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General introduction and outline 
 

Abstract Unravelling the complex organization of molecular networks inside living cells is a 

key topic of both systems biology and synthetic biology. Simplified model systems have been 

engineered and constructed under controlled cell-free conditions with the goal of mimicking 

biological responses of intracellular circuits. These model systems reveal key principles of 

molecular programs that underlie the biological function of interest. Here, we first present an 

overview of key studies on cell-free biochemical modules that are able to emulate higher-

order dynamics. Additionally, we discuss the effect of retroactivity, a phenomenon resulting 

from the interconnection of an upstream module to a downstream module. Importantly, while 

cell-free studies on molecular networks are often performed at high reactant concentrations in 

a well-stirred dilute environment, the cell’s interior is an inhomogeneous crowded 

environment where reactions between biomolecules occur at low concentrations. We 

additionally discuss the stochastic nature of cellular reactions resulting from low 

concentrations of reactants and the effect of macromolecular crowding on biochemical 

reactions. Finally, we present recent work showing the versatility of programmable 

biochemical reaction networks in analytical and diagnostic applications. 
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1.1 Cell-free biochemical reaction networks 

Understanding complex biological behaviour by cell-free reconstitution of purified biological 

components has been a well-established methodology. Many pioneering studies are concerned 

with the cell-free reconstitution of existing intracellular networks, such as oscillatory 

phosphorylation of KaiC by synergistic action of KaiA and KaiB.1 Indeed, reconstruction of 

system-level properties of regulatory circuits using purified biochemical components can 

reveal key design principles and molecular programs that underlie the biological function of 

interest.2 The advantage of a cell-free strategy relies on the controllable construction of 

molecular networks, which are completely defined and can be easily manipulated. Control 

over each component makes these networks amenable for quantitative and systematic 

analysis, allowing the extraction of cells network organization and correlated input-output 

patterns. For example, Lim and coworkers recently applied this strategy to obtain a deeper 

understanding of Ras GTPase signaling, which is a protein crucial in cell proliferation and 

morphology.3 Ras GTPases bind GTP and hydrolyze it to GDP and Pi after which these 

products are released. However, these processes are very slow and, therefore, regulators that 

accelerate these reactions, including guanine exchange factors (GEFs) and GTPase activating 

proteins (GAFs) are essential in the catalytic cycle. While GEFs stimulate product release 

allowing reloading with GTP, GAFs promote hydrolysis of GTP. Activated Ras interacts with 

multiple competing downstream effectors in order to initiate signaling cascades. As such, the 

dynamics of the Ras GTPase cycle is not only determined by the Ras GTPase, but also 

involves the upstream regulators and downstream effectors. At the time, the biochemical 

knowledge of Ras and Ras-associated proteins was largely rooted in research towards the 

individual molecules, rather than a complete system of molecules in which the Ras GTPase 

can actively cycle. Lim et al. designed various system configurations of cell-free Ras 

networks (Figure 1.1B) and systemically mapped the effect of different network 

configurations on the dynamic shape of the system’s response. They found that the 

concentration and type of upstream and downstream signaling proteins strongly affected the 

shape and timing of the effector response (Figure 1.1C). Furthermore, they showed that 

different configurations of the Ras system were able to give unique temporal outputs, even if 

the inputs were the same (Figure 1.1C). Therefore, cells can respond differently by 

modulating the configuration of Ras-related core proteins to their desired function. 

Furthermore, they showed that an off balance of the GAFs and GEFs, related to distorted 

outputs in oncogenic genes, could be restored by Ras-GEF positive feedback mechanisms. By 
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mapping the influence of each signaling component Lim and coworkers provided qualitative 

insights and behavioral principles of the information processing of the Ras system. 

  
Figure 1.1: The Ras signaling system and its dynamics. A) Illustration of the Ras signaling system in which Ras 
is activated by guanine exchange factors (GEFs), and is deactivated by GTPase-activating proteins (GAPS). 
Activated Ras interacts with downstream effectors such as Raf or PI3, resulting in a measurable signal output. B) 
Simplification of the Ras signaling system, consisting of Ras and Ras regulators and effectors. The response 
output to an input varies according to the system configuration. C) Schematics and results of experiments in 
which a fixed step input is applied to different Ras signaling configurations. For each configuration the 
concentration of a single network component is varied. Figure adapted from reference 3. 
 

Cell-free synthetic biology is concerned with the reconstitution of existing cellular networks 

and, in addition, the engineering of new model systems naturally not occurring in cells by 

applying a bottom-up approach. The reconstitution of existing system-level properties in a 

cell-free environment allows the isolation of the relevant characteristics and interactions that 

determine the specific system-level behaviour of interest which can now be described 

mathematically in a framework of simple theories. Bottom-up synthetic biology involves the 

engineering of new non-existing signaling circuits from scratch. These de novo circuits 

consist of naturally occurring biomolecules or derivatives with well-established functions, 

which are now used in an unnatural network configuration and, hence, these biomolecules 

govern the interplay naturally not occurring in cells. In the following section, we will focus on 

cell-free biochemical reaction networks (BRNs) engineered using the bottom-up approach 

A 

B 

C 
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displaying various higher-order temporal functionalities including switching and oscillations. 

We limit the discussion to enzymatically driven systems, i.e. those that rely on enzymes to 

maintain their thermodynamic non-equilibrium state. While non-enzymatic biomolecular 

networks4 are highly programmable and useful synthetic biological tools, intracellular 

networks use enzymatic reactions to achieve their function. 

Living systems harness bi- and multistable molecular programs to store information 

concerning the state of a cell, and subsequently process this information to induce decision-

making events. Kim, Winfree and co-workers5 succeeded in the bottom-up design of a cell-

free bistable enzymatically driven circuit based on synthetic deoxyribonucleic acid (DNA) 

templates known as genelets that are regulated by ribonucleic acid (RNA) transcripts. The 

researchers developed the so-called genelet toolbox in which RNA polymerase (RNAP) 

transcribes RNA regulators from genelets that in turn serve as excitatory or inhibitory 

regulators for the transcription of RNA regulators from other genelets. In this way, the 

elimination of genes and their associated production and degradation of proteins that are not 

involved in the circuit allows for systematic analysis by means of a fairly accurate 

quantitative description that is impossible to achieve in in vivo systems or crude cell extracts. 

In Figure 1.2A, the implementation of a genelet-based bistable switch is shown that consists 

of transcriptionally active and inactive double stranded DNA (dsDNA) species and interacting 

RNA regulators. RNA regulators serve as inhibitors 𝐼𝐼1 and 𝐼𝐼2 of transcription from genelets 

SW21 and SW12, respectively, by binding to the respective single stranded DNA (ssDNA) 

activators A1 and A2. Sequestration of activator DNA prevents formation of fully dsDNA 

resulting in a significant reduction of transcriptional activity. These reactions are designed to 

be very specific by appropriate choice of the base sequence. Activation is accomplished by 

degradation of RNA transcripts bound to the activator (Aili) resulting in the release of the 

sequestered DNA activator. Figure 1.2B shows the corresponding topology of the bistable 

BRN, while Figure 1.2C displays the experimentally constructed bifurcation diagram with the 

two activator ssDNA concentrations (𝐴𝐴2tot for SW12 and 𝐴𝐴1tot for SW21) as bifurcation 

parameters. Figure 1.2D displays the switch activity time courses corresponding to high initial 

concentration of RNA inhibitor I1 (circles) or high initial concentration of RNA inhibitor I2 

(lines). The system remains in the steady state that the investigators initiated, showing that 

two possible steady states exist. Further experiments to test the bistable circuit on hysteresis 

suggest that switching between steady states in a single experiment is possible at least once. 

The characterization of individual genelets proved sufficient for the authors to assemble a 
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bistable circuit, based on modularity and programmability of the components. The modularity 

of the genelet-toolbox have also allowed Kim, Murray and colleagues to assemble a synthetic 

transcriptional network that shows adaptation and fold change detection based on the 

incoherent feedforward loop (IFFL).6  

 

Figure 1.2: Cell-free synthetic genelet-based bistable switche. A) Implementation of the genelet-based switch 
based on synthetic template DNA from which RNA polymerase (RNAP) produces RNA regulators that in turn 
serve as excitatory or inhibitory regulators for the transcription of RNA regulators from other genelets, while 
RNase H degrades regulators from Aili complexes. B) Topology of the reaction scheme in A. C) Experimentally 
constructed bifurcation diagram, with pink data points corresponding to bistable behaviour. D) Switch activity 
time courses corresponding to the encircled data point in C, with high initial concentration of RNA inhibitor I1 
(circles) or high initial concentration of RNA inhibitor I2 (lines). Figure adapted from reference 5. 
 

Rondelez and co-workers7 used a similar strategy to construct a bistable toggle switch, by 

introducing a modular toolbox by which biochemical networks of arbitrary complexity can be 

engineered de novo under well-controlled in vitro conditions (Figure 1.3A). The toolbox is 

based on DNA and the enzymes polymerase, exonuclease and nickase (PEN toolbox). 

Synthetic DNA templates are triggered by short ssDNA strands acting as regulating signals on 

the production of an output signal. Activation of templates by these ssDNA signals enables 

DNA polymerase to extend the oligomer-template pair resulting in fully hybridized dsDNA. 

Subsequently, these dsDNAs are nicked resulting in double-stranded complexes. Because 

these reactions are performed at a temperature close to the melting temperature of the partial 

duplexes, the input and output ssDNAs dissociate from their templates. Templates are 

inhibited by ssDNA strands that are complementary to part of the template’s sequence, lack a 
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nickase recognition site and possess a two-base mismatch at their 3’ ends which prevents 

extension of the partial duplex, rendering the template strand inactive. Signal and inhibition 

strands are degraded over time by exonuclease from which the template strands are protected 

by phosphorothioate modifications at their 5’ ends. Figure 1.3B shows the six templates that 

comprise the toggle switch. Two templates, αtoα and βtoβ autocatalytically produce ssDNA 

species α and β while templates αtoiβ and βtoiα produce inhibitors upon activation by α and β 

respectively. These four templates comprise the bistable core (Figure 1.3C). Positive feedback 

is necessary in this system as reciprocal inhibition alone does not provide the ultrasensitive 

response necessary for bistability. To independently switch the system between the α- and β- 

state two additional templates, i.e. γtoα and δtoβ were employed (Figure 1.3B-C). The authors 

computationally predicted switching to the β-state by addition of single-stranded δ and 

switching to the α-state by addition of single-stranded γ (Figure 1.3D) and verified the 

bistable behaviour of the circuit experimentally (Figure 1.3E). The circuit could be switched 

two consecutive times in a single experiment after which resources were depleted and the 

concentrations of templates became too low, leading to loss of functionality of the switch. 

Finally, the authors presented the construction of a push-push memory circuit that responds to 

a single input that switches the state of the bistable core. Due to the size of the circuit (eight 

template strands), the reaction times of the push-push circuit are large and the circuit could 

only be switched once. Nonetheless, the size of the circuit is comparable to in vivo complexity 

of eight genes, which is amongst the largest realizations of synthetic genetic regulatory 

networks performed in cells. Moreover, the systematic engineering of the push-push circuit 

further demonstrates the modularity of the PEN toolbox. 
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Figure 1.3: Cell-free PEN-based bistable switches. A) Reactions in the PEN toolbox: activator ssDNA 𝛼𝛼 primes 
the synthetic template, after which it is extended by DNA polymerase resulting in dsDNA. Nickase cleaves this 
dsDNA in the backbone of the newly formed strand, resulting in dissociation of signal strand 𝑋𝑋.  Depending on 
the sequence of 𝑋𝑋, three types of reactions can occur, i.e. activation, autocatalysis and inhibition. B) The six 
synthetic DNA templates of the bistable switch shown in G. C) Topological representation of the PEN toolbox-
based switch. The single-stranded input signals γ and δ induce switching to the α- and β-state, respectively. D) 
Simulated predictions of switching to the β-state by δ (grey line) and of switching to the α-state by γ (black line). 
E) A single switching experiment starting in the α-state, which is first switched to the β-state by δ (grey line), 
and subsequently switched back to the α-state by γ (black line). Figure adapted from reference 7. 
 

To even further predict in silico the dynamical behaviour of cell-free PEN-based reaction 

networks, De Greef and colleagues,8 developed an automated approach in which PEN-based 

DNA circuits of arbitrary complexity were screened for prespecified temporal behaviour. 

Additionally, the authors reported software that optimizes the template sequences for which 

the biochemical network robustly shows the desired non-equilibrium behaviour, narrowing 

the gap between in silico prediction and in vitro realization of PEN-based circuits. The 

researchers verified their method by applying it to the previously described enzymatic DNA-

based oscillator (vide supra) and used it to design a PEN-based adaptive BRN in silico. 

Oscillations are a canonical example of out-of-equilibrium behaviour. Recently, several in 

vitro biochemical circuits exhibiting oscillations have been reported. Here, we highlight 

several pioneering studies in which oscillatory dynamics have been engineered in 

enzymatically driven networks, DNA circuits and cell-free transcription-translation-based 

systems, both under batch conditions and in open reactors. Examples of oscillating BRNs that 
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function under batch conditions include cell-free in vitro biochemical oscillators based on the 

genelet toolbox (Figure 1.4A) and the PEN toolbox (Figure 1.4B). Kim and Winfree 

constructed an oscillator using the genelet toolbox, which consists of two synthetic DNA 

templates that comprise a delayed negative feedback loop.9 Two genelets, regulated by RNA 

activator rA1 and RNA inhibitor rl2 transcribed from genelet templates SW12 and SW21 

respectively, govern the oscillatory behaviour. The circuit could show up to five complete 

cycles. The researchers then added a positive feedback loop with the use of a third genelet that 

modulated and extended the oscillatory regime and, importantly, demonstrated the modularity 

of this system. Rondelez and co-workers constructed a PEN toolbox-based oscillator (Figure 

1.4B),10 in an analogous manner as described for their bistable switch. The network topology 

consists of autocatalytic synthesis of primer α which activates synthesis of primer β which in 

turn serves as a primer for the production of inhibitor inh. Delayed inhibition of the 

autocatalytic synthesis of primer 𝛼𝛼 results from the reversible sequestration of oligomer inh to 

T1. Highlighting the versatility of the methodology, the same group designed an in vitro 

enzymatic DNA-based network that emulated the complex dynamics of ecological systems,11 

including predator-prey oscillations, competition-induced chaos, and symbiotic 

synchronization.  

