantine, deceitful and
benign processes, respectively, and h0 the initial threshold. This means that the 3-Basilic
class of protocols solves 3-consensus for any combination of t, d and q Byzantine, deceitful and
benign processes, respectively, such that 2t + d + q < n, as we show in Corollary 5.9.

Theorem 5.6 (3-Consensus per threshold). The 3-Basilic protocol with initial threshold h0

solves the 3-consensus problem if d + t < h0 and q + t ≤ n− h0.

Proof. 3-Integrity is trivial. The bound q+t ≤ n−h0 is proven in Corollary 5.3: 3-Basilic starts
by executing Basilic, which does not terminate unless q + t ≤ n−h0, satisfying 3-Termination.
3-Validity derives immediately from Basilic’s proof of validity (Lemma 5.22).

We only have left to prove 3-Agreement. If d + t < h0 then all valid certificates contain
at least one honest process. This means that the number of disagreements is finite. Then,
since honest processes broadcast all disagreements they find (and their corresponding valid
certificates), all honest processes will eventually find all disagreements. Also, all honest processes
will find all disagreements of Basilic by its accountability property (Lemma 5.21). Let us
consider that all honest processes, except pi, have already found and treated all disagreements
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(as specified by the 3-Basilic protocol). Suppose that pi finds the last disagreement at the start
of operation proposeECk−1 for some k > 0. Then, for all j ≥ k, no two honest processes return
different values to proposeECk, satisfying 3-Agreement.

Corollary 5.9 (3-Consensus). The Basilic class of protocols solves 3-consensus if n > 2t+d+q.

Proof. The proof is immediate from Theorem 5.6 after removing h0 from the system of two
inequations defined by d + t < h0 and q + t ≤ n− h0.

5.4 The Zero-Loss Blockchain

Having shown our actively accountable Basilic class of protocols, we now present our Zero-loss
Blockchain (ZLB). ZLB is the first blockchain that tolerates an adversary controlling up to
ts processes trying to cause a disagreement, while also tolerating instead up to tl Byzantine
processes. ZLB achieves this high level of tolerance by resolving temporary disagreements
and replacing provably fraudulent processes. For this purpose, we first detail the Longlasting
Blockchain problem and an additional assumption of the adversary fitting for the long-lasting
nature of ZLB.

In particular, solving the longlasting blockchain problem is to solve consensus when possible
(n > 3t + d + 2q, Corollary 5.5), and to recover from a situation where consensus is violated
(n ≤ 3t + d + 2q) by excluding faulty processes, resolving this violation, and preventing future
ones (n > 3t′ + d′ + 2q).

5.4.1 Longlasting Blockchain

A Longlasting Blockchain (LLB) is a Byzantine fault-tolerant blockchain that allows for some
consensus instances to reach a disagreement before fixing the disagreement by merging the
branches of the resulting fork and deciding the union of all the past decisions using SBC (Defi-
nition 2.2.4). As a result, we consider that a consensus instance Φi outputs a set of enumerable
decisions out(Φi) = si, |si| ∈ N that all n processes replicate. We refer to the state of the
blockchain at the i-th consensus instance Φi as all decisions of all instances up to the i-th
consensus instance.

More formally, a blockchain is an LLB if it ensures termination, agreement and convergence:

Definition 5.4.1 (Longlasting Blockchain Problem). A blockchain is an LLB if all the following
properties are satisfied:

1. Termination: For all k > 0, consensus instance Φk solves eventual consensus.

2. Agreement: If d + t < 2h−n when Φk starts, then honest processes executing Φk reach
agreement.

3. Convergence: There is a finite number of consensus instances that solve eventual con-
sensus, after which all consensus instances solve consensus.
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Termination does not imply agreement from among honest processes in the first output
of the same consensus instance, but it implies that all instances terminate with an output
that may change to eventually reach agreement, whereas agreement is the classic property of
consensus. Convergence guarantees that there is a limited number of disagreements before
reaching agreement.

5.4.2 Slowly-adaptive adversary

Considering a blockchain SMR rather than single-shot consensus requires to cope with attacks
in which the corrupted processes that the adversary chooses change over time. As a result,
we consider that the adversary that controls these faulty processes is adaptive in that f can
change over time. However, we assume that the adversary is slowly-adaptive [100], as in previous
blockchain systems with dynamic membership [100], in that the adversary experiences static
periods during which Byzantine, deceitful, benign and honest processes remain so. We assume
that these static periods are long enough for honest processes to discover and replace the faulty
processes, for the sake of convergence. In particular, each static period t is assigned a consensus
instance Φk and t starts when Φk starts. To cope with pipelined consensus instances, t may not
end exactly when Φk ends, as there can be Φℓ, . . . , Φm instances running at this time, in which
case t ends (and static period t + 1 starts) as soon as Φℓ, . . . , Φm and Φk have all ended with
agreement.

5.4.3 Pool of process candidates

As our system will perform a membership change that excludes some processes and includes
new ones, we model all users that can join as processes in the system by assuming that there
exists a large pool of m users among which at least 2n/3 are honest users (m can be much
greater than n) and the rest are deceitful. This pool simply intends to represent the weakest
requirement that from the entire world of users that will ever be proposed to be included as
processes, at least 2n/3 honest ones will eventually be proposed by honest processes. Notice this
is a significantly weaker assumption than assuming, for example, that honest processes always
propose honest users to be included. For simplicity and w.l.o.g., we assume that no user from
this pool is proposed twice if it has been a process before, within the same static period of the
adversary.

5.4.4 The Zero-Loss Blockchain

We detail our system in this section. Its two main ideas are (i) to replace deceitful processes
undeniably responsible for a fork by new processes to converge towards a state where consensus
can be reached, and (ii) to refund conflicting transactions that were wrongly decided. We
will show that ZLB solves the Longlasting Blockchain problem. As depicted in Figure 5.4,
we present below the components of our ZLB system, namely the Accountable SMR (ASMR)
(Section 5.4.4.1) and the Blockchain Manager (BM) (Section 5.4.4.2) but we defer the zero loss
payment application (Section 5.5).



114 Chapter 5: ZLB, a Blockchain Tolerating Colluding Majorities

Block Manager (BM)

Accountable SMR(ASMR)

Zero-loss Payment 
System

replica pi

Consensus

tx=A       B

b=
tx-batch

propose(b)

decision(b,b’…)

refund(B)

Block Manager (BM)

Accountable SMR(ASMR)

Zero-loss Payment 
System

replica pj

b’=
tx-batch

report
fraud(k)

refund(B)

exclude(pk)

propose(b’)

decision(b,b’…)

$1M

Network

Consensus
send(*) recv(*) send(*) recv(*)

report
fraud(k)

exclude(pk)

tx’=A       C$1M1

2

3

4

5

6

7

7 2

1

3

4

5

6 7

7

include(*)include(*)

Figure 5.4: The distributed architecture of our ZLB system relies on Accountable SMR (ASMR),
BM and the payment system. ➋ Each process batches some payment requests illustrated with
➊ a transfer tx (resp. tx ′) of $1M from Alice’s account (A) to Bob’s (B) (resp. Carol’s (C)).
Consider that Alice has $1M initially and attempts to double spend by modifying the code of
a process pk under her control so as to execute a coalition attack. ➌–➎ The ASMR component
detects the deceitful process pk that tried to double spend, the associated transactions tx and
tx ′ and account A with insufficient funds. It uses A’s balance to fund transaction tx, ➏ notifies
BM that ➐ excludes or replaces process pk and ➐ funds tx ′ with pk’s slashed deposit.

As long as new requests are submitted by a user to a process, the payment system component
of the process converts them into payments that are passed to the BM component. As depicted
in Figure 5.4, when sufficiently many payment requests have been received, the BM issues a
batch of requests to the Accountable SMR (ASMR) that, in turn, proposes it to the consensus
component. The consensus component exchanges messages through the network for honest
processes to agree. If a disagreement is detected, then the account of the deceitful process is
slashed. Consider that Alice (A) attempts to double spend by (i) spending her $1M with both
Bob (B) and Carol (C) in tx and tx ′, respectively, and (ii) hacking the code of process pk that
commits deceitful faults to produce a disagreement. Once the ASMR detects the disagreement,
BM is notified, process pk is replaced and tx′ is funded with pk’s slashed deposit.

5.4.4.1 Accountable SMR (ASMR)

In order to detect faulty processes, we now present an accountable state machine replication,
ASMR. ASMR is divided into five phases. For each index, ASMR first executes the accountable
consensus in phase ➀ to try to agree on a set of transactions, to the run up to four additional
subsequent phases ➁–➄ to tolerate disagreements: ➁ a confirmation that aims at confirming
that no disagreement took place, ➂–➃ a membership change that aims at replacing deceitful
processes responsible for a disagreement by new processes, and ➄ a reconciliation phase that
combines all the decisions of the disagreement, as depicted in Figure 5.5.
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Figure 5.5: If there are enqueued requests that wait to be served, then a process starts a new
instance Φk by participating in an ASMR consensus phase ➀; a series of phases may follow: ➁ the
process tries to confirm this decision to make sure no other honest process disagrees, ➂ it invokes
an exclusion protocol if faulty processes caused a disagreement, ➃ it then includes new processes
to compensate for the exclusion, and ➄ merges the two batches of decided transactions. Some
of these phases complete upon consensus termination (in black) whereas other phases terminate
upon simple notification reception (in gray). The process starts a new instance Φk+1 without
waiting for phases ➁-➄ to terminate, as this is not always guaranteed.

➀ ASMR consensus: Honest processes propose a set of transactions, which they received
from users, to an instance of the Basilic class of actively accountable consensus protocols, with
initial threshold h0 = 2n/3, in the hope to reach agreement. When the consensus terminates,
all honest processes agree on the same decision or some honest processes disagree: they decide
distinct sets of transactions.

Our ASMR’s consensus is Basilic, which already removes processes at runtime. However, it
is important to note that honest processes do not permanently remove processes removed within
a consensus instance of Basilic (in that once the consensus instance terminates, these processes
are re-added at the start of the next consensus instance). This ensures that a slowly-adaptive
adversary cannot increase the percentage of the committee it controls as the committee decreases
in size. Honest processes store however the PoFs, and will eventually trigger a membership
change that will permanently replace faulty processes by new processes.

➁ Confirmation: As honest processes could be temporarily unaware of a disagreement if
the adversary controls d + t ≥ n/3 deceitful and Byzantine processes, they enter a confirmation
phase waiting for messages coming from more distinct processes than what BFT consensus
requires. If faulty processes caused a disagreement, then the confirmation terminates and leads
honest processes to detect disagreements, i.e., honest processes receive certificates supporting
distinct decisions. Otherwise, this phase may not terminate, as an honest process needs to
deliver messages from more than (δ+1/3) ·n processes, where δ is the ratio of potential deceitful
faults δ = (d + t)/n, so as to guarantee that no disagreement was possible by a deceitful ratio
δ. In particular, with q = 0 (i.e. f = t + d), honest processes need to receive agreeing messages
from n − x processes solving ⌊(n − x)/(f − x + 1)⌋ = 1, which translates to at least 8n/9
processes for f = ⌈5n/9− 1⌉, or all processes for f = ⌈2n/3⌉, as we show in Theorem 5.7. More
specifically, we speak of a decision v being α-confirmed, α ∈ [0, 2/3], at Φk if only an adversary
with a deceitful ratio δ ≥ α could have caused an honest process to decide v′ ̸= v at Φk.

However, Φk always terminates, as it proceeds in parallel with the confirmation without
waiting for its termination. If the confirmation phase terminates, it either confirms that a block
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is irrevocably final (no process disagreed), or a membership change starts. Similarly, if there is
a disagreement, then the confirmation phase always terminates.

➂-➃ Membership change: Our membership change (Algorithm 11) consists of two con-
secutive consensus algorithms: one that excludes deceitful processes (line 22), and another that
adds newly joined processes (line 40). We separate inclusion and exclusion in two consensus
instances to avoid deciding to exclude and include processes proposed by the same process. Pro-
cess pi maintains a series of variables: the current consensus instance Φk, the deceitful processes
among the whole set N of current process ids, a set N ′ of process ids that is updated at runtime
for the exclusion protocol, the pool of process candidates pool, a set of certificates certificates, a
set of PoFs pofs and of new PoFs new_pofs, a local threshold fd of detected deceitful processes,
a set cons-exclude of decided PoFs and a set cons-include of decided new processes.

➂ Exclusion protocol: If honest processes detect at least fd = 2h0 − n (i.e. fd = n/3
for h0 = 2n/3) deceitful processes (via distinct PoFs), they stop their pending ASMR consensus
(line 19) before restarting it with the new set of processes (line 47). Then, honest processes
start the membership change ignoring messages from these fd processes by using instead an
updated committee N ′ that excludes these processes (lines 20-22). We fix fd = 2h0 − n for
the remaining of this dissertation. Honest processes propose in line 22 their set of PoFs at the
start of the exclusion protocol ex-propose by invoking the Basilic actively accountable consensus
protocol. We will use h′(d′

r) = h′
0−d′

r to refer to the voting threshold of the exclusion protocol,
and N ′ to refer to the updated committee of the exclusion protocol. We will discuss specific
values of h′

0 later in this dissertation.
The key novelty of our exclusion protocol is for processes to exclude other processes,

and thus update their committee N ′, at runtime upon reception of new valid PoFs (lines 23-
24). Note that Basilic already removes detected faulty processes at runtime, but starting with
d′

r = fd removed processes gives an advantage to honest processes from the start. Hence,
upon delivering a certificate (line 29), honest processes verify that the certificate contains a
threshold h′(d′

r) of signatures from processes that have not been detected faulty (line 33) and
decide the proposals that the certificate justifies at line 34. Upon updating their committee,
honest processes re-check all their certificates (line 26) and re-broadcast their PoFs (line 25).
As our exclusion protocol solves the SBC problem (Definition 2.2.4), it maximizes the number
of excluded processes by deciding at least h′(d′

r) proposals at once.
Note that instead of waiting for fd PoFs (line 17), processes could start Algorithm 11 as

soon as they detect one deceitful process, however, waiting for at least fd PoFs guarantees that
a membership change is necessary, as there are enough attackers to cause a disagreement, and
will help remove many deceitful processes from the same coalition at once.

➃ Inclusion protocol: To compensate for the excluded processes, an inclusion protocol
inc-propose (line 40) adds new candidate processes taken from the pool of process candidates
(Section 5.4.2) in line 39. This inclusion protocol is also an instance of Basilic with the same
voting threshold h′(d′

r) = h′
0 − d′

r as the exclusion protocol, but it differs in the format and
verification of the proposals: each proposal contains as many new processes as the number of
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Algorithm 11 Membership change at process pi, consensus Φk

1: State:
2: Φk, kth instance of ASMR consensus
3: N , set of processes forming the committee
4: N ′, updated set of processes, initially N ′ = N

5: certificates, received certificates during exclusion, initially ∅
6: pofs, the set of proofs of fraud (PoFs), initially ∅
7: new_pofs, set of newly delivered PoFs, initially ∅
8: cons-exclude, the set of PoFs output by consensus, initially ∅
9: cons-include, the set of new processes output by consensus, initially ∅

10: pool, the pool of process candidates from which to propose new processes
11: deceitful ∈ I, the identity of an agreed deceitful process, initially ∅
12: fd, the threshold of proofs of fraud to recover, ⌈n/3⌉ by default

13: Upon receiving a list of proofs of fraud _pofs:
14: if (verify(_pofs)) then � if PoFs are correctly signed
15: new_pofs ← _pofs\pofs
16: pofs.add(new_pofs) � add PoFs on distinct processes
17: if (ex-propose not started) then
18: if (size(pofs) ≥ fd) then � enough to change members
19: if (Φk started and not finished) then Φk.stop()
20: N ′ ← N ′\pofs.processes()
21: ex-propose.update_committee(pofs) � update committee
22: ex-propose.start(pofs) � exclusion consensus

23: else if (new_pofs ̸= ∅ and ex-propose not finished) then N ′ ← N ′\new_pofs.processes()
24: ex-propose.update_committee(new_pofs) � update committee
25: broadcast(new_pofs) � broadcast new PoFs
26: ex-propose.check_certificates(certificates) � recheck certificates

27: Upon receiving a certificate ex-cert of the exclusion protocol:
28: if (ex-cert ̸∈ certificates and verify_certificate(ex-cert)) then certificates.add(ex-cert)
29: ex-propose.check_certificates({ex-cert}) � check certificate with current N ′

30: function ex-propose.check_certificates(certs):
31: for all cert ∈ certs do
32: if (verify_certificate(cert)) then
33: if (|cert.processes() ∩N ′| ≥ 2|N′|

3 ) then � current threshold
34: ex-propose.cert_decide(cert) � decide certificate’s decision

35: Upon deciding a list of proofs of fraud cons-exclude in ex-propose:
36: detected-fraud(cons_exclude.get_processes()) � application punishment
37: pofs ← pofs \ cons-exclude.get_pofs() � discard the treated pofs
38: N ← N \ cons-exclude.get_deceitfuls() � exclude deceitful
39: inc-prop ← pool.take(|cons-exclude|) � take processes from the pool
40: inc-propose.start(inc-prop) � inclusion cons.

41: Upon deciding a list of processes to include cons-include in inc-propose:
42: new_processes ← choose(|cons-exclude|,cons-include) � deterministic
43: for all new_process ∈ new_processes do � for all new to inc.
44: set-up-connection(new_process) � new process joins
45: send-catchup(new_process) � get latest state

46: N ← N ∪ new_processes
47: if (Φk stopped) then goto ➀ of Figure 5.5 � restart cons.
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processes excluded (lines 39-40). By contrast with the exclusion protocol, the inclusion protocol
uses the updated committee (N from line 38 onward), resulting from taking the committee from
the start of the membership change and excluding from it the decided processes to exclude at the
end of the exclusion consensus (line 38). Since the union of the h′(d′

r) decided proposals contains
more than enough processes to include, honest processes apply a deterministic function choose
(line 42) to the union of all decided proposals. This function restores the original committee
size to n by selecting the processes evenly from all decided proposals. This guarantees (i) a fair
distribution of inclusions across all decisions, and (ii) that the deceitful ratio does not increase
even if all included processes are deceitful. At the end, the excluded processes are punished by
the application layer (line 36) and the new processes are included (lines 42-47).

Honest processes from different partitions might find themselves at different consensus
instances at the moment they execute the membership change. For this reason, even after
the membership change terminates, there is a transient period where honest processes may
receive blocks with certificates containing excluded processes, that were decided and broadcast
by other honest processes in a different partition before they executed the membership change.
Note, however, that all certificates contain at least 1 honest process by construction as long as
f < h, and thus all honest processes eventually update their committee and stop generating
new certificates with excluded processes.

➄ Reconciliation: Upon delivering a conflicting block with an associated valid certificate,
the reconciliation starts by combining all transactions that were decided by distinct honest
processes in the disagreement. These transactions are ordered through a deterministic function,
whose simple example is a lexicographical order but can be made fair by rotating over the
indices of the instances.

Once the current instance Φk terminates, another instance Φk+1 can start, even if it runs
concurrently with a confirmation or a reconciliation at index k or at a lower index.

5.4.4.2 Blockchain Manager (BM)

We now present the Blockchain Manager (BM) that builds upon ASMR to merge the blocks
from multiple branches of a blockchain when forks are detected. Once a fork is identified, the
conflicting blocks are not discarded as it would be the case in classic blockchains when a double-
spending occurs, but they are merged. Upon merging blocks, BM also copes with conflicting
transactions, as the ones of a payment system, by taking the funds of excluded processes to
fund conflicting transactions. We defer to Section 5.5 the details of the amount processes must
have on a deposit to guarantee this funding.

Similarly to Bitcoin [1], BM accepts transaction requests from a permissionless set of users.
In particular, this allows users to use different devices or wallets to issue distinct transactions
withdrawing from the same account—a feature that is not offered in payment systems without
consensus [188]. In contrast with Bitcoin, but similarly to recent blockchains [26, 23], our
system does not incentivize all users to take part in trying to decide upon every block, instead
a restricted set of permissioned processes have this responsibility for a given block. This is why
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ZLB offers what is often called an open permissioned blockchain [23]. Nevertheless, ASMR can
offer a permissionless blockchain with committee sortition [26] without substantial modifications.
We discuss a committee sortition protocol for ZLB in Chapter 6.

5.4.4.2.1 Guaranteeing consistency across processes

By building upon the underlying ASMR that resolves disagreements, BM features a block merge
to resolve forks, along with excluding detected faulty processes and including new processes. A
consensus instance may reach a disagreement, resulting in the creation of multiple branches or
blockchain forks (Theorem 5.8). BM builds upon the membership change of ASMR in order to
recover from forks. In particular, the fact that ASMR excludes fd deceitful processes each time
a disagreement occurs guarantees that the ratio of deceitful processes δ converges to a state
where consensus is guaranteed (Theorem 5.12). The maximum number of branches that can
result from forks depends on the number q of benign faults, the number d of deceitful faults and
the number t of Byzantine faults, as well as on the voting threshold h, as was already shown
for histories of SMRs [46], and as we restate in Theorem 5.8.

5.4.4.2.2 In memory transactions

ZLB is a blockchain that inherits the same Unspent Transaction Output (UTXO) model of
Bitcoin [1]; the balance of each account in the system is stored in the form of a UTXO table.
In contrast with Bitcoin, the number of maintained UTXOs is kept to a minimum in order
to allow in-memory optimizations. Each entry in this table is a UTXO that indicates some
amount of coins that a particular account has. When a transaction transferring from source
accounts s1, ..., sx to recipient accounts r1, ..., ry executes, it checks the UTXOs of accounts
s1, ..., sx. If the UTXO amounts for these accounts are sufficient, then this execution consumes
as many UTXOs as possible and produces another series of UTXOs now outputting the trans-
ferred amounts to r1, ..., ry as well as what is potentially left to the source accounts s1, ..., sx.
Maximizing the number of UTXOs to consume helps keeping the table compact. Each process
can typically access the UTXO table directly in memory for faster execution of transactions.

5.4.4.2.3 Protocol to merge blocks

As depicted in Algorithm 12, the state of the blockchain Ω consists of a set of inputs inputs-deposit
(line 4), a set of account addresses punished-acts (line 5) that have been used by deceitful pro-
cesses, a deposit (line 3), that is used by the protocol, a set txs of transactions and a list
utxos of UTXOs. The algorithm propagates blocks by broadcasting them on the network. As
such, the algorithm starts upon reception of a valid block that conflicts with a known block of
the blockchain Ω by trying to merge all transactions of the received block with those of the
blockchain Ω (line 11). This is done by invoking the function CommitTxMerge (lines 17–23)
where the inputs get appended to the UTXO table and conflicting inputs are funded with the
deposit (line 22) of excluded processes. We explain in Section 5.5 how to build a payment
system with a sufficient deposit to remedy successful disagreements.
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Algorithm 12 Block merge at process pi

1: State:
2: Ω, a blockchain record with fields:
3: deposit, an integer, initially 0
4: inputs-deposit, a set of deposit inputs, initially in the first deposit
5: punished-acts, a set of punished account addresses, initially ∅
6: txs, a set of UTXO transaction records, initially in the genesis block
7: utxos, a list of unspent outputs, initially in the genesis block

8: Upon receiving conflicting block block: � merge block
9: for tx in block do � go through all txs

10: if (tx not in Ω.txs) then � check inclusion
11: CommitTxMerge(tx) � merge tx, go to line 17
12: for out in tx.outputs do � go through all outputs
13: if (out.account in Ω.punished-acts) then � if punished
14: PunishAccount(out.account) � punish also this new output

15: RefundInputs() � refill deposit, go to line 24
16: StoreBlock(block) � write block in blockchain

17: CommitTxMerge(tx):
18: toFund ← 0
19: for input in tx.inputs do � go through all inputs
20: if (input not in Ω.utxos) then � not spendable, need to use deposit
21: Ω.inputs-deposit.add(input) � use deposit to refund
22: Ω.deposit ← Ω.deposit − input.value � deposit decreases in value

23: else Ω.consumeUTXO(input) � spendable, normal case

24: RefundInputs():
25: for input in Ω.inputs-deposit do � go through inputs that used deposit
26: if (input in Ω.utxos) then � if they are now spendable
27: Ω.consumeUTXO(input) � consume them
28: Ω.deposit ← Ω.deposit + input.value � and refill deposit

5.4.4.2.4 Cryptographic techniques

To provide authentication and integrity, transactions are signed using the Elliptic Curves Digital
Signature Algorithm (ECDSA) with parameters secp256k1, as in Bitcoin [1]. Each honest
process assigns a strictly monotonically increasing sequence number to its transactions. The
network communications use gRPC between users and processes and raw TCP sockets between
processes, but all communication channels are encrypted through SSL. Finally, the exclusion
protocol (Algorithm 11) uses ECDSA for authenticating the sender of messages responsible for
disagreements (i.e., for PoFs). Unlike ECDSA, threshold encryption cannot be used to trace
back the faulty users as they are encoded in less bits than what is needed to differentiate
users, and message authentication codes (MACs) are insufficient to provide this transferable
authentication [182].
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5.4.5 The Zero-Loss Blockchain proofs

In this section, we prove the properties of ZLB to solve LLB depending on the voting threshold h′

used by the exclusion and inclusion consensus. We also generalize results to the voting threshold
h of ASMR consensus. Following, we discuss three options for h′, analyze their advantages and
disadvantages, and discuss an additional desirable property, which we call awareness.

