81,134 research outputs found

    Non-Schlesinger Deformations of Ordinary Differential Equations with Rational Coefficients

    Full text link
    We consider deformations of 2×22\times2 and 3×33\times3 matrix linear ODEs with rational coefficients with respect to singular points of Fuchsian type which don't satisfy the well-known system of Schlesinger equations (or its natural generalization). Some general statements concerning reducibility of such deformations for 2×22\times2 ODEs are proved. An explicit example of the general non-Schlesinger deformation of 2×22\times2-matrix ODE of the Fuchsian type with 4 singular points is constructed and application of such deformations to the construction of special solutions of the corresponding Schlesinger systems is discussed. Some examples of isomonodromy and non-isomonodromy deformations of 3×33\times3 matrix ODEs are considered. The latter arise as the compatibility conditions with linear ODEs with non-singlevalued coefficients.Comment: 15 pages, to appear in J. Phys.

    On deflation and multiplicity structure

    Get PDF
    This paper presents two new constructions related to singular solutions of polynomial systems. The first is a new deflation method for an isolated singular root. This construction uses a single linear differential form defined from the Jacobian matrix of the input, and defines the deflated system by applying this differential form to the original system. The advantages of this new deflation is that it does not introduce new variables and the increase in the number of equations is linear in each iteration instead of the quadratic increase of previous methods. The second construction gives the coefficients of the so-called inverse system or dual basis, which defines the multiplicity structure at the singular root. We present a system of equations in the original variables plus a relatively small number of new variables that completely deflates the root in one step. We show that the isolated simple solutions of this new system correspond to roots of the original system with given multiplicity structure up to a given order. Both constructions are "exact" in that they permit one to treat all conjugate roots simultaneously and can be used in certification procedures for singular roots and their multiplicity structure with respect to an exact rational polynomial system.Comment: arXiv admin note: substantial text overlap with arXiv:1501.0508

    Certifying isolated singular points and their multiplicity structure

    Get PDF
    This paper presents two new constructions related to singular solutions of polynomial systems. The first is a new deflation method for an isolated singular root. This construc-tion uses a single linear differential form defined from the Jacobian matrix of the input, and defines the deflated system by applying this differential form to the original system. The advantages of this new deflation is that it does not introduce new variables and the increase in the number of equations is linear instead of the quadratic increase of previous methods. The second construction gives the coefficients of the so-called inverse system or dual basis, which defines the multiplicity structure at the singular root. We present a system of equations in the original variables plus a relatively small number of new vari-ables. We show that the roots of this new system include the original singular root but now with multiplicity one, and the new variables uniquely determine the multiplicity structure. Both constructions are "exact", meaning that they permit one to treat all conjugate roots simultaneously and can be used in certification procedures for singular roots and their multiplicity structure with respect to an exact rational polynomial system

    A family of fourth-order superintegable systems with rational potentials related to Painlev\'e VI

    Full text link
    We discuss a family of Hamiltonians given by particular rational extensions of the singular oscillator in two-dimensions. The wave functions of these Hamiltonians can be expressed in terms of products of Laguerre and exceptional Jacobi polynomials. We show that these systems are superintegrable and admit an integral of motion that is of fourth-order. As such systems have been classified, we see that these potential satisfy a non-linear equation related to Painlev\'e VI. We begin by demonstrating the process with the simpler example of rational extensions of the harmonic oscillator and use the classification of third-order superintegrable systems to connect these families with the known solutions of Painlev\'e IV associated with Hermite polynomials

    Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    Full text link
    Lattice statistical mechanics, often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in a general mathematical framework, be too complex, or could not be defined. Considering several Picard-Fuchs systems of two-variables "above" Calabi-Yau ODEs, associated with double hypergeometric series, we show that holonomic functions are actually a good framework for actually finding the singular manifolds. We, then, analyse the singular algebraic varieties of the n-fold integrals χ(n) \chi^{(n)}, corresponding to the decomposition of the magnetic susceptibility of the anisotropic square Ising model. We revisit a set of Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find a first set of non-Nickelian singularities for χ(3) \chi^{(3)} and χ(4) \chi^{(4)}, that also turns out to be rational or ellipic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model. We address, from a birational viewpoint, the emergence of families of elliptic curves, and of Calabi-Yau manifolds on such problems. We discuss the accumulation of these singular curves for the non-holonomic anisotropic full susceptibility.Comment: 36 page

    On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem

    Full text link
    We prove that the number of limit cycles generated by a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing tangential Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection (Gauss-Manin connection) with a quasiunipotent monodromy group.Comment: Final revisio
    corecore