Several groups have successfully engineered oscillating BRNs in open chemostats. Huck et 

al.12 constructed a trypsin-based enzymatic oscillator under flow conditions and provided a 

modular approach to rationally design dissipative, tuneable and robust chemical networks. 

The methodology is based on translation of a basic network topology known to generate 

oscillations, i.e. a short positive feedback loop in combination with a delayed negative 

feedback mechanism. Positive feedback is implemented by autocatalytic production of trypsin 

(E1*, Figure 1.4C) from trypsinogen (E1), while delayed inhibition is realized by a masked 

inhibitor that is converted in a fully active inhibitor by an enzymatic cascade based on trypsin 

and aminopeptidase. As the two enzymes that make up the negative feedback loop show a 

high selectivity towards their substrates, the rate of each step could be independently tuned. 

Using mathematical modelling, the correct balance between production and inactivation of 

trypsin necessary for sustained oscillatory behaviour was established resulting in sustained 

oscillations in the experimental concentration of trypsin for a wide range of flow rates. 

Furthermore, the authors show signal modulation by coupling of two biochemical networks 

each in a separate fluidic reactor, and by coupling of the out-of-equilibrium enzymatic 

network to complex coacervates.  
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Figure 1.4: Oscillatory molecular networks designed de novo. A) Schematic representation of a genelet 
oscillator regulated by RNA activator rA1 and RNA inhibitor rl2 transcribed from genelet templates SW12 and 
SW21 (left). Experimental and simulated traces of the transcriptional oscillator. Figure adapted from reference 9. 
B) Schematic representation of the PEN-based oscillator, including autocatalysis, activation, inhibition and 
degradation of primers and single-stranded DNA strands (left). The oscillatory traces of single stranded species 
from experiments (dots) are shown on the right and can be fully described by a computational model (line). 
Figure adapted from reference 10. C) Schematic representation of the trypsin-based enzymatic oscillator (left). 
Experimental traces show sustained oscillations in the concentration of trypsin for approximately 65 hours. 
Figure adapted from reference 12. 
 

Cell-free transcription and translation chemistry (TxTl) allows the engineering of 

biomolecular circuits based on transfer of information between genes. Because the 

transcription and translation rates of cell-free TxTl systems decrease in time under batch 

conditions, experiments need to be conducted in a continuous flow setup allowing constant 

steady-state transcription and translation rate by exchange of  reagents. Maerkl et al. 

constructed and implemented a genetic oscillator using pneumatically controlled microfluidic 

reactors with volumes in the nanoliter regime.13 Importantly, the genetic oscillator was 

subjected to continuous flow allowing exchange of reagents and forcing the system out-of-

equilibrium resulting in sustained oscillations for extended periods of time (Figure 1.5A). The 

circuit design combines a short range positive feedback loop with delayed repression. The 
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positive feedback loop is based on an autogene consisting of a gene encoding for T3 RNA 

polymerase and its cognate T3 promoter. Inhibition of the autogene is achieved by production 

of TetR repressor which binds to TetR operator sites on the T3 promoter of the autogene. 

Because production of TetR repressor has to be delayed to achieve sustained oscillations, the 

authors introduced an Amber stop codon in the tetR gene resulting in premature termination 

of tetR mRNA translation. The translation rate can be increased by production of Amber 

suppressor tRNA which is in turn under control of the T3 autogene. Inspection of the phase 

diagram of the cell-free TxTl oscillator with respect to the supD DNA template 

concentrations and the dilution rate reveals that oscillations are observed for almost all 

concentrations of supD template. Furthermore, it reveals a decrease in the oscillation period 

with increasing dilution rate with oscillatory behaviour generally being established at high 

dilution rates. Showing the generality of cell-free TxTl systems as a tool to engineer 

programmable molecular circuits, Bar-Ziv, Noireaux and colleagues assembled artificial cells 

based on two-dimensional compartments containing DNA-brushes. Programmable protein 

synthesis is achieved by diffusion of Escherichia coli (E. coli) cell extract through thin 

capillaries that connect the compartments to a central feeding channel (Figure 1.5B).14 

Oscillatory dynamics of the genetic network is accomplished by a mixed DNA-brush 

encoding for an activator-repressor gene network in each compartment. The temporal period 

in the activator concentration scaled linearly with the length of the capillary channel, 

demonstrating the effect of diffusion and compartment geometry on oscillatory dynamics 

under non-stirred conditions. Moreover, by separating DNA-brushes encoding activator and 

repressor proteins into two connected compartments, the researchers demonstrated diffusion-

based information transfer resulting in a spatiotemporal pulse with a period that scales 

linearly with the distance between the respective compartments.  
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Figure 1.5: In vitro oscillators based on cell-free transcription and translation. A) Operation scheme of the 
genetic oscillator consisting of an autocatalytic loop and delayed inhibition (left). The dynamic state of the 
system is measured using Cerulean and Citrine which are produced in parallel to T3RNAP and TetR repressor 
respectively. Oscillatory traces of Cerulean and Citrine show varying profiles and periods (P) at different supD 
gene concentrations (c) and different residence times (μ−1) (right). Figure adapted from reference 13. B) Left: 
Design of the microfluidic chip in which DNA brushes are assembled in circular compartments and are 
connected through a capillary to a feeding channel. Activator-repressor genetic networks are assembled with 
sigma factor for activation and the lambda phage cI for repression.  Right: GFP profile of oscillatory gene 
dynamics in an activator-repressor network measured in the compartment. Figure adapted from reference 14.  
 

The above studies illustrate enzymatic and enzymatically driven nucleic acid-based reaction 

networks that display complex high-order temporal functionalities using a minimal set of 

components. Clearly, cell-free synthetic biologists are capable of emulating temporal out-of-

equilibrium dynamics using a relatively small number of biomolecular components. 

Furthermore, these minimal systems are amenable to systematic design and quantitative 

analysis and, thereby, provide a framework in which the effect of the individual components 

to the overall dynamics can be studied in detail. 

1.2 Modularity and Retroactivity  

The definition of ‘modularity’ refers to a system consisting of independent modules which 

can be separated and recombined while keeping their internal function. It is therefore no 

surprise that well-characterized modular units are desired in the field of bottom-up synthetic 

biology as this allows the construction of large networks in a predictable manner. However, 

the interconnection of modules inevitably changes the dynamics of the upstream module, a 
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phenomenon known as retroactivity (Figure 1.6). For example, consider a water tank with an 

inlet and an outlet pipe and take a constant input flow as input and the pressure at the outlet 

pipe as output. Connecting the outlet pipe to a second barrel will increase the pressure at the 

outlet pipe and, hence, retroactivity to the output arises. Moreover, when the output flow is 

comparable to the input flow the downstream connection results in an increasing water level 

in the tank and possibly also affects the input flow. In other words, retroactivity to the input is 

low when the output flow is large compared to the input flow. 

 

Figure 1.6: Symbolic representation of an input-output system connected to a downstream component. S 
denotes the system which has an internal state x, whereas u and y represent the input and of the system 
respectively. Interconnection of a downstream component results in retroactivity to the output (s) and 
retroactivity to the input (r). Figure from reference 15. 

 

Del Vecchio and coworkers extensively studied in silico the effect of retroactivity on the 

output dynamics of an upstream transcriptional network resulting from interconnection to a 

downstream component (Figure 1.7).15 The upstream network consists of a single gene which 

produces protein X (output) by activation of transcription factor Z (input). Protein X can 

reversibly bind to the downstream component and can be degraded. Figure 1.7A displays 

simulated results of the time evolution of X with a sinusoidal input function in presence and 

absence of the downstream component. Indeed, binding of X to the downstream component 

changes the dynamics of the upstream circuit. By singular perturbation analysis the authors 

show that retroactivity is small when the binding affinity of X to the downstream component 

is low or when the amount of X is large compared to the number of downstream component. 

Importantly, given a defined affinity of X with the downstream component and a defined 

number of downstream components, they revealed two methods to decrease retroactivity. 

Figure 1.7B displays an insulating device enabling insulation of the upstream and downstream 

transcriptional components by input amplification in combination with a negative feedback 

mechanism. The negative feedback mechanism is based on enhanced degradation of X by 

protease Y, which is expressed from gene y. The production rate of X and Y are controlled by 

the same gain parameter (G). The authors mathematically show that an increasing G results in 
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increased attenuation of retroactivity. Furthermore, this was also supported by simulations for 

which the results are displayed in Figure 1.7B. Besides, attenuation of retroactivity can also 

be achieved by separation of timescales between the dynamics of the upstream circuit and the 

dynamics at the interconnection of the upstream and downstream components. The authors 

theoretically analysed this situation with a model system (Figure 1.7C) in which Z 

phosphorylates protein X, which is present in excess. Phosphorylated X, Xp binds to the 

downstream component or is dephosphorylated by phosphatase Y, which is also present in 

excess. Hence, the negative feedback relies on the action of the phosphatase that converts 

active protein to an inactive form. Del Vecchio and coworkers show mathematically and by 

simulations (Figure 1.7C) that retroactivity to the output is attenuated when the timescale of 

the phosphorylation-dephoshorylation reactions is much faster than the timescale of 

producing and degrading Z. Besides in silico analysis, Del Vecchio and coworkers realized an 

in vivo model system in which retroactivity on the temporal dynamics of a gene transcription 

module was analysed.16 The gene module produces repressor Lacl which can reversibly bind 

to the downstream component. Interestingly, in the presence of the downstream component, 

the response of the module to induction showed a time delay, while a faster response was 

observed upon de-induction. This shows that the effect of retroactivity depends on the history 

of the system and was further supported with a theoretical model.  
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Figure 1.7: Retroactivity and insulation. A) Illustration of the in silico analysed transcriptional network and the 
downstream component. Transcription factor Z, which is the input of the transcriptional component, reversibly 
binds to the promoter px and thereby activates gene expression resulting in protein X. Protein X can be either 
degraded or can bind to the promotor pd of a downstream load. The graph shows the time evolution of X of 
simulations given input Z a sinusoidal function, in absence (red) and presence (blue) of the downstream 
component. B) Schematic of the transcriptional component complemented with an insulation device (grey) and 
the downstream load. Insulation to the output X of the upstream circuit relies on input amplification in 
combination with a negative feedback loop. The negative feedback loop comprises the expression of protease Y 
from a constitutive promoter, which reversibly binds to X followed by the degradation of X. The production rate 
of X and Y are controlled by the same gain parameter (G). The graph shows the time evolution of X given input Z 
a sinusoidal function, in absence (red) and in presence of the downstream component with G=10 (light purple) 
and G=1 (dark purple). Simulations were performed with the same parameter values as in (A). C) Schematics of 
the insulation device (grey) and the downstream load. Insulation is achieved by by phosphorylation and 
desphosphorylation of X. To this end, Z reversibly binds to X after which X is phosphorylated (Xp). The negative 
feedback loop comprises the reversible binding of phosphate Y to Xp followed by dephosphorylation of Xp. to X. 
Activated X, Xp can reversibly bind to the downstream load. The graph shows the time evolution of X of 
simulations given input Z a sinusoidal function, in absence (red) and in presence of the downstream component 
with fast (light purple) and slow (dark purple) phosphorylation and dephoshorylation. Figure adapted from 
reference 15. 
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To further explore the modularity and resilience of the system, Murray, Simmel and co-

workers17 coupled the transcriptional genelet oscillator (vide supra) to several downstream 

loads including a DNA-based nanomechanical device and the production of a functional RNA 

molecule (Figure 1.8). Different mechanisms were employed to couple the oscillator to 

several downstream processes, and for each mechanism the impact of the load on the 

performance of the upstream ‘core oscillator’ was assessed on key characteristics such as the 

frequency and amplitude of the oscillatory response. Reduction of retroactivity and efficient 

activation of the downstream reaction circuit was achieved when the coupled process was 

driven by appropriately fast kinetics in combination with a high-amplitude oscillatory signal. 

The authors achieved near zero retroactivity with the introduction of a genelet module that 

functions as an insulator. The insulator is activated by DNA strand A2 and inhibited by RNA 

strand rl2, which are utilized and produced by the core oscillator respectively (Figure 1.8A-B). 

The insulator acts as an amplifier because small increases in the active genelet (only mildly 

affecting the core oscillator) drives transcription of large amounts of RNA transcript InsOut 

that controls the opening of a DNA tweezer. Degradation of InsOut occurs fast enough for the 

tweezer to follow the oscillations of the core BRN by periodically opening and closing 

(Figure 1.8C). Therefore, the insulator module not only demonstrates the modularity of the 

genelet toolbox but also greatly improves the utility of in vitro BRNs as insulation of the core 

circuit allows these networks to be utilized to drive functional downstream processes for 

example in DNA-based diagnostics. 
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Figure 1.8: A) Schematic representation of a genelet oscillator coupled downstream to a load via an insulator 
module. B) Implementation of the genelet-based insulator based on synthetic template DNA from which RNAP 
produces RNA regulator InsOut that in turn opens the tweezer by displacing TwCls. The insulator is inhibited by 
RNA regulator rl2 which displaces activator A2 from InsA2. RNase H degrades regulators from A2rl2 and 
InsOutTwCls complexes. C) Experimental traces of the transcriptional oscillator coupled to a downstream 
system shows the insensitivity of the system towards the load (the DNA tweezer) for various insulator and load 
concentrations. Figure adapted from reference 17. 
 

From the point of view of constructing molecular systems de novo, it is desirable to have 

modular structures and, hence, low retroactivity at the interconnections between modules. 