5.4.5.1 α-Confirmation

We show in Theorem 5.7 that if a process delivers c > n − h + αn distinct certificates, then
either it confirms that no coalition of size αn could have caused a disagreement, or it finds a
disagreement.

Theorem 5.7. Let σ be an accountable consensus protocol with voting threshold h, and let
honest process pi decide v in an iteration of σ. If honest process pi delivers certificates from
c > n−h+αn distinct processes, α ∈ [0, 2/3], then pi either detects a disagreement or α-confirms
v.

Proof. pi delivers certificates from c > n − h + αn processes, meaning that c − αn > n − h

are certificates delivered from honest processes. As the total number of honest processes is
n − αn, then x = n − αn − (c − αn) = n − c are the number of honest processes from which
pi has not delivered a certificate. For some of these x processes to have decided v′ ̸= v then
x + αn ≥ h ⇐⇒ c ≤ n − h + αn. Thus, if c > n − h + αn, either pi has already received a
certificate for v′, or else all honest processes decided on v, for δ ≤ α. In the latter, this means
that v is α-confirmed.

In contrast with Theorem 5.7, we show in Theorem 5.8 the maximum number of disagree-
ments (or fork branches) a that an adversary of size d + t can cause in one consensus instance.

Theorem 5.8 (number of branches). Let σ be a consensus protocol with voting threshold h.
Suppose d+ t < h faulty processes cause a disagreement, and let a be the number of disagreeing
decisions. Then, a ≤ n−(d+t)

h−(d+t) for d + t ≥ ah−n
a−1 .

Proof. For d+t faults to be able to create a branches, then they must reach the voting threshold
h with each of a different disjoint partitions of the honest processes. As these partitions are
disjoint, each contains (n− (d + t))/a processes (assume n divisible by a w.l.o.g.). This means
that n−(d+t)

a + d + t ≥ h ⇐⇒ d + t ≥ ah−n
a−1 for the attackers to be able to generate a branches.

The equivalent equation in terms of the number of branches is a ≤ n−(d+t)
h−(d+t) .

5.4.5.2 Exclusion and inclusion protocols

Theorem 5.9 (Consensus of exclusion/inclusion protocol). Let ZLB execute with voting thresh-
old h, being fd = 2h0 − n the minimum number of detected processes to start the membership
change. Then the exclusion and inclusion protocols of the membership change solves consensus
if their initial voting threshold h′

0 satisfies h′
0 > d+t+n

2 for safety and h′
0 ≤ n−f +fd for liveness.
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Proof. Honest processes start the exclusion protocol by locally excluding fd processes that they
detected as faulty through accountability. By Basilic’s accountability (Lemma 5.24), these are
at least fd detected faulty processes. Let us thus w.l.o.g. assume that exactly fd processes are
detected and excluded (if it was more, i.e. dr ≥ fd, then consensus is even easier thanks to
active accountability). As such, we define d′ + t′ = d + t− fd, and n′ = n− fd. The exclusion
protocol executes an instance of Basilic with voting threshold h′

0, but it actually starts with
h′(fd) = h′

0 − fd, since it starts when fd faulty processes are detected. Thus, this instance of
Basilic solves consensus for h′(fd) > d′+t′+n′

2 for safety and h′(fd) ≤ n′ − q − t′ for liveness
(Theorem 5.2).

We thus consider first the safety bound. h′(fd) > d′+t′+n′

2 ⇐⇒ h′(fd) > d+t+n−2fd
2 ⇐⇒

h′
0 > d+t+n

2 , since the membership change starts with the advantage of having detected fd =
2h0 − n faulty processes before starting. For the liveness bound, notice that the minimum
number of Byzantine processes that will be detected at the start of the membership change is
t− t′ ≥ fd − d. Thus, h′(fd) ≤ n′ − q − t′ ⇐⇒ h′(fd) ≤ n− fd − q − t− d + fd ⇐⇒ h′(fd) ≤
n− f ⇐⇒ h′

0 ≤ n− f + fd.

Theorem 5.10 (3-Consensus of exclusion/inclusion protocol). Let ZLB execute with initial
voting threshold h0, being fd = 2h0 − n the minimum number of detected processes to start
the membership change. Then the exclusion and inclusion protocols of the membership change
solve 3-consensus if their voting threshold h0 satisfies h′

0 > d + t for safety and h′
0 ≤ n− f + fd

for liveness.

Proof. Honest processes start the exclusion protocol by locally excluding fd processes that they
detected as faulty through accountability. By Basilic’s accountability (Lemma 5.24), these are
at least fd detected faulty processes. The exclusion protocol executes an instance of Basilic with
voting threshold h′, which solves 3-consensus for d′+t′ < h′(fd) for safety and h′(fd) ≤ n′−q−t′

for liveness (Theorem 5.6), with n′ = n− fd and d′ + t′ = d + t− fd.
We thus consider first the safety bound. d′ + t′ < h′(fd) ⇐⇒ h′(fd) > d + t − fd ⇐⇒

h′
0 > d + t by replacing d′ + t′ by d + t − fd and because the membership change starts with

the advantage of having detected fd = 2h0−n faulty processes before starting. For the liveness
bound, notice that the minimum number of Byzantine processes that will be detected at the
start of the membership change is t − t′ ≥ fd − d. Thus, h′(fd) ≤ n′ − q − t′ ⇐⇒ h′(fd) ≤
n− fd − q + fd − t− d ⇐⇒ h′(fd) ≤ n− f ⇐⇒ h′

0 ≤ n− f + fd.

For the standard voting threshold of the ASMR consensus of h = 2n/3, this means that
there are two different optimal voting thresholds h′ for both the exclusion and inclusion proto-
cols, depending on whether we choose the membership change to solve consensus or eventual
consensus. These thresholds are h′

0 = 7n/9 = 2n′/3 for consensus and h′
0 = 2n/3 = n′/2 for

eventual consensus. We discuss now these two options, their advantages and drawbacks. We
also propose an additional threshold that is resilient-optimal for an additional property, known
as awareness.
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5.4.5.2.1 Membership change solving eventual consensus

The bound h′
0 = 2n/3 = n′/2 means that the exclusion and inclusion protocols solve eventual

consensus, as shown by Theorem 5.10. The advantage of this bound is that the deceitful ratio δ

is optimal at δ < 2/3. This is the optimal value because for δ = 2/3 = h/n faulty processes can
cause a disagreement without even communicating with honest processes, meaning that they
can cause infinite disagreements (i.e. one per user), not satisfying convergence. As such, for this
voting threshold h′ the total number of tolerated faults is f < 2n/3 with q+t ≤ n/3, d+t < 2n/3.
Unfortunately, since the exclusion and inclusion protocols solve only eventual consensus and not
consensus, this means that some processes may temporarily disagree on the processes to exclude
and to include. All processes will however eventually agree on the same set to include and to
exclude, as shown in Section 5.3.6. Furthermore, a disagreement on the exclusion protocol
is detrimental to the adversary, because honest processes will eventually exclude even more
faulty processes. Even a disagreement of the inclusion protocol is detrimental to the adversary,
since the disagreement on the included processes requires the adversary to expose even more
faulty processes. These attackers could instead wait to expose themselves as faulty during a
disagreement on the ASMR consensus, which is more beneficial to attackers. Nevertheless, we
show now a different voting threshold h′ that solves this vulnerability of the membership change.

5.4.5.2.2 Membership change solving consensus

Setting a voting threshold h′
0 = 7n/9 = 2n′/3 allows the exclusion and inclusion protocols

to solve consensus, as shown in Theorem 5.9. Compared to the previous scenario, this voting
threshold allows honest processes to be sure that they agree on the decisions of the exclusion and
inclusion protocols. This means that if the inclusion protocol includes only honest processes,
then by the end of the membership change the adversary cannot cause any more disagreements,
and agreement is guaranteed from then on, provided all honest processes have started the
membership change.

The disadvantage of such an approach is that the total number of tolerated faults for this
threshold is f < 5n/9 with q + t ≤ n/3, d + t < 5n/9. Moreover, this voting threshold does not
suffice to guarantee that no disagreement is possible once the membership change terminates,
because some honest processes may not even be aware yet of the existence of a membership
change, and thus may still be using the outdated committee with f < 5n/9 faulty processes.
For this reason, we define a new property, which we call awareness.

Definition 5.4.2 (Awareness). Suppose that the inclusion protocol only includes honest pro-
cesses. Suppose a membership change starts. Then, ZLB satisfies awareness if all honest
processes can fix k > 0 such that Φl will solve consensus ∀l ≥ k during the static period of the
adversary.

The definition of awareness is strictly stronger than that of convergence in that it does not
suffice for honest processes to know that eventually they will solve consensus, but they must be
aware of when they stop just solving eventual consensus and start solving consensus (provided
that the inclusion protocol does not restate the deceitful ratio back to where it was prior to the
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membership change). Awareness is also strictly stronger than α-confirmation of the membership
change, because awareness also guarantees that the remaining honest processes that have not
yet even heard of the membership change, and are thus still deciding blocks with the outdated
committee, cannot decide with the outdated committee once any honest process terminates the
membership change.

Theorem 5.11. ZLB solves awareness if d + t < h0 + h′
0 − n.

Proof. Let O be the set of honest processes that have not yet heard of a membership change. If
|O|+d+t ≥ h0 then processes in O are enough to terminate consensus instance Φk with decision
v, k > 0. Let O′ be the set of honest processes that have started the membership change. Then
if |O′| + d + t ≥ h′

0 the membership change can terminate, and since h′
0 ≥ h0 by construction,

once processes in O′ can terminate the membership change, they can also terminate consensus
instance Φk with decision v′, v′ ̸= v. Thus, we calculate for which values of f it is impossible
for both |O|+ d + t ≥ h0 and |O′|+ d + t ≥ h′

0 to be met. By solving the system of equations,
for both to be possible then d + t ≥ h0 + h′

0−n, which means that for d + t < h0 + h′
0−n either

processes in O can terminate Φk deciding v, or processes in O′ can terminate deciding v′, but
not both.

By Theorem 5.11, a voting threshold h′
0 = 7n/9 = 2n′/3, while solving consensus of the

exclusion and inclusion protocols for f < 5n/9, only satisfies awareness for f < 4n/9. Instead,
setting a voting threshold h′

0 = 5n/6 = 5n′/9 solves consensus of the exclusion and inclusion
protocols for f < n/2 with q + t ≤ n/3, d + t < n/2, and awareness for the same adversary.
We discuss these three starting settings of ZLB and compare them with the state of the art in
Section 5.4.6.

5.4.5.3 ZLB proofs of LLB

In this section, we show that ZLB solves LLB, regardless of the three possible starting parameters
that we showed in the previous section.

Lemma 5.27. If d+ t < min(h0, h′
0) and h′

0 ≤ n−f +fd, then every disagreement in ZLB leads
to a membership change whose inclusion and exclusion protocols eventually solves consensus.

Proof. If d+ t ≥ h0 then faulty processes can cause disagreements without communicating with
honest processes, meaning that disagreements are not detected and the membership change
does not start. Thus, it follows that d + t < h0. Theorem 5.10 shows that d + t < h′

0 and
h′

0 ≤ n− f + fd for the membership change to solve eventual consensus.

Theorem 5.12. ZLB satisfies convergence for f = d + q + t total faults if q + t ≤ n − h0,
d + t < min(h0, h′

0) and h′
0 ≤ n− f + fd.

Proof. By Lemma 5.27 every membership change solves eventual consensus. The remaining
bound q + t ≤ n − h0 follows from the fact that the ASMR consensus must at least solve
eventual consensus (Lemma 5.21). If d+t < 2h0−n from the start then there is no disagreements
(Theorem 5.2) and thus convergence is guaranteed. Instead for 2h0 − n ≤ d + t < min(h′

0, h0)
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and if f ≤ n− h′
0 + fd, by Lemma 5.27 every disagreement leads to a membership change that

solves eventual consensus. The inclusion protocol does not increase the deceitful ratio, since the
inclusion protocol does not include more processes than the number of excluded processes by
the exclusion protocol (thanks to the deterministic function choose) and all excluded processes
are faulty.

As the inclusion consensus decides at least h′(dr) = h′
0−dr proposals and d+t < h′

0 (because
we implement Basilic to solve SBC by deciding the union of all proposals with associated bit
decided to 1), it follows that some proposals from honest processes will be decided. As the
pool of joining candidates is finite and no process is included more than once, then in the worst
case all faulty processes from the pool have been included at least once, and from then on all
honest processes propose to include only honest processes from the pool. At this point, the
deceitful ratio will decrease in every new membership change, within a static period of the
slowly-adaptive adversary.

Some inclusion consensus will thus eventually lead to a deceitful ratio δn < 2h0 − n and
consensus is satisfied from then on. Let Φk be the first ASMR consensus such that δn < 2h0−n.
All previous iterations k′ < k solve eventual consensus because d + t < h0 and q + t ≤ n − h0

(Theorem 5.6).

Corollary 5.10. ZLB solves Longlasting Blockchain with h0 for q + t ≤ n− h0 and d + t < h0

for any h′
0 satisfying d + t < h′

0 and h′
0 ≤ n− f + fd.

Proof. For d + t < h0, q + t ≤ n − h0, by Theorem 5.6 ASMR consensus solves eventual
consensus, satisfying termination. If d + t < 2h0 − n, then by Theorem 5.2 ASMR consensus
solves consensus, satisfying agreement. Finally, convergence is shown in Theorem 5.12.

5.4.6 Comparative table

We show in Table 5.3 a comparison of ZLB with the aforementioned three voting thresholds of
the membership changed. Notice that Basilic with initial voting threshold h0 = 2n

3 is the only
one to solve 3-consensus against more than a supermajority of faults, thanks to characterizing
them in the BDB model. We represent three settings for ZLB depending on the initial voting
threshold h′

0 of the membership change, but with the same initial voting threshold of ASMR
consensus set to h0 = 2n

3 . These are the three settings that we discussed in Section 5.4.5.2.
In any of the three cases, notice however that Basilic and ZLB are the only to both solve
consensus for a resilient-optimal number of faults of 3t < n in the BFT model, and also solve
eventual consensus for a greater number of faults than 3t < n. Furthermore, only the three
settings of ZLB solve 3-consensus for a total number of faults 3f ≥ n of which up to t = tℓ

are Byzantine (as noted in the table’s footnotes) while simultaneously solving consensus for the
resilient-optimal bound of 3t < n in partial synchrony. The differences of the three settings of
ZLB lie in the 3-consensus and awareness columns, and in the number of faults tolerated, as
discussed in Section 5.4.5.2. Some works are represented in multiple rows [74, 73] because their
tolerance to faults and assumptions varies depending on their starting configuration.
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Consensus 3-Consensus
Blockchain N. Byz. Total Byz. Total LLB Awareness Acc. Slashing Zero loss Act.
[1, 189] S. 0 0 2t < n 2f < n ✗ ✗ ✓[189] ✓[189] ✗ ✗

[183] P. 3t < n 3f < n 3t < n 3f < n ✗ ✗ ✗ ✗ ✗ ✗

[74] (P) P. 3t < n 3f < n 3t < n 3f < n ✗ ✗ ✗ ✗ ✗ ✗

[74] (S) S. 2t < n 2f < n 2t < n 2f < n ✗ ✗ ✗ ✗ ✗ ✗

[73] (1) P. 3t < n 3f < n 3t < n 3f < n ✗ ✗ ✗ ✗ ✗ ✗

[73] (2) P. 0 f < 2n
3 0 f < 2n

3 ✗ ✗ ✗ ✗ ✗ ✗

[23, 190]. P. 3t < n 3f < n 3t < n 3f < n ✗ ✗ ✗ ✓ ✗ ✗

[127, 132, 135] P. 3t < n 3f < n 3t < n 3f < n ✗ ✗ ✓ ✓ ✗ ✗

[47] P. 3t < n 3f < n 3t < n 3f < n ✗ ✗ ✓ ✗ ✗ ✗

[78] P. 0 0 2t < n 2f < n ✗ ✗ ✓ ✗ ✗ ✗

Basilic (h0 = 2n
3 ) P. 3t < n f < 2n

3
† 3t < n f < n‡ ✗ ✗ ✓ ✗ ✗ ✓

ZLB (h′
0 = 7n

9 ) P. 3t < n f < 2n
3

† 3(q + t) < n, d + t < 5n
9

§
✓¶ d + t < 4n

9 ✓ ✓ ✓ ✓

ZLB (h′
0 = 2n

3 ) P. 3t < n f < 2n
3

† 3(q + t) < n, d + t < 2n
3

§
✓ ✗ ✓ ✓ ✓ ✓

ZLB (h′
0 = 5n

6 ) P. 3t < n f < 2n
3

† 3(q + t) < n, 2(d + t) < n§ ✓¶ 2(d + t) < n ✓ ✓ ✓ ✓

† Actually, 3(d + t) < n and 3(q + t) < n, meaning that if f = ⌈ 2n
3 ⌉ − 2 then t = 0 (Figure 5.3b)

‡ Actually, d + t < 2n
3 and 3(q + t) < n, meaning that if f = n− 2 then t = 0 (Theorem 5.6)

§ In addition to ‡ as it implements on top of Basilic
¶ Membership change solves consensus not just 3-consensus

Table 5.3: Comparative table of ZLB with previous work, where N. means the network assump-
tion (S. for synchrony and P. for partial synchrony), Byz. means Byzantine faults tolerated,
Acc. means accountability, and Act. active accountability.

5.4.7 Experimental evaluation

This section answers the following: Does ZLB offer practical performance in a geo-distributed
environment? When f < n/3, how does ASMR perform compared to the HotStuff state machine
replication that inspired Facebook Libra [183] and the recent fast Red Belly Blockchain [28]?
What is the impact of large scale coalition attacks on the recovery of ASMR? We defer the
evaluation of a zero-loss payment application to Section 5.5.

Selecting the right blockchains for comparison. As we offer a solution for open networks,
we cannot rely on the synchrony assumption made by other blockchains [26]. As we need to
reach consensus, we have to assume an unknown bound on the delay of messages [13], and do
not compare against randomized blockchains [139, 164, 191, 160] whose termination is yet to be
proven [186]. This is why we focus our evaluation on partially synchronous blockchains. We thus
evaluated Facebook Libra [183], however, its performance was limited to 11 transactions per
second, seemingly due to its Move VM overhead. Hence, we omit these results here and focus on
its raw state machine replication (SMR) algorithm, HotStuff and its available C++ code that
was previously shown to lower communication complexity of traditional BFT SMRs [79] (we
use the unchanged original implementation in its default configuration [192]). We also evaluate
the recent scalable Red Belly Blockchain [28] (RBB), and the Polygraph protocol [47] as it is,
as far as we know, the only implemented accountable consensus protocol. Nevertheless, this
protocol does not tolerate more than n/3 failures as it cannot recover after detection.

Geo-distributed experimental settings. We deploy the four systems in two distributed
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Figure 5.6: Throughput of ZLB compared to that of Polygraph [47], HotStuff [79] and Red
Belly Blockchain [23].

settings of c4.xlarge Amazon Web Services (AWS) instances equipped with 4 vCPU and 7.5 GiB
of memory: (i) a LAN with up to 100 machines and (ii) a WAN with up to 90 machines. We
evaluate ZLB with a number of failures f up to ⌈2n

3 ⌉ − 1, however, when not specified we
fix f = d = ⌈5n/9⌉ − 1 and q = 0. Since the impact of selecting a different h′

0 ∈ [2n/3, n]
is negligible in terms of throughput, we fix for this section h′

0 = 7n/9. Notice that for this
threshold we can actually tolerate d < 2n/3 deceitful faults, provided that they are all detected
at the start of the membership change, i.e. dr = 2n/3. This can happen if all attackers collude
together to maximize the number of branches that they can cause a disagreement for, as we do
in our attack. All error bars represent the 95% confidence intervals and the plotted values are
averaged over 3 to 5 runs. All transactions are ∼ 400-byte Bitcoin transactions with ECDSA
signatures [1].

5.4.7.1 ZLB vs. HotStuff, Red Belly and Polygraph

Figure 5.6 compares the performance of ZLB, RBB, Libra and Polygraph deployed over 5
availability zones of 2 continents: California, Oregon, Ohio, Frankfurt and Ireland (exactly like
the Polygraph experiments [47]). For ZLB, we only represent the decision throughput that
reaches 16, 626 tx/sec at n = 90 as the confirmation throughput is similar (16, 492 tx/sec). As
only ZLB tolerates f ≥ n/3, we fix f = 0 for this comparison.

First, Red Belly Blockchain offers the highest throughput. As expected, it outperforms ZLB
due to its lack of accountability: it does not require messages to piggyback certificates to detect
PoFs. Both solutions solve SBC so that they decide more transactions (txs) as the number of
proposals enlarges and use the same batch size of 10, 000 txs per proposal. As a result ASMR
scales pretty well: the cost of tolerating f ≥ n/3 failures even appears negligible at 90 processes.

Second, HotStuff offers the lowest throughput even if it does not verify transactions. Note
that HotStuff is benchmarked with its dedicated clients in their default configuration, they
transmit the proposal to all servers to save bandwidth by having servers exchanging only a
digest of each transaction. The performance is explained by the fact that HotStuff decides
one proposal per consensus instance (i.e. one batch of 10, 000 txs), regardless of the number
of submitted transactions, which is confirmed by previous observations [81]. By contrast, ZLB
becomes faster as n increases to outperform HotStuff by 5.6× at n = 90, thanks to the superblock
optimization that allows ZLB to decide multiple proposals at once per instance of its multi-
valued consensus [23].

Finally, Polygraph is faster at small scale than ZLB, because Polygraph’s distributed veri-
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Figure 5.7: Disagreeing decisions for various uniform delays and for delays generated from a
Gamma distribution and a distribution that draws from observed AWS latencies, when equiv-
ocating while voting for a decision (top), and while broadcasting the proposals (bottom), for
f = d = ⌈5n/9⌉ − 1.

fication and reliable broadcast implementations [47] are not accountable, performing less veri-
fications. From 40 processes on, Polygraph is slower because of our optimizations that remove
redundant verifications and because Polygraph’s RSA verifications are larger than our ECDSA
signatures and consume more bandwidth, even if we implement an accountable reliable broad-
cast in addition to an accountable consensus protocol.

5.4.7.2 Scalability of ZLB despite coalition attacks

To evaluate ZLB under failures, we implemented the following two possible coalition attacks.
In Basilic, faulty processes can form a coalition of f ≥ n/3 processes to lead honest processes
to a disagreement by sending conflicting messages, with one of two coalition attacks:

1. Reliable broadcast attack: faulty processes misbehave during the reliable broadcast
by sending different proposals to different partitions, leading honest processes to end up with
distinct proposals at the same binary consensus index k. For example, faulty processes send
block ba with transaction txa to a subset A of honest processes, while block bb with conflicting
transaction txb to a subset B of honest processes, A ∩B = ∅, both at the same index k.

2. Binary consensus attack: faulty processes vote for each binary value in each of two
partitions for the same binary consensus leading honest processes to decide different bits in the
same index of their bitmask, where deciding 1 (resp. 0) at bitmask index k means to include
(resp. not include) proposal at index k in ZLB. For example, faulty processes send messages to
decide 1 and 0 to a subset of honest processes A, while they send messages to decide 0 and 1 to
a subset B of honest processes, with A ∩ B = ∅, on the binary consensus instances associated
to block ba with transaction txa and block bb with conflicting transaction txb, respectively.

Note that faulty processes do not benefit from combining these attacks: If two honest pro-
cesses deliver different proposals at index k, the disagreement comes from them outputting 1 at
the corresponding binary consensus instance. Similarly, forcing two honest processes to disagree
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during the k-th binary consensus only makes sense if they both have the same corresponding
proposal at index k.

