This paper presents two new constructions related to singular solutions of
polynomial systems. The first is a new deflation method for an isolated
singular root. This construc-tion uses a single linear differential form
defined from the Jacobian matrix of the input, and defines the deflated system
by applying this differential form to the original system. The advantages of
this new deflation is that it does not introduce new variables and the increase
in the number of equations is linear instead of the quadratic increase of
previous methods. The second construction gives the coefficients of the
so-called inverse system or dual basis, which defines the multiplicity
structure at the singular root. We present a system of equations in the
original variables plus a relatively small number of new vari-ables. We show
that the roots of this new system include the original singular root but now
with multiplicity one, and the new variables uniquely determine the
multiplicity structure. Both constructions are "exact", meaning that they
permit one to treat all conjugate roots simultaneously and can be used in
certification procedures for singular roots and their multiplicity structure
with respect to an exact rational polynomial system