However, it is not necessary that retroactivity has to be low for the functioning of a network, 

because parts of the system may have been finely tuned to work well with each other in a 

specific interconnected configuration. Moreover, retroactivity from sharing of resources can 

even provide additional robustness to molecular circuits.8,18,19 Whether natural systems have 

been evolved with low retroactivity at the interconnections of functional units is a challenging 

question. Jacob, Alon and Hartwell suggest that modular structures convey an advantage over 

non-modular structures in evolutionary change.20-22 Modular structures allow changes in a 

particular function of a cell by the reconfiguration of the connections between modules while 

the core functions embedded in the discrete modules remain unchanged. Moreover, 

optimizing a particular function of a cell in a non-modular configuration would be hard, 

because an improvement of one function probably goes along with a deterioration of another 

function. Supporting this idea, proteins that have many binding partners such as histones, 

actin and tubulin barely changed during evolution. Furthermore, theoretical studies have 

shown that mutations are less common when it affects multiple components.23 
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1.3 Stochastic effect and molecular crowding  

While the construction of cell-free reaction networks has provided fundamental understanding 

of network structure and correlated function, these cell-free systems are not always 

representative of cellular environments as they are often studied under bulk test tube 

conditions in a well-stirred dilute mixture. Here, we focus on two factors which are mostly 

not included in cell-free studies of biochemical reaction networks but which significantly 

contribute to the dynamics and kinetics of reaction networks in cells including the low 

number of reactants and macromolecular crowding. 

Stochastic biochemical reactions 

Biochemical reaction networks inside cells involve many different biomolecules. Yet, the 

concentration of each biomolecule is rather low and, hence, a degree of randomness in these 

reaction networks is expected. It is generally accepted that the variation in gene expression 

results from the low number of reactants together with the stochastic nature of molecular 

collisions by diffusion.24-26 Variation or noise in gene expression occurs in various molecular 

systems27-29 and has been studied in different cells including prokaryotes and eukaryotes30-32 

as well as in stem cells,33 cancer cells34 and cells expressing viruses.35 Importantly, protein 

expression involves multiple chemical steps each of which arguably contributes to the total 

fluctuation in protein level.36 Several studies revealed important insights in how cells can 

exploit or suppress noise. Elowitz experimentally explored the cause of variation in gene 

expression and introduced the concepts of extrinsic and intrinsic noise (Figure 1.9),37 which 

were mathematically analysed by Swain et al.38 Extrinsic noise arises from fluctuations in the 

cellular state or composition and results in differences in gene expression between cells while 

fluctuations of gene expression of identical genes within one cell are correlated. By contrast, 

uncorrelated fluctuations of protein expression from two identical genes within a cell resulting 

from the stochasticity of biochemical processes or other factors, is considered as intrinsic 

noise. The two-gene reporter system developed by Elowitz et al. has been used as a reliable 

method to estimate39 intrinsic and extrinsic noise of gene expression in vivo32,40 and in vitro41. 



Chapter 1 

18 
 

 

Figure 1.9: Uncorrelated and correlated noise in gene expression. Extrinsic noise is the variation in gene 
expression between cells while fluctuations of gene expression of identical genes (protein 1 and 2) within one 
cell are correlated. By contrast, uncorrelated fluctuations of protein expression from two identical genes (protein 
1 and 2) within a cell are considered as intrinsic noise. 
 

Ozbudak et al. shows that the variation in gene expression in cells of the prokaryote Bacillus 

subtilis depends on the rates of transcription and translation.42 In line with another study in 

which the variation in gene expression was examined by theoretical analysis43, noise was 

lower with frequent transcription and inefficient translation compared to infrequent 

transcription and efficient translation. Analogous, Elowitz et al. found that noise in protein 

expression in E. coli increases with decreasing transcription rate.37 Most genetic circuits 

display feedback control involving repressors, transcription factors, mediators and chromatin 

remodeling each of which contributes to the variation in gene expression or possibly serve as 

coping mechanisms.44 For example, the number and location of transcription factor binding 

sites can control noise in gene expression.45 Additionally, several studies, including 

experimental and theoretical analysis, show that noise in gene expression is suppressed by 

negative autoregulation.29,43,46 Noise has important biological consequences such as 

determining phenotypic variation in cellular populations,47 all of which are affected by the 

magnitude and the frequency of the noise.44,47-50 Small differences in protein expression may 

have either an environmental fitness advantage or disadvantage. Moreover, stochasticity may 

play an important role in cell differentiation or as a survival mechanism in fluctuating 

environments.31,51,52  

It has become clear that we cannot ignore the stochasticity of biochemical reactions. Yet, the 

number of examples in which cell-free biochemical reaction networks are constructed using 

low concentrations of reactants is limited. One study, from Simmel and co-workers, involved 
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the in vitro compartmentalization of a transcriptional oscillator (vide supra) into 

microdroplets to study the effect of micro-scale encapsulation and stochasticity on cell-free 

biochemical reaction networks.53  They analysed the robustness of the in vitro transcriptional 

oscillator at low concentrations by measuring large populations of microdroplets 

simultaneously. Synchronization among compartmentalized oscillators did not occur due to a 

lack of controlled communication between droplets, resulting in dynamical diversity of 

oscillatory behaviour among droplets in terms of amplitude, frequency and damping. Based 

on results of deterministic and stochastic models the researchers concluded that the dynamical 

diversity in oscillatory behaviour could be attributed to the statistical variation of reactant 

concentrations as a result of partitioning the system into droplets, rather than reflecting the 

intrinsic stochastic kinetics of the chemical reaction network itself. This extrinsic noise as a 

result of statistical variations during encapsulation of biochemical components is an important 

parameter when engineering artificial cells with preprogrammed temporal dynamics. 

Macromolecular Crowding 

While macromolecular crowding is ubiquitous in all types of cells and is known to affect the 

interactions between macromolecules it is mostly neglected by biochemists.54,55 

Macromolecular crowding in biological systems refers to the high concentration of total 

macromolecules inside cells and, thereby, a significant proportion of the volume inside cells 

is occupied and not accessible for other molecules. However, while the macromolecules 

occupy a significant volume of the cell, the concentration of each biomolecule is rather low 

and, therefore, the interior of the cell is crowded and not concentrated.56 Crowding is a 

property which occurs inside and outside cells by various macromolecules including proteins, 

nucleic acids, RNA and polysaccharides. The total concentration of proteins inside E. coli 

ranges from 200-300 g L-1 while the total concentration of RNA typically ranges between 75-

150 g L-1. Together, these macromolecules occupy 20-30% of the cells cytoplasm54,55 and it is 

no surprise reactions between molecules in cells are different than those in an in vitro set-up 

under dilute conditions. Whereas electrostatic or hydrophobic interactions between 

macromolecules affect the free energy profile of reactants and products, crowding specifically 

refers to the excluded volume effect which is a physical nonspecific phenomenon that only 

describes steric repulsion and does not take into account the interactions between 

macromolecules. The excluded volume effect depends on the relative sizes of the 

macromolecules of interest and the other background macromolecules (Figure 1.10).57 For 

relatively small molecules the available volume is roughly equal to the fraction of the volume 
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that is not occupied by the background macromolecules. However, with a molecule with a 

size equal or larger than the background macromolecules, the available volume is 

considerably lower as the center of the molecule of interest cannot be closer to the 

background molecule where the surfaces of the two molecules contact each other.  

 

Figure 1.10: The excluded volume effect. The squares represent the volume which is for 30% occupied by 
spherical macromolecules. The available volume is shown in blue while the excluded volume is shown in pink. 
For relatively small molecules compared to the background macromolecules (left) the accessible volume is 
roughly 70%. For a molecule with a size equal or larger than the background molecules (right) the excluded 
volume is significantly larger than 70% as the centre of the molecule cannot approach the areas as indicated by 
the open circles. Figure from reference 57. 
 

The effect of macromolecular crowding on biochemical reaction rates is rather complex and 

depends on the nature of each reaction. Macromolecular crowding increases the activity of 

macromolecules and limits diffusion, which have opposing effects on the reaction rate.56 

When the reaction rate is transition-state limited, the reaction rate increases with increasing 

crowder caused by a shift in thermodynamic equilibrium.55,57 Depending on the size and 

shapes of the macromolecules, the thermodynamic association constant of two binding 

partners can increase two or three orders of magnitude in a crowded environment. This results 

from a decrease in the configurational entropy of a macromolecule in the presence of a 

crowder and, hence, the contribution to the total free energy of the solution is increased. 

However, the free energy of the unbound molecules increases more than the free energies of 

the transition state and the bound state. Therefore, the thermodynamic driving force shifts the 

equilibrium of the two binding partners to the associated state as this is energetically 

favorable. In conclusion, with increasing crowder the thermodynamic equilibria are shifted to 

the bound state and, hence, the system will be in a state where the least volume is excluded. 
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This thermodynamic effect has serious consequences on the activity of macromolecules.54 

However the effect on small molecules such as ions and metabolites is rather low (Figure 

1.11A). Furthermore, the increase in activity coefficient is highly non-linear with respect to 

the crowder concentration, shown in Figure 1.11B. In the diffusion-controlled limit the 

reaction rate decreases with increasing crowder as the probability of reactants encountering 

decreases. Hence, even reactions which are transition-state limited will fall into diffusion-

limited reactions at high crowder concentrations where the decreased encounter rate starts to 

dominate (Figure 1.11C). 

 

Figure 1.11: A) The activity coefficient (effective concentration / actual concentration) versus the molecular 
weight of a target molecule in a crowded solution. B) The activity coefficient (effective concentration / actual 
concentration) versus the concentration of Haemoglobin. C) The reaction rate constant versus the degree of 
crowding, where the reaction is diffusion-limited (grey dotted line) or transition state-limited (black dotted line). 
Reactions which are transition-state limited will fall into diffusion-limited reactions at high crowder 
concentrations (dark grey line). Figures adapted from reference 54. 
 

Figure 1.12A shows that the effective diffusion coefficient of a macromolecule can decrease 

orders of magnitude in the presence of macromolecular crowding.58 Yet, the kinetics of a 

diffusion-limited reaction in the presence of a crowder can increase as geometry and the 

related effect of subdiffusion start to play a significant role.59 While in a dilute environment 

the reaction rate is independent on the starting point of the reactants, the initial positions of 

the reactants in presence of macromolecular crowding strongly influence the time it takes for 

a diffusing molecule to reach a target (Figure 1.12B), i.e. the first-passage time (FPT). 

When a molecule is located in close proximity to its target the reaction rate can increase 

several orders of magnitude.59 Hence, co-localization  of reactants inside cells is often 

advantageous60 as this results in shorter activation times and increased reaction rates.59,61 In 

describing normal or Brownian diffusion it is assumed that the solute diffuses in a continuous 

hydrodynamic fluid. However, this is not representative for biological systems as the 
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cytoplasm contains a heterogeneous distribution of many different molecules with various 

sizes. While macromolecular crowding in the cytoplasm of the cell decreases the effective 

diffusion coefficient over a long timescale or distance, the diffusion coefficient at short 

timescales is unchanged.62,63 As the mean squared displacement (MSD) of molecules now 

becomes sub-linear this is often called subdiffusion (Figure 1.12C). Importantly, while the 

MSD determined from the average displacement of a population of molecules is linear, a 

single particle subjected to normal diffusion does not have a linear displacement in time and 

therefore, though in lower extent than in presence of crowder, also shows anomalous 

diffusion. An important consequence of this type of diffusion, is that molecules remain longer 

at their initial positions than anticipated59,62 and, hence, may favor for example the search of a 

target gene by transcription factors in the nucleus62,64 or reduces the time needed by an 

enzyme to reach its substrate.65  

 

Figure 1.12: A) The diffusion coefficients of various macromolecules for a concentration range of a crowder, 
Ficoll 70. Figure from reference 58. B) The initial positions of reactants strongly affect the first passage time. 
The reaction between S1 and T has a much longer first passage time compared to the reaction between S2 and T. 
Figure from reference 59. C) Simulated MSD curves of a molecule subjected to normal (Brownian) diffusion and 
anomalous subdiffusion. Figure adapted from reference 59.  
 

The effect of macromolecular crowding on biochemical reactions is complex and challenging 

to predict. Besides the opposing effects of crowding on reaction rates, cells have different 

micro-environments each containing different biomolecules. For example, E. coli have at least 

three micro-environments, including the immediate vicinity of the inner-plasma membrane, 

the interior and immediate vicinity of the nucleoid and the cytoplasm. While the plasma-

membrane and nucleoid have high concentrations of phospholipids and proteins, and DNA 

respectively, the cytoplasm consists of other proteins at a lower concentration. Additionally, 

macromolecular confinement and adsorption are also important background reactions which 

contribute to molecular reactivity.55,61 Different studies have been performed in order to 
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obtain a deeper understanding of the effect of macromolecular crowding in cells. For 

example, Zimmerman et al. showed in a cell-free set-up that macromolecular crowding 

increased the binding of DNA polymerase of E. coli to DNA and, thereby, enhanced DNA 

polymerase reaction rates.66 As the experiments were performed under high ionic strength, 

which is otherwise an inhibitory condition, these results imply that crowding could increase 

the range of conditions for which the cell performs optimal. Similarly, in another cell-free 

study it was found that transcription rates in coarcervate droplets were enhanced in presence 

of macromolecular crowding.67 Other cell-free studies show that addition of synthetic 

polymers increases transcription while translation is limited.68 Additionally, Klumpp and 

coworkers69 show that macromolecular crowding inhibits translation and finally limits cell 

growth in bacteria. Furthermore, macromolecular crowding has been reported to influence 

nucleus assembly in eukaryotic cells70 and also significantly affects ribosomal assembly.71 

These examples demonstrate the importance of the effects of macromolecular crowding on 

the kinetics and the dynamics of the cell’s machinery. 
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1.4 Aim and Outline of this thesis  

The main goal of bottom-up synthetic biology is to obtain a deeper understanding of the 

modus operandi of molecular networks inside living cells by emulating a target property or 

feature of the cell. To this end, to make progress in this field extensive collaboration between 

physicists, chemists, biologists and mathematicians is required. Here, we have highlighted 

several studies in which cell-free biomolecular networks are engineered de novo using a 

bottom-up approach. Besides, we introduced two factors often neglected by biochemists, i.e. 

stochasticity and macromolecular crowding, which significantly contribute to the dynamics of 

reaction networks in cells. The goal of this thesis is to expand the scope of DNA-based 

molecular networks by developing tools enriching these networks and providing additional 

knowledge of biomolecular reactions in cells.  