To disrupt communications between partitions of honest processes, we inject random com-
munication delays between partitions based on the uniform and Gamma distributions, and the
AWS delays obtained in previously published measurements traces [193, 194, 28]. (Attackers
communicate normally with each partition.)

Figure 5.7(top) depicts the amount of disagreements as the number of distinct proposals
decided by honest processes, caused by the binary consensus attack. First, we select uniformly
distributed delays between the two partitions of 200, 500 and 1000 milliseconds. Then, we
select delays following a Gamma distribution with parameters taken from previous work [193,
194] and a distribution that randomly samples the fixed latencies previously measured between
AWS regions [28]. We automatically calculate the maximum amount of branches that the size
of deceitful faults can create (i.e., 3 branches for f + d < 5n/9), we then create one partition of
honest processes for each branch, and we apply these delays between any pair of partitions.

Interestingly, we observe that our agreement property is scalable: the greater the number
of processes (maintaining the deceitful ratio), the harder for attackers to cause disagreements.
This scalability phenomenon is due to an unavoidable increase of the communication latency
between attackers as the scale enlarges, which gives relatively more time for the partitions of
honest processes to detect the deceitful processes, hence limiting the number of disagreements.
With more realistic network delays (Gamma distribution and AWS latencies) that are lower in
expectation than the uniform delays, deceitful processes can barely generate a single disagree-
ment. This confirms the scalability of our system.

Figure 5.7(bottom) depicts the amount of disagreements under the reliable broadcast attack.
The number of disagreements is substantially higher during this attack than during the binary
consensus attack. However, it drops faster as the system enlarges, because the attackers expose
themselves earlier.

5.4.7.3 Disagreements due to failures and delays

We now evaluate the impact of even larger coalitions and delays on ZLB. We measure the
number of disagreements as we increase the deceitful ratio and the partition delays in a system
from 20 to 100 processes. Note that these delays could be theoretically achieved with man-
in-the-middle attacks, but are notoriously difficult on real blockchains due to direct peering
between the autonomous systems of mining pools [112].

While ZLB is quite resilient to attacks for realistic but not catastrophic delays (Figure 5.7),
attackers can try to attack when the network collapses for a few seconds between regions. Our
experiments, shown in Figure 5.9, show that attackers can reach up to 52 disagreeing proposals
for a uniform delay of 10 seconds between partitions of honest processes for the binary consensus
attack, and up to 33 disagreements for a uniform delay of 5 seconds, with n = 100. Further
tests showed that the reliable broadcast attack reaches up to 165 disagreeing proposals with a
5-second uniform delay.
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Figure 5.8: (Left to right, top to bottom) Time to detect ⌈n
3 ⌉ deceitful processes, exclude them,

include new processes, per delay distribution and number of processes; and catch up per number
of blocks and processes, with f = d = ⌈5n/9⌉ − 1.
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Figure 5.9: Disagreeing decisions for various catastrophic uniform delays with the binary con-
sensus attack, for f = d = ⌈5n/9⌉ − 1.

5.4.7.4 Time to merge blocks and change members

To have a deeper understanding of the cause of ZLB delays, we measured the time needed
to merge blocks and to change members by replacing deceitful processes by new ones. We
show here the times to locally merge two blocks for different sizes assuming the worst case:
all transactions conflict. This is the time taken in the worst case because processes can merge
proposals that they receive concurrently (i.e., without halting consensus). Our experiments
show that the times to merge two blocks of 100, 1000, and 10000 transactions are 0.55, 4.20 and
41.38 milliseconds, respectively. It is clear that this time to merge blocks locally is negligible
compared to the time it takes to run the consensus protocol.

Figure 5.8 shows the time to detect fd deceitful (top left), and to run the exclusion (top
right) and inclusion (bottom left) consensus, for a variety of delays and numbers of processes.
The time to detect reflects the time from the start of the attack until honest processes de-
tect the attack: If the first fd deceitful processes are forming a coalition together and cause
a disagreement, then the times to detect the first deceitful and the first fd deceitful processes
overlap. (We detect all at the same time.) The time to exclude (57 seconds) is significantly
larger than to include (21 seconds) for large communication delays, due to the proposals of
the exclusion consensus carrying PoFs and leading processes to execute a time consuming cryp-
tographic verification. With shorter communication delays, performance becomes practical.
Finally, Figure 5.8 (bottom right) depicts the time to catch up depending on the number of
proposals (i.e., blocks). As expected, this time increases linearly with the number of processes,
due to the catchup requiring to verify larger certificates, but it remains practical at n = 100
processes. The advantage of using certificates is that processes can catch up by just verifying
certificates, instead of having to verify all transactions in the block that the certificate refers to.

5.5 A Zero-Loss payment application

In this section, we describe how ZLB can be used to implement a zero-loss payment system
where no honest process loses any coin. The key idea is to request the consensus processes to
deposit a sufficient amount of coins in order to spend, in case of an attack, the coins of deceitful
processes to avoid any honest process loss.
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5.5.1 Assumptions

In order to measure the expected impact of a coalition attack succeeding with probability ρ

in forking ZLB by leading a consensus to a disagreement, we first need to make the following
assumptions:

1. Fungible assets. We assume that users can transfer assets (like coins) that are fungible
in that one unit is interchangeable and indistinguishable from another of the same value. An
example of a fungible asset is a cryptocurrency.

This zero-loss payment system can also work with non-fungible tokens (NFTs) and smart
contracts, with the exception that one of the two recipients of the same NFT (or of disagreeing
states) will see their NFT taken back (or their returned state reverted) in exchange for a
previously agreed-upon reimbursement for the inconvenience.

2. Deposit refund. To limit the impact of one successful double-spending on a block,
ZLB keeps the deposit for a number of blocks w, before returning it. A transaction should not
be considered final (i.e. irreversible) until it reaches this blockdepth w. We call thus w the
finalization blockdepth. Attackers can fork into a branches, and try to spend multiple times an
amount G (per block), which we refer to as the gain, obtaining a maximum gain of (a − 1)G.
Each honest process can calculate the gain by summing up all the outputs of all transactions
in their decided block. Additionally, processes can limit the gain to an upper-bound by design,
discarding blocks whose sum of outputs exceeds the bound, or they can allow the gain to be
as much as the entire circulating supply of assets. The deposit D is a factor of the gain, i.e.,
D = b ·G. The goal is for every coalition to have at least D deposited, and since every coalition
has at least size ⌈n/3⌉, this means that each process must deposit an amount 3bG/n.

3. Network control restriction. Once faulty processes select the disjoint subsets (i.e.,
the partitions) of honest processes to suffer the disagreement, we need to prevent faulty pro-
cesses from communicating infinitely faster than honest processes in different partitions. More
formally, let X1 (resp. X2) be the random variables that indicate the time it takes for a mes-
sage between two processes within the same partition (resp. two honest processes from different
partitions). We have E(X1)/E(X2) > ε, for some ε > 0. Note that the definition of X1 also
implies that it is the random variable of the communication time of either two honest processes
of the same partition or two faulty processes. This probabilistic synchrony assumption is simi-
lar to that of other blockchains (e.g. Bitcoin) that guarantee exponentially fast convergence, a
result that also holds for ZLB under the same assumptions. In the following, we show an anal-
ysis focusing on the attack at each consensus iteration, considering a successful disagreement
if there is a fork in a single consensus instance, even for a short period of time. We discuss in
Section 5.5.3 the use of a random beacon for committee sortition in order to satisfy zero loss in
a partially synchronous communication network.
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5.5.2 Theoretical analysis

We show that attackers always fund at least as much as they steal. For ease of exposition,
we consider that a membership change starts before the deposit is refunded or does not start,
giving an advantage to the adversary in this analysis compared to the real scenario. Therefore,
the attack represents a Bernoulli trial that succeeds with probability ρ (per block) that can be
derived from ε. Out of one attack attempt, the attackers may gain up to (a − 1)G coins by
forking into a branches, or lose at least D coins as a punishment, which can be used to fund
the stolen funds from successful attacks.

We introduce the random variable Y that measures the number of attempts for an attack
to succeed and follows a geometric distribution with mean E(Y ) = 1−ρ̂

ρ̂ , where ρ̂ = 1 − ρ is
the probability that the attack fails. Thus, we define the expected gain of attacking: G(ρ̂) =
(a − 1) · (P(Y > w) · G) , and the expected punishment as: P(ρ̂) = P(Y ≤ w) · D. We can
then define the expected deposit flux per attack attempt as the difference ξ = P(ρ̂) − G(ρ̂).
Theorem 5.13 shows the values for which ZLB yields zero loss.

Theorem 5.13 (Zero-Loss Payment System). Let ρ be the probability of success of an attack
per block, D the minimum deposit per coalition expressed as a factor of the upper-bound on
the gain D = bG, and w the finalization blockdepth to return the deposit. If g(a, b, ρ, w) =
(1− ρw+1)b− (a− 1)ρw+1 ≥ 0 then ZLB implements a zero-loss payment system.

Proof. Recall that the maximum gain of a successful attack is G · (a−1), and the expected gain
G(ρ̂) and punishment P(ρ̂) for the attackers in a disagreement attempt are as follows:

G(ρ̂) =(a− 1) · (P(Y > w) ·G) = (a− 1) · (ρw+1 ·G),
P(ρ̂) =P(Y ≤ w) ·D = (1− ρw+1)D = (1− ρw+1)bG.

Thus the deposit flux ξ = P(ρ̂)− G(ρ̂):

ξ =
(
(1− ρw+1)b− (a− 1)ρw+1)G = g(a, b, ρ, w)G.

If ξ < 0 then a cost of G(ρ̂) − P(ρ̂) is incurred to the system, otherwise the punishment is
enough to fund the conflicts. Since the gain is non-negative G ≥ 0, it follows that g(a, b, ρ, w) ≥ 0
for ξ ≥ 0, obtaining zero loss.

Note that without some form of synchrony, the probability of success of an attack is ρ = 1
and thus no collateral is ever enough to satisfy zero-loss. This is because the attackers can always
ensure that they perform the attack and retrieve back their collateral before they are caught by
any correct process. On the other end, a fully synchronous assumption means a probability of
success of ρ = 0 if the collateral is returned only after correct processes ensure they have waited
enough time to have detected a hypothetical disagreement. This is why probabilistic synchrony
not only is a better representation of reality (in which the network can often be influenced by
not perfectly controlled neither by correct processes nor by the adversary), but also the one
that enables this analysis here outlined.
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Figure 5.10: Minimum finalization blockdepth w to obtain zero loss for D = G/10, f = d =
⌈5n/9⌉ − 1 and q = 0.

5.5.2.1 Finalization blockdepth and deposit size

Setting c = b
a−1+b , we can either calculate the probability ρ ≤ c

1
w+1 of success for an attack

that ZLB tolerates given a finalization blockdepth w, or a needed finalization blockdepth w ≥
log(c)
log(ρ) − 1 for a probability ρ to yield zero loss, once we fix the deposit D and upper-bound the
gain G. For example, for δ = 0.5 then a = 3, and for a probability ρ = 0.55, a finalization
blockdepth of w = 4 blocks guarantees zero loss even if the deposit is a tenth of the maximum
gain D = G/10, but with ρ = 0.9 then w = 28. Whereas a increases polynomially with ρ, it
increases exponentially as the deceitful ratio δ approaches the asymptotic limit 2/3, leading to
w = 37 blocks for δ = 0.6, while w = 46 for δ = 0.64, or w = 58 for δ = 0.66, with ρ = 0.9 and
D = G/10 (Figure D.1.1).

5.5.2.2 Experimental evaluation of the payment system

Taking the experimental results of Section 5.4.7 and based on our aforementioned theoretical
analysis, Figure 5.10 depicts the minimum required finalization blockdepth w for a variety of
uniform communication delays for D = G/10, f = d = ⌈5n/9⌉ − 1 and q = 0. Again, we can
see that the finalization blockdepth decreases with the number of processes, confirming that
the zero loss property scales well. Additionally, small uniform delays yield zero loss at smaller
values of w, with all of them yielding w < 5 blocks for n > 80. Although omitted in the figure,
our experiments showed that even for a uniform delay of 10 seconds, setting w = 50 blocks
(resp. w = 168 blocks) still yields zero loss in the case of a binary consensus attack (resp.
reliable broadcast attack). Nevertheless, if the network performs normally, ZLB will support
large values of f , and will actually benefit from attacks, obtaining more than enough funds to
cover the stolen amount.

5.5.3 Discussion on probabilistic synchrony

We assumed probabilistic synchrony in Section 5.5 in order to introduce a probability of failure
of an attack per consensus iteration. In partial synchrony, since the committee remains static
until fraudsters are identified, the adversary can successfully perform an attack with probability
of success ρ = 1. There are, however, other factors that could influence the probability ρ even
in partial synchrony. For example, considering a blockdepth w ≥ 1, the implementation of a
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random beacon [26] that replaces the committee in every iteration can decrease the probability
of success of an attack. In such a case, the probability of an attack succeeding depends on the
probability that the random beacon selects enough processes of the coalition (and enough of
each of the partitions of honest processes) for w + 1 consecutive iterations, so that the coalition
is able to perform the attack for w additional blocks. The design and proof of a random beacon
that tolerates coalitions of sizes greater than tℓ is part of Chapter 6.

5.6 Summary

In this chapter, we extended the Trap protocol and results from Chapter 4 by presenting the
BDB failure model. We then presented the Basilic class of protocols, that is resilient-optimal for
the problem of consensus in both the BFT and BDB model, and optimal in the communication
complexity, thanks to the active accountability property that states that deceitful behavior does
not prevent liveness. We also showed that the Basilic class of consensus protocols solves the
3-consensus problem in the BDB model for d + t < h0 and q + t ≤ n − h0, with h0 ∈ (n/2, n]
being the initial voting threshold.

We then presented ZLB, a blockchain that tolerates a majority of faults. To this end, we
first presented the LLB problem, to then detail ZLB and prove ZLB’s correctness. Following, we
built and evaluated ZLB against a majority of attackers, and compared it with previous works,
offering competitive performance. We finally presented a zero-loss payment application built
on top of ZLB that guarantees that no honest process or user loses any fund from temporary
disagreements.

The motivation for ZLB and Basilic comes from the need to extend the tolerance to stronger
adversaries as presented by Trap in Chapter 4, not only for consensus, but to the problem of
blockchains, or repeated consensus. However, both in Chapter 4 and in the zero-loss payment
application of this chapter, we identified that a random beacon can mitigate disagreement
attacks or even prevent them, thanks to attackers being replaced in the committee. This is
what motivates Chapter 6 of this dissertation, the design of a novel random beacon that can be
used for committee sortition.
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Chapter 6

Kleroterion+, Randomness With
Colluding Majorities

Our results from previous chapters make an effort in tolerating faults or deviations of more than
tℓ participants. While these results are particularly relevant for blockchains, the results of these
chapters do not apply yet to blockchains without synchrony, in that Chapter 4 considers a single-
shot consensus and Chapter 5 needs to at least assume probabilistic synchrony to guarantee
zero loss. In this chapter, we first show that a protocol for committee sortition implemented
with a random beacon protocol allows for adopting the results from these chapters to repeated
consensus in partial synchrony. For this reason, we first propose Kleroterion, a novel random
beacon protocol that modifies the recent SPURT random beacon protocol [31] to make it more
scalable. Kleroterion exchanges a number of bits per network channel independent of the size
of the participants in the protocol per random output, except for one message of size n sent by
the leader of the epoch and for the reconstruction phase, and without requiring a trusted setup.
Then, we build Kleroterion+, an extension of Kleroterion that trades some of the optimizations
of Kleroterion for tolerating colluding majorities.

Summary. In summary, we present the following contributions in this chapter:

1. We outline the need for a random beacon for committee sortition by analyzing the results
from Chapters 4 and 5.

2. We explore the implications of sorting the committee for Platypus, Trap, and ZLB.

3. We propose Kleroterion, a democratic random beacon protocol, and Pinakion, a protocol
for PVSS that is used by Kleroterion.

4. We formulate the random beacon problem tolerating coalitions of up to ts processes by
stating the secure random beacon (SRB) problem, and the same for the PVSS problem
with the accountable PVSS (APVSS) problem.

5. We present Kleroterion+ and Pinakion+, a secure random beacon protocol and APVSS
protocol, respectively.
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6. We analyze the security of Kleroterion+ for committee sortition in a blockchain application
and compare it with the state of the art.

Chapter outline. In Section 6.1 we analyze the results of previous chapters for blockchains
without synchrony and justify the need for a random beacon. Section 6.2 presents Kleroterion,
a democratic random beacon with quadratic communication complexity and constant per route
complexity for commitment and aggregation, and Pinakion, our novel PVSS protocol. We
extend Kleroterion to tolerate colluding majorities in Section 6.3, where we first state the SRB
and APVSS problems, by presenting Kleroterion+ and Pinakion+. We analyze the implications
of using Kleroterion+ for blockchains and compare it with the state of the art in Section 6.4.
Section 6.5 concludes the chapter.

6.1 The need for a random beacon

We justify in this section the need for a random beacon for blockchains based on BFT consensus
without synchrony.

6.1.1 The need to depreciate future iterations

Suppose a coalition that contains some rational players (or deceitful faults) and is able to cause
a disagreement. Let there be an attack of this coalition that lasts for x blocks. The (maximum)
total gain at block i for the coalition is ∀i, Gi = G. We first consider that all decided blocks
are finalized with a finalization blockdepth of w = 1. We consider a discount factor per block
β ∈ [0, 1) that decreases the gain for future iterations. Therefore, the expected gain of the
attack lasting for x blocks is:

x−1∑
i=0

βi(i + 1)G (6.1)

Similarly, the attack can last forever by setting the limit: limx→∞
∑x−1

i=0 βi(i+1)G = ∑∞
i=0 βi(i+

1)G It is easy to see that β < 1 since otherwise the expected gain does not converge and tends
to ∞. The discount factor β is generally close to 1 in a normal system without attacks, due to
the time value of money1. However, the time value of money does not suffice to make β low
enough to depreciate the impact of an attack that lasts for future consensus iterations.

As such, we need to decrease the expected gain from future iterations by increasing the
probability that the attackers will be caught, so that either rational players will not deviate
(robustness), or, even if all processes are deceitful and Byzantine and deviate, then the slashed
amount will fund the stolen assets (zero loss).

Hence, the results from Chapters 4 and 5 can be applied to blockchains without synchrony
by devising ways of iteratively knocking down future iterations through a discount factor β.
Unfortunately, these chapters do not provide a discount factor in partial synchrony that en-
sures that the expected gain from causing a disagreement converges such that the reward can

1https://en.wikipedia.org/wiki/Time_value_of_money

https://en.wikipedia.org/wiki/Time_value_of_money
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implement a baiting strategy or satisfy zero loss, other than the fact that β will be 0 after GST
(because honest processes will see the disagreement).

We explore in Section 6.1.2 how one can obtain such discount factor in partial synchrony
with a committee sortition protocol.

6.1.2 Depreciating future iterations with a random beacon

We assume that there is a committee sortition protocol that is random and sorts a new com-
mittee at the end of each consensus iteration.

Suppose a coalition C of size |C| = cm players out of a pool of all users m that can be
selected for the committee. At the beginning of each consensus iteration i, the committee
sortition protocol selects n < m processes that compose the committee for that iteration, we
refer to the set of this committee as Ni, and we abuse notation by referring to N for the
committee of the current consensus iteration. Let cn describe the number of colluding processes
in C that are part of the current committee N . Suppose that in the current consensus iteration
cn > tℓ = ⌈n/3⌉− 1. It is clear that, in the partially synchronous model, the discount factor for
the next consensus iteration is at most Pr(cn > tℓ), i.e. the probability of the next committee
containing at least tℓ + 1 faults (for a finalization blockdepth w = 1). This is because if in the
next iteration cn ≤ tℓ then the attackers cannot continue causing a disagreement, and thus by
accountability they will be caught before honest processes terminate this next iteration. Hence,
we calculate this probability:

Pr(cn = j) =
(
cm

j

)(m−cm

n−j

)(m
n

)
Pr(cn > tℓ) = 1− Pr(cn ≤ tℓ) = 1−

j≤tℓ∑
j=0

Pr(cn = j)

= 1−
j≤tℓ∑
j=0

(
cm

j

)(m−cm

n−j

)(m
n

)
It is worth noting that if cm ≥ h (where h ∈ (n/2, n] is the voting threshold, e.g. h = 2n/3)

in one iteration then attackers can virtually generate infinite disagreements in that iteration (i.e.
the number of branches a of the disagreement is only bounded by the number of users), but we
show in Section 6.3 that this probability is negligible and should never occur if the committee
size is big enough, depending on the percentage of users controlled by the adversary.

Notice that it is actually not enough for the coalition to sustain the proportional size of the
committee for the next block, i.e. β ⪇ Pr(cn > tℓ). In fact, for an equivocation attack into
a different decisions (i.e. a branches of a fork), it is necessary to split the remaining honest
processes into Pa partitions such that in each of the iterations there are enough honest processes
of each partition to reach the voting threshold h and finalize the disagreement (Theorem 5.8).
This is because if an honest process pi is sent the disagreeing branch deriving from a partition
P1, and then selected for the next committee and given a block that extends the branch from
a different partition P2, pi will not contribute to extending the branch for the partition P2,
hindering the attack and facilitating detecting attackers.
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This way, the partition must guarantee that enough members of each partition are selected
in each of the consecutive consensus iterations for the attack to proceed in all partitions. Let
Pr(|Pin | ≥ h−j) be the probability that the proportional size of the partition Pi in the committee
of size n is greater or equal to h−j, then the actual value of β is upper bounded by the following
function fβ(a):

fβ(a) =
h−1∑
j>tℓ

Pr(cn = j) ·
a−1∏
i=0

Pr(|Pin | ≥ h− j) +
n∑

j=h

Pr(cn = j) = (6.2)

=
h−1∑
j>tℓ

(
cm

j

)(m−cm

n−j

)(m
n

) ·
a−1∏
i=0

Pr(|Pin | ≥ h− j) +
n∑

j=h

(
cm

j

)(m−cm

n−j

)(m
n

)
We further unfold this equation for the case a = 2 with two partitions Am and Bm, with
cm + |Am|+ |Bm| = m:

β ⪇fβ(2) =
h−1∑
j>tℓ

n−(h−j)−j∑
k=h−j

(
cm

j

)(
|Am|

k

)(m−cm−|Am|
n−j−k

)(m
n

) +
n∑

j=h

(
cm

j

)(m−cm

n−j

)(m
n

)
Notice the previous example does not give the value of |Am|, in particular, as long as Am and
Bm are disjoint, both |Am| ≥ h− j,|Bm| ≥ h− j and also |Am|+ |Bm|+ cm = m, any partition
of honest processes into these two subsets would suffice. We also assume that cm > n for ease
of exposition. We explore any subset of honest players of size m−cm

2 to make Am, with the
remaining honest processes constituting Bm.

As such, we define the random variable Y that yields the number of blocks that an attack
lasts for before being detected. It is immediate that Pr(Y = j) = fβ(a)j(1 − fβ(a)). The
attack represents thus a Bernoulli trial with probability of ρ = fβ(a). As a result, Y follows a
geometric distribution with mean E(Y ) = 1−ρ̂

ρ̂ blocks, where ρ̂ = 1 − ρ is the probability that
the attack fails.

The expected gain G(ρ̂) from an attack like this for w = 1 is thus:

G(ρ̂) =
∑
j≥w

Pr(Y = j)j(a− 1) ·G (6.3)

G(ρ̂) =
∑
j≥w

fβ(a)j(1− fβ(a))j(a− 1) ·G (6.4)

Pipelining attacks. We also assume a deposit D as defined in Section 5.5.2. Contrary to the
analysis based on probabilistic synchrony from Section 5.5.2, in this model attackers will always
be identified in the first iteration that does not continue with the disagreement (i.e. the first
iteration such that cn < tℓ), and thus attackers maximize their gain by pipelining attacks.

