858 research outputs found

    Synthetic biology: new engineering rules for an emerging discipline

    Get PDF
    Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development

    Rational Diversification of a Promoter Providing Fine-Tuned Expression and Orthogonal Regulation for Synthetic Biology

    Get PDF
    Yeast is an ideal organism for the development and application of synthetic biology, yet there remain relatively few well-characterised biological parts suitable for precise engineering of this chassis. In order to address this current need, we present here a strategy that takes a single biological part, a promoter, and re-engineers it to produce a fine-graded output range promoter library and new regulated promoters desirable for orthogonal synthetic biology applications. A highly constitutive Saccharomyces cerevisiae promoter, PFY1p, was identified by bioinformatic approaches, characterised in vivo and diversified at its core sequence to create a 36-member promoter library. TetR regulation was introduced into PFY1p to create a synthetic inducible promoter (iPFY1p) that functions in an inverter device. Orthogonal and scalable regulation of synthetic promoters was then demonstrated for the first time using customisable Transcription Activator-Like Effectors (TALEs) modified and designed to act as orthogonal repressors for specific PFY1-based promoters. The ability to diversify a promoter at its core sequences and then independently target Transcription Activator-Like Orthogonal Repressors (TALORs) to virtually any of these sequences shows great promise toward the design and construction of future synthetic gene networks that encode complex “multi-wire” logic functions

    A Synthetic Genetic Edge Detection Program

    Get PDF
    SummaryEdge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE

    Engineering signaling circuits using a cell-free synthetic biology approach

    Get PDF

    Applying engineering principles to the design and construction of transcriptional devices

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 180-203).The aim of this thesis is to consider how fundamental engineering principles might best be applied to the design and construction of engineered biological systems. I begin by applying these principles to a key application area of synthetic biology: metabolic engineering. Abstraction is used to compile a desired system function, reprogramming bacterial odor, to devices with human-defined function, then to biological parts, and finally to genetic sequences. Standardization is used to make the process of engineering a multi-component system easier. I then focus on devices that implement digital information processing through transcriptional regulation in Escherichia coli. For simplicity, I limit the discussion to a particular type of device, a transcriptional inverter, although much of the work applies to other devices as well. First, I discuss basic issues in transcriptional inverter design. Identification of key metrics for evaluating the quality of a static device behavior allows informed device design that optimizes digital performance. Second, I address the issue of ensuring that transcriptional devices work in combination by presenting a framework for developing standards for functional composition. The framework relies on additional measures of device performance, such as error rate and the operational demand the device places on the cellular chassis, in order to proscribe standard device signal thresholds. Third, I develop an experimental, proof-of-principle implementation of a transcriptional inverter based on a synthetic transcription factor derived from a zinc finger DNA binding domain and a leucine zipper dimerization domain. Zinc fingers and leucine zippers offer a potential scalable solution to the challenge of building libraries of transcription-based logic devices for arbitrary information processing in cells.(cont.) Finally, I extend the principle of physical composition standards from parts and devices to the vectors that propagate those parts and devices. The new vectors support the assembly of biological systems. Taken together, the work helps to advance the transformation of biological system design from an ad hoc, artisanal craft to a more predictable, engineering discipline.by Reshma P. Shetty.Ph.D

    Applying engineering principles to the design and construction of transcriptional devices

    Get PDF
    Ph.D. thesis (user submitted)The aim of this thesis is to consider how fundamental engineering principles might best be applied to the design and construction of engineered biological systems. I begin by applying these principles to a key application area of synthetic biology: metabolic engineering. Abstraction is used to compile a desired system function, reprogramming bacterial odor, to devices with human-defined function, then to biological parts, and finally to genetic sequences. Standardization is used to make the process of engineering a multi-component system easier. I then focus on devices that implement digital information processing through transcriptional regulation in Escherichia coli. For simplicity, I limit the discussion to a particular type of device, a trancriptional inverter, although much of the work applies to other devices as well. First, I discuss basic issues in transcriptional inverter design. Identification of key metrics for evaluating the quality of a static device behavior allows informed device design that optimizes digital performance. Second, I address the issue of ensuring that transcriptional devices work in combination by presenting a framework for developing standards for functional composition. The framework relies on additional measures of device performance, such as error rate and the operational demand the device places on the cellular chassis, in order to proscribe standard device signal thresholds. Third, I develop an experimental, proof-of-principle implementation of a transcriptional inverter based on a synthetic transcription factor derived from a zinc finger DNA binding domain and a leucine zipper dimerization domain. Zinc fingers and leucine zippers offer a potential scalable solution to the challenge of building libraries of transcription-based logic devices for arbitrary information processing in cells. Finally, I extend the principle of physical composition standards from parts and devices to the vectors that propagate those parts and devices. The new vectors support the assembly of biological systems. Taken together, the work helps to advance the transformation of biological system design from an ad hoc, artisanal craft to a more predictable, engineering discipline
    corecore