In Chapter 2, as an introduction to Chapter 3, we introduce the polymerase-exonuclease-

nickase (PEN) toolbox, developed by Rondelez and co-workers. The PEN toolbox allows the 

construction of biochemical circuits emulation complex dynamic behaviour in time and space 

similar to those in natural cells. We implement an INVERTER circuit and a previously 

designed bistable switch and, additionally, we introduce a heuristic model which we use for 

the detailed characterization of PEN-based networks.  

While regulatory circuits in cells control downstream processes through hierarchical layers of 

signal processing, coupling of enzymatically-driven DNA-based networks to downstream 

processes has rarely been reported. In Chapter 3 we engineer hierarchical control of 

enzymatic actuators using the PEN-based bistable switch. We develop a translator module 

which converts signaling molecules from the upstream network to unique DNA strands 

driving downstream actuators with minimal retroactivity and support these findings with a 

detailed computational analysis.  

To further expand the scope of DNA-based molecular programming, in Chapter 4 we 

introduce a generic approach, based on antibody-templated strand exchange (ATSE), 

enabling the use of antibodies as input for DNA-based computing. Experiments showed the 

successful implementation of the ATSE reaction. In Chapter 4 we develop a 

comprehensive model that describes the kinetics of the ATSE system. The model provides 

a fundamental understanding of the ATSE reaction and is used to find optimal 

concentration regimes and to study the effect of thermodynamics and kinetics of antibody–

epitope binding. 
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While cell-free BRNs are often studied at high reactant concentrations in a well-stirred 

environment, the cell’s interior is an inhomogeneous crowded environment where reactions 

between biomolecules occur at low concentrations. These low concentrations of biomolecules 

result in stochastic gene expression in cells. However, it is unknown how the physical 

environment contributes to the variation in gene expression level. Our experimental partners 

at the Radboud university developed a robust method to quantify the variation in cell-free 

gene expression in a controlled environment. In Chapter 5 we study the variation in cell-free 

gene expression as a function of plasmid copy number and macromolecular crowding. To 

support the experimental findings and to obtain a detailed characterization of the experimental 

setup we develop two independent theoretical models. We find that decreasing diffusion 

coefficients and the formation of heterogeneous micro-environments caused by 

macromolecular crowding enhance uncorrelated noise in gene expression. 

Chapter 6 reflects on the findings of the thesis and puts them in context of the field. 
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An introduction to PEN-based reaction networks 
 
Abstract Cell-free synthetic biology entails the de novo engineering of complex biomolecular 

networks from simple molecules using a bottom-up approach. It aims to create biochemical 

reaction networks which act and respond in a versatile and adaptive manner by precisely 

programmed dynamics. Theoretical and experimental studies of such simplified biochemical 

networks allow the extraction of fundamental design principles of cellular network 

organization and correlated function in natural cells. Rondelez and co-workers developed a 

toolbox based on DNA replication, nicking, and degradation by polymerase, exonuclease and 

nickase (PEN toolbox) enabling the construction of biochemical networks emulation complex 

dynamic behaviour in time and space. Here, as an introduction to Chapter 3, we implement a 

PEN-based INVERTER circuit and a previously designed PEN-based bistable switch and 

introduce a novel heuristic model which we use for the detailed characterization of PEN-

based networks.  

 
 
 
 
 
 
 
 

Part of the work in this chapter has been published in:  

Hendrik W.H. van Roekel, Lenny H.H. Meijer, Saeed Masroor, Zandra C. Félix Garza, André 

Estévez-Torres, Yannick Rondelez, Antonios Zagaris, Mark A. Peletier, Peter A.J. Hilbers 

and Tom F.A. de Greef – ACS Synthetic Biology, 2015, 4, 735 
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2.1 Introduction 

Synthetic biology is an emerging field in bioengineering in which scientists challenge the 

complexity of nature by building new biological systems using engineering principles. While 

reductionism, which is the idea that every complex phenomenon can be explained by 

analysing the simplest, basic physical mechanisms, has provided a wealth of knowledge about 

individual cellular components, it has not provided insights into complete cellular systems. 

For this reason, present-day synthetic biology also focusses on whole systems of interacting 

biochemical components. To this end, Rondelez and co-workers introduced a cell-free 

modular toolbox consisting of DNA and the enzymes polymerase, exonuclease and nickase 

(PEN toolbox).1 The nucleic acid templates carry the connectivity information of the network 

in which regulators, produced from the templates by polymerase and nickase, activate or 

inhibit other templates. Furthermore, degradation of the regulator strands by exonuclease 

maintains the system in an out-of-equilibrium state. The PEN toolbox has already allowed the 

construction of various circuits executing temporal and spatiotemporal dynamics. The first 

network constructed using the PEN toolbox is the ‘Oligator’. The network topology consists 

of autocatalytic synthesis of a primer which activates the production of its own inhibitor via a 

delayed mechanism giving rise to oscillations. Highlighting the versatility of the 

methodology, the same group designed an in vitro enzymatic DNA-based bistable switch2 and 

a network that emulated the complex dynamics of ecological systems,3 including predator-

prey oscillations, competition-induced chaos, and symbiotic synchronization. While the PEN 

toolbox comprises only a few components, the non-linear nature of these molecular circuits 

makes their design and implementation often counter-intuitive. In an insightful study, 

Rondelez and coworkers mapped the bifurcation diagrams of the oscillator and the switch 

from which parameter regimes could be detected where the network functions optimally and 

where the dynamics are bifurcated.4 In addition to finding optimal regimes, this also increases 

the understanding of the behaviour of these PEN-based circuits. Moreover, they introduced a 

method to tune and enhance nonlinearities by manipulating the degradation pathways via a 

drain template and show that these saturable deactivation pathways can enhance the 

functional performance of the networks.5 Though mostly resulting from structural 

modifications, nonlinearities are very common in cells and even are essential for the function 

of networks.6-9 While temporal out-of-equilibrium behaviour under homogeneous conditions 

has provided key insights  
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into the fundamental design principles behind topology and function, the coupling of 

reactions with diffusion in spatially extended systems is essential to understand the complex 

spatial ordering and dynamic behaviour of the intra- and intercellular environment. To this 

end, Estévez-Torres, Rondelez and colleagues employed the PEN toolbox to engineer a cell-

free reaction network displaying predator-prey oscillations in a quasi-two-dimensional closed 

reactor.10 When the DNA fragments and the three enzymes are homogeneously distributed in 

a spatially extended reactor, traveling waves of predator chasing prey were observed. One-

dimensional reaction-diffusion models agreed well with experimental data and the relation 

between front velocity and reaction parameters, such as the diffusion coefficient of the 

predator species and the concentration of polymerase, was found to obey the Fisher-

Kolmogorov relation. Additionally, Rondelez and coworkers created a PEN-based system 

consisting of two bistable switches in a spatial concentration gradient of one of the 

oligonucleotides (Figure 2.1A).11 They showed that the system self-organized in a 

spatiotemporal manner with stable and sharp fronts whose positions were controlled by the 

concentration gradient of the oligonucleotides. Likewise, morphogen gradients in vivo are 

responsible for a wide range of important regulatory functions, such as neuron polarization, 

spatial organization during mitosis and morphogenesis.12,13 Even further extending on the 

reaction-diffusion mechanisms, Rondelez et al. engineered a system in which the encoding 

templates are immobilized on microscopic particles, which are now able to receive and emit 

signals (Figure 2.1B).14 Using this set-up they were able to create populations in which 

diffusive signals between particles enabled long-distance communication resulting in 

collective behaviour and spatial patterns. These examples demonstrate the versatility and 

modularity of the PEN toolbox for the in vitro construction of networks emulating 

spatiotemporal behaviour with fundamental characteristics as can be found in the 

spatiotemporal dynamics of proteins inside cells. 
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Figure 2.1: Spatiotemporal dynamics of PEN-based reaction networks. A) A PEN-based network comprising 
two autocatalytic templates TA2 and TA3 from which the primers A2 and A3 are produced. The  templates are 
coupled by a bifunctional morphogen R2-R3 which inhibits autocatalysis of both primers by sequestering the 
templates. The kymograph shows the time evolution of the network in a spatial concentration gradient of R2-R3 
(purple) resulting in three different regions. The lower graph shows the fluorescence shift over distance in 
steady-state of the network. Figure adapted from reference 11. B) A PEN-based network based on two types of 
microparticles, including PαM which bears autocatalytic templates for the production of primer α and PαM which 
bears the same autocatalytic template together with a deactivating strand sequestering α. The signal is triggered 
by the self-ignition dye-barcoded agents, PαM,. This results in an inhomogeneous concentration of α and 
activation of neighboring PαB when the concentration of α exceeds the threshold to trigger PαB.  Activated  PαB 
fluorescence and propagate the signal resulting in a travelling front that activate all particles. The experimental 
results show the travelling front propagation across a population of PαB with different disposition of PαM (white 
spots) in the microchamber. The colour of the particles represents the time of amplification of α for each particle. 
Figure adapted from reference 14. 
 

Here, as an introduction to Chapter 3, we focus on the bottom-up design of PEN-based 

reaction networks, including an INVERTER network and the previously designed bistable 

switch. Furthermore, we introduce a heuristic model, which is also applied in Chapter 3, to 

obtain a deeper understanding of the mechanistic of PEN-based reaction networks. 

2.2 Toolbox modules 

Rondelez and co-workers introduced a methodology in which enzymatically-enriched DNA-

based networks of arbitrary complexity can be engineered in an artificial, non-living and well-

controlled setting.1 The methodology, shown in Figure 2.2, includes activation, inhibition and 

destruction of short primers (~11 nucleotides) and single-stranded DNA (ssDNA) inhibitors 
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(~16 nucleotides) carried out by polymerase, exonuclease and nickase (PEN toolbox). Figure 

2.2A shows the activation module in which synthetic DNA templates (~22 nucleotides) are 

activated by input primers (I) acting as regulatory signals for the production of an output 

single stranded DNA (ssDNA) (O). Activation of templates by these ssDNA signals enables 

DNA polymerase to extend the oligomer-template pair resulting in fully hybridized double 

stranded DNA (dsDNA). Subsequently, these dsDNAs are nicked resulting in double-stranded 

complexes. Because these reactions are performed at a temperature close to the melting 

temperature of the partial duplexes, the input and output ssDNAs dissociate from their 

templates. In order to analyse the dynamics of the activation module, an experiment was 

performed in which the production of the output ssDNA was followed in time by the DNA 

intercalating dye Evagreen which binds strongly to double stranded DNA (dsDNA) and 

weakly to ssDNA. The time traces show the results of an experiment for a concentration range 

of input and where output α is the primer for its own production by binding to the 3’ end of 

the template αtoα, resulting in autocatalytic amplification of α. The traces first have a 

sigmoidal profile, caused by increasing (partial) duplex of αtoα and α followed by 

autocatalysis. However, when the template strands become saturated the traces continue 

linearly, resulting from the fluorescence of Evagreen binding to free ssDNA α which is now 

produced linearly. Notably, the increase in fluorescence does not correspond to the production 

rate of α as Evagreen binds more efficient to dsDNA compared to ssDNA, explaining the 

decrease in slope in the fluorescent traces as the template becomes saturated. Importantly, the 

curves increasingly shift to the right with decreasing concentration of initial input while the 

steepness or profile of the curves are independent of the initial input concentration, which is 

characteristic for autocatalysis.15 Templates are inhibited by ssDNA strands that are 

complementary to part of the template’s sequence, lack a nickase recognition site and possess 

a two-base mismatch at their 3’ ends which prevents extension of the partial duplex, rendering 

the template strand inactive (Figure 2.2B). An experiment was performed in which 

autocatalysis of α was followed for a concentration range of inhibitor. The traces show an 

increasingly gradual curve with increasing concentration of inhibitor caused by damping of 

the autocatalytic effect by the inhibitor. However, as the reaction proceeds α increasingly 

outcompetes the inhibitor and the damping effect will disappear. Importantly, input, output 

and inhibitor strands are degraded over time by exonuclease, shown in Figure 2.2C. Indeed, 

experimental results, in which the degradation of a ssDNA was followed using the DNA 

intercalating dye Evagreen, show a decrease in the concentration of ssDNA over time in the 
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presence of exonuclease. Template strands should not be degraded and, therefore, are 

protected from degradation by phosphorothioate modifications at their 5’ ends.2 

 

Figure 2.2: Experimental characterization of the PEN toolbox, which comprises three modules including 
activation, inhibition and degradation. The template strands are protected from degradation by 5’ end 
phosphorothioate backbone modifications indicated by the black dots. All experiments were conducted at 42ᵒC 
in a master mix as described in Paragraph 2.5. The sequences of the DNA strands used in the experiments are 
provided in Table 2.1. A) Activation is achieved by binding of input ssDNA signals (e.g. primer I) to their target 
template (e.g. ItoO) which results, after action of polymerase and nickase, in the return of the input ssDNA 
signal and a newly formed output ssDNA (e.g. oligomer O), which dissociate from the template because these 
reactions are performed around the melting temperature of the partial duplexes. The graph shows results of an 
experiment in which autocatalytic amplification of α is performed for a concentration range of initial primer α 
including 10, 20, 50, 100, 200 and 500 pM (light to dark color) in the presence of polymerase (1 U/mL), nickase 
(6.25 U/mL) and 20 nM αtoα and initiated by addition of α. B) Inhibition of the activation module is achieved 
by binding of an inhibitor strand to the target template, preventing the input primer from binding to respective 
template. The graph shows results of an experiment in which autocatalytic amplification of α is performed for a 
concentration range of inhibitor iα including 0, 20, 30, 40, 50, 60 and 70 nM (light to dark color) in the presence 
of polymerase (1 U/mL), nickase (6.25 U/mL) and 20 nM αtoα and initiated by addition of 500 pM α. C) Signal 
and inhibition strands are degraded over time by exonuclease. The graph shows experimental results of 
degradation of 1500, 2000 and 2500 nM (light to dark color) ssDNA iβ by 10 nM exonuclease.  
 