Attackers pipeline attacks by overlapping finalizing an attack with starting a new one for
w > 0. This means that if an attack starts at block i, and it must last for w until the (i + w)-th
block in order to be finalized, then the (i + 1)-th block helps finalize i-th block at the same
time that it starts a new attack that will be finalized at the (i + w + 1)-th block. We show then
Equation 6.3 for any w ≥ 0:

G(ρ̂) =
∑
j≥w

fβ(a)j(1− fβ(a))(j − w + 1)(a− 1) ·G
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where j − w + 1 represents the pipelined attacks, and a the number of branches in each of
the pipelined, attacked consensus iterations. If instead j < w then G(ρ̂) = 0. Once attackers are
caught then they will lose exactly D = bG, b > 0. Therefore, the deposit flux ξ (Section 5.5.2)
results to:

ξ = D− G(ρ̂) =
(

b−
∑
j≥w

fβ(a)j(1− fβ(a))(j − w + 1)(a− 1)
)
·G (6.5)

Implications to zero loss and rational agreement. As already noted (Section 5.5.2), if
ξ > 0 in Equation 6.5 then we obtain zero loss from a committee sortition protocol without
assuming probabilistic synchrony. Instead, if ξ < 0 but r > |ξ| where r is the expected reward
from exposing a disagreement, then the system can implement Trap’s baiting strategy for the
repeated consensus problem of blockchains, and not just for a single-shot consensus. This shows
that a random beacon can be used to implement a committee sortition protocol such that the
results from Trap and ZLB apply to blockchains without synchrony. For an analysis of why we
focus on committee sortition based on random beacons and not for example on deterministic
rotation or an election protocol, we refer to our explanation of the advantages of random beacons
and dangers of these other rotation protocols in Section 2.1.5.

A random beacon for offchains. Since offchain protocols must rely on the blockchain that
they are attached to (the parentchain), this means that protocols like Platypus (Chapter 3) can
implement a childchain that solves LLB while guaranteeing zero loss as defined in Chapter 5,
and that is (k, t)-robust and (k + t, t)-crash-robust for n > max

(
3
2k + 3t, 2(k + t)

)
. For this

result, Platypus can implement a committee sortition protocol that uses the parentchain as a
trusted mediator to randomly rotate the committee, and tweak the aforementioned values so
that ξ > 0 (for zero loss in the BDB model), or instead r > |ξ| if ξ ≤ 0 (for ϵ-(k, t)-robustness).

A random beacon without a mediator. To the best of our knowledge, there is no committee
sortition protocol that preserves its properties in the presence of a coalition of attackers of size
greater than tℓ, without assuming a trusted third party, or synchronous communications. We
present in the following Kleroterion, our proposal for a random beacon protocol that tolerates
up to tℓ Byzantine faults, to then extend it to Kleroterion+, a random beacon that tolerates
a colluding majority. We then showcase how to design a committee sortition protocol using
instead Kleroterion+.

6.2 Kleroterion: a democratic random beacon

We present now Kleroterion, our proposal that solves the random beacon problem. Kleroterion
solves the random beacon problem by executing n instances (one per process of the committee)
of a PVSS protocol, which we refer to as Pinakion and show in Section 6.2.2, followed by a
consensus protocol that selects tℓ + 1 of the n secrets shared by the n instances of Pinakion.
This is similar to how AABC instances select a number of AARB delivered values in Figure 5.2,
except that instead of n AARB and n AABC instances, Kleroterion executes n Pinakion in-
stances and one multi-valued consensus protocol (without a reduction to n binary consensus
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instances), respectively. Even though it only executes one instance of a multi-valued consensus
protocol, Kleroterion is still democratic (following its definition in Section 2.2.9), as the inputs
are provided from different processes (given the n Pinakion instances).

We extend our model in Section 6.2.1. We show in Section 6.2.2 our PVSS protocol Pinakion.
Section 6.2.3 shows the Kleroterion random beacon protocol, and Section 6.2.4 shows optimiza-
tions and observations for the Kleroterion protocol.

6.2.1 Additional model

Let G0, G1 and GT be cyclic groups of prime order q and Zq the group of integer modulo q,
and let λ be the security parameter such that λ = log2(q). We assume that at the start of
the protocol, all processes agree on public parameters g0, h0 ∈ G0 and g1, h1 ∈ G1, which are
uniformly randomly and independently chosen generators of each cyclic group. This is known
as a common reference string (CRS) setup. We iteratively execute our random beacon protocol,
Kleroterion, with a static committee N of size |N | = n.

Bilinear pairings. Similarly to previous work [31], we rely on the decisional bilinear Diffie-
Hellman assumption [195] (DBDH), for which we assume the reader is familiar with the standard
definition of computationally indistinguishable distribution ensembles [196, 197]:

Definition 6.2.1 (Bilinear pairing). Let G0, G1 and GT be three cyclic groups of prime order
q where g0 ∈ G0 and g1 ∈ G1 are generators. A pairing is an efficiently computable function
e : G0 ×G1 → GT satisfying the following properties:

1. bilinearity: For all u, u′ ∈ G0 and v, v′ ∈ G1 we have:

e(u · u′, v) = e(u, v) · e(u′, v), and
e(u, v · v′) = e(u, v) · e(u, v′)

2. non-degeneracy: gT = e(g0, g1) is a generator of GT .

We refer to G0 and G1 as the pairing groups or source groups, and refer to GT as the target
group.

Definition 6.2.2 (Decisional bilinear Diffie-Hellman). Given pairing groups G0, G1, target
group GT , each of size q, let e : G0×G1 → GT be an efficient bilinear pairing map. For generators
g0 ∈ G0, g1 ∈ G1, random values α, β, γ, δ

$←− Zq and a0 ←− gα
0 , a1 ←− gα

1 , b0 ←− gβ
0 , b1 ←− gγ

1 , the
following distributions D0 and D1 are computationally indistinguishable:

D0 = (a0, a1, b0, b1, e(g0, g1)αβγ)
D1 = (a0, a1, b0, b1, e(g0, g1)δ)

In order to implement the Kleroterion protocol, we will use a variant of Shamir’s threshold
secret sharing [198] to implement a variant of the publicly-verifiable secret sharing (PVSS)
ΠDBDH protocol [31]. We define threshold secret sharing here below, and our PVSS, Pinakion,
in Section 6.2.2.
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Zero knowledge proof of knowledge. Our Kleroterion protocol uses zero-knowledge proofs
about equality of discrete logarithms in order to satisfy knowledge soundness, in that processes
know the secret that they each are sharing. This guarantees to honest processes that their
shared secrets are independent of any other shared secret.

In particular, given a CRS setup as mentioned above, x ∈ G0, y ∈ G1, each process pi wants
to prove that there exists a witness α such that x = gα

0 and y = gα
1 , and that pi knows α.

Thus, in addition to bilinear pairings, we use the non-interactive version of the Chaum-
Pedersen Σ-protocol in the random oracle model [199, 200, 201], a standard cryptographic
assumption of a perfect, uniformly random hash function (although in practice this will only
be possible to implement pseudo-randomly). The knowledge soundness of this protocol implies
that if pi convinces an honest process pj with non-negligible probability, there exists an efficient
(polynomial time) extractor that can extract α from pi with non-negligible probability. Let
us denote by dleq the call to a non-interactive version of the Chaum-Pedersen protocol, such
that dleq.Prove(α, g0, x, g1, y) generates the proof π and dleq.Verify(π, g0, x, g1, y) verifies the
proof [31].

Threshold secret sharing. A (t, n)-threshold secret sharing scheme allows a process, known
as the dealer, to share a secret s ∈ Zq with n other processes, such that any t + 1 of them can
reconstruct the message, but no t of them can. Analogously to SPURT [31], we also base off
Shamir’s secret sharing [198] scheme, in which a secret s ∈ Zq is embedded in a polynomial p(·)
of degree t such that p(0) = a0 = s. The remaining t coefficients {ai}ti=1 are chosen uniformly
at random being thus p(x) = ∑t

i=0 aix
i.

The dealer then shares with process pi the evaluation of p(i). One can efficiently reconstruct
the polynomial using Lagrange interpolation upon obtaining t+1 evaluations of p(x). Moreover,
an adversary cannot learn the secret with any t or less evaluations of p(x), except with the same
probability of randomly guessing the secret.

Adversary. We let the adversary M control f = t ≤ tℓ Byzantine processes for Kleroterion,
increasing the tolerance to faults to ts for Kleroterion+ in Section 6.3.

6.2.2 The Pinakion protocol

In this section, we illustrate our Pinakion protocol that solves PVSS. We extend SPURT’s [31]
ΠDBDH PVSS. The setup phase is the same to that of ΠDBDH [31]:
PVSS.Setup(1λ)→ (g0, h0, g1, h1, (ski, pki)): The setup algorithm chooses uniform random and
independent generators g0, h0 ∈ G0 and g1, h1 ∈ G1 and publishes them in a trusted PKI
(which is only used in this step). Each process pi also generates a secret key ski ∈ Zq and
public key pki = hski

0 , and publishes pki in the public ledger.
Algorithm 13 illustrates the rest of the Pinakion protocol. After the setup phase, the dealer

pd selects a secret s to share. For this purpose, processes select a polynomial p(x) of degree tℓ

whose coefficients have been chosen uniformly at random from Zq, such that p(0) = s (line 9).
Then, pd computes secret shares p(j) ∀j ∈ [n]\{i} which it encrypts with the public key of the
recipient cj,d = pk

p(j)
j , obtaining the vector cd (line 11). Additionally, pd also computes a non-
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interactive zero-knowledge proof vector vd such that vj,d = g
p(j)
1 that serves as a commitment

to the secret shares and to verify the validity of the encrypted shares cd (lines 12-14).

Algorithm 13 Pinakion protocol with dealer pd

1: State:
2: g0, h0 ∈ G0; g1, h1 ∈ G1, uniformly random and independent generators
3: ski ∈ Zq secret key of pi

4: pkj = h
skj

0 public key of pj , for j ∈ [n]
5: S = e(hs

0, h1), secret that process pd shares, with s
$←− Zq

6: Pinakion.Share: � executed by pd

7: for j ∈ [1, tℓ] do
8: ak

$←− Zq

9: p(x)← s + a1x + ... + atℓ xtℓ

10: for j ∈ [0, n− 1] do
11: cj,d ← pk

p(j)
j � encrypt with pj ’s public key

12: vj,d ← g
p(j)
1

13: vd ← {v0,d, v1,d, ..., vn−1,d}
14: cd ← {c0,d, c1,d, ..., cn−1,d}
15: RBV-broadcast({vd, cd}) � distribution & Verification

16: Pinakion.Reconstruction: � executed by each pi

17: shares ← {}
18: when (pi RBV-delivers {vd, cd}) do
19: si,d ← c

1/ski
i,d � decrypt secret share

20: broadcast(si,d) � broadcast secret share

21: when (sj,d is delivered) do
22: if (Pinakion.check(h0, vj,d, sj,d, g1)) then shares[j]← sj,d

23: if (size(shares) > tℓ) then
24: hs

0 ← Pinakion.interpolate(h0, h1, shares) � reconstruct
25: return(e(hs

0, h1))

26: Pinakion.check(a, b, c, d):
27: return e(a, b) = e(c, d)

Following, in line 15 process pd calls RBV-broadcast with the commitments and encrypted
shares (vd, cd). The RBV-broadcast protocol is almost identical to the reliable broadcast proto-
col outlined by recent works [162, 23, 163]. The only modification we add is for honest processes
to only deliver a message containing cd and vd from pi if the verification of Pinakion checks in
the calls to Pinakion.verify. We call this variant reliable broadcast with verification (RBV). We
show in Algorithm 14 the RBV-broadcast protocol, which consists of an accountable reliable
broadcast that covers the distribution and verification steps of the Pinakion protocol. In this
case, pd RBV-broadcasts the list of shares cd and zero-knowledge proofs vd. Our RBV-broadcast
protocol ensures that honest processes only RBV-deliver values that pass the verification, along
with the mentioned properties of reliable broadcast [163, 23] (Section 2.2.6.1).

As such, Algorithm 13 presents one major modification compared with SPURT’s ΠDBDH

protocol, in that instead of relying on the leader to share the same value to all processes, we
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require all processes to reliably broadcast their inputs. This modification allows the random
beacon that we propose in Section 6.2.3 to use one bit to reference each input (one per process),
while ensuring all honest processes store locally the same value without the need for a leader
broadcasting a digest of the secret shared as input.

Notice that processes verify all messages as soon as they are received and discard all messages
that do not pass the verification. We outline in Algorithm 14 the straw man approach, omitting
immediate optimizations, such as not verifying messages that were already verified, or only
sharing the hash of the message in all broadcast except for the INITIAL message. We refer to
previous work for more details on these optimizations [23, 28].

The verification shown in Pinakion.verify reuses properties of error-correcting code already
used in SPURT [31]. We however restate the properties of the verification step, particularly
that sharing a secret s using a degree tℓ polynomial among n processes is equivalent to encoding
the message (x, a1, a2, ..., atℓ

) using a [n, tℓ + 1, n− tℓ] Reed-Solomon code C [202, 203], where
a [n, k, d] linear error correcting code over Zq of length n, minimum distance d and dimension
k. Also, we define C⊥ as the dual code of C i.e., C⊥ consists of vectors x⊥ ∈ Zn

q such that for
all x ∈ C, x · x⊥ = 0 where · is the inner product operation. The call to Pinakion.verify uses the
result of Lemma 6.1 on linear error correcting code, proved by Cascudo et al. [143].

Lemma 6.1. If x ∈ Zn
q \C, and y⊥ is chosen uniformly at random from C⊥, then the probability

that x · y⊥ = 1 is exactly 1/q.

Finally, once process pj RBV-delivers the values (vd, cd), it decrypts its secret share and
broadcasts it in line 20. Then, it waits until it delivers at least another tℓ valid decrypted
secret shares to reconstruct the secret using Lagrange interpolation in line 24, finalizing the
reconstruction of the secret. All received decrypted shares have to first pass a simpler check than
the verification at the RBV-broadcast, represented in the call to Pinakion.check(h0, vj,d, sj,d, g1)
in line 22, which consists of checking whether e(a, b) = e(c, d). Honest processes construct hs

0
in the call to Pinakion.interpolate using Lagrange interpolation:∏

k∈T

(sk,d)µk =
∏
k∈T

h
µk·p(k)
0 = hp(0) (6.6)

where T is the set of processes from which pi received valid decrypted shares, |T | > tℓ, and
µk =

∏
j ̸=k

j
j−k are the Lagrange coefficients [31].

6.2.3 The (unoptimized) Kleroterion protocol

In this section, we detail the Kleroterion protocol shown in Algorithm 16. As we show in
Figure 6.1, the Kleroterion protocol generates a random output by first running n executions
of the Pinakion protocol, one per process. However, instead of having each Pinakion execution
terminate independently, we execute an instance of consensus in order to have processes decide
on tℓ + 1 inputs before reconstructing them, that is, before processes know the exact value
associated with each execution of Pinakion. After deciding on exactly tℓ + 1 secrets, honest
processes reconstruct and then aggregate these tℓ + 1 secrets to generate the random output.
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Algorithm 14 RBV-broadcast
1: State:
2: g0, h0 ∈ G0; g1, h1 ∈ G1, uniformly random and independent generators
3: ski ∈ Zq secret key of pi

4: pkj = h
skj

0 public key of pj , for j ∈ [n]

5: RBV-broadcast({vd, cd}): � executed by pd

6: if (Pinakion.verify(g1, {pk}n
j=1, {vd, cd})) then � verification

7: broadcast(INITIAL, {vd, cd}) � broadcast to all

8: Upon receiving a message (INITIAL, {vd, cd}) from pd do
9: if (Pinakion.verify(g1, {pk}n

j=1, {vd, cd})) then � verification
10: broadcast(ECHO, {vd, cd}, j) � echo to all

11: Upon receiving n− tℓ distinct (ECHO, {vd, cd}, j) and not having sent any READY do
12: if (Pinakion.verify(g1, {pk}n

j=1, {vd, cd})) then � verification
13: broadcast(READY, {vd, cd}, j) � send READY to all

14: Upon receiving tℓ + 1 distinct (READY, {vd, cd}, j) and not having sent any READY do
15: if (Pinakion.verify(g1, {pk}n

j=1, {vd, cd})) then � verification
16: broadcast(READY, {vd, cd}, j) � send READY to all

17: Upon receiving n− tℓ distinct (READY, {vd, cd}, j) and not having RBV-delivered any message do
18: if (Pinakion.verify(g1, {pk}n

j=1, {vd, cd})) then � verification
19: return({vd, cd}) � deliver and send READY to all

20: Pinakion.verify(g1, {pk}n
j=1, {v, c}):

21: x⊥ $←− C⊥

22: if (Πj∈[n]v
x⊥

j

j ̸= 1G1 ) then return False

23: for j ∈ [n] do
24: if (not Pinakion.check(pkj , vj , cj , g1)) then return False

25: return True



6.2 Kleroterion: a democratic random beacon 147

p0 : v0 RBV0 : v0
p1 : v1 RBV1 : v1
p2 : v2 RBV2 : v2
p3 : v3 RBV3 : v3

pi calls Pinakion.Sharep

consensus

epoch leader proposes bitmask

epoch leader p0,

bitmask : 1101
Kleroterion.aggregate(v0, v1, v3)

agree on bitmask aggregate selected inputs
Kleroterion

Figure 6.1: Kleroterion execution example with n = 4 processes. First, each process pi selects
their input value vi (we omit secret shares and reconstruction for simplicity), which they share
with everyone executing their respective instance of RBV-broadcast as part of their respective
call to Pinakion.Share. Then, processes execute one leader-based consensus protocol that pro-
ceeds in epochs (HotStuff), in which the leader proposes a bitmask of n bits, with Hamming
weight tℓ + 1. Upon deciding on a bitmask, processes reconstruct and aggregate the tℓ + 1 input
secrets whose associated bit of the bitmask decided to 1.

For the consensus protocol, we use the variant of HotStuff proposed by SPURT [31, 125],
for nearly-simultaneous decision, i.e. all processes learn the decision within two message delays.
This protocol proceeds in epochs, with a rotating leader per epoch that proposes a value to
decide, as we show in Algorithm 15. Thus, this variant differs from HotStuff only in that
processes broadcast their signed PREPARE, PRECOMMIT and COMMIT messages, instead of
sending them to the leader. As a result, this variant preserves the safety and liveness properties
of HotStuff, as well as its responsiveness property [125] (i.e. outputs are generated at the real
network latency and not necessarily at ∆).

However, contrary to SPURT, we do not require the leader of an epoch to propose to the
rest a digest of his proposed secrets. Instead, leaders propose to decide on a bitmask of n bits,
in which the i-th bit is associated with the secret shared by process pi in a call of Pinakion.share.
The bits that are set to 1 are secrets that will be used for the aggregation, while those set to 0
are not to be used for the aggregation. Honest processes only contribute to consensus in epochs
whose proposed bitmask contains exactly tℓ +1 bits set to 1, so that exactly tℓ +1 shared secrets
are aggregated into the final output. We refer to the number of bits set to 1 of a bitmask as its
Hamming weight.

As such, the leader for this round starts participating in an epoch of the consensus protocol
only if it first RBV-delivers tℓ + 1 values from the n previous RBV-broadcast executed. Then,
it proposes a bitmask in which all associated bits to these tℓ + 1 values are set to 1, and the rest
to 0. The rest of the processes execute then an exact copy of the SPURT variant of HotStuff,
in which they only participate in that epoch if the Hamming weight of the proposed bitmask is
tℓ + 1 and they RBV-delivered the tℓ + 1 associated secrets.

Once an honest process decides on a bitmask, it decrypts its share of each of the tℓ + 1
decided secrets (line 20) and invokes Kleroterion.Reconstruct(decided_secrets, decrypted_shares)
with its decrypted shares and the decided vectors in order to reconstruct each of the secrets
and aggregate them into one final random output. We illustrate the decision of the secrets with
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Algorithm 15 Steady state of a modified HotStuff [125] protocol presented by Das et al. [31]
that does not use threshold signatures and has a bit complexity O(|ζ|n2) per decision ζ.
Let r be the current epoch and L be its leader. Also, let ht− 1 be the latest finalized iteration
of the protocol.

• Propose. L proposes a value ζ to be finalized at height ht by sending
⟨PROPOSE, ζ, r, ht, X⟩ message to all the processes. X is the view change certificate
(if any) that validates that the proposal is safe.

• Prepare. Each process pj , upon receiving the proposal, checks whether the proposal is
consistent with HotStuff specifications using X, and P (ζ) is true for an external predicate
P (ů). If both checks pass, process pj sends ⟨PREPARE, ζ, r, ht⟩ to all processes.

• Pre-Commit. Upon receiving 2tℓ + 1 PREPARE messages for the proposal ζ at height
ht and epoch r, process pj sends ⟨PRECOMMIT, ζ, r, ht⟩ message to every process.

• Commit. Upon receiving 2t + 1 PRECOMMIT messages for the proposal ζ at height ht

and epoch r, pj broadcasts ⟨COMMIT, ζ, r, ht⟩.

• Each process outputs ζ upon receiving 2t + 1 COMMIT messages corresponding to ζ.

which to compute the random output in Algorithm 16, which integrates thus the share and
verification steps of the Pinakion protocol into Kleroterion.

Setup. The Kleroterion protocol’s setup phase thus consists of both SPURT’s consensus pro-
tocol’s and Pinakion’s setup phases. That is, the setup phase of Kleroterion takes part with
the creation of the keys of each process at the beginning of the Kleroterion protocol, stored in
a PKI (which is not used later), along with the aforementioned CRS setup. These keys and the
rest of values can be reused in all iterations of the random beacon, with the exception of the
randomly chosen polynomial coefficients, which must vary in each execution [31].

Share and decide. The call to Pinakion.Share in line 6 creates a random input per in-
stance of Pinakion, and RBV-broadcasts the secret shares and commitments of the random
input. However, in this case each process also computes and shares their dleq proofs πi,j =
dleq.Prove(g1, vi,j , pkj , ci,j , pi(j)) in the call to Pinakion.Share, where pi(j) is the share of pi’s se-
cret for process pj . Process pi then RBV-broadcasts {vi, ci, πi}, and each process pj verifies the
dleq proof by calling dleq.Verify(πi,j , pkj , ci,j , g1, vi,j) when delivering messages from pi, instead
of calling Pinakion.check, as this call becomes redundant with dleq.Verify [31]. This guaran-
tees that the secrets of honest processes are independent of all other secrets by the knowledge
soundness property.

Once process pi RBV-delivers tℓ + 1 proposals (line 30), and if pi is the leader of this epoch,
then pi starts the respective consensus with the intention to decide 1 on such proposals (line 16),
selecting the secrets with which to compute the final random output. If a process pi is not the
leader of this epoch but pi receives a bitmask proposed from the leader in this epoch, then pi

checks whether pi RBV-delivered all the proposed secrets associated to the bitmask (line 17). If
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it does, then it contributes to reaching consensus in this epoch. Otherwise, it does not respond
in this epoch.

Once the consensus protocol terminates deciding a bitmask, process pi waits until it RBV-
delivers the proposals associated with each bit set to 1 in line 24. This can happen if consensus
terminated without the participation of pi. Following, pi decrypts its corresponding secret
share of each decided secret in line 27. Finally, pi calls Kleroterion.Reconstruct (line 28) with its
decrypted shares and list of decided proposals, and returns the random output resulted from
the call to Kleroterion.Aggregate (line 29) which aggregates the decided reconstructed secrets.
Honest processes can then return the computed final random output of this iteration of the
random beacon, and start the next iteration.

Algorithm 16 Kleroterion.Decide for process pi

1: State:
2: g0, h0 ∈ G0; g1, h1 ∈ G1, uniformly random and independent generators
3: ski ∈ Zq secret key of pi

4: pkj = h
skj

0 public key of pj , for j ∈ [n]

5: s
$←− Zq

6: Pinakion.Share(s) � create and RBV-broadcast secret
7: repeat:
8: if (consensus.epoch_leader() = pi) then
9: if (|proposalsi| ≥ tℓ + 1) then

10: bitmask ← {}
11: k = 0
12: while |bitmask| < n do
13: if (k ∈ proposalsi.keys() and Hamming_weight(bitmask) < tℓ + 1) then
14: bitmask[k]← 1
15: k ← k + 1
16: ⟨PROPOSE, bitmask, consensus.epoch, ht, X⟩

17: else if (received ⟨PROPOSE, bitmask, r, ht, X⟩ and consensus.epoch = r) then
18: if (j ∈ proposalsi.keys()∀j s.t. bitmask[j] = 1 and

∑
j

bitmask[j] = tℓ + 1) then
19: contribute to consensus in epoch r

20: until consensus.finished() � tℓ + 1 secrets chosen

21: decrypted_shares ← {}
22: decided_secrets ← {}
23: for each j s.t. consensus.decision[j] = 1 do � for each decided secret
24: wait_until(proposalsi [j] ̸= ⊥)
25: cj ← proposalsi [j]
26: decided_secrets[j]← proposalsi[j]
27: decrypted_shares[j]← c

1/ski
i,j � decrypt pi’s share

28: decisions ← Kleroterion.Reconstruct(decided_secrets, decrypted_shares) � reconstruct
29: return Kleroterion.Aggregate(decisions) � aggregate into random output

30: when pi RBV-delivers {vj, cj, πj} do:
31: proposalsi [j]← cj

Reconstruct and aggregate. After terminating consensus, the reconstruction phase starts
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to reconstruct the corresponding tℓ + 1 decided secrets. We show in Algorithm 17 the call to
Kleroterion.Reconstruct. First, pi broadcasts its decrypted shares of the decided secrets in line 7.
Upon receiving a list of decided secrets and decrypted shares from pj , pi verifies them in the
call to Kleroterion.Verify (line 11). Kleroterion.Verify checks first that the local and delivered list
of decided secrets is the same (line 17) and that each decrypted share passes the Pinakion.check
(line 20) previously described. If the received message verifies, then its decrypted shares are
added to the list of decrypted shares (line 12), which is used to reconstruct all the decided
secrets with the call to Kleroterion.MultipleRecon (line 14) once the list contains at least tℓ + 1
decrypted shares for each secret. The call to Kleroterion.MultipleRecon gathers all the decrypted
shares (line 27) for each secret and reconstructs them calling Pinakion.interpolate in line 28.

Algorithm 17 Kleroterion.Reconstruct for process pi

1: State:
2: g0, h0 ∈ G0; g1, h1 ∈ G1, uniformly random and independent generators
3: ski ∈ Zq secret key of pi

4: pkj = h
skj

0 public key of pj , for j ∈ [n]
5: decided_secretsi, list of decided encrypted secret shares of pi

6: decrypted_sharesi, list of decided decrypted shares of pi

7: broadcast(decrypted_shares)
8: list_decrypted_shares ← {}
9: random_outputs ← ⊥

10: Upon receiving {decided_secretsj , decrypted_sharesj} from pj:
11: if (Kleroterion.verify(decided_secretsj , decrypted_sharesj , h0, g1) and random_outputs = ⊥) then
12: list_decrypted_shares[j]← decrypted_sharesj

13: if (size(list_decrypted_shares) > tℓ) then � enough to reconstruct
14: random_outputs ← Kleroterion.MultipleRecon(h1, h0, list_decrypted_shares)
15: if (random_outputs ̸= ⊥) then return random_outputs

16: Kleroterion.verify(decided_secretsj , decrypted_sharesj , h0, g1):
17: if (decided_secretsj ̸= decided_secretsi) then return False � different secrets

18: for each sj,k in decrypted_sharesj do
19: vj,k ← decided_secrets[j].vj [k]
20: if (not Pinakion.check(h0, vj,k, sj,k, g1)) then return False

21: return True

22: Kleroterion.MultipleRecon(h1, h0, list_decrypted_shares, decided_secrets):
23: random_outputs ← {}
24: for k in decided_secrets.keys() do
25: aux← {}
26: for j in list_decrypted_shares.keys() do � for each secret
27: aux[j]← list_decrypted_shares[j][k] � gather all decrypted shares

28: random_outputs[k]← Pinakion.interpolate(h0, h1, aux) � reconstruct

29: return random_outputs
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6.2.3.1 Proofs of correctness

The Pinakion protocol shown in Section 6.2.2 is an instantiation of SPURT’s ΠDBDH in which
the broadcast primitive is replaced by our RBV-broadcast protocol. Similarly, our RBV-
Broadcast is almost identical to the implementation by Bracha et al. [162], with the only
modification that processes only deliver a value if it passes the verification step from ΠDBDH .
The proofs of Pinakion solving the PVSS problem and of RBV-broadcast solving the reliable
broadcast problem are thus equivalent to the proofs of these two previous works. Liveness of
both reliable broadcast and PVSS are subject to the dealer (or source) being honest, meaning
that replacing the broadcast primitive by our RBV-broadcast preserves liveness. On the safety
side, RBV-broadcast further enhances safety thanks to the rest of the properties of reliable
broadcast compared with a general broadcast primitive.

The same occurs with Kleroterion. The only additional difference between the above-shown
unoptimized Kleroterion and SPURT is that while in SPURT the leader of the epoch shares a
digest of the tℓ + 1 selected shares, in Kleroterion the leader shares a bitmask with Hamming
weight tℓ + 1, that associates each bit to a particular secret RBV-broadcast by each process.
We thus need to prove only that if an honest process decides a bitmask in an epoch r, then
all honest processes eventually reconstruct and output the same final random output from that
epoch. We show this in Lemma 6.2. But before that, we show first that Kleroterion solves SBC
(Definition 2.2.4).

Theorem 6.1. Kleroterion solves SBC.

Proof. SBC-Agreement derives from RB-Unicity, RB-Receive and the agreement property of
the HotStuff protocol. That is, by the agreement property of HotStuff all processes agree on
the bitmask. By RB-Unicity and RB-Receive all processes agree on the values that the bits set
to 1 of the bitmask refer to.

SBC-Termination derives from RB-Send and the termination property of HotStuff. By RB-
Send all processes eventually deliver at least the n − tℓ values shared by honest processes. If
honest processes keep trying different bitmasks when they are the leader of an epoch, eventually
there is an epoch after GST whose leader is honest,and proposes RBV-delivered values that have
been RBV-delivered by all other honest processes. Processes can terminate in that epoch.

SBC-Validity and SBC-Nontriviality are trivial as the decision is a bitmask of proposals.

Lemma 6.2. Suppose an honest process decides a bitmask bitmask in epoch r, let I be the set
of decrypted polynomials referenced by the bits of bitmask set to 1, and let p̂ be the aggregated
polynomial p̂(·) = ∑

i∈I pi(·). Then, every honest process outputs e(ha
0, h1) where a ∈ Zq, for

a = p̂(0).

Proof. For an honest process to terminate in epoch r, at least tℓ+1 honest processes participated
in the consensus protocol in r. By construction, honest processes only participate in an epoch of
the consensus protocol if they have first RBV-delivered all the values referenced by the bitmask,
and if the Hamming weight of the bitmask is exactly tℓ + 1. Also by construction, an honest
process only RBV-delivers a share of secrets if it passes the verification step.
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By Theorem 6.1, all honest processes will eventually decide on the same bitmask and all
honest processes will eventually RBV-deliver all the values associated with each bit of the
bitmask set to 1.

As a result, except with negligible probability, the degree of p̂(·) is at most tℓ. This is because
any polynomial of degree greater than tℓ passes the verification step of RBV-broadcast with
probability only 1/q; hence, the probability that it passes the check at tℓ + 1 honest processes
is
(2tℓ+1

tℓ+1
) 1

qtℓ+1 ≤ 1
q , which is negligible [31].

Every honest process pj that participated in consensus holds the witness h
skj ·p̂(j)
0 if the

dleq.Verify check passed [31]. Thus, at least tℓ+1 honest processes will broadcast their decrypted
shares during the reconstruction such that anyone can verify them.

Finally, after performing Lagrange interpolation over the exponent with these tℓ + 1 de-
crypted shares (which pass the equality check [31]), honest processes can recover the beacon
output e(hp̂(0)

0 , h1).

Lemma 6.2 is our analogous result of SPURT’s Lemma 2 [31]. We refer to SPURT for the
rest of the proofs of correctness, as they are identical. We analyze in Section 6.2.3.2 the com-
plexities of an unoptimized Kleroterion, and provide optimizations that reduce the complexity
of Kleroterion to O(n2) per decision, with the advantage of scattering the shared bits through-
out all pairwise channels of the network (instead of channels to and from the leader, as is the
case for non-democratic protocols like SPURT).

6.2.3.2 Complexities of naive Kleroterion

Table 6.1 shows the time, computational, message and bit complexities of unoptimized imple-
mentations Kleroterion, Pinakion, and RBV-broadcast protocols. The RBV-broadcast protocol
requires each n processes to broadcast to all n processes the n encrypted secret shares, meaning
a message of size O(λ ·n), which needs to be verified for each of its elements. Pinakion provides
the same complexities, as the bottleneck of Pinakion is the RBV-broadcast. The Kleroterion
protocol runs n concurrent executions of Pinakion, increasing message and bit complexities by a
linear factor compared to Pinakion’s complexities. The HotStuff protocol’s message complexity
is O(n2). However, SPURT’s variant requires all processes to broadcast messages in order to
satisfy nearly-simultaneous decision, instead of sending messages to the leader for aggregation.
As a result, this variant has message complexity O(n3), and since the proposal is a bitmask of
n bits, the resulting bit complexity is O(n4). The bottleneck of naive Kleroterion is thus the
n instances of Pinakion, resulting in a message complexity of O(n3) and a bit complexity of
O(λn4).

6.2.4 Optimizations and observations

The straw man implementation we showed in Section 6.2.3, while correct, is suboptimal com-
pared with SPURT. We detail here the optimizations that decrease the bit complexity of Klero-
terion from O(λn4) to O(λn2) per decision. Furthermore, we observe in this section that
Kleroterion is in fact better suited to be implemented in WANs (e.g. the Internet) than other
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Complexities
Protocol Time Message Bit
Naive RBV-broadcast O(1) O(n2) O(λn3)
Naive Pinakion O(1) O(n2) O(λn3)
Naive Consensus O(tℓ) O(n3) O(n4)
Naive Kleroterion O(tℓ) O(n3) O(λn4)

Table 6.1: Time, computational, message and bit complexities of naive RBV-broadcast,
Pinakion and Kleroterion.

PVSS-based random beacons with the same bit complexity, as the number of bits processes
send per each channel per decision is independent of the number of participants. In contrast,
SPURT saturates channels to the leader sending O(λn) bits through them. We also observe the
advantages of decoupling the consensus proposal from the actual shared values by proposing a
bitmask, in that the associated bit enables batching.

6.2.4.1 From quartic to quadratic bit complexity

In this section, we show how to reduce Kleroterion’s bit complexity from quartic to quadratic.
For this purpose, we present three optimizations.

Bitmask digest. The first optimization refers to the HotStuff consensus protocol. In order to
reduce the bit complexity, instead of having processes decide on a bitmask of size O(n) bits, the
leader broadcasts the bitmask initially and then proposes a digest of the bitmask, of size O(λ)
bits. This results in a bit complexity of O(λn3) for the consensus protocol, since processes do
not need to broadcast a message of size O(n) but instead only the digest of size O(λ). Honest
processes can still satisfy correctness of the protocol by contributing to reaching consensus only
if they received the bitmask that corresponds to the proposed digest. This is an advantage of
having a leader that proposes the subset of inputs during consensus.

Aggregated inputs. In Algorithm 13, each dealer pd shares a list of secrets cccd and commit-
ments vvvd, with the addition of the vector of dleq proofs πππd for Kleroterion. SPURT requires
all processes to send these vectors to a leader so that it aggregates them, but this saturates
the number of bits sent through the channels to the leader. Furthermore, Kleroterion cannot
aggregate commitments and secrets from different processes, since it does not have a leader that
will receive all these vectors from all processes. As such, instead, Kleroterion requests processes
to generate n secrets per process, and aggregate them locally before sharing, such that process
pi generates n secrets {si,k}k∈[n] and then generates his shares {ci,j,k}k∈[n],j∈[n], commitments
{vi,j,k}k∈[n],j∈[n], and dleq proofs {πi,j,k}k∈[n],j∈[n]. Then, pi aggregates the shares and commit-
ments by multiplying the shares and commitments encrypted with the public key of the same
recipient, for example for process p0 the aggregation of the shares results in ĉi,0 = ∏n−1

k=0 ci,0,k,
and those of the commitment results in v̂i,0 = ∏n−1

k=0 vi,0,k. Following previous terminology [31],
we use ccci,j to refer to all the shares encrypted by process pi with the public key of process pj ,
i.e. ccci,j = {ci,j,k}n−1

k=0 , and the same for vvvi,j and πππi,j . We show the updated RBV-broadcast
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protocol with this optimization in Algorithm 18. Figure 6.2 shows this optimization for process
pd’s secret shares cd,i,k (the same occurs for the commitments vd,i,k). Each column contains
the secret shares of a different new input secret (i.e. sd,i, shown above the matrix). Each row
contains the secret share from each different secret encrypted with the public key of the same
recipient. We use cccd,i to refer then to the secret shares from each secret with the same recipient
pi (i.e. the i-th row of the matrix). Then, ĉd,i is the result of multiplying each value in the
i-th row (i.e. aggregated secret shares by recipient). Finally, ĉd is the list of all the aggregated
secret shares by recipients.

In Figure 6.3, we illustrate the beginning of Algorithm 18, to showcase what pd sends in the
initial message to each process. Note that pd sends to each process a message of size O(n) bits
which contains Ω(n) secret inputs, thanks to the aggregation performed in Figure 6.2.

Algorithm 18 Optimized RBV-broadcast
1: State:
2: g0, h0 ∈ G0; g1, h1 ∈ G1, uniformly random and independent generators
3: ski ∈ Zq secret key of pi

4: pkj = h
skj

0 public key of pj , for j ∈ [n]

5: RBV-broadcast({{cd,j,k}, {vd,j,k}, {πd,j,k}}):
6: for j ∈ [n] do � executed by pd

7: ĉd,j ←
∏

k∈[n] cd,j,k

8: v̂d,j ←
∏

k∈[n] vd,j,k

9: for j ∈ [n] do
10: if (Pinakion.verify(g1, {pkk}, {v̂̂v̂vd, ĉ̂ĉcd})) then � verification
11: send(INITIAL, {v̂̂v̂vd, ĉ̂ĉcd, cccd,j , vvvd,j ,πππd,j}) � dealer broadcasts to all

12: Upon receiving a message (INITIAL, {v̂̂v̂vd, ĉ̂ĉcd, cccd,i, vvvd,i,πππd,i}) from pd do
13: if (Pinakion.verify-opt(g1, {pk}n

j=1, {v̂̂v̂vd, ĉ̂ĉcd, cccd,i, vvvd,i,πππd,i})) then � verification
14: broadcast(ECHO, {v̂̂v̂vd, ĉ̂ĉcd}, i) � echo to all

15: Upon receiving n− tℓ distinct (ECHO, {v̂̂v̂vd, ĉ̂ĉcd}, i) and not having sent any READY do
16: broadcast(READY, {v̂̂v̂vd, ĉ̂ĉcd}, j) � send READY to all

17: Pinakion.verify-opt(g1, {pk}n
j=1, {v̂̂v̂vd, ĉ̂ĉcd, cccd,i, vvvd,i,πππd,i}):

18: x⊥ $←− C⊥

19: if (Πj∈[n]v̂
x⊥

j

d,j ̸= 1G1 ) then return False

20: for j ∈ [n] do
21: if (not dleq.Verify(πd,i,j , pki, cd,i,j , g1, vd,i,j)) then return False

22: if (v̂d,i ̸=
∏

j∈[n] vd,i,j or ĉd,i ̸=
∏

j∈[n] cd,i,j) then return False

23: return True

One can note that it is possible that Byzantine processes broadcast shares that only pass
the local verification of up to tℓ + 1 honest processes. Nevertheless, this is not a problem
because either the consensus protocol terminates with a decided bitmask that contains some
secrets shared by Byzantine processes, which would mean that at least tℓ + 1 honest processes
can decrypt their share and reconstruct all n · (tℓ + 1) shared secrets associated to the decided
bitmask, or instead eventually there is an epoch after GST whose leader is an honest process
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cd,0,0 · · · cd,0,k · · · cd,0,n−1

...
...

...
cd,i,0 · · · cd,i,k · · · cd,i,n−1

...
...

...
cd,n−1,0 · · · cd,n−1,k · · · cd,n−1,n−1





cccd,0 = {cd,0,k}
k∈[n]

;

cccd,i = {cd,i,k}
k∈[n]

;

cccd,n−1 = {cd,n−1,k}
k∈[n]

;

s
d,0 :

s
d,i :

s
d,n−1 : ∏

k∈[n]
cd,0,k = v̂d,0;

∏
k∈[n]

cd,i,k = v̂d,i;

∏
k∈[n]

cd,n−1,k = v̂d,n−1;

ĉ̂ĉcd = {cd,i}
i∈[n]

Figure 6.2: Example of the aggregation of the secret shares {cd,i,k} generated from n secrets
{sd,i}i∈[n] locally by each process pd (the same aggregation occurs for commitments instead of
secret shares).

pd
init

p0

pi

pn − 1
broadcast ⟨echo{v̂̂v̂vd, ĉ̂ĉcd}⟩

{v̂̂v̂vd, ĉ̂ĉcd, cccd,0, vvvd,0,πππd,0}
{v̂̂v̂vd, ĉ̂ĉcd, cccd,i, vvvd,i,πππd,i}

{v̂̂v̂vd, ĉ̂ĉcd, cccd,n−1, vvvd,n−1,πππd,n−1}

Figure 6.3: Example of the beginning of the optimized RBV-broadcast protocol for process pd.

and this honest process proposes a bitmask containing tℓ +1 secrets RBV-delivered by all honest
processes, and in this case the consensus protocol terminates in this epoch. That is, thanks to
the consensus protocol it is impossible for Byzantine processes to prevent termination, or to
decide a result that honest process cannot reconstruct, for tℓ < n/3.

This optimization reduces the bit complexity of Kleroterion to O(λn3) per decision, since
one iteration generates n random outputs. That is, the normalized complexity of Kleroterion is
O(λn3) due to this optimization (see Section 2.2.9).

The optimized RBV-Broadcast showed in Algorithm 18 can be combined with the Kleroterion.Decide
and Kleroterion.Reconstruct functions we showed in Algorithms 16 and 17, respectively, with the
modifications that honest processes verify the correct aggregation of the received decided se-
crets and decrypted shares during the reconstruction, as well as replacing Pinakion.check with
dleq.verify, as we did for Algorithm 18 because of their redundancy [31]. That is, within the call
to Kleroterion.verify of line 11 of Algorithm 17, honest processes also check v̂d,k = ∏

j∈[n] vd,k,j

and ĉd,k = ∏
j∈[n] cd,k,j to verify the received shares from process pk. We now show how to

reduce the bit complexity of Kleroterion to make it quadratic per decision.

Amortized complexity. The final observation that results in the quadratic bit (and message)
complexity of Kleroterion was already noted by previous work [125, 31] in what we define in
Section 2.2.9 as amortized complexity. Since a linear factor of the complexity derives from
the possibility that O(tℓ) leaders are faulty after GST, this means that, in the presence of a
static adversary, for n consecutive executions of Kleroterion, there will be Ω(n) outputs (even
Ω(n2) with the aforementioned aggregated inputs optimization). As a result, the amortized
and normalized bit complexity of Kleroterion is O(λn2), same as the amortized and normalized
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bit complexity of SPURT. We justify in the following the advantages of a democratic protocol
compared with a non-democratic one.

6.2.4.2 Distributing bits and computation

To the best of our knowledge, previous PVSS-based random beacons implement a protocol
that is not democratic, i.e. where all inputs are routed through the leader of the epoch. In
contrast, democratic protocols like Kleroterion distribute inputs across all processes, although
there is still a leader to select the subset of all inputs using a bitmask to reference inputs.
Thus, contrary to previous random beacons based on PVSS [31], the leader of a Kleroterion
epoch only has to share the bitmask, of size O(n) bits (and the digest of size O(λ) bits). We
summarize the distribution of computation and communication of Kleroterion compared to
SPURT in Table 6.2. We omit the reconstruction phase as it is equivalent in both SPURT and
Kleroterion, requiring an exchange of O(λn2) bits (O(λn) per channel) and a computation of
O(n) per process.

Table 6.2: Comparison of normalized and amortized bit complexity per each pairwise channel of
the network, and computational complexity per process, in SPURT [31] and Kleroterion, after
GST.

Phase Computation Bits per channel
Leader Non-leaders Leader Non-leaders

SP
U

RT Commitment O(n) O(n) O(λn) O(λ)
Aggregation O(n2) - - -
Agreement O(n) O(n) O(λn) O(λ)

K
le

ro
te

rio
n-

Commitment O(n) O(n) O(λ) O(λ)
Aggregation O(n) O(n) O(λ) O(λ)
Agreement O(n) O(n) O(n) O(λ)

Distributing communication. For the case of SPURT, since the leader needs to perform the
aggregations of each share of secrets, the channels to the leader transfer O(λn) bits per decision,
all with the same recipient. Then, the leader computes the aggregated values, outputting also
O(λn) bits to each process. With the aforementioned optimizations, Kleroterion only sends
O(λ) bits per pairwise channel per decision, and distributes the verification and computation
of aggregated values, also decreasing the computation complexity, as we show later.

This distinction means that the bandwidth of the network routes from and to the leader of
SPURT and other non-democratic protocols will be the bottleneck of these protocols, whereas
Kleroterion exploits all pairwise channels of the network. Recent results prove that consensus
protocols with comparable bit complexity but lower per route complexity perform at significantly
greater throughputs than their non-democratic counterparts (Section 2.2.9). Notice also that
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the O(n) bits sent by the leader during the agreement phase of Kleroterion enables batching,
as we discuss later in Section 6.2.4.3.

Distributing computation. The democratic approach of Kleroterion also helps distributing
computation between processes (Section 2.2.9). In particular, while the commitment phase
requires O(n) exponentiations per decision (same as SPURT), the aggregation differs signifi-
cantly. SPURT requires the leader to verify the PVSS shares from all processes and aggregate
them. As a result, SPURT’s leader performs O(n2) exponentiations per decision to verify all
PVSS shares, and O(n2) multiplications to compute the aggregations, while the rest of n − 1
non-leader processes perform no work waiting for the leader to perform these computations. In
contrast, in Kleroterion each process pi locally aggregates their n secret shares by recipient, and
verify the shares from the n− 1 other processes for which pi is the recipient, resulting in O(n)
exponentiations and aggregations per decision per process, whether that is a leader or not.

Furthermore, the leader of SPURT needs to hash O(n) group elements to compute the
digest that will be decided during the consensus protocol. In contrast, Kleroterion’s digest is
just one hash of a bitmask of O(n) bits. The computational complexities per decision of the
remaining agreement and reconstruction phases, as well as the complexities of publicly verifying
outputs, are the same for Kleroterion and SPURT. This means that Kleroterion also removes
the quadratic computational bottleneck at the leader, in addition to removing the bandwidth
bottleneck at network channels involving the leader.

6.2.4.3 Decoupling proposals from consensus

Another advantage of our construction, that executes first RBV-broadcast and then a consen-
sus that references these RBV-delivered values, is the possibility to make the bitmask of the
consensus decision reference more information than the secret shares of that process. This does
not affect correctness, as processes only decide on tℓ + 1 bits that they can verify and whose
associated data has been reliably broadcast, and there are n− tℓ > tℓ + 1 honest processes.

To motivate this, we present an example where this decoupling is useful is blockchains. In a
blockchain application, processes can decide a superblock [23, 28] (i.e. an union of proposals) by
reliably broadcasting these blocks and then deciding on a bitmask that represents the blocks to
merge into a superblock, as it is the case for many democratic consensus protocols [27, 80, 81,
23, 28]. An example of this is our Basilic class of protocols used by ZLB (Chapter 5) that solves
SBC (Definition 2.2.4). Such a blockchain could benefit from our RBV-broadcast protocol by
implementing a random beacon in the blockchain (e.g. for committee sortition or as a source of
randomness to be used by other services of the system) only at the additional cost of executing
n Pinakion.Share iterations, but reusing the same iteration of consensus already existing in the
blockchain.