2.3 A heuristic model 

In order to analyse the mechanistic of PEN-based reaction networks in more detail we 

constructed a heuristic model in collaboration with our theoretical partners dr. E. Steur and 

Prof. R.A. van Santen. As the heuristic model is a strong simplification of the experiments we 

only use the model to observe and analyse trends.  Following [1], we assume that the 

production of a primer y on a template T and an activator x 
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can be described by the Michaelis-Menten approximation: 

 

Here the square bracket notation [ ] is used to denote the concentration of the corresponding 

species. The maximal production rate V is assumed to be proportional to the total 

concentration of T. Furthermore, the second step with reaction rate k2 comprises two 

enzymatic reactions including polymerization and nicking. We assume k2 << k-1 and K 

becomes the thermodynamic dissociation constant of x on T which can be experimentally 

determined (Table 2.2 and Paragraph 2.5). Figure 2.3A shows the simulated traces of 

autocatalytic amplification of α, using a K of 6 nM. Initially, the production rate of α 

increases resulting from autocatalysis. However, when the concentration of α is much larger 

than K the production rate only depends on V, similar to the saturation of the template in the 

experiments. Moreover, an increasing concentration of initial primer α decreases the duration 

at which the maximal production rate is reached which is in agreement with the experimental 

data (Figure 2.2A). 

 

Inhibition of the activation module by a competitive inhibitor is described by Equation 2.2:  

 
 

where iy is the inhibitor and constant λy is proportional to the ratio of the thermodynamic 

dissociation constant of x and the thermodynamic dissociation constant of iy (Table 2.2). 

Figure 2.3B shows the simulated traces of autocatalytic amplification of α in presence of a 

concentration range of iα. Again, results of the model agree with experimental data as the 

traces show an increasingly gradual curve with increasing concentration of inhibitor. 

Furthermore, as the reaction proceeds α increasingly outcompetes the inhibitor and the 

production rate can be approximated by V.  
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The degradation of a primer x by exonuclease (E), 

 

 
 

is described by the Michaelis-Menten equation including competition between substrates: 

 

 
 

with Vexo the maximal degradation rate and the Michaelis-Menten constant Kexo. Indeed, as 

shown in Figure 2.3C this formula satisfies the requirements to describe the degradation of 

ssDNA by exonuclease. Moreover, the simulated traces were obtained by non-linear least 

squares optimization of the experimental data of Figure 2.2C giving parameter values for Vexo 

and Kexo (Paragraph 2.5 and Table 2.2).  

 

 
Figure 2.3: Simulations of the three modules of the PEN toolbox. A) Results of simulations of the activation 
module (Equation 2.1) where autocatalytic amplification of α is simulated for a concentration range of initial 
primer α including 10, 20, 50, 100, 200 and 500 pM (light to dark color) with Vα = 2.5 nM min-1 and Kα = 6 nM. 
B) Results of simulations of the inhibition mechanism (Equation 2.2) where autocatalytic amplification of α is 
simulated for a concentration range of inhibitor iα including 0, 20, 30, 40, 50, 60 and 70 nM (light to dark color) 
and initiated with 500 pM of primer α with Vα = 2.5 nM min-1, Kα = 6 nM and λα = 0.25. C) Results of non-linear 
least squares optimization op the experimental results in Figure 2.2C (Paragraph 2.5), giving values of 27 nM 
min-1 and 45 nM for parameters Vexo and Kexo respectively.  
 
 
 



An introduction to PEN-based reaction networks 

37 
 

2.3 PEN-based reaction networks 

INVERTER 

The INVERTER network is based on an autocatalytic module which can be inhibited by 

addition of an input resulting in an output that is inverted compared to the change in input 

(Figure 2.4). The INVERTER is activated by addition of α which is initially amplified until it 

reaches steady-state in which production and degradation due to exonuclease are balanced 

(Figure 2.4A). Applying a pulse of input β at this point initiates the production of iα which 

inhibits the autocatalytic production of output α. As input strand β gets degraded the 

production of inhibitor iα decreases resulting in an increase of activity of the autocatalytic 

module. As a result, after some time the PEN-based INVERTER returns to its pre-stimulus 

steady-state. Hence, the INVERTER network shows a pulse response after injection of input β 

which can be characterized by its amplitude and response time which is the time needed to 

recover to the pre-stimulus steady-state. Experiments were performed with increasing 

concentrations of template αtoα. The dynamics of the INVERTER network were followed by 

N-quenching,16 which monitors oligomer hybridization to templates by a change in 

fluorescence. As can be observed from Figure 2.4B the experimental results show, as 

expected, a decreasing response time and amplitude with increasing αtoα. In order to validate 

the heuristic model we simulated the trajectories of β, iα, α, and iβ based on Equations 2.1-2.3 

giving the following set of ordinary differential equations (ODEs): 

 

Figure 2.4C displays the dynamics of the INVERTER using the heuristic model for a 

concentration range of template αtoα, which is simulated by varying Vα. The simulations 

show a decreasing response time and amplitude with increasing αtoα and, hence, we can 

conclude that the overall dynamics of the heuristic model qualitatively agree with 
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experimental data. In the next paragraph we show that the heuristic model can also be applied 

to other network topologies showing the generality and versatility of the model.  

 

Figure 2.4: PEN-based INVERTER network. A) Schematic illustration of the PEN-based INVERTER network. 
comprising an autocatalytic module producing activator α which is inhibited by addition of input β via inhibitor 
species iα resulting in an output that is inverted compared to the change in input. Multiplex monitoring of the 
dynamics of the network is performed using endogenous template βtoiα and an exogenous template αtoiβ which 
are 3’-end fluorescently labeled with DY530 and FAM respectively. B) Results of experiments which were 
conducted as described in Paragraph 2.5 for different concentrations of αtoα in the presence of 20 nM of βtoiα 
and αtoiβ, 10 U/mL Bst 2.0 warmstart DNA polymerase, 25 U/mL Nt. bstNBI and 50 nM ttRecJ. The 
INVERTER is activated by addition of 0.5 nM α which is initially amplified until it reaches steady-state in 
which production by polymerase and nickase and degradation due to exonuclease are balanced. Applying a pulse 
of 30 nM of input β at this point initiates the production of iα which inhibits autocatalytic production of output α. 
As input strand β gets degraded the system returns to its pre-stimulus steady-state. Hence, the INVERTER 
network shows a pulse response after injection of input β which can be characterized by its amplitude and 
response time which is the time needed to recover to the pre-stimulus steady-state. C) Results of simulations 
using the heuristic model (Equation 2.4) for the same concentration range of template αtoα as used in the 
experiments in (B). The values for the parameters, which were either experimentally determined or empirically 
chosen according to the criteria as described in Paragraph 2.2, are shown in Table 2.2. 

 

SWITCH 

The two-state switchable network as described in reference 1, was constructed by joining two 

complementary INVERTER circuits (Fig. 2.5A) giving a symmetrical topology in which two 

autocatalytic modules dynamically repress each other. The core of the network consists of 

four templates including the mutually exclusive autocatalytic templates αtoα and βtoβ that 

produce key species α and β, and the inhibitory templates αtoiβ and βtoiα from which 

inhibitors are produced cross-sequestering the autocatalytic templates. The network is defined 

to be in the α-state when the concentration of α is high and the concentration of β is low as a 

result of high activity of αtoα which represses the autocatalytic βtoβ node via template αtoiβ. 

Likewise, the network is defined to be in the β-state when the concentration of β is high and 
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the concentration of α is low corresponding to high activity of βtoβ which represses the 

autocatalytic αtoα node via βtoiα. Furthermore, two more templates γtoα and δtoβ are 

included which serve as receivers for external inputs γ and δ resulting in a long-lasting pulse 

of α or β, unbalancing the circuit and stimulating the network to switch. Experiments were 

performed in which the switch was first triggered to the α-state (Figure 2.5B). Indeed, 

reversible switching to the β-state and α-state is achieved by injection of δ and γ respectively. 

Interestingly, switching between states is characterized by the biphasic evolution of the 

charge levels of αtoiβ and βtoiα. Given the switch is in the α-state, applying a pulse of δ 

results in a relatively fast increase of β by the activated template δtoβ. The increase in β 

activates template βtoiα resulting in the production of iα, and hence, together with the action 

of exonuclease α starts to decrease. However, α, and therefore, iβ are still present resulting in 

a decrease in β as βtoβ is still inhibited and the primers are degraded. Importantly, when δ is 

degraded completely, the switch has already reached the basin of attraction of β and the 

network switches. Notably, as the Gibbs free energy of DNA hybridization of the two 

complementary INVERTER circuits are not equal, careful tuning of the template strand 

concentrations is required to obtain a network which is bistable. To this end, we analysed 

bistability of the network for a concentration range of αtoα and βtoβ. Figure 2.5B shows 

successful switching for three concentrations of αtoα. In order to validate the heuristic model 

and to analyse the bistable switch in more detail the model that describes the INVERTER was 

adapted to the topology of the bistable switch resulting in the following set of ODEs: 
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Indeed, applying Equations 2.1-2.3 to the topology of the bistable switch results in a heuristic 

model which qualitatively describes the experimental traces of the bistable switch (Figure 

2.5D). Results of both experiments and simulations show an increasing switching time from 

the α- to the β -state with increasing concentration of αtoα, while the results show the reverse 

for switching from the β- to α-state. Using the theoretical model we can obtain the separatrix 

of the bistable switch (Figure 2.5C), which shifts in favor of the α-state with increasing 

concentration of αtoα. Interestingly, the separatrices are not linear but shift increasingly in 

favor of the β-state with increasing concentrations of α and β. This can be explained by the 

dissimilar thermodynamic dissociation constants of α and β (and iα and iβ) and dissimilar 

concentrations of αtoα and βtoβ (and αtoiβ and βtoiα). These factors cause a disproportional 

increase in activated templates αtoα and βtoβ (and αtoiβ and βtoiα) with proportional increase 

in α and β. Even though the PEN toolbox was designed using simple molecular rules, such 

nonlinearities make the dynamics often surprisingly complex and non-intuitive and, therefore, 

the model gives valuable insights in the mechanistic of the network and provides optimal 

parameter regimes.  
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Figure 2.5: PEN-based two-input switchable network. A) Schematic illustration of the bistable switch which 
consists of four templates including the autocatalytic templates αtoα and βtoβ and the inhibitory templates αtoiβ 
and βtoiα. The network switches between states upon injection of γ and δ which are received by templates γtoα 
and δtoβ. The dynamics of the bistable switch are followed via N-quenching using templates βtoiα and αtoiβ 
which are 3’-end labeled with a DY530 and FAM fluorophore respectively. B) Results of experiments which 
were performed as described in Paragraph 2.5 for a concentration range of αtoα and initiated with 1 nM of α. 
The dotted lines show the time points at which 30 nM of the Inputs δ and γ were added. Experiments were 
conducted using 20 nM βtoiα, 15 nM αtoiβ, 24 nM βtoβ, 10 nM γtoα and δtoβ, 10 U/mL Bst 2.0 warmstart DNA 
polymerase, 10 U/mL Nt. bstNBI and 200 nM ttRecJ. The charge level is the normalized fluorescence of the 
signal of DY530 and FAM fluorophores which is 0 in the absence of template’s input primer and 1 at the steady-
state value of primer β and α respectively. C) Separatrices (dotted lines) in the (α,β)-plane for a concentration 
range of αtoα including 10, 11 and 12 nM obtained using the heuristic model. The basin of attraction of the 
switch was analysed for different initial concentrations of α and β. Besides no input, the switch evolves to the α- 
(area with blue circles) or β-state (green area) dependent on the initial concentrations of α and β. The values for 
the parameters, which were either experimentally determined or empirically chosen according to the criteria as 
described in Paragraph 2.2, are shown in Table 2.2. D) Results of simulations performed using the heuristic 
model (Equation 2.5). The time traces of γ and δ are shown on top of the graphs which were injected with a 
concentration of 30 nM. The dotted lines indicate the time points at which γ and δ are degraded completely 
(<0.01 nM). Simulations were performed for the same concentration range of αtoα as in the experiments. The 
traces of α and β were converted to normalized units (n.u.) by normalizing α and β to their steady-state 
concentrations.  
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2.4 Discussion 

Herein we have shown the details of the methodology of the PEN toolbox and implemented 

two PEN-based networks in vitro. Furthermore, the dynamics of both the INVERTER and 

bistable switch could be theoretically predicted using a new model, validating the modularity 

and versatility of our heuristic approach. Moreover, the model gives valuable insights in the 

nonlinear mechanistic of PEN-based circuits. In the following Chapter we expand the PEN-

toolbox by designing an additional module, enabling the coupling of PEN-based circuits to 

downstream actuators.  

2.5 Experimental section 

Materials. Oligonucleotides (Table 2.1) were obtained from Integrated DNA Technologies 

(IDTDNA) or Biomers and were purified using High Performance Liquid Chromatography 

(HPLC). Templates which are not 5’ end labeled with a fluorophore or a quencher have three 

phosphorothioate backbone modifications at the 5’ end preventing them from degradation. 

Furthermore, since 3’-OH can be extended by DNA polymerase, the templates were ordered 

with a phosphate modification at their 3’ end to prevent circuit leakage. Templates at which 

primers are produced inevitably have an additional nickase recognition site at the template’s 

output site. Based on previous work,2 to decrease the affinity of the nicking enzyme for the 

output site the thymine base in the nickase recognition site at the template’s output was 

replaced with a uracil base. Concentrations of DNA were verified using UV-

spectrophotometry. The nicking enzyme and polymerase were obtained from NEB, while 

ttRecJ, a thermophilic equivalent of the RecJ enzyme from Thermus Thermophilus was 

obtained from Dr. A. Estévez-Torres. 