As a result, the final complexity of Kleroterion is competitive with that of recent works, with
the advantage that Kleroterion democratization exploits better the computation and bandwidth
resources of the network.
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6.2.5 Benefits of democratic, leader-based protocols
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Cachin et al. [35] A. 1/3 ✗ ✓ ✓ ✓ O(λn2) O(n) O(1) Uniq. th-sig. DKG
RandHerd [36] P. 1/3† ✗ ✓ ✓ ✓ O(λc2 log n)† O(λc2 log n) O(1) PVSS+CoSi DKG
Dfinity [37] S. 1/3 ✗ ✓ ✓ ✓ O(λn2) O(n) O(1) Uniq. th-sig. DKG
Drand [38] S. 1/2 ✗ ✓ ✓ ✓ O(λn2) O(n) O(1) Uniq. th-sig. DKG
HERB [39] P. 1/3 ✗ ✓ ✓ ✓ O(λn4)‡ O(n) O(n) Partial HE DKG
Algorand [26] P. 1/3† ✗ ✓ ≈∗ ✗∗∗ O(λcn)† O(c) O(1) VRF CRS
Bitcoin [1] S. 1/2 ✗ ✓ ≈∗ ✗∗∗ O(λn) very high O(1) Hash func. CRS
Ouroboros [24] S. 1/2 ✗ ✓ ✓ ✓ O(λn4)‡ O(n3) O(n3) PVSS CRS
Scrape [143] S. 1/2 ✗ ✓ ✓ ✓ O(λn4)‡ O(n2) O(n2) PVSS+Bcast. CRS
Hydrand [40] S. 1/3 ✗ ✓ ≈∗ ✓ O(λn2 log n) O(n) O(n) PVSS CRS
RandRunner [144] S. 1/2 ✓ ✓ ≈∗ ✓ O(λn2) VDF O(1) VDF CRS
GRandPiper [145] S. 1/2 ✗ ✓ ≈∗ ✓ O(λn2) O(n2) O(n2) PVSS q-SDH
BRandPiper [145] S. 1/2 ✓ ✓ ✓ ✓ O(λn3) O(n2) O(n2) VSS q-SDH
Nguyen et al.[204] S. 1 ✗ ✗ ✓ ✓ O(n) O(1) O(1) FHE+VRF –
ProofOfDelay[205] S. 1/2 ✗ ✓ ✓ ✓ O(n)§ high O(1) VDF –
No-dealer[41] S. 1/2 ✗ ✓ ✓ ✓ O(n2) O(n2) O(1) Shamir+HE –
SPURT[31] P. 1/3 ✗ ✓ ✓ ✓ O(λn2) O(n2) O(n) PVSS+Pairing CRS
Kleroterion P. 1/3 ✗ ✓ ✓ ✓ O(λn2) O(n) O(n) PVSS+Pairing CRS

† Algorand and Randherd use a randomly sampled committee of size c. This improves scalability at the cost of
slightly reducing fault tolerance [31].
‡ The complexity counting that of their broadcast channel (blockchain) [31].
§ O(n)+ Ethereum [141].
∗ The adversary can withhold inputs and try to compute output which can break unpredictability [206, 31].
∗∗ The adversary can discard undesirable beacon outputs [31].

Table 6.3: Comparison of distributed random beacons [31, 141].

We summarize the state of the art and compare it with Kleroterion in Table 6.3. Contrary
to all previous random beacon protocols, Kleroterion asks each process to locally generate n

inputs, and aggregate their own inputs locally, to then broadcast them. This allows Kleroterion
to relieve SPURT’s strong dependency on the leader’s computation and communication, as seen
in Table 6.2, resulting in as little as a number of bits exchanged per each pair of processes per
decision that is independent of the number of processes running the protocol, except for one
message sent by the leader and for the reconstruction phase.

However, Kleroterion also presents interesting observations compared to more recent leader-
less protocols [79, 31, 27, 80, 81, 28]. The majority of leader-less protocols that we know of
start by having processes exchange their inputs through an all-to-all broadcast, like Kleroterion.
However, unlike Kleroterion and like the Basilic class (Chapter 5), these protocols then execute
one binary consensus instance per input, resulting in a bit complexity of at least Ω(n) for the
combined execution of all binary consensus instances (since there are Ω(n) binary executions,
each exchanging at least Ω(1) bits). By contrast, Kleroterion proceeds instead by executing a
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leader-based consensus to simply propose a digest of a bitmask, providing a proposal of size O(λ)
bits, where λ ≤ n is the security parameter. Although it is possible to create implementations
of leader-less protocols that benefit from a similar optimization [47], Kleroterion emphasizes the
importance of democratizing protocols, and not necessarily removing its leader altogether.

6.3 Kleroterion+: tolerating colluding majorities

We show in this section how to extend Kleroterion to tolerate colluding majorities. For this
reason, we now refer to an adversary that can control t ≤ tℓ Byzantine processes and t + d ≤ ts

Byzantine and deceitful processes as a (tℓ, ts)−bounded adversary.

6.3.1 Secure random beacon and accountable PVSS problems

We define the secure random beacon (SRB) problem and the accountable PVSS (APVSS)
problem in order to tolerate coalitions of size greater than tℓ.

6.3.1.1 Secure random beacon

For cases where tℓ < t + d ≤ ts, with ts = ⌈2n/3⌉ − 1, Kleroterion+ satisfies accountability
instead of agreement [163], along with the rest of the properties of our novel definition of the
secure random beacon problem.

Definition 6.3.1 (Secure random beacon). LetM be a (tℓ, ts)−bounded adversary and λ be a
security parameter. Let a committee N of |N | = n processes execute an epoch based protocol
σ which outputs an output Z ∈ Zq per epoch. Then, σ is an (n,M, λ)−secure random beacon
((n,M, λ)−SRB) protocol if it satisfies all of the following properties with probability at least
1− ϵ(λ):

• Agreement for all epochs where the total number of faulty processes is t + d ≤ tℓ:

– Agreement: All honest processes agree on the same random output Z.

• The following properties for all epochs where t + d ≤ ts, t ≤ tℓ:

– Availability: Every honest process eventually outputs one value Z.

– Verifiability: If an honest process decides Z, then every honest process can verify
it.

– Unpredictability: Before at least ts +1 processes output Z, no process can predict
the value of Z with probability greater than 1/q + ϵ(λ) (i.e. randomly guessing the
secret).

– Bias-resistance: No process can fix some c bits of Z for any epoch with probability
better than ϵ(c) + ϵ(λ).
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– Accountability: If honest processes output different values, then the set Υ of all
verifiable decided outputs contains at most |Υ| ≤ tℓ + 1 outputs, and honest pro-
cesses will identify at least tℓ + 1 faulty processes that are provably guilty of the
disagreement.

In order to consider properties beyond the classical tℓ threshold, we split verifiability into
two properties instead, adding the agreement property, which has been implicitly stated in
some previous works. Additionally, even if faulty processes can cause a disagreement, faulty
processes can neither predict nor bias the decision of each honest process, nor can they make
an honest process decide less or more than one output (before finding about the disagreement
and resolving it). Also, all decided outputs are publicly verifiable.

The additional property of accountability replaces agreement for the epochs where the ad-
versary controls more than tℓ processes, satisfying that honest processes will identify a disagree-
ment and the faulty processes responsible for it. It also limits the disagreement into at most
tℓ + 1 distinct outputs for the same epoch, a result previously shown [46] that we also show in
Theorem 5.8.

6.3.1.2 Accountable PVSS

In this section, we present the accountable PVSS (APVSS) problem, the natural extension of
PVSS when dealing with t + d ≤ ts and t ≤ tℓ faults.

Definition 6.3.2 (Accountable publicly-verifiable secret-sharing). LetM be a (tℓ, ts)−bounded
adversary, and λ be a security parameter, and let a dealer pd share a secret s with n − 1
additional processes following a protocol σ, which has a dealer pd and executes in four different
phases: setup, distribution, verification and reconstruction (See Definition 2.2.6). Then, σ is an
(n,M, λ)-APVSS protocol if it satisfies the following properties:

• Verifiability: If the check in the verification step returns 1, i.e. succeeds, then with
probability at least 1 − ϵ(λ) the encryptions c of a secret s shared by the dealer pd are
valid shares of some secret. Furthermore, if the check in the Reconstruction phase passes
then the communicated values c are indeed the shares of a secret distributed by the dealer.

• Correctness: if pd is honest, then with probability at least 1 − ϵ(λ) the checks in the
verification and reconstruction steps succeed, and honest processes can reconstruct s.

• Secrecy: If pd is honest, then the probability of M learning any information about pd’s
secret s prior to the reconstruction phase is at most ϵ(λ).

• Agreement: If t + d ≤ tℓ, then honest processes do not reconstruct different secrets, even
if pd is faulty, with probability at least 1− ϵ(λ).

• Accountability: If t+d ≤ ts, t ≤ tℓ and honest processes reconstruct different secrets, then
honest processes eventually identify tℓ + 1 processes responsible for such a disagreement,
pd being one of the faulty processes, with probability at least 1 − ϵ(λ). Also, if Υ is the
set of all secrets reconstructed by honest processes, then |Υ| ≤ tℓ + 1.
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The properties of verifiability, correctness and secrecy are common to PVSS schemes. Agree-
ment is an adaptation of the commitment property [145] to the partially synchronous model,
where one cannot rule out non-termination from a Byzantine dealer. We include an additional
property for the APVSS problem, accountability, in order to cope with an adversary controlling
more than tℓ processes. Since we keep the same n, tℓ, ts and λ parameters, in the remainder of
this document we abuse notation by referring to an (n,M, λ)-APVSS protocol as an APVSS
protocol, and to an (n,M, λ)−SRB protocol as an SRB protocol.

6.3.2 Pinakion+ and Kleroterion+

We illustrate here the modifications for Pinakion and Kleroterion in order to solve the APVSS
and SRB problems, in what we call Pinakion+ and Kleroterion+.

Pinakion+. For Pinakion+, we simply add verification to the AARB-broadcast protocol shown
in Algorithm 10. The verification is the same as that of RBV-broadcast, in that all received mes-
sages are discarded unless they pass the call to Pinakion.verify. Following previous terminology,
we refer to this variant as AARBV-broadcast (AARB-broadcast with verification).

Kleroterion+. Similarly to how Kleroterion executes n instances of Pinakion, Kleroterion+

executes n instances of Pinakion+. We also refer to other works on how to modify the consensus
protocol of Algorithm 15 to make it accountable [181, 132]. Although there is no limitation pre-
venting this algorithm from being actively accountable following the same approach as Basilic,
this modification is out of the scope of this dissertation. As a result, for ease of exposition we
simply assume that deceitful faults eventually give up on trying to cause a disagreement and
contribute to reaching consensus. The reconstruction and aggregation remains the same as that
of Kleroterion (except for the reconstruction threshold and number of secrets aggregated, which
increases from tℓ to ts), and is executed after terminating the ASMR consensus instance.

Then, we embed these n instances of Pinakion+ followed by this actively accountable variant
of SPURT’s consensus replacing the ASMR consensus of ZLB, allowing Kleroterion+ to deal
with potential disagreements on the decided secrets analogously to how ZLB merged decisions in
the event of a disagreement in Chapter 5. We explain later in this section how to merge random
outputs in the event of a disagreement in order to preserve unpredictability and bias-resistance.
We use the variant of ZLB that tolerates ts faults, (i.e. h′

0 = 2n/3 as shown in Table 5.3),
although Kleroterion+ can be tweaked in the same way as ZLB to tolerate different properties
and adversaries.

Reconstruction threshold. Since Kleroterion+ must preserve unpredictability and bias-
resistance against an adversary that controls up to ts processes, secrets are embedded in poly-
nomials of degree ts (instead of tℓ as was the case for Kleroterion). This means that secrets can
only be reconstructed upon receiving ts + 1 secret shares. For the same reason, we require the
consensus protocol to decide on and aggregate at least ts + 1 secrets, so that at least one of the
secrets will be shared by an honest process, by increasing the required Hamming weight of the
bitmask proposal to ts + 1. These two modifications ensure that ts faulty processes can neither
predict nor bias the final random output, as at least one of the inputs will remain unknown to
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them until at least one honest process participates in the reconstruction.

Optimizations. The aggregation of O(n) secret-shares per recipient by each dealer performed
in Kleroterion was possible because the consensus algorithm guaranteed that at least tℓ + 1
honest processes had received a valid aggregation, and thanks to the reconstruction requiring
secret shares from only tℓ + 1 processes. Unfortunately, a direct consequence of increasing the
reconstruction threshold in order to require ts + 1 secret shares means that this optimization
is not possible in Kleroterion+. Instead, each process broadcasts all secret shares, and locally
verifies all shares (even if they are not the recipient of the share) of all secrets.

Merging decisions. Since the adversary can now cause a disagreement, in the event of a
disagreement into a branches, an adversary controlling f processes can break unpredictability
and bias-resistance once it receives at least ts + 1 − f decrypted shares from honest processes
in at least ts + 1− f secrets shared by honest processes.

Figure 6.4 is an example attack that an adversaryM controlling more than tℓ of the processes
can perform in order to bias one of the disagreeing outputs. The adversary executes the protocol
normally with one of the honest partitions (A in the example), only with the purpose of learning
the secret inputs shared by A. Then, it changes its input so that the result of aggregating its
new input with the input it learned from A is both predictable and biased, and forces the other
partition B to decide on the output resulting from aggregating these inputs. As a result, the
output of B from Kleroterion+ is not really random, although processes in B will not know
until they find out about the disagreement through accountability.

A variant of the attack can instead target the final output of merging the disagreeing outputs.
Given a function that determines how to merge disagreeing outputs from Kleroterion+,M can
instead target a new input such that the output from merging the disagreeing decisions is the
biased, predictable output.

These two attacks can be prevented by making sure that there is at least a pair of distinct
secrets aggregated for ZA and ZB, one for each, shared by honest processes. For this reason, we
make an additional modification to the consensus protocol: once the leader proposes a bitmask,
processes only decide a proposal if they gather a signature justifying the decision from each
dealer of all values included in the proposal, signing the hash of the list of decided proposals
according to the bitmask, and epoch. Processes thus wait at least ∆ in each phase before
proceeding on to the next. While this modification can impact performance (in that some
bitmasks will include proposals from processes that have become non-responsive), it does not
prevent termination, since eventually there will be an epoch after GST in which all deceitful
processes behave as honest (at least in this branch of a disagreement, or instead after a period
of time), the leader is honest and the leader proposes a list of secrets containing ts + 1 secrets
shared by responsive processes, and thus termination is guaranteed in this epoch.

6.4 Using Kleroterion+ for committee sortition

In this section, we analyze the probability that an adversary will break the randomness of our
random beacon, Kleroterion+, and compare it with the state of the art. In this example, an
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MA B

A ∩B = ∅, partition of honest
Adversary

➀ input sM;
enc(sM) = {vM, cM}

➀ input sA; enc(sA) = {vA, cA}
➀ input sB ;
enc(sB) = {vB, cB}

RBV-broadcastA({vM, cM})

➁
RBV-broadcast({vA, cA})

RBV-broadcast({vA, cA})

➂ consensus
bitmask:{110}

broadcast(sA)

multicast(sM)
➃ ZA = aggr(sM, sA) ➄ change input s′

M
s.t. ZM = aggr(s′

M, sA);
enc(s′

M) = {v′
M, c′

M}

RBV-broadcastB({v′
M , c′

M})

RBV-broadcast({vB, cB})

➅

➆ consensus
bitmask:{110}

broadcast(sb)

multicast(s′
M) ➇ ZB = ZM

Figure 6.4: Example attack on Kleroterion+ by adversary M controlling ts faults with n = 3.
First ➀ each process generates their respective inputs and encrypt them, generating secret
shares and commitments. Then, ➁M RBV-broadcasts its commitments and secret shares only
with process A, and RBV-delivers their commitments and secret shares. Following, ➂M forces
deciding on the bitmask 110 in order to aggregate their input with A’s. Then, ➃ A decides
on a random output ZA derived from aggregating their secret sA with that of M sM. This
means that both A andM have disclosed their inputs to one another. At this point, ➄M can
compute a new input s′

M such that the result of aggregating s′
M and sA is a new biased and

predictable output ZM. Then, M RBV-broadcasts the new commitments and secret shares
only with process B, ➆ forcing decision on the same bitmask 110 during consensus. As a result,
not only do A and B disagree on the output, but B’s output, seemingly random to B, is in
fact ➇ the biased, predictable output ZM. M can instead do the analogous attack so that the
resulting resolution of both outputs upon detecting the disagreements is the desired random
and predictable output ZM.
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output of Kleroterion+ in an iteration i selects the committee for the next iteration i + 1 of
Kleroterion+. Notice then that the membership change from ZLB is executed only to generate an
output in that particular consensus instance (for convergence), but it is instead the Kleroterion+

committee sortition protocol that will select the committee for the following iteration.

Model. In each iteration i of the protocol, there is a committee Ni of size |Ni| = n that
executes the i-th iteration of the random beacon. Processes are selected for the i-th committee
following the output of the (i− 1)-th committee, which selects processes from a set M of users,
of size |M | = m. We refer to the set M as the pool of process candidates.

We define here an output of a random beacon being random if that output is unbiased and
unpredictable. We say that a coalition that breaks one of these properties breaks the randomness
of the output. The Kleroterion+ protocol that we propose in Section 4.3.1 implements a random
committee sortition protocol as per the categorization shown in Section 2.1.5, and thus it can
be vulnerable to a coalition breaking the randomness of the output. However, Kleroterion+

extends the threshold at which the coalition can break the randomness of the output from tℓ +1
to ts +1, significantly decreasing the probability of an adversary biasing or predicting an output.
We assume for the model in this section that cryptography does not break, in order to see the
probabilities of failure of the Kleroterion+ protocol and compare it with other protocols using
comparable cryptographic assumptions.

For this purpose, let us denote with tm and dm the total number of Byzantine and deceitful
processes in the pool of process candidates, respectively, and cm = tm + dm.

6.4.1 Probability of randomness of the random beacon

The random variable X(n, m, cM , j, h) represents the probability that there will be j processes
controlled by the adversary in a committee of size n, given that the total number of processes
is m of which cM are controlled by the adversary. h refers to the voting threshold, which is set
to h = ts + 1. We are interested in making Pr(X > ts) negligible:

Pr(X ≥ h) =
min(cm,n)∑

j=min(cm,h)
X(n, m, cm, j, h) =

min(cm,n)∑
j=min(cm,h)

(cm

j

)(m−cm

n−j

)(m
n

)
This value can be approximated when m is much greater than n [26], by setting pcm = cm

m

with the following binomial cumulative distribution function Y (n, m, pcm , h):

Pr(Y ≥ h) = 1− Pr(Y < h) = 1−
⌊h−1⌋∑
j=0

(
m

j

)
pj
cm

(1− pcm)n−j

Figure 6.5 shows the probability that the adversary breaks the randomness of the random
beacon (i.e. Pr(Y > ts)) for a percentage of faulty processes pcm = cm

m ranging between
0.2 and 29/45 = 0.64̇, and a committee size between 5 and 100 processes (Figure 6.5a), and
also between 100 and 2000 processes (Figure 6.5b). Note that we delimit the lowest value
to be 1

253 = 1.1102230246251565 · 10−16 for convenience, ease of exposition, and because 1016

(a quadrillion) is the order of magnitude of the number of minutes that have passed in the
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Figure 6.5: Probability of the adversary having at least ts + 1 processes in the committee
Pr(Y > ts) per percentage of faulty processes pcm for a variety of committee sizes n (left and
center), and per committee size n for a number of percentages of faulty processes pcm (right).

Universe since the Big Bang 2, meaning that this attack should never happen. Nevertheless,
the probabilities of many of these parameters are even much smaller than this limit of the plot,
reaching it’s lowest value for n = 2000 and pcm = 0.2 for which Pr(Y > ts) < 9·10−446, while for
the same parameters an adversary can violate safety of Algorand with probability 5 · 10−9 [26].
To put it in perspective, 9 · 10−446 is so low that it is more likely that two people randomly
guess the same atom out of all the atoms in the observable universe 5 consecutive times 3.

Additionally, in Figure 6.5c, we show the probability that Pr(Y > ts) per committee size,
given specific percentages of faulty processes pcm . Note that it is evident from Figure 6.5
that as the percentage of faulty processes approaches asymptotically the bound of pcm = 2

3 ,
the probability that the adversary will break the randomness of the random beacon increases
dramatically. For example, for a committee size of n = 1000, if pcm = 0.5 then the probability
Pr(Y > ts) falls within the bound of Pr(Y > ts) ≤ 1

253 , same as for all lower values pcm < 0.5.
However, still for n = 1000, only increasing pcm = 5

9 = 0.5̇ increases the probability to Pr(Y >

ts) = 6.97 · 10−13, while pcm = 0.6 yields Pr(Y > ts) = 9.7 · 10−06, or for pcm = 24
38 ≃ 0.632 then

Pr(Y > ts) = 0.012674, meaning that the output of the beacon will not be random after 100
iterations, in expectation.

In Figure 6.6 we compare the safety of our random beacon to the safety of Algorand. For
this purpose, we check the required committee size n and percentage of faulty processes pcm to
provide the same security that Algorand’s authors provide in their work (figure 3 [26]). We can
see that for the same level of safety of 5 · 10−9, Kleroterion+ resists an adversary controlling a
much greater number of processes, up to 60% of them for just n = 2000, compared with 20% in
Algorand. Similarly, for the same percentage of faulty processes, Kleroterion+ requires a much
smaller size of the committee, with n = 39 for a pcm = 0.2 compared with Algorand’s n = 2000.
This is particularly relevant for Kleroterion+, since that means that, even if the adversary would
control between tℓ + 1 and ts processes in the committee, by accountability the adversary could
only cause a disagreement into at most tℓ + 1 = 13 values for n = 39, all of which would be
unpredictable and bias-resistant, and would eventually converge to just 1 value, also random.

2https://81018.com/universeclock/
3https://www.physicsoftheuniverse.com/numbers.html

https://81018.com/universeclock/
https://www.physicsoftheuniverse.com/numbers.html


166 Chapter 6: Kleroterion+, Randomness With Colluding Majorities

Thus, the added complexity of Kleroterion+ is counteracted by the decrease in the number of
processes in the committee compared to Algorand, in that the number of processes running the
protocol decreases by more than 80%.

6.4.2 Comparison with the state of the art

Note that Figure 6.6 compares the probability of violating safety or liveness of Algorand with
the probability of breaking randomness of the random beacon in Kleroterion+ Pr(Y > ts). A
violation of safety in Algorand means the adversary is able to select the most favorable one
random output from among all the deterministically valid, predictable proposals. The number
of valid proposals range between 1 and 70 for Algorand [26]. In contrast, Kleroterion+’s sortition
is a random committee rotation, meaning that if the adversary can select one output once, it
can select all future random beacon outputs from then on.

Also recall that, as we already showed, if ts ≥ t + d > tℓ then the adversary cannot predict
nor bias outputs, but it could cause a temporary disagreement into at most tℓ + 1 distinct
random outputs, before the disagreement is discovered, resolved, and the adversary is punished.
We also show the probability of this case Pr(Y > tℓ) in Figure 6.6 by fixing this probability to
the same values 5 ·10−9 and 10−14 and comparing the committee size n and percentage of faulty
processes pcm with Algorand. We can see that this case, though more comparable to Algorand’s
violation of safety, still requires a significantly lower committee size than that of Algorand’s
in order to guarantee the same level of safety, with n > 391 for pcm = 0.2 and Pr(Y > tℓ) <

5 · 10−9. If we only consider Byzantine processes for the random variable Y and for pcm , then
the plot Pr(Y > tℓ) shows the probability of losing liveness (availability) of Kleroterion+’s
sortition. Also under this figure, we have the probability of a coalition breaking the randomness
of the random beacon for state-of-the-art sortition protocols based on random beacons such as
SPURT [31], Scrape [143], RandSolomon [141] or Kleroterion (Section 6.2). Also, these works
satisfy neither agreement nor availability with probability Pr(Y > tℓ), and they already do
not satisfy accountability. We thus show a significant improvement of Kleroterion+ compared
with previous works, since it satisfies bias-resistance, unpredictability and accountability with
probability Pr(Y ≤ ts), while it maintains the rest of the properties of the state of the art for
Pr(Y ≤ tℓ).

6.5 Summary

In this chapter, we outlined the importance of randomly sorting the committee for blockchains
and other applications of repeated consensus. We then democratized the recent SPURT proto-
col [31] to improve its performance in what we call the Kleroterion protocol, with the help of our
novel Pinakion protocol for PVSS. Kleroterion exchanges a number of bits per network channel
independent of the size of the participants in the protocol per random output, except for one
message of size n sent by the leader of the epoch and for the reconstruction phase, and without
requiring a trusted setup. Following, we formulated the SRB problem and APVSS problem
and propose Kleroterion+ and Pinakion+ that solve SRB and APVSS, respectively. Finally, we
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Figure 6.6: Minimum committee size per percentage of faulty processes in order to guarantee
a probability of having at least ts + 1 and tℓ + 1 faulty processes in the committee to at most
5 · 10−9 and 10−14, compared with the probability of having a violation of safety or liveness in
Algorand ([26], Figure 3), respectively.

illustrated the security of Kleroterion+ in a blockchain application that uses it for committee
sortition, compared to recent blockchains, random beacons, and committee sortition protocols.

We believe this chapter closes our argument in the quest for a blockchain that delivers
provable guarantees of a level of security and decentralization that, to the best of our knowledge,
has never been reached before in the same model, and with performance competitive to recent
works that provide less security or decentralization. We put together the components of this
so-called ’Blockchain of Oz’ in Chapter 7, concluding this dissertation.
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Chapter 7

Conclusion

In this dissertation, we have taken exciting steps towards narrowing down the space between
the theoretical limitations of blockchains and the solutions that approach them. Our method-
ology has allowed us to maintain a strong bond between our results and previous works both
from science and systems in the real world. The models and problems introduced throughout
this dissertation were strongly motivated by previous, novel results that show vulnerabilities,
attacks and impossibility results, highlighting a balanced compromise between security and
performance. An example of this is our decision to design BFT protocols without strong as-
sumptions like synchrony.