PEN-based experiments. Throughout the study, reactions of total volume 20 µL were 

assembled in a master mix, containing 20 mM Tris-HCl, 10 mM KCl, 50 mM NaCl, 10 mM 

(NH4)2SO4, 8 mM MgSO4, 0.1% Triton x-100, 400 µM of each deoxyribonucleotide 

triphosphates (dNTP; New England Biolabs (NEB)), 0.1% Synperonic F108 (Sigma Aldrich), 

2 µM Netropsin (Sigma Aldrich), 1 mg/mL Bovine Serum Albumine (BSA; NEB), 4 mM 

Dithiothreitol (DTT) and a pH of 8.8. A 4x stock solution of the master mix was prepared, 

excluding BSA and DTT, which were added during reaction assembly together with enzymes 

and oligonucleotides. The activity of each batch of ttRecJ was determined using the 

experiments as described in Supplementary Fig. 20 and batch to batch variations were 

compensated by changing the enzyme concentration. For experiments in which injections 
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were done during the experiment an oil layer (15 µL) was used to prevent a shift of the signal 

after injection. Experiments were performed at a temperature of 42 ᵒC and fluorescence was 

recorded over time (CFX96 PCR machine). 

Experimental data of FAM and DY530 were handled by subtracting the raw data by a 

baseline curve. This baseline curve was measured for both the FAM and DY530 channels in 

presence of the inhibition templates and in absence of amplification of α and β respectively. 

Subsequently, the signal of DY530 and FAM fluorophores were normalized to the charge 

levels of βtoiα and αtoiβ which is 0 in the absence of template’s input primer and 1 at the 

steady-state value of primer β and α respectively.  

Determining thermodynamic dissociation constants of DNA hybridization. The 

thermodynamic dissociation constants of DNA hybridization were determined from melting 

curves, obtained using JASCO V-650 spectrophotometer and a 1 cm path length cuvette with 

a volume of 200 μL. UV absorbance of the partial duplexes was measured at a wavelength of 

260 nm as a function of temperature. A temperature gradient of 1°C min-1 was used, since 

melting and cooling profiles were significantly similar at this gradient. The melting curves 

were converted to absorbance and were used for non-linear least squares analysis using the 

following equation to obtain the enthalpy and entropy:17    

 

  

Where θ is the fraction of partially duplex, T is the temperature in Kelvin, R is the gas 

constant (kcal mol-1 K-1), and C0 is the initial concentration of the duplex DNA (M) divided 

by the molarity of water (M). Nonlinear least square optimization was performed to obtain the 

enthalpy (kcal mol-1 K-1) and entropy (kcal mol-1) which were used to determine the standard 

Gibb’s free energy (kcal mol-1) of DNA hybridization (from which the thermodynamic 

dissociation constant can be calculated) at a temperature of 42 °C: 
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The thermodynamic dissociation constants of DNA hybridization are shown in 

Supplementary Table 2.2. 

Determination of the kinetics of exonuclease. To characterize the kinetics of the exonuclease  

experiments were performed in which 1.5, 2 and 2.5 µM of a ssDNA strand was added to 

eppendorfs (white real-time PCR tube strips, Eppendorf) in minimal volumes. Then, master 

mix with the DNA intercalating dye EvaGreen (2x) and 10 nM exonuclease ttRecJ was added 

leading to a final volume of 20 μL. After all components were assembled the mixtures are 

vortexed and spinned down and subsequently the eppendorfs were placed in the Polymerase 

Chain Reaction (PCR) system (CFX96 from Bio-Rad) which was prewarmed at 42°C with a 

lid temperature of 70°C to prevent condensation. The relative fluorescence units (RFU) were 

measured over cycles of 12 seconds. For every datacurve the same analysis procedure was 

followed. The very first part (5 min) of the RFU versus time curve often contains an under or 

overshoot (vide infra), caused by equilibration effects. When this was observed the initial data 

was removed, and an estimate of these datapoints was made by extrapolation, i.e. by 

performing linear fitting to the first part of the raw data curve an estimate could be made of 

the RFU of the first datapoints. The RFU at the timepoint at which its values became constant, 

corresponding to the timepoint at which all non-protected primer was degraded by 

exonuclease, was subtracted from the datacurve, so that at t = tend an RFU of zero was 

obtained. Then, the RFU was converted to the concentration of ssDNA by dividing the RFU 

by a factor obtained by dividing the initial RFU by the initial concentration of degradable 

ssDNA. Using the datacurve obtained from the experiment, the Michaelis-Menten parameters, 

Vmax and Kexo, were determined by non-linear least squares fitting of Equation 2.3.  

Software. ODE simulations were performed using Matlab’s (R2016b) built-in ode45 solver. 

Furthermore, non-linear least squares fitting was performed using the Levenberg-Marquardt 

algorithm. To prevent entrapment in local minima of the cost function, Latin Hypercube 

sampling was used to create twenty initial parameter vectors, with values in between an 

interval of 0.01 and 100 times of the expected parameter value. From these twenty initial 

parameter values the parameter values corresponding to the lowest residual sum of squares 

was selected. using the Matlab routine lsqnonlin which uses a subspace trust-region method 

based on the interior-reflective Newton method. 
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Table 2.1: DNA sequences of the INVERTER and bistable switch 

 Sequence (5’ -> 3’) Length  

(# bases) 

3’ mod 

INVERTER/Bistable switch 

Templates αtoα C*C*A*AGACUCAG-CCAAGACTCAG 22 phosphate 

βtoβ A*A*C*AGACUCGA-AACAGACTCGA 22 phosphate 

αtoiβ T*T*A*CTCGAAACAGAC-

CCAAGACTCAG 

26 FAM 

βtoiα T*T*A*CTCAGCCAAGAC-

AACAGACTCGA 

26 DY530 

γtoα C*C*A*AGACUCAG-GCATGACTCAT 22 phosphate 

δtoβ A*A*C*AGACUCGA-CACTGACTCCT 22 phosphate 

Inputs 

 

α CTGAGTCTTGG 11  

β TCGAGTCTGTT 11  

γ ATGAGTCATGC 11  

δ AGGAGTCAGTG 11  

Inhibitors iα GTCTTGGCTGAGTAA 15  

iβ GTCTGTTTCGAGTAA 15  
1 * Indicate phosphorothioate modifications 
2 Complementary sequences are represented by the colors, except for iα and iβ with the autocatalytic templates 
3 Underlined sequences represent the nickase recognition site 
4 Replacement of thymine by an uracil is indicated in italic bold 
5 Different domains in the sequences are separated by ‘-‘ 
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Table 2.2: Model parameters  

 

Parameters determined in separate experiments 

Thermodynamic dissociation constants of DNA hybridization 

Kα 6 nM Kiβ 0.86 nM 

Kβ 24 nM Kγ 26 nM 

Kiα 0.25 nM Kδ 18 nM 

Exonuclease (10 nM) 

Vexo  27 nM min-1 Kexo 45 nM 

 

Empirical model parameters 

Vγ 8.5 nM min-1 Viβ 0.8 nM min-1 

Vδ 7.2 nM min-1 λα 25 

Vα 6.5 nM min-1 λβ 28 

Vβ 15 nM min-1 Vexo* 23.4 nM min-1 

Viα 1.6 nM min-1   
* The parameter Vexo was estimated to be lower than experimentally determined in isolation, since sequestration 

of exonuclease by the templates is present. We manually adapted this value. 
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3 
Hierarchical control of enzymatic actuators  

using PEN-based switchable memories 

 
Abstract Inspired by signaling networks in living cells, DNA-based programming aims for 

the engineering of biochemical networks capable of advanced regulatory and computational 

functions under controlled cell- free conditions. While regulatory circuits in cells control 

downstream processes through hierarchical layers of signal processing, coupling of 

enzymatically-driven DNA-based networks to downstream processes has rarely been 

reported. Here, we expand the scope of molecular programming by engineering hierarchical 

control of enzymatic actuators using feedback-controlled DNA-circuits capable of advanced 

regulatory dynamics. We developed a translator module which converts signaling molecules 

from the upstream network to unique DNA strands driving downstream actuators with 

minimal retroactivity and support these findings with a detailed computational analysis. We 

show our modular approach by coupling of a previously engineered switchable memories 

circuit to downstream actuators based on β- lactamase and luciferase. To the best of our 

knowledge, our work demonstrates one of the most advanced DNA-based circuits regarding 

complexity and versatility. 
 

 

 

The work in this chapter has been published in:  

Lenny H.H. Meijer, Alex Joesaar, Erik Steur, Wouter Engelen, Rutger A. van Santen, 

Maarten Merkx and Tom F.A. de Greef – Nature Communications, 2017, 8, 1117 
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3.1 Introduction 

DNA has proven to be a versatile building block for the construction of functional devices 

useful in diagnostics and therapeutics,1 including nanostructures for the delivery of cargo,2-4 

molecular walkers,5 or actuators which mechanically control protein activity.6-11 Additionally, 

synthetic molecular platforms based on enzyme-free DNA strand exchange are highly 

amenable for the rational design of reaction networks due to the predictable thermodynamics 

of DNA binding enabling the engineering of networks with functionalities such as 

amplification,12,13 thresholding14,15 or  Boolean and arithmetic operations.16-18 Enzymatically-

driven DNA-based networks exhibit greater nonlinear kinetics, higher turnover rates and, 

thereby, further increase the range of dynamic behaviours.19 Recent work has shown that 

transcriptional circuits in which genelets, i.e. DNA templates that produce RNA regulators for 

other genelets, can yield switches,20 oscillators,21,22 and adaptive dynamics.23 In addition, 

networks based on DNA replication, nicking, and degradation have shown to be highly 

modular and have been engineered to display stable oscillations,24 multistability,25 traveling 

waves,26,27 and chaotic dynamics.28 These cell- free circuits provide a simple and well-

controlled platform to implement various types of regulatory functions, which increases our 

understanding of the design principles underlying specific cellular tasks.29 Interestingly, 

regulatory circuits with specific topology-function correlation inside living cells are not 

isolated but interconnected to downstream processes resulting in hierarchical layers of signal 

generation and processing.29 However, coupling of enzymatically-driven DNA-based 

networks displaying higher-order dynamics to downstream processes has rarely been 

reported. Franco and co-workers realized the control of a DNA tweezer using a genelet-based 

oscillator and demonstrated an insulating device to reduce retroactivity.22,30 However, to the 

best of our knowledge the control of enzymatic actuators by dissipative, enzymatically-driven 

DNA circuits has not been reported. Here, we engineer and implement hierarchical control of 

biochemical actuators, such as a NanoLuc-based actuator31 and a self- inhibitory TEM1 β-

lactamase construct,9 using an upstream polymerase-exonuclease-nickase (PEN)-based 

switchable memories circuit.25 We developed a translator module enabling the translation of 

the dynamic state of the upstream network to the directed control of the downstream 

enzymatic actuators (Figure 3.1A) with minimal retroactivity.32,33 Our design strategy for the 

translator module harnesses several design criteria resulting in minimal retroactivity as 

validated by experiments and corroborated by a theoretical analysis. The translator module 

improves the utility of feedback-controlled DNA circuits as it interfaces complex information 
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processing molecular programs to functional downstream enzymatic processes in a modular 

and orthogonal fashion. By precise and careful tuning of many different enzymatic reactions 

and a fundamental understanding on the origin of retroactivity, we are able to demonstrate 

hierarchical control of enzymatic actuators by dissipative DNA-circuits.  
 

 
Figure 3.1: Controlling enzymatic actuators using dissipative DNA-based circuits. A) The dynamics of PEN-
based circuits is used to time and control downstream processes. In this work a translator module was designed 
that translates output strands from the upstream network to unique regulatory DNA strands, which in turn drive 
enzymatic actuators, while insulating the upstream network from the additional load. B) Enzyme driven DNA-
based circuits based on the PEN toolbox comprise three modules including activation, inhibit ion and 
degradation. Activation is achieved by binding of input ssDNA signals (e.g. primer α) to their target template 
(e.g. αtoβ) which enables DNA polymerase to extend the oligomer-template pair, followed by nicking of the 
elongated strand. This results in the return of the input ssDNA signal and a newly formed output ssDNA (e.g. 
oligomer β ), which dissociate from the template because these reactions are performed around the melt ing 
temperature of the partial duplexes. The activation of templates can be inhibited by ssDNA strands that are 
complementary to part of the template’s sequence, and possess a two-base mis match at their 3’ ends which  
prevents extension of the partial duplex, rendering the template strand inactive. Finally, signal and inhibit ion 
strands are degraded over time by exonuclease. The template strands are protected from degradation by 5’ end 
phosphorothioate backbone modifications indicated by the black dots. 
 

 

3.2 Coupling PEN-based networks to a translator module 

As shown in Chapter 2, PEN-based networks are highly modular as templates can be 

connected so that they control each other’s activity resulting in a wide range of out-of-

equilibrium dynamics.24-28 However, the toolbox makes use of relatively short single-stranded 

primers that have a melting temperature around the experimental temperature of 42 ᵒC, 

limiting the PEN toolbox from activation of DNA-based enzymatic actuators which typically 

require much longer activator strands.6-11,31,34 We developed a PEN-based translator module 

which translates the short primers from the PEN toolbox to relatively long output DNA 

strands (> 30 bases). Ideally, the translator module should completely isolate the upstream 

network from the enzymatic actuators as this would allow modular connection of PEN-based 
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circuits to downstream processes. Inevitably, the translator module provides a load to the 

upstream circuit. The interconnection should therefore be designed to have a minimal effect 

on the dynamics of the core network, i.e. retroactivity should be minimized. Previous studies 

have shown that the retroactivity from a downstream system can be attenuated either by 

connecting the load via a large gain and/or by separation of timescales,22,30,32,33,35 i.e. the 

dynamics of the interface connecting the load to the upstream network should be fast 

compared to the intrinsic dynamics of the core network itself.  