We considered with our protocols the impossibilities and trade-offs that are inherent to
the problems here presented, in most cases reaching the impossibility bound in terms of both
performance and tolerance to faults. Some of our solutions are not only justified and formally
proven and analyzed, but also disruptive and requiring a combined knowledge of game theory,
distributed computing and cryptography. We hope that the works outlined in this dissertation
inspire its readers for future directions.

The combined works of this dissertation provide a blockchain that:

1. tolerates an unprecedented percentage of users controlled by the adversary
while preserving decentralization and randomness with very high probability, thanks
to Kleroterion+’s random beacon and its derived committee sortition, or instead ensures
decentralization through a random beacon protocol that exchanges a number of bits in-
dependent of the size of the participants in the protocol, without requiring a trusted
setup, per network channel and random output, thanks to Kleroterion’s random beacon,

2. ensures that no rational coalition controlling a minority of the committee will succeed
at breaking consensus, thanks to Trap’s baiting and financial component,

3. further enhances security by tolerating almost a supermajority of faults provided
they are heterogeneous and not necessarily all Byzantine faults, thanks to the Basilic class,

4. resolves unlucky cases in which either a majority of rational attackers or more than a
third of irrational (or Byzantine) attackers collude, ensuring that no honest participant
suffers the outcome of the attack, thanks to ZLB and zero loss,
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5. provides scalability measured in its communication and computation complexities rela-
tive to previous works,

6. but also providing trade-offs that allow our protocols to adjust to the level of security
and type of models and performance requirements, such as the Basilic class, the voting
threshold of ZLB’s membership change, or selecting between Kleroterion+ or Kleroterion.

Although we believe that our journey in the making of this dissertation has been fertile, as
we show in the outcome of our research objectives in Section 7.1, and fortunately for researchers
and engineers in the blockchain world, a myriad of questions and research directions remain to
be explored. We list a number of them in Section 7.2, with the goal that a so-called ’marvelous
Blockchain of Oz’ that provably achieves the best possible metrics for all trade-offs in the desired
properties becomes a reality, and not just an empty pledge.

7.1 Outcome of Research Objectives

In this section, we cluster the contributions of this dissertation around the research objectives
previously outlined.

Objective 1: formally define blockchains and its properties

The formal definition of our protocols has been done primarily in Chapter 2, inspired from
previous work. However, we presented in each chapter novel formalizations, problems and
definitions of our own making. Chapter 3 introduces a number of formal definitions, such as
those of the offchain, childchain and sidechains problems. Chapter 4 defines baiting strategies
and the rational agreement problem, as well as an adaption of the asynchronous and synchronous
models of Abraham et al. [71, 72] to partial synchrony, and to the crash-fault model, with
the introduction of crash-robustness, crash-baiting strategies and crash-immunity. Chapter 5
formalizes the Byzantine-deceitful-benign (BDB) model, as well as the Longlasting Blockchain
problem, and additional properties like α-confirmation, awareness, active accountability, or zero
loss. Finally, Chapter 6 introduces the accountable PVSS and secure random beacon problems.

Objective 2: state and formally prove impossibility bounds and trade-offs,
and propose sensible metrics for comparison

Chapter 2 recalls previous impossibility results [207, 11, 13], and states complexity metrics like
the computation and communication complexities. It extends communication complexities to
justify considering normalized and amortized complexities, and per route complexities. It also
proposes qualitative metrics in that our protocols work without synchrony or other strong as-
sumption. Chapter 3 proposes a number of metrics to measure the success of the Lockdown
attack depending on the strength of the adversary and other parameters of the channel network,
such as the Attack Effort Ratio (AER) or the Total Blocked Time (TBT). This chapter also
shows that it is impossible to have a non-trivial offchain protocol without synchrony if f > t1
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or f > t0 in the Byzantine model. Chapter 4 measures the robustness of a protocol by the com-
bination of k rational and t Byzantine players controlled by this adversary. It also measures the
reward and deposit required per upper-bound on the maximum gain from deviating. Addition-
ally, it shows that it is impossible to solve the rational agreement problem without implementing
a baiting strategy. This result is later extended in the crash-fault rational model, posing an
interesting trade-off in that protocols that are resilient-optimal in the crash-fault model do not
tolerate even one rational player in addition to these crash faults. Similarly, Chapter 5 mea-
sures the security of a consensus protocol in the BDB model by its tolerance to a combination
of t Byzantine, d deceitful and q benign faults, while also proving that it is impossible to solve
consensus in the BDB model if n ≤ 3t + d + 2q. Furthermore, an interesting trade-off derives in
that protocols must commit to a specific voting threshold h ∈ (n/2, n], tolerating then at most
d + t < 2h − n and q + t ≤ n − h faults. Our Zero-loss Blockchain (ZLB) then proposes three
different settings depending on the voting threshold that are resilient-optimal in the properties
they guarantee, each with its own advantages and drawbacks. Finally, Chapter 6 proposes
two versions of our random beacon, and analyzes its advantages and drawbacks, as well as it
proposes a metric to compare with previous works in an application to committee sortition.

Objective 3: design and prove solutions with competitive metrics and bounds

Chapter 3 proposes Platypus, an offchain protocol without synchrony, and shows that its com-
munication complexity is lower or comparable to consensus protocols in the same model. Chap-
ter 4 shows that Trap is an ϵ-(k, t)-robust consensus protocol for n > max(3

2k + 3t, 2(k + t)).
We also show in the same chapter that Trap is also ϵ-(k + t, t)-crash-robust for the same values
of k and t. Chapter 5 proves the optimal resilience of the Basilic class of consensus protocols
in both the BDB and the Byzantine failure models, while also proving its optimal communi-
cation complexity as proven for accountable consensus protocols [181]. Building upon different
protocols from the Basilic class, ZLB also proves to be a blockchain that tolerates a colluding
majority while being resilient-optimal in the Byzantine fault model. We also analyze in the
same chapter the models in which ZLB solves the properties of awareness, α-confirmation and
zero loss. We show in Chapter 6 that our Kleroterion protocol is a resilient-optimal random
beacon protocol that exchanges a number of bits per network channel independent of the size
of the participants in the protocol without requiring a trusted setup, providing a significant
improvement with respect to previous work. Finally, our analysis in Chapter 6 shows that
Kleroterion+ offers an unprecedented level of decentralization for blockchains, given that the
probability that an adversary controlling even half of the coins of the network will be able to
break the randomness in order to select the committee is lower than 10−9 for a committee size
of n = 300 processes.

Objective 4: implement and test proposed solutions in a real environment

Chapter 3 shows the results from implementing the Lockdown attack on the official Lightning
Network testnet, while specifying that the only reason why the attack was not performed in the
mainnet was for ethical concerns that might impact real applications of the mainnet. At the
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same time, we performed a responsible disclosure to the developers of the LN implementations.
Then, we showed the results of a replicated topology derived from a snapshot of the network,
for further results. Chapter 5 shows the empirical results of implementing ZLB and Basilic
and testing them in two distributed settings. Chapter 5 also shows results with a simulation of
various numbers of attackers trying to cause a disagreement and artificially injecting commu-
nication delays between partitions of honest processes, validating the performance and security
of the claimed results. Unfortunately, the time constraint and wide range of proposed projects
led us to focus on formalizing, proving and specifying first all of our aforementioned protocols.
As a result, we left the implementation of some of our protocols as part of our future work, as
we list in Section 7.2.

7.2 Future Work

Implement all protocols. We took a sensible decision to focus on the formalization, design,
and proofs of all of these protocols before implementing them. Although the results presented in
this dissertation are extensive and justified, the time constraint prevented us from implementing
and testing them all, which we set as key goals for future work. It is important to note that
testing these protocols requires of careful consideration, such as modeling rational behavior in
an implementation of rational players, or testing multiple parameters like the number and per-
centage of users controlled by the adversary in a committee sortition application of Kleroterion
and Kleroterion+, which may lead to multiple future works.

Improve robustness of Trap thanks to Pinakion+. The results of this dissertation feed
one another in ways that we had not foreseen at the beginning of each of them. One of these
instances is the fact that our Pinakion+ solving APVSS can be used to replace the BFTCR
protocol of the baiting component of our Trap consensus protocol, potentially improving its
robustness beyond its current bound of less than half of Byzantine faults and rational players.

Study variants of Kleroterion+. Kleroterion+ showcases an unprecedented level of random-
ness at a cost on performance and without improving liveness. We argue in Appendix E that
it would be interesting to study the performance of our proposed approach with an equivalent
implementation that instead runs multiple parallel executions of smaller committees. Similarly,
we believe a study of Kleroterion+ in the BDB model with a varying threshold to be of great
interest for blockchains.

Measure democratic and leader-less protocols. Another instance of our projects bene-
fiting from one another is the recent discussion that gave way to Kleroterion and Kleroterion+

implementing a democratic, leader-based consensus protocol instead of a leader-less one. This
leads to an interesting research question on the advantages and drawbacks of both approaches,
which makes for compelling future work.

Integrate these results with additional properties. Although we focused here on the
core properties of blockchains, we do not mention other properties that are relevant to many
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applications. Examples of these are supporting smart contracts and its implications, totally or-
dering transactions (i.e. Byzantine ordered consensus [208]), or preventing proposal duplication
in democratic protocols [27]. Although we conjecture these properties to be orthogonal to our
protocols, a proper system that integrates them makes an interesting research direction.

Integrating all protocols into one system. We believe that the solutions presented in
this dissertation, after being improved, implemented and tested, and the orthogonal techniques
that provide interesting properties, must converge towards an implementation of one system
that provides a number of customizable parameters depending on the application. This system
would benefit from the decentralization of Kleroterion+ or Kleroterion, the security provided
by Trap, Basilic, and ZLB, and support for hierarchies of consensus thanks to Platypus, and
a competitive level of scalability that can be improved for specific applications that can relax
the security assumptions. We design all of our protocols with a system like this one in mind,
the so-called ’Blockchain of Oz’.
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Notations

General

N committee of participants executing the protocol
n n = |N | committee size
pi a process of the committee pi

M the adversary
tℓ classical bound for Byzantine fault tolerance tℓ = ⌈n

3 ⌉ − 1
ts ts = ⌈2n

3 ⌉ − 1
f total number of faulty processes
t number of Byzantine processes

Layer-2 without synchrony

θ expiration blockheight of a payment
δ decremental value of θ per hop of a payment

Tmax maximum locking time of a payment (measured in number of blocks)
CAB capacity of channel between A and B

oAB balance of A in channel between A and B

Ω blockchain
Γ offchain protocol
Ψ childchain

MΨ set of users in Ψ
mΨ size of MΨ

NΨ set of processes in Ψ’s committee
nΨ size of NΨ

t0 maximum number of tolerated Byzantine faults in blockchain, i.e. t0 = ⌈nΩ/3⌉ − 1
t1 maximum number of tolerated Byzantine faults in childchain, i.e. t0 = ⌈nΨ/3⌉ − 1
h0 threshold of signatures to create childchain

φ(¢i, δi) function that takes a coin and a time and returns the owner
γ(z) function that, given account z, returns the user that controls z

TR transfer relation, such that ziTRδi+1,textći
zj ⇐⇒ φ(¢i, δi+1) = uj



176 Chapter 7: Conclusion

Rationality for blockchains’ consensus

ui( #»σ ) utility for player i provided all players follow joint strategy #»σ

k number of rational players
t number of Byzantine (or crash) players
t′ number of crash players
e required number of baiting players

e(k, t) minimum integer such that e(k, t) ≥ e

G gain for attackers from causing a disagreement into 2 outputs
g gain per colluding rational player, i.e. g = G

k

R reward for baiting
L deposit per player L = µG for some µ > 0
#»σ protocol, recommended joint strategy
#»η baiting strategy
ρ probability of being selected as winner of the bait ρ(e) = 1

e

ρ ρ = 1− ρ
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ZLB, a blockchain tolerating colluding majorities

N ′ updated set of processes in the committee
n′ n′ = |N ′| updated number of processes
d number of deceitful processes
q number of benign processes
t number of Byzantine processes
f f = t + d + q, total number of faulty processes
δ deceitful ratio δ = d+t

n

h voting threshold of the consensus protocol
h0 initial voting threshold
dr number of detected faulty processes

h(dr) updated threshold h(dr) = h0 − dr

fd threshold of proofs-of-fraud to start membership change
Φk Consensus instance k of ZLB
m number of processes in the pool of process candidates
a number of branches in a disagreement

h′ voting threshold of the inclusion and exclusion consensus
G gain from each additional branch of a disagreement, for a total gain of (a− 1)G
D deposit per coalition of attackers, with D = bG for some b > 0
ρ probability of attack on a consensus instance being detected
ρ̂ ρ̂ = 1− ρ

G expected gain from attack
P expected deposit loss (as punishment) from attack
ξ deposit flux from attack ξ = P(ρ̂)− G(ρ̂), ξ ≥ 0 for zero loss
w finalization blockdepth, measured in number of appended blocks required
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Kleroterion+, randomness with colluding majorities

G maximum total gain per disagreeing block
h voting threshold
β discount factor that decreases the gain from disagreeing in future iterations β ∈ [0, 1)
x length of disagreeing attack, measured in number of blocks

M total set of users
m number of users m = |M | that can be selected for the committee
C set of the adversarial coalition of users

cm coalition size cm = |C|
pcm percentage of adversarial users pcm = cm

m

cn number of users from the coalition selected for the committee
Pr(cn > tℓ) Probability of selecting at least tℓ users from the coalition for the committee

w finalization blockdepth, measured in number of blocks before finalizing a decision
D deposit per coalition of attackers, with D = bG for some b > 0
G expected gain from attack
Υ set of verifiable decided outputs from a disagreement
a number of branches in a disagreement
ξ deposit flux from attack ξ = P(ρ̂)− G(ρ̂), ξ ≥ 0 for zero loss
ρ probability that the attack succeeds
ρ̂ ρ̂ = 1− ρ
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Appendix A

Lockdown Attack

We illustrate in this chapter the Lockdown attack in detail.

A.1 Attack design

The atomicity needed in a multihop payment enforces that the intermediate payments in a
multihop route should be held until the complete route is constructed and all payments can be
performed together. During the time the route is being constructed, nodes in the route lock
the balance of the payment until such payment takes place. With this underlying mechanism, a
malicious user can lock a total amount p of balance in a channel ABi, during the time a payment
is being constructed, by sending a payment of value p through that channel ABi. However, such
action, that we label as a naive attack, has two main drawbacks from an adversarial point of
view. The first one is related to the cost of the attack and the second one is related to the time
the balance is locked.

Regarding the cost, in a naive attack, to block balance p in channel ABi, the adversary
needs to perform a payment of value p so the adversary needs to hold the same capacity that
the attack is locking. In that sense, we can define the Attack Effort Ratio.

Definition A.1.1 (Attack Effort Ration). The Attack Effort Ratio (AER) is the ratio between
the capacity needed to perform the attack and the capacity that the attack blocks, i.e.,

AER = Cattack

Cblocked

The naive attack achieves AER = 1 and can be considered a brute force attack, since it
always can be performed by design of multihop payments. Notice that AER measures the
profitability of the attack, and if the adversary can reduce the AER then the attack becomes
more profitable for the adversary, meaning that the adversary is more incentivized to perform
such attack.

Regarding the time during which the balance is locked, in a naive attack the adversary
only locks the balance during the time the whole payment is being constructed and, in regular
conditions, this period is often very short, since the final receiver of the payment in a multihop
route “executes” the payment as soon as the payment arrives. For more powerful attacks we
can define the χ function.
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Definition A.1.2. The χ(ú) function is a time based decreasing function that measures the
total capacity blocked w.r.t. the time during which the attack has been conducted. The block
generation time, ú, is used as the time unit for this function.

For instance, χ(0) = Cblocked as it provides the total capacity blocked at the initial time of
the attack. Eventually, χ(ú) = 0 for a large ú, given that the blocking efficiency of the attack
decreases over time. In a naive attack, χ(1) = 0 because the capacity is unblocked almost
instantly after the payment, long before the appearance of the first block (ú= 1) after the attack
execution.

As we will detail later, an attack is performed through multiple payments. For that reason,
the χ(ú) function is computed taking into account the expiration values of each payment that
forms the attack. If we define χi(ú) as the capacity blocked by payment i during ú blocks, then
χ(ú) = ∑

i χi(ú),∀i ∈ attack.

For comparison purposes, we define two single value metrics that compress the χ(ú) function:
the Total Blocked Time and the Normalized Total Blocked Time.

The Total Blocked Time (TBT ) of the attack is the sum of the χ(ú) values:

TBT =
∞∑

ú=0
χ(ú)

The normalized TBT (T̃BT ) is defined as:

T̃BT = TBT

Cblocked ·max{Tmax}
,

where max{Tmax} is the maximum default value of Tmax seen in any implementation. Therefore,
0 < T̃BT ≤ 1, and the ideal attack with T̃BT = 1 would be blocking Cblocked capacity during
5000 blocks, that is, more than 34 days.

Once we have described how to perform a naive attack to a single channel, we now describe
how the adversary improves the effectiveness of the attack, both minimizing AER and maxi-
mizing TBT . We focus the attack goal to block the victim A as a middle node in multipath
payments. In that case, the value Cblocked is the total capacity of node A in the LN, that is
Cblocked = CA = ∑

CABi . Notice that regarding the attack goal, in order to block a middle node
in a payment route it suffices to block all incoming balances to A or all outgoing balances from
A. In either of these cases, A cannot route any payment. Then, the naive attack over a single
node A achieves Cattack = min{∑n

i=1 balanceABi ,
∑n

i=1 balanceBiA}. Clearly, Cattack ≤ CA. The
AER for such an attack is reduced with respect to the naive attack of a single channel. Notice
that, with this approach, the AER reduction cannot be determined by the adversary, i.e., the
adversary cannot directly control the balances. However, the AER can also be reduced when
the same payment is used more than once to block different channels. In fact, in a multihop
payment, a single payment p blocks up to m · p capacity being m the number of hops of the
payment route. Another strategy to reduce AER is to construct the largest possible route.
However, if the attack is focused on a victim A, not only has the length of the route to be com-
puted, but it also should be kept close to A in order to ensure all blocking capacity obtained for
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that route is able to block channels belonging to A. As we will see, the best strategy to keep
the payment route close to the victim is to perform routes through A with loops as short as
possible that return to A. This possibility will depend on the topology of the payment network
in which A is connected.

The improvement of the attack can also be measured regarding the time during which the
attack takes place. The objective is to maximize TBT . To this end, the adversary can be
placed at the end of the route, to hold the payment as much time as possible before the funds
of the route are unlocked. As we will see in detail in the next section, this strategy increases
the capacity Cattack needed for the adversary.

A.1.1 Adversarial knowledge

To accurately perform the Lockdown attack, the adversary needs precise knowledge of the
network. To construct payments routes which pass through victim A, the adversary needs to
know the topology of the network to construct such paths. This information is available using
any LN implementation, since it is needed to perform standard payments. Additionally to the
topology of the network, the detailed information about balances of every channel are needed to
perform the attack. This information can be derived from existing attacks in the literature [91].

Furthermore, to minimize AER, the number of hops of a payment route has to be maximized.
Although payment routes in the LN are bounded to 20 hops [209], the exact number of hops
that a route may contain is also limited by values Tmax and δ of each node of that route. Notice
that a node does not accept a payment that locks its funds more than Tmax time, and is fixed
by the adversary but decreased in each hop by the δ of each node. Then, depending on Tmax

and δ at each node of the route, the total number of hops in a route could be lower than 20.
For that reason, the adversary also needs to know the values Tmax and δ of each node of the
network.

A.1.2 AER minimization

The Lockdown attack can be improved in terms of AER. For instance, regarding the shorter
loop case example (Figure 3.3a), the AER depends on the difference between o1 +o3 and o2 +o4.
In the extreme case in which o1 + o3 = o2 + o4 such attack has the worst possible AER, as
CA = (o1 + o3) + (o2 + o4) = 2(o1 + o3) and Cattack = CMA = 2 · (o1 + o3), so AER = 1.
However, the adversary can reduce this value by relooping the nearer part of each route next
to A. Then, if each payment route contains m hops, each original path can be transformed into
M→ A→ B1 → A→ B1 → A→ · · · → M and M→ A→ B2 → A→ B2 → A→ · · · → M.
With those loops, the total amount that has to be routed is reduced to 2o1

m−2 and 2o3
m−2 respectively,

so Cattack = 4(o1+o3)
m−2 and AER = 2

m−2 . Notice this relooping strategy can also be implemented
in the longer loop scenario (Figure 3.3b).

A.1.3 TBT maximization

Recall that the adversary should maximize TBT to make the attack more effective. To this
end, the adversary takes advantage of being at the beginning and end of each payment.
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As a first node, the adversary can determine the maximum χi for a particular payment
i, since such value depends on values δ and Tmax of each node and the node position in the
route. The first one, Tmax, is the maximum amount that a node allows an outgoing payment
in a channel to be locked. The second value, δ, indicates the difference, in blocks, that each
hop in the route requires. When a node receives a payment, he sets an expiration time1, θ,
for the payment, and subtracts his δ. If the resulting value is lower than his Tmax, then he
will keep forwarding the payment. Otherwise, the node will refuse the payment, the route
will be discarded and the payer will need to find another route. Then, the best strategy for an
adversary to maximize χi is to simulate the route assuming that each node, instead of discarding
the payment, will set the new θ as his Tmax (see Section A.3 for a detailed example).

As a last node of the payment, the adversary can hold the payment during the received
θ = χi value, being sure that the previous node does not cancel the payment before that time
— it fits the proper waiting values of the implementation.

A.2 Experimental results

To analyze the feasibility of the proposed attack and provide a proof-of-concept, we need to
ensure that nodes in the LN behave in a particular way. Firstly, to minimize AER we test if
the type of routes with cycles used in our attack can be routed through the nodes of the LN.
Secondly, to maximize TBT , we verify if the recipient of a multihop route is able to retain
a payment during a certain period of time before the payment is finally processed locking
channels involved in the payment route. Furthermore, we are also interested in implementing
a mechanism for which the recipient can cancel the payment without paying any fee to the
routing nodes.

We perform a test in a simnet controlled environment to validate that our claims are correct
and that the routes generated in our attack containing loops can effectively be deployed in the
three most relevant available implementations of the Bitcoin LN, namely lnd, c-lightning and
eclair. Results can be found in Section A.3.

Once the feasibility of the attack has been proven from an implementation point of view, we
performed some attack simulations for the LN of the Bitcoin mainnet in order to measure the
AER of the attack, the function χ(ú), and its economic cost. Notice that there is no technical
reason that stops us from effectively executing the simulated attacks in the Bitcoin mainnet.
However, for ethical reasons, we have not performed the attack on the mainnet and, instead,
we have performed a responsible disclosure to the developers of the LN implementations.

Our simulations will assess the effectiveness of the attack given the actual topology of the
network. We base our simulations on the attack algorithm described in Section 3.1.2.1, but, in
order to provide accurate results, we have taken into account different restrictions that actual
LN implementations take over their parameters.

Firstly, we bound to 20 the maximum hops that a payment route may have in the LN [210].
Regarding the routes’ length, we assume that the expiration time for a route θ at each hop

1For simplicity, we assume θ as a relative blockheight value.
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cannot be lower than zero.
Secondly, all existing LN implementations fix the maximum value of a channel at 16777215

satoshis2. This value may impact the channel that M has to open with the victim A. Since
such payment channel needs to have a total capacity of Cattack, if Cattack > 16777215 then M
needs to open more than one channel with A.

Once these values have been taken into account, to perform our simulations, we take a
snapshot of the topology of the LN3 of the bitcoin mainnet on July, 9th, 2019 at 12:00.

A.2.1 Simulation assumptions

To execute the attack algorithm described in Section 3.1.2.1, the adversary needs to complement
the information of the network graph with further data. The information needed is: the balance
of each channel and the values Tmax for each node of the network.

Regarding the balances, they can be obtained from previous attacks [91]. However, instead
of performing the attack, we have assigned the balances of each channel using different statistical
distributions, trying to reproduce the different scenarios that could be found in the network.
In order to assign balances to channels, we proceed in the following way: for each channel, first
the balance of one of the nodes is randomly selected using one of the selected distributions, and
taking the capacity of the channel as the maximum possible value to generate. Then, the balance
of the other node in the channel is set as the remaining balance (that is, the capacity minus
the balance). Five different distributions are used to assign balances to channels: deterministic,
uniform, normal, exponential, and beta. The deterministic distribution always assigns half of
the capacity of the channel to each of the nodes; the normal distribution is used with µ = 0.5
and σ = 0.2; the exponential distribution uses λ = 1; and the beta distribution α = β = 0.25.

The value Tmax is a network node parameter that is not publicly available, as it is not
advertised by the nodes. However, this value is implementation-dependant4 Hence, by inferring
the LN implementation of each node, we can obtain the values of Tmax for that node. To infer the
LN client implementation run by each node, we take into account the fee rate, the fee base rate,
and the δ values announced in the nodes’ channels policies. As shown in Table A.2.1, default
values for the fee rate and δ parameters allow to uniquely identify the LN implementation. We
use those values to infer node implementation. Moreover, the default value for the fee base rate
is always 1000. We use this third value to further validate that the node is using default values
in its policies.

However, users may indeed change channel policies, or even use different policies for different
channels. On the one hand, if a node is not announcing any policy with the fee rate, fee
base rate, and δ values corresponding to any of the described implementations, we assume the

2This bound is just an implementation parameter. There are already channels in the LN with larger values.
The availability of larger channels reduces the number of channels for the attack, as well as total fees to pay for
every open channel and the total cost of the attack.

3This information can be obtained, for instance, with the instruction describegraph of the lnd implementa-
tion.

4One may assume users changing some LN implementation parameters. However, Tmax is hardcoded in each
LN implementation.
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lnd (old) lnd (new) c-lightning eclair

Fee rate 1 1 10 100
Fee base rate 1000 1000 1000 1000
δ 144 40 14 144

Table A.2.1: Parameters that help infer the Lightning Network implementation of a node.

implementation of that node is unknown. On the other hand, whenever a node announces
different policies in its channels but only one of them corresponds to a default behavior, the
node is tagged with this implementation. Finally, if multiple policies are announced and multiple
default policies are identified, then again the node is tagged as unknown.

Taking this approach, using the selected snapshot of the network, we end up with a small
percentage of unknown nodes (11.3%), for which we are not able to properly infer the implemen-
tation. In that case, we randomly tag those nodes with one of the three main implementations,
with the same percentage distribution than those nodes already tagged. Using this approach,
network nodes have been classified as shown in Table A.2.2.

nodes (number) (percentage)
lnd 2196 91.04%
c-lightning 183 7.59%
eclair 33 1.37%
Total 2412 100%

Table A.2.2: Number of nodes, with at least one channel, classified in one of the main imple-
mentations for the snapshot graph used in our analysis.

A.2.2 Attack simulation results

To perform the simulation, the attack focuses on one of the most relevant nodes in the network.
This node has 600 open active channels with a total capacity slightly above 43 BTC. Then,
we test the effectiveness of the attack considering that this node runs one of the three main
implementations, lnd, c-lightning or eclair. For each implementation, we also test each of
the balance distributions. In order to present more representative results, being the balance
distribution a probability distribution, we execute the experiments 10 times and take the mean
values.

For each implementation and for each balance distribution, we performed the attack and
measured the AER of the attack, the percentage of the capacity of the victim that has been
blocked, the total channels needed to perform the attack, and the normalized Total Blocked
Time, T̃BT (cf. Table 3.1). Furthermore, we also have analyzed the χ function of the attack
(see Figure A.2.1).

Table 3.1 shows that the attack is effective in all scenarios (implementations and balance



A.2 Experimental results 199

distribution), because the AER is lower than 2 which is the value for a naive attack. Notice that
in the worst attack, for a Beta distribution in which the node runs an eclair implementation,
the AER is 0.584, which is half of the capacity of the victim to block 86.30% of its capacity. In
fact, the percentage of the victim’s capacity blocked is large for all the scenarios, never below
the 80%. Moreover, the T̃BT also shows that lnd implementations are the ones allowing the
adversary to block more capacity over time (as can also be observed in Figure A.2.1).

Figure A.2.1 plots the χ function which shows the amount of time locking the funds. As
expected, our results show that the value of Tmax of each implementation determines the time
that the attack lasts for. When the victim runs an lnd implementation, 80% of the capacity
of the victim can be locked during 287 blocks (almost two days) in any balance distribution
tested. But if we look at the 50%, this value is increased to 2407 blocks (more than 16 days).
Even for the eclair implementation with the lowest Tmax value of all three implementations
(Tmax = 1008), 50% of the capacity can be blocked during 287 blocks (almost two days) for all
tested balance distributions.

Besides the effectiveness of the attack showed so far, we also measure the economic cost of
the attack. For this measure, we take the same methodology as that of our previous work [91],
in which the total cost of the attack can be divided between the entrance barrier cost and the
economic cost. On the one hand, the entrance barrier cost takes into account the economic
resources that the adversary has to control to be able to perform the attack. These resources
will be completely recovered after the attack has been finished. On the other hand, the economic
cost of the attack is the amount of money that the adversary will lose due to the execution of
the attack.

Regarding the entrance barrier cost, the proposed attack needs to fund one or multiple
LN channels with the capacity Cattack. Such amount is represented by the channels needed
value of Table 3.1. For instance, the attack for the uniform distribution over c-lightning has an
entrance barrier cost of 46 channels (or 7.71753546 BTC) to block 84.25% of the capacity of
the node.

As for the economic cost of the attack, two values have to be taken into account: (i)
the fee corresponding to the funding transaction of the channel; (ii) the fee corresponding to
the transaction that closes the channel. Regarding the fees of the funding transactions, the
cost depends on the number of channels needed to perform the attacks. The cost in fees for
each channel depends on the size in bytes of the funding transaction. However, the size mostly
depends on its inputs that will vary for each particular transaction, but a funding transaction
with a single input can cost as low as 0.00001527 BTC5. Secondly, and regarding the closing
transaction, it is also difficult to estimate the exact fee for a generic closing transaction, since
again multiple parameters may affect this value. A cost rounding 0.00000909 BTC can be

5See, for instance, transaction:
11b68b276453ac54c23ee49186df78d9895fbfd47071ced6371364abbddcfc6f. It is the funding transaction corre-
sponding to the Channel Id 645513381196136448 opened on July 26, 2019, by node
021607cfce19a4c5e7e6e738663dfafbbbac262e4ff76c2c9b30dbeefc35c00643

https://blockstream.info/tx/11b68b276453ac54c23ee49186df78d9895fbfd47071ced6371364abbddcfc6f
https://1ml.com/channel/645513381196136448
https://1ml.com/node/021607cfce19a4c5e7e6e738663dfafbbbac262e4ff76c2c9b30dbeefc35c00643
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Figure A.2.1: Number of blocks for which the Lockdown attack locks balances, i.e. χ(ú) function
results, for every tested distribution: (a) Beta, (b) Deterministic, (c) Exponential, (d) Normal,
(e) Uniform.
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achieved, as can be seen in different existing closing transactions6.
Notice that we have not included the Lightning fees as a cost because they are never applied

(the payments never succeed). For that reason, the total number of payments needed to perform
the attack does not affect the economic cost of the attack.

With these values, we can estimate the economic cost of an attack. For instance, an attack
based on a normal distribution assuming an lnd node blocks the 96.79% of the capacity of the
node with 63 channels, that means 0.00153468 BTC in fees for opening and closing the channels,
or around 15 Euros.

A.3 Simnet network

To perform our experiments, we create a Lightning simnet network with eleven nodes,M, A, B1, · · · , B9.
NodeM will be the adversary and A the victim. Nodes B1, · · · , B9 will represent victim’s neigh-
bors. To test all implementations in our simnet, we run different implementations for different
nodes. More precisely, the following configuration has been taken. Nodes M, A, B1, B2, B3

run the lnd implementation with version 0.5.2-99-beta, nodes B4, B5, B6 the c-lightning with
version v0.7.0 and nodes B7, B8, B9 run eclair with version version=0.2-SNAPSHOT. Over this
configuration, we have created 10 payment channels, as shown in Figure A.3.2a.

With this settlement, M performs a payment to himself, following the route M → A →
B1 → A → B2 → A → B3 → A → B4 → A → B5 → A → B6 → A → B7 → A → B7 → A →
B9 → A→M.

The correct execution of the experiment proves that the payment has been processed by
all nodes and that routes can effectively contain loops. Notice that the loops tested in this
experiment are the shortest possible, which validates the shorter loop case of our attack (see
Section 3.1.2.1). Also, the implementation selected for each node ensures that this behavior is
equivalent in all implementations.

Figure A.3.2b shows a new scenario where we have added a payment channel between
nodes B6 and B9. With this scenario, M performs a payment to himself, following the route
M−A−B6 −B9 −A−B6 −B9 −A−M.

Again, the test shows that the payment is correctly processed by all nodes and it proves
that all implementations can also accept the longer loop case, because we have chosen A, B6

and B9 all with different implementations.
Once we have ensured that routes with cycles are possible to execute in any implementation,

we would like to study how to maximize χp, the time for which a recipient can lock a payment
p. This value can be estimated using information of the nodes that are included in a route.
More precisely, values δ and Tmax of each node and the node position in the route determines
the maximum time a payment can be locked for.

In our scenario, the adversary controls both the first and the last node of the route. We first
describe how, as a first node, the adversary can determine the maximum χp for a particular

6For instance, Channel Id 624629257244573696 with total capacity 0.05 BTC has been closed with the following
close transaction 362235c844533ff7ae0e2fca078b956e82093b92f86010bed51e990d52af6679

https://1ml.com/channel/624629257244573696
https://blockstream.info/tx/362235c844533ff7ae0e2fca078b956e82093b92f86010bed51e990d52af6679
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Figure A.3.2: Simnet scenarios maximizing A’s balance to lock in one payment of the attacker,
by routing through Bi (a) and allowing loops (b).

route. Then, we will detail how the adversary, as the last node of the route, may block the
payment during χp and how, after that time, he can cancel the payment without paying any
fee to the routing nodes and, furthermore, restating all channels to the initial state to perform
a second attack.

As pointed out in Section 2.1, the parameters that determine the actions of each node of the
route are Tmax and δ. Tmax is the maximum amount that a node allows an outgoing payment
in a channel to be locked for, while δ indicates the difference, in blocks, that each hop in the
route requires. These parameters are different for each implementation, as Table A.3.3 shows.
When a node receives a payment, he sets an expiration time7, θ, for the payment, and subtracts
his δ. If the resulting value is lower than his Tmax, then he will keep forwarding the payment,
otherwise, the node will refuse the payment, the route will be discarded and the payer will need
to find another route. Then, the best strategy for an adversary to maximize χp is to simulate
the route assuming that each node, instead of discarding the payment, will set Tmax to this
new θ. For instance, suppose the following route M− Bi − Bj − Bk −M and assume that
Bi runs an lnd node, Bj runs an eclair node and Bk is runs a c-lightning node. Assuming the
default values of Table A.3.3, the simulation performed by M will start with θ = ∞. When
processing the first hop, Bi runs an lnd node which translates into Tmax = 5000 and δ = 144,
meaning that, for that hop, we can compute θ = 5000− 144 = 4856. In the next hop, Bj runs
an eclair implementation, hence Tmax = 1008 and δ = 144. In that case, since the received
θ = 4856 is greater than 1008, we will set θ = 1008 − 144 = 864. Then Bk runs a c-lightning

7Although the θ is an absolute blockheight value, here we will refer as a relative value to simplify the expla-
nation.
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with Tmax = 2016 and δ = 14 and the received θ = 864 is lower than 2016, we can calculate
θ = 864 − 14 = 850. As this is the last hop, θ = 850 is the time during which the channel
can be blocked. With this procedure, M can compute the optimal θ value that he will include
in the first hop to maximize χp. In that case θ = 850 + 14 + 144 + 144 = 1152 will provide a
maximum χp.

lnd c-lightning eclair

δ 144 14 144
Tmax 5000 2016 1008

Table A.3.3: Default parameters for different implementations.

A.4 Countermeasures to handle the attack

The main countermeasures focus on increasing the AER in order to make the attack less prof-
itable. As discussed in Section 3.1.2.1, AER is reduced thanks to the possibility that a single
payment performs a route with multiple hops. Furthermore, if the adversary may maintain the
route near the victim, the AER is even further diminished. As a result, different countermea-
sures can be adopted.

First of all, loops in a payment route should be minimized or forbidden. In particular,
cycles of length two (the ones of the form A → B → A) should be completely forbidden, since
these minimize AER and keep the route close to a potential victim. We argue that imposing
this restriction does not damage any possible functionality of the LN. Notice that lightning
payments, even those in a multihop route, are designed to be performed atomically in the sense
that they are executed completely or not executed at all. A payment with a subpath of the form
A→ B → A, once executed, leaves the state between A and B exactly as it was previous to the
payment. The implementation of this measure is straightforward even assuming that routing
in the LN is performed through onion routing. Note that in the onion routing approach, every
node is aware of the previous and next node in the route, meaning they can reject a route if
both nodes are the same.

Regarding cycles of length greater than 2, it is clear that its restriction also increases AER

and hinders the attack. Again, although the LN currently routes using onion packets and nodes
are only aware of the previous and next hop in the route, additional information transferred
between routes and shared by all nodes, such as the hash used in the HTLC, can be used to
detect that a cycle is passing through a node and reject cycles. However, in contrast with cycles
of length two, longer cycles do not keep the same state of the channel and it can be used for
legitimate purposes, like spontaneous payments8, whose restrictions could impact future LN
features.

8SPSP, Simple Protocol for Spontaneous Payments, https://lists.linuxfoundation.org/pipermail/
lightning-dev/2018-June/001327.html

https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-June/001327.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-June/001327.html
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Besides cycles, increasing the length of a payment route also reduces AER. As such, a
possible countermeasure for the proposed attack is the reduction of the maximum length of a
route. This value is set to 20 in the LN specification and it could be reduced to increase the
AER of an attack. However, this directly impacts in the performance of the network, given that
its reduction could potentially discard possible routes for legitimate payments. More testing
should be performed before implementing this type of countermeasure.

Another straightforward countermeasure that can be performed to reduce the effectiveness
of the attack is the fine-tuning of some lightning parameters that, until now, have not been
properly addressed. These parameters are Tmax and δ, which have two different implications
for our attack. In spite of the maximum hop value (set to 20), Tmax and δ can effectively
determine a lower bound for the number of hops in a route.9 Given that reducing the maximum
number of loops increases AER, setting proper values could potentially hinder attacks. On
the other hand, the time value during which a channel or victim can be blocked without the
adversary needing to perform any action is also dependent on those two parameters. As a result,
reducing the actual values of Tmax and δ is a countermeasure for our attack, since it reduces
the time during which the adversary may lock the funds. However, assessing the correct values
for Tmax and δ deserves a detailed and exhaustive analysis and testing.

9For instance, a payment route in which all nodes run an eclair implementation can be of at most 7 hops.



Appendix B

Trap protocol: discussions

In this chapter, we revisit and extend Figure 4.1 after explaining the Trap protocol. Then, we
discuss the expected behavior of a coalition provided the correctness of the Trap protocol.

B.1 Extended example figure

Figure B.1.1 depicts a slightly extended version of the execution example of Figure 4.1. Sim-
ilarly to Figure 4.1, the execution starts with k + t Byzantine and rational players causing a
disagreement on predecisions. However, now we detail further how the e baiters prevent termi-
nation of the BFTCR protocol. In particular, by not committing to a value in the first reliable
broadcast of BFTCR, the e baiters can prevent players in A and in B from terminating in any
of the two partitions. Thus, the e baiting players wait till they receive certificates from players
in A and in B in order to construct PoFs. Then, they wait till they deliver enough values from
the second group reliable broadcasts from players in partitions A and B that guarantee that no
other Byzantine or rational player can become a valid candidate once they reveal that they are
baiting (as we showed in the proof of Lemma 4.4). At this point, the e players reveal their PoFs
by sending the decryption key to their commitment. Then, players in A and B can resolve their
disagreement on predecisions, choose a winner of the reward from among the e valid candidates
at random, and punish the rest of deviating players.

B.2 Paying a reward at no cost to non-deviants

One might think that implementing a baiting strategy with a reward and deposits might not
be enough: we need to discourage coalitions from actually playing the baiting strategy, since
the system would have to pay the reward R, and thus the coalition can effectively steal some
funds from the system. However, if the system can use the deposited amount L from at least tℓ

certified fraudsters in the coalition to pay for the baiting reward R, then the system does not
lose any funds (lossfree reward), while obtaining agreement (baiting agreement).

Furthermore, notice that if the coalition consists entirely of rational players then they do
not actually play this strong baiting strategy since, by the definition of strong baiting strategy,
they all individually lose more than they can gain from deviating. Even if the presence of
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Figure B.1.1: Extended example execution of the Trap protocol. First, ➀ all t Byzantine and
k rational players collude to cause a disagreement on the output of the accountable consensus
protocol, resulting in A and B predeciding different outputs. Then, ➁ e of the k rational
players decide to bait while executing the BFTCR protocol, preventing A and B from deciding
their disagreeing predecisions. As such, ➂ the e baiters wait until they receive proof of the
disagreement on predecisions, to then ➃ commit to the encrypted PoFs. Finally, ➄ once they
deliver as many second reliable broadcast from A and B as possible confirming that honest
players delivered their PoFs encrypted commitment, then ➅ the e baiters prove the disagreement
revealing the proofs-of-fraud in the BFTCR protocol. Hence, neither A nor B decide their
conflicting predecisions, but instead reward one of the e baiters, punish the rest of t + k − 1
players responsible for the disagreement on predecisions, and resolve the disagreement, deciding
one of vA or vB, or, depending on the application, merging both.
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Byzantine players leads to a baiter being paid, agreement will still be guaranteed at no cost to
non-deviating players. This leaves the open question of how likely it is that Byzantine players
with unexpected utilities but possibly with the goal to break the system would be interested
in giving their funds for free to rational players, if it does not cause some damage on non-
deviating players or on the system itself. In other words, with a more refined, realistic modeling
of Byzantine players, it is very likely that the very correctness of the Trap protocol will be
enough of a deterrent from deviating, which would lead to agreement directly at predecision
level.
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Appendix C

Basilic Additional Results

We show in this chapter additional results for Basilic.

C.1 Impossibility of consensus without active accountability

In the proof of Theorem 5.1 we considered that deceitful faults do not prevent termination, that
is, that the protocol satisfies active accountability. We show in Corollary C.1 the analogous
result in the case where deceitful processes can actually prevent termination, that is, if the
protocol does not satisfy active accountability. In this case, since deceitful can have the same
impact as Byzantine (in that they can prevent either agreement or termination), then the
bounds decrease to n > 3(t + d) + 2q. Note that other protocols that use authentication may
also be subject to this bound if they do not satisfy active accountability, as it is the case for
Polygraph [47].

Corollary C.1. It is impossible for a protocol that solves consensus without satisfying active
accountability to tolerate t Byzantine, d deceitful and q benign processes if n ≤ 3(t + d) + 2q.

Proof. The proof is analogous to Theorem 5.1 with the difference that deceitful processes can
actually prevent termination by sending conflicting messages. Thus, we have n + t + d ≤
2n− 2q − 2t− 2d, which means n > 3(t + d) + 2q.

C.2 Extended complexities of Basilic

Before GST and in the presence of an adversary controlling t Byzantine, d deceitful, and q benign
processes, let a be the number of times the timer is reached before GST (i.e. a ≥ ⌈GST

∆ ⌉), then
the message and bit complexities of AABC increase by a factor of a · n, thus to O(an3) and
O(λan4), respectively. The same occurs with AARB’s complexities. The time complexities are
also affected by the time a to reach GST thus to O(an) for AABC and the general Basilic, and
O(a) for AARB.

Since there are n pairs of reliable broadcasts and binary consensus instances in the Basilic
general protocol, the time complexity is O(t + q + d), message complexity O(an3) and bit
complexity O(λan4). We show in Table C.2.1 the worst-case complexities of the three protocols.
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Complexity AARB AABC Basilic

Time O(a) O(n) O(n)
Message O(an2) O(an3) O(an4)
Bit O(λan3) O(λan4) O(λan5)

Table C.2.1: Complexities of Basilic protocols before GST.



Appendix D

ZLB Additional Results

We show in this chapter additional results for ZLB.

D.1 Number of branches and deceitful ratio

We show in Figure D.1.1 the minimum deceitful ratio (left) and number of deceitful processes
(right) for the attackers to be able to cause a disagreement into at least a branches, for a voting
threshold of h = 2n/3. It is specially interesting observing that a coalition of less than half
of the system cannot perform anything else than a double-spending, while a deceitful ratio of
δ < 11/18 can at most perform a sextuple-spending, while being significantly close, at only 1/18
of distance, to the threshold value of 2/3. Notice also that a can only range from 1 to n/3 + 1,
a value that is taken when t + d = ts = ⌈2n/3⌉ − 1 and each of the n/3 + 1 honest processes
belong to a different partition.
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Figure D.1.1: Minimum deceitful ratio δ (left) and number of deceitful processes (right) required
for a number of branches a in a blockchain fork for voting threshold h = 2n/3.
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D.2 Fixed superblock size

Figure D.2.2 shows the throughput of ZLB in a large WAN of up to 300 AWS c5.4xlarge in-
stances, for a total size of all proposals fixed to 200, 000 transactions. We include two throughput
results of our implementation, one for decisions and one for confirmations, for which we assume
the maximum f possible, i.e., all replies must be received before confirming a value. We can
see that the throughput of confirmed transactions is slightly lower, given that every process
must wait to receive a certificate from every single other process, increasing the impact of slow
processes. The performance decreases as the number of processes increases, mainly due to the
increase in size of certificates. We omitted the confirmation throughput in Figure 5.6 as it was
a negligible amount of time more than decisions for that setting, mainly due to the bottleneck
being the validation of transactions, less noticeable for a fixed total size of transactions, as
Figure D.2.2 shows.
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Figure D.2.2: Throughput (top) and latency (center, bottom) of ZLB for decided proposals,
compared to confirmed proposals, for a size of the superblock fixed to 200, 000 transactions.
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D.3 Bitmask of binary consensus attack

The binary consensus attack can maximize disagreements by leading all branches to a different
bitmask. However, a disagreement on a bit associated with a proposal broadcast by an honest
process might not contribute to the specific attack intended by attackers (e.g. double-spending).
We show in Figure D.3.3 however that if attackers do not maximize the disagreeing bits across
branches, the number of disagreements decreases, even if they expose themselves in less binary
consensus instances, for the binary consensus attack. That is, we test here the number of
disagreements for a minimal and maximal Hamming distance between disagreeing bitmasks.
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Appendix E

Discussion: safety vs. performance
of Kleroterion+

We discuss in this section additional changes to the protocol in order to guarantee safety.

Aggregating multiple Kleroterion+ random beacons. Kleroterion+ allows for ω ≥ 1
random beacons to be executed concurrently in ω different committees of size n, and then
aggregated into one final random beacon. This way, in order to break the randomness of the
beacon, the adversary needs to break the randomness of each of the ω outputs. That is, the
probability of the adversary breaking the randomness of the random beacon given ω concurrent
executions of Kleroterion+, each with a committee size of n, is Pr(Y > ts)ω. This means that
for ω = 5 we have that Pr(Y > ts)ω < 10−14 for n = 487, meaning a total of ω ∗ n = 2435
processes in total to produce the final random output. In contrast, for ω = 1 the required
committee size for the same level of safety is n = 3215 > 2435. This means that this approach
may provide better performance. It is important to note however that honest processes of
each of the ω = 5 concurrent executions of Kleroterion+ should only reconstruct the secrets
once they have signed certificates for each of the decided commitments of each Kleroterion+

execution. This is to prevent an adversary controlling ts + 1 processes in one of the executions
from selecting the random output after learning the outputs of the rest of the executions,
producing the desired aggregated output. Note additionally that such approach may decrease
the probability of breaking randomness but it maintains the same probability of losing liveness.

Using VRFs to limit adversarial control. Additionally, in order to increase the bias-
resistance of Kleroterion+, we could make processes choose the output from a Verifiable Random
Function (VRF) as their input, instead of any input chosen uniformly at random. This way,
even if the adversary controls one iteration ts+1 of the committee, they can only manipulate the
output by choosing one of

(n
k

)
outputs where k is the number of VRF inputs that Kleroterion+

combines, and thus k can be one of k ∈ [1, ts + 1]. The value chosen for k expresses a trade-off
between unpredictability and bias-resistance. This creates an interesting trade-off to be selected
by each application. On the one hand, decreasing k reduces the amount of combinations

(n
k

)
from which the adversary can choose to combine into a final random output, if the adversary
controls enough processes of the committee, which increases bias-resistance for lower values of
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k. On the other hand, if the adversary controls at least k processes in a committee, it can
already compute the output of its own processes, and force the algorithm to select a specific
predicted combination, which decreases unpredictability for lower values of k.
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