Based on these considerations the PEN-based translator module was designed to provide a 

high gain while only transiently sequestering the output of the upstream DNA system (Figure 

3.2A). Primer α from the upstream network reversibly binds to the 3’ end of template αtoX, 

with forward and backward rates (minutes, Table 3.2) that are substantially faster than the 

timescale of the dynamics of the PEN toolbox (hours). Template αtoX is protected from 

degradation by phosphorothioate modifications at its 5’ end and, hence, the load to the 

upstream circuit is time invariant. Similar to the activation module of the PEN toolbox, the 

polymerase extends α followed by the action of nickase resulting in a nicked duplex 

regenerating α and producing output strand X. While α reversibly dissociates from the 

template, X is tightly bound and can only be released via DNA polymerase mediated strand-

displacement during extension of α, which now can activate a downstream enzymatic 

actuator. Subsequently, the nickase hydrolyses the upper strand of the duplex after which a 

new cycle starts resulting in linear amplification of X. Besides minimizing the retroactivity to 

the dynamics of the upstream reaction network, these features result in a translator module 

that responds fast, thereby transducing the state of the upstream network almost 

instantaneously (vide infra). 

To provide proof-of-principle for the translator module, we characterized the performance of 

the translator module isolated from the upstream network (Figure 3.2B-D). To this end, an 

experiment was performed for a concentration range of αtoX in presence of polymerase and 

nickase and the output X was quantified using a molecular beacon. As expected, addition of α 

results in linear amplification of X (Figure 3.2B and Figure S3.1) eventually opening all 

available molecular beacons. To quantify the kinetics and gain of the translator module in 

more detail, the production rate of X was determined for a concentration range of αtoX 

(Figure 3.1B). For low concentrations of αtoX, the data shows a linear increase of the 

production rate while for higher concentrations the production rate levels off. While the 

concentration of α-αtoX increases linear with αtoX for the concentration range used in these 
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experiments (Table 3.2), saturation of the enzymes limits the rate at which strand X can be 

produced.   

Next we quantified the gain of the translator module using Equation 3.1: 

 

 
 

with d[X]/dt the production rate of X in nM hours-1 and [α- αtoX] the concentration (in nM) of 

the partial duplex consisting of input α bound to template αtoX calculated using the 

thermodynamic dissociation constant (Table 3.2). The results reveal a decreasing gain from 9 

hour-1 to 6 hour-1 with increasing concentration of translator template, i.e. per hour one input 

produces 9 to 6 outputs depending on the concentration of translator template. The decrease in 

gain with increasing concentration of translator template is the result of the hyperbolic 

dependence of the production rate on the concentration of translator template. Importantly, the 

PEN toolbox includes an exonuclease which degrades produced DNA strands in the reaction 

network. In order to test the compatibility of exonuclease with the translator module, 

experiments were performed in the presence of polymerase, nickase and exonuclease (Figure 

3.2C). The results show that the translator module is able to amplify X even in the presence of 

exonuclease. Further experiments reveal that that the translator module is able to produce 

sequences of different lengths with very similar kinetics (Figure 3.2D), showing the modular 

performance of the translator. Based on these results we conclude that the translator module 

should be generally applicable to allow control of downstream DNA-templated biochemical 

reactions by PEN-based networks. 
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Figure 3.2: Characterization of the translator module. A) The design of the translator module in which an output 
ssDNA of the upstream network (e.g. primer α) hybrid izes to the template strand (αtoX) of the translator module. 
After the action of polymerase (pol) and nickase (nick) the input primer reversib ly dissociates, while the 
relatively long output strand (ssDNA X) is released via polymerase-mediated strand displacement (pol SD). The 
reaction cycle continues resulting in linear amplificat ion. The black dots at the 5’ end of DNA strands represent 
phosphorothioate backbone modifications. A simplified illustration of the t ranslator module is shown on the left. 
The production of output X was quantified using a molecular beacon (MBx). B) Experimental t races of the linear 
amplification of X36 (36 bases) performed for a concentration range of the translator template αtoX in presence 
of polymerase (15 U/mL) and nickase (10 U/mL) and in itiated by addition of α. The production rate of X36-MB 
and gain of the translator for the concentration range of translator template were determined from the slope of 
the experimental traces in  the linear regime. The gain (Equation 3.1) is defined by the number of output X 
produced per unit time (1 hour) per complex of p rimer α bound to template αtoX calculated using the 
thermodynamic dissociation constant (Table  3.2). C) Experimental traces of the linear amplificat ion of X36 (36 
bases) performed for a concentration range of the translator template αtoX in  presence of polymerase (15 U/mL), 
nickase (10 U/mL) and exonuclease (200 nM) and initiated by addition of α protected with phosphorothioate 
modifications at its 5’-end (Figure S3.2). D) The performance of the translator module for vary ing sequences and 
lengths of X. The experiment was performed starting with 10 nM of αtoX in the p resence of 15 U/mL 
polymerase and 10 U/mL nickase and in itiated by addition of α. Experiments were carried out as described in 
Paragraph 3.8.  Fluorescence was converted to concentration using a standard curve (Figure S3.16). 

 
 

3.3 Retroactivity of the translator module connected to a simple PEN-based circuit  

In order to assess the retroactivity that arises from connecting the translator module to an 

upstream network, we first coupled the translator module to a PEN-based INVERTER circuit 

(Figure 3.3A), described in detail in Chapter 2. Briefly, the INVERTER network is based on 

an autocatalytic module producing activator α which is inhibited by addition of input β 

resulting in an output that is inverted compared to the change in input. The INVERTER 

network shows a pulse response after injection of input β, characterized by its amplitude and 
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response time (Figure 3.3). The dynamics of the INVERTER network were followed by N-

quenching,36 which monitors oligomer hybridization to templates by a change in fluorescence. 

Experiments were performed with increasing concentrations of translator template αtoσ while 

the concentration of output σ was assessed using a molecular beacon (MB). As can be 

observed from Figure 3.3B the experimental results show increasing production of σ for 

higher concentrations of αtoσ. More importantly, the production of σ ceases upon injection of 

β and continues when the INVERTER returns to pre-stimulus steady-state showing that the 

production rate of σ follows the dynamics of the INVERTER circuit instantaneously. In 

addition, the results show a very gradual change in dynamics of the INVERTER for 

increasing concentrations of translator template, indicating low retroactivity.  

To further quantify the retroactivity that arises from coupling of the translator module to the 

PEN-based circuit, we, in collaboration with our theoretical partners dr. E. Steur and Prof. 

R.A. van Santen, expanded the model of the INVERTER described in Chapter 2 to include 

the effect the additional load, The minimal model allows us to rationalize the effect of 

increasing loads on the dynamics of the INVERTER network. The model consists of a set of 

ordinary differential equations (ODEs) expressing the trajectories of β, iα, α, σ, MB, σ-MB 

and iβ: 
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As described in detail in Chapter 2, the production of oligomers α, iα, σ and iβ by polymerase 

and nickase is described by a single Michaelis-Menten approximation with the maximum 

rates (Vi) and the Michaelis-Menten parameter (Ki), while inhibition of production is denoted 

by λ (Equation 3.2c). Furthermore, degradation is modeled by a Michaelis-Menten 

approximation which includes terms that describe competition between the substrates. 

Binding of σ to the reporter (MB) is described as a single step with second-order rate constant 

(krep, Equation 3.2d-f). The two final terms in Equation 3.2c take into account the change in 

the concentration of α caused by the reversible sequestration of α by the translator module. 

While the second last term represents the amount of α that is sequestered by the translator for 

production of σ, the last term accounts for the reproduction of α due to the dissociation of α 

from the nicked state of the translator module. The rate of reproduction of α is given by θ, 

representing the concentration of nicked translator module, linearly scaled with the 

dissociation rate constant of α (kα). Specifically, the dissociation rate constant of α is 

determined by the equilibrium dissociation constant (KLα) as the association rate constant is 

invariable for primers with lengths exceeding five bases.37 We introduced a constant ρ which 

models the fraction of translator module being in the nicked state (α―αtoσ―σ), depending 

on the timescale of nicking the duplex (ασ―αtoσ) relative to the timescale of the polymerase 

strand-displacement reaction. In the extreme case of ρ=1, the equilibrium of the two states of 

the translator module is shifted to the nicked state (minimal inherent retroactivity) and, hence, 

the amount of α reproduced depends on KLα. In the other extreme case, i.e. ρ=0, the 

equilibrium of the two states of the translator module is fully shifted to the duplex 

conformation (ασ―αtoσ) and, therefore, no α is reproduced independent on KLα (maximal 

inherent retroactivity). In summary, retroactivity is determined by the translator 

concentration, KLα and ρ which is an inherent property of the translator module. While in 

principle retroactivity could also arise due to global coupling arising from competition of 

primers for exonuclease, the influence of this effect was found to be negligible (Figure S3.3). 

While the kinetic parameters and the equilibrium dissociation constants were measured in 

separate experiments (Paragraph 3.8, Figure S3.18 and S3.19 and Table 3.2) the parameter ρ 

is defined by the system-dependent enzyme competition between polymerase and nickase 

(Figure S3.17). Figure 3.3C displays the dynamics of the INVERTER and translator using the 

heuristic model for two values of ρ. The simulations show that coupling of the translator 

template results in a delay in the response of the INVERTER independent of the value of ρ  

while a decreased amplitude with increasing translator template is only observed for a value 
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of ρ close to 1. Hence, the overall dynamics of the heuristic model qualitatively agree with 

experimental data for a value of ρ close to 1 indicating low inherent retroactivity arising from 

the load of the translator module. Thus, by constructing a minimal model we could identify 

properties significantly contributing to the dynamics of our system and specifically, determine 

and understand the origin of retroactivity.  

 

Figure 3.3: Coupling of the translator module to an  upstream INVERTER network. A) Schematic illustration of 
the translator module coupled to a PEN-based INVERTER network. Mult iplex monitoring of the dynamics of 
the network is performed using endogenous template βtoiα and an exogenous template αtoiβ which are 3’-end 
fluorescently labeled with DY530 and FAM respectively while the output strand σ of the translator module is 
measured via a molecular beacon (MB) bearing a fluorophore-quencher pair. B) Results of the experiments 
which were conducted for 0, 2, 5, 10, 20 and 40 nM (light to dark) o f translator template αtoσ in  the presence of 
7 nM αtoα, 20 nM of βtoiα and αtoiβ, 30 nM molecular beacon, 10 U/mL Bst 2.0 warmstart DNA polymerase, 
25 U/mL Nt. bstNBI and 50 nM ttRecJ. The INVERTER is activated by addition of 0.5 nM α which is in itially  
amplified until it reaches steady-state in which  production by polymerase and nickase and degradation due to 
exonuclease are balanced. Applying a pulse of 30 nM of input β at this point in itiates the production of iα which  
inhibits autocatalytic production of output α. As input strand β gets degraded the system returns its pre-stimulus 
steady-state. Hence, the INVERTER network shows a pulse response after injection of input β which can be 
characterized  by its amplitude and response time which is the t ime needed to recover to the pre-stimulus steady-
state. The charge level is the normalized  fluorescence of the signal of DY530 and FAM fluorophores which  is 0 
in the absence of template’s input primer and 1 at the maximal or steady-state value of primer β  and α 
respectively. The fluorescence of Cy5 fluorophore was converted to concentration of DNA strand σ using a 
standard curve (Figure S3.16). C) Results of simulations using the heuristic model with parameter values as 
shown in Table 3.2 and with the same concentrations of translator template as used during the experiments in (b) 
and for d ifferent values of ρ. The traces were converted to normalized units (n.u.) by normalizing α to the 
steady-state concentration and normalizing β to its maximum value. 
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3.4 Connecting the translator module to a two-input bistable switch  

Biochemical circuits with specific topology-function relationship inside cells are 

interconnected to downstream processes and, thereby, regulate the time-dependent control of 

protein production. Analogous to the hierarchical layers of signal generation and processing 

in natural cells, we next explored the possibility to engineer and implement orthogonal control 

of two enzymatic actuators regulated by a synthetic bistable switch.25 The two-state 

switchable network as described in Chapter 2 was constructed by joining two complementary 

INVERTER circuits (Figure 3.4A) giving a symmetrical topology in which two autocatalytic 

modules dynamically repress each other. Orthogonal control of enzymatic actuators by the 

bistable switch can be achieved by coupling two distinct translator modules to primers α and 

β. To validate the activation of the translator modules by these species, a system was 

constructed in which first a single translator module, αtoσ or βtoσ, was coupled to α or β 

respectively. Results of control experiments of the translator coupled to α or β revealed that 

the production rate of translator output follows the dynamics of the switch (Figure S3.4). To 

assess the effect of retroactivity arising from the additional load of the translator module to 

the switch, we systematically increased the concentration of translator template coupled to 

either α or β and switched the network from the α- to the β-state and conversely (Figure 

3.4B). The experimental trajectories show that we are able to switch the network both ways 

when the translator template is coupled to β. Furthermore, we were able to switch the network 

from the α- to the β-state when the translator is coupled to α. However, the trajectories of 

switching the network from the β- to the α-state in this case show an initial increase in α after 

applying a pulse of γ, followed by a return to the β-state, indicating failure of switching to the 

α-state. To obtain a fundamental understanding of these observations, the heuristic model that 

describes the bistable switch (Chapter 2) was expanded to include the translator module. The 

trajectories obtained by the theoretical model correlated well with the experimental results 

(Figure 3.4B). Interestingly, while ρ was close to 1 for the INVERTER circuit, a value of 0.4 

was obtained for the bistable switch indicating an increased inherent retroactivity from the 

translator module compared to the INVERTER circuit likely due to a change in the system-

dependent enzyme competition between polymerase and nickase (Figure S3.17). To analyse 

the effect of retroactivity, we computationally determined the bistable regime using the 

concentration of γ and δ as bifurcation parameters in the absence of translator module and 

when the translator module is coupled to α or β (Figure 3.4C). The bifurcation diagram of the 

switch isolated from the translator module shows an asymmetry to the inputs as more γ than δ 
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is required to obtain bistability, indicating a stronger preference of the β-state as also observed 

from the seperatrix and computed switching planes (Figure S3.22A and S3.23) As previously 

noted, this imbalance can be explained by asymmetrical kinetics arising from differences in 

DNA hybridization Gibbs free energy (Table 3.2).25 Coupling of the translator template to β 

results in a shift in the separatrix and switching plane in favor of the α-state (Figure S3.22A 

and S3.23). As a result, a decrease in asymmetry to the inputs γ and δ and consequently, an 

increase in bistable domain is observed indicating that, counterintuitively, coupling of a load 

to a bistable network can enhance the robustness of the upstream circuit by the retroactivity 

from the load. By contrast, the computed bifurcation diagram obtained by coupling of the 

translator module to α shows a decrease in the range of inputs that generate bistability caused 

by a shift in the seperatrix in favor of the β-state (Figure S3.22A and S3.23) further increasing 

the asymmetry of the two states. Hence, retroactivity resulting from the additional load of the 

translator template to α narrows the parameter region, mostly by a shift in concentration of γ, 

for which bistable behaviour is observed. Our theoretical model predicts that bistability can be 

recovered at high concentrations of input γ (> 50 nM). Indeed, experimental results show 

switching from the β- to the α-state with 10 nM of the translator module coupled to α upon 

injection of 50 nM γ (Figure S3.5) in accordance with our theoretical predictions. In 

summary, retroactivity from coupling of the translator module to α or β can either increase or 

decrease the input range for which bistable behaviour can be observed which depends on the 

asymmetry of the switch in isolation. Notably, the retroactivity that arises from coupling of 

the translator module to α is relatively large compared to coupling to β, as visualized by the 

larger shift in the bistable domain. While the intrinsic retroactivity constant ρ and the 

concentration of translator module was equal for both states of the switch, the dissociation 

rate constant of α is smaller than that of β arising from a lower equilibrium dissociation 

constant (Table 3.2) accounting for the larger retroactivity. We validated this by computing 

the seperatrices for different values of KLα or KLβ showing an increased shift with decreasing 

dissociation constant (Figure S3.22). 
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Figure 3.4: Characterizing retroactivity from coupling o f the translator module to the memories circuit. A) 
Schemat ic illustration of the system, in which the translator module is coupled to α or β of the PEN-based 
bistable switch. The core of the bistable switch consists of four templates including the autocatalytic templates 
αtoα and βtoβ and the inhibitory templates αtoiβ and βtoiα. The network switches between states upon injection 
of γ and δ which are received by templates γtoα and δtoβ. The dynamics of the bistable switch are followed via 
N-quenching using templates βtoiα and αtoiβ which are 3’-end labeled with a DY530 and FAM fluorophore 
respectively. B) Experimental (Exp .) and simulated (Sim.) phase diagrams for a concentration range of translator 
template coupled to α or β. Experiments were carried out as described in Paragraph 3.8 using 20 nM βtoiα, 15 
nM αtoiβ, 24 nM βtoβ, 10 nM αtoα, γtoα and δtoβ, 15 U/mL Bst 2.0 warmstart DNA polymerase, 10 U/mL Nt. 
bstNBI and 200 nM ttRecJ. The switch was either equilib rated to its α-state and 30 nM δ was in jected for 
switching to the β-state or the switch was equilibrated to its β-state and 30 nM γ was injected for switching to the 
α-state. The charge level is the normalized  fluorescence of the signal of DY530 and FAM fluorophores which is 
0 in the absence of template’s input primer and 1 at the steady-state value of primer β  and α respectively. The 
blue and green circles represent the α- and β-state respectively. Simulations were performed using the heuristic 
model with parameter values as shown in Table 3.2. The traces were converted to normalized units (n.u.) by 
normalizing α and β to their steady-state concentrations. C) Bifurcation diagrams of the switch in isolation and 
with 10 nM of translator module coupled to β or α as a function of inputs γ and δ obtained using the heuristic 
model with parameter values as shown in Table 3.2. The monostable domains of α and β are shown in blue and 
green respectively while the bistable domain is shown in purple.  
 
 

3.5 Control of enzymatic actuators by the translator module  

Having established the translator module as a versatile method to translate short ssDNA from 

the upstream circuit to long DNA strands with minimal retroactivity, we next investigate the 

possibility to control enzymatic actuators by the translator module. To this end a 

bioluminescent actuator and a self- inhibitory TEM1 β-lactamase construct were used (Figure 

3.5). The bioluminescent actuator is based on a previously reported design31 and consists of a 

NanoLuc enzyme conjugated to an oligonucleotide, which hybridizes to a template 3’-end 
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labeled with a FAM fluorophore (Figure 3.5a). In the closed state this template forms a stem-

loop structure which brings the FAM fluorophore and NanoLuc in close proximity resulting 

in Bioluminescence Resonance Energy Transfer (BRET) between the NanoLuc donor and 

FAM acceptor dye. Transient opening of the stem-loop structure of the NanoLuc-based 

actuator was accomplished by the translator template αtoσ producing activator strand σ, 

which hybridizes to the loop of the NanoLuc-based actuator and, thereby, via strand 

displacement disrupts the stem structure. In accordance, the experimental data shows a 

gradual decrease in BRET ratio after initiation of the translator module, which can be 

followed in time. Positive (+) and negative (-) controls were run in parallel to account for the 

decrease in BRET efficiency over time (Paragraph 3.8). The rate of opening of the stem-loop 

structure of the enzymatic actuator can be fine-tuned by the concentration of translator 

module which scales with the production rate of its output strand (vide supra). Likewise, the 

activity of the TEM1 β- lactamase enzyme was controlled by an orthogonal translator module 

(Figure 3.5B). β- lactamases are enzymes produced by bacteria to provide antibiotic resistance 

and are often used as reporter enzymes or to install antibiotic resistance.38 Using a previously 

reported design,9 the activity of TEM1 β- lactamase is controlled by modulation of the 

interaction of this enzyme with the β- lactamase inhibitor protein BLIP.9 Specifically, the 

proteins are conjugated to different oligonucleotides which hybridize to a template connecting 

the enzyme and inhibitor. Activation of TEM1 β-lactamase is achieved by translator template 

βtoξ producing activator strand ξ which hybridizes to the loop of the self- inhibitory TEM1 β-

lactamase actuator and, thereby, separating enzyme and inhibitor. The activity of TEM1 β-

lactamase was determined by measuring the hydrolysis rate of a fluorescent substrate. 

Positive (+) and negative controls (-) were run in parallel to account for the loss in activity of 

TEM1 β- lactamase in the PEN-toolbox buffer (Paragraph 3.8). As observed from the 

experimental results, the activity of the TEM1 β- lactamase was equal to the background 

activity prior to initiation of the translator module, while almost complete activation was 

achieved after 30 minutes of incubation with initiator β. Because of the high binding affinity 

of the activator strands σ and ξ, the opening of the stem-loop structure of the NanoLuc-based 

actuator and the activation of the self- inhibitory TEM1 β- lactamase construct are irreversible. 

These results show that the translator module is compatible with the NanoLuc-based actuator 

and the self- inhibitory TEM1 β- lactamase construct and, importantly, reveals it to be a 

flexible method for the controlled and efficient activation of these actuators.  
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Figure 3.5: The control of enzymatic actuators by the translator module. A) Schematic illustration (left ) and 
experimental results (right) of controlling a NanoLuc (NL)-based actuator by the translator module. Experiments 
were performed using 2 nM of αtoσ, 5 nM of the NanoLuc-based actuator, 15 U/mL Bst 2.0 warmstart DNA 
polymerase, 10 U/mL Nt. bstNBI and init iated with 30 nM α. The opening of the stem-loop structure of the 
NanoLuc-based actuator was quantified at intervals of 30 minutes by measuring the BRET ratio  between 
between the NanoLuc donor (em. = 458 nm) and FAM acceptor dye (em. = 533 nm). The translator module was 
omitted for negative (-) and positive (+) controls and excess of DNA strand σ was added for the positive 
controls. Experiments were performed in triplicate and the fraction in opened conformation in normalized units 
(n.u.) was calculated by subtracting the mean BRET rat io of the positive controls and normalizing to the mean  
BRET rat io of the negative controls. Error bars and shaded areas represent the standard error of the mean of the 
experiments. B) Schematic illustration (left) and experimental results (right) of the activation o f the self-
inhibitory TEM1 β-lactamase (β-lac) actuator by the translator module. Experiments were performed using 12 
nM βtoξ, 2.5 nM TEM1 β -lactamase/BLIP actuator, 15 U/mL Bst 2.0 warmstart DNA polymerase, 10 U/mL Nt. 
bstNBI and initiated with 30 nM β. The act ivity of TEM1 β-lactamase was measured at time = 0 min prior to 
initiat ion with β and 30 minutes after activation of the translator module and was quantified by measuring the 
hydrolysis rate of fluorogenic substrate CCF2-FA obtained from the linear regime of the fluorescent time traces. 
The translator module was omitted fo r negative (-) and positive (+) controls and excess of DNA strand ξ was 
added for the positive controls. Experiments were performed in triplicate and the activity in normalized units 
(n.u.) was calculated by subtracting the mean hydrolysis rate of the negative controls and normalizing to the 
mean hydrolysis rate of the positive controls. Error bars and shaded area’s represent the standard error of the 
mean of the experiments.  
 
 

3.6 Orthogonal control of enzymatic actuators by switchable memories circuit 

Having characterized the translator module as a generic method to control enzymatic 

actuators and to translate short oligomers to long output strands with minimal retroactivity, 

we implemented the control of the enzymatic actuators by the PEN-based bistable switch. 

First, we showed the control of either the self- inhibitory TEM1 β-lactamase construct (Figure 

S3.8) or the NanoLuc-based actuator (Figure S3.9 and S3.10) by one of the two states of the 

switch. Subsequently, we investigated whether it is possible to implement orthogonal control 

of the enzymatic actuators by the two states of the switch. To this end, we constructed a 

system in which the NanoLuc-based actuator was controlled by coupling of α to translator 

template αtoσ, while the self- inhibitory TEM1 β-lactamase construct was controlled by 
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coupling of β via translator template βtoξ (Figure 3.6A). Because of technical reasons the 

control of the actuators could not be directly followed in the samples (Paragraph 3.8). 

Therefore, the activity of TEM1 β- lactamase and the conformation of the NanoLuc-based 

actuator were determined at four different states of the switch by taking aliquots and 

measuring the hydrolysis rate or BRET ratio immediately after addition of the NanoLuc and 

β-lactamase substrates. We measured the production rate of σ and ξ using parallel 

experiments in which the enzymatic actuators were replaced with two orthogonal molecular 

beacons. Control experiments were performed showing no interference of the molecular 

beacons and actuators with the bistable switch (Figure S3.14 and S3.15). Furthermore, 

experiments were performed in the absence of the orthogonal translator modules to quantify 

the retroactivity to the dynamics of the bistable switch that arises due to the additional load. 

Indeed, the results displayed in Figure 3.6B (and Figure S3.11) reveal that the retroactivity 

that arises from coupling of the orthogonal set of translator modules to the dynamics of the 

upstream bistable circuit is low. Importantly, the results in Figure 3.6B show that production 

of σ is initiated after activation of the α-state of the switch while the production rate of ξ is 

zero indicating that the switch has adopted the α-state. In agreement, we observe a decrease in 

BRET ratio 50 minutes after initiation of the switch as shown in the bar graphs in Figure 

3.6C. In contrast the TEM1 β-lactamase based actuator is not activated in the α-state as shown 

by the overlapping fluorescent traces of the hydrolysis of CCF2-FA of the samples and 

negative controls (Figure 3.6C). For a clear visualization the BRET ratio and hydrolysis rate 

of the samples were normalized to positive and negative controls (Paragraph 3.8). Figure 

3.6D shows an increased opening of the stem-loop structure of the NanoLuc-based actuator 

towards ~1/4 of its fully opened conformation 50 minutes after initiation of the switch.  Next, 

we injected input δ to switch the network to the β-state, as observed from the biphasic 

evolution of the charge levels of αtoiβ and βtoiα. This results in the downstream activation of 

βtoξ and the production of ξ, while the production of σ ceases. The hydrolysis rate of the 

TEM1 β- lactamase construct and BRET ratio of the NanoLuc-based actuator including (-) and 

(+) controls were measured again 250 minutes after injection of δ. The results show that the 

TEM1 β- lactamase enzyme is completely activated while the stem-loop structure of the 

NanoLuc-based actuator has only slightly opened. Switching the network back to the α-state 

by injection of input γ results in continued production of σ while production of ξ ceases. 

Likewise, an increase in opened conformation of the NanoLuc-based actuator is observed 200 

minutes after injection of γ, while the TEM1 β-lactamase enzyme stays at its completely 
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activated state. These results demonstrate that we are able to successfully time and control the 

activity of enzymatic actuators by the dynamics of the bistable switch by judicious design of 

orthogonal translator modules with low retroactivity. 

 

 
 
Figure 3.6: Control of two orthogonal enzymatic actuators by a switchable memories circuit. A) Schemat ics of 
the experiment in which the switch controls a NanoLuc-based actuator and a self-inhib itory TEM1 β-lactamase 
construct. B-D, Results of the experiments, carried out as described in Paragraph 3.8, using 20 nM βtoiα, 15 nM 
αtoiβ, 24 nM βtoβ, 10 nM αtoα, γtoα and δtoβ, 15 U/mL Bst 2.0 warmstart DNA polymerase, 10 U/mL Nt. 
bstNBI and 200 nM ttRecJ. Reactions were performed in presence of the actuators or molecular beacons. The 
switch was initiated with 1 nM α. B) The graphs show the dynamics of the switch and the production of σ and ξ 
measured using molecular beacons (5 nM MBσ and 2.5 nM MBξ) (Figure S3.16) in absence (light color) and in  
presence (dark co lor) of the translator modules (2 nM αtoσ and 12 nM βtoξ). The charge level is the normalized  
fluorescence of the signal of DY530 and FAM fluorophores which is 0 in the absence of template’s input primer 
and 1 at the steady-state value of β  and α respectively. The dotted lines show the time points at which 30 nM of 
the Inputs δ and γ were added. In parallel, experiments were run where the molecular beacons were replaced 
with the enzymatic actuators (5 nM of the NanoLuc-based actuator and 2.5 nM TEM1 β-lactamase actuator). C) 
and D) The state of the actuators was measured at four t ime points including negative (-) and  positive (+) 
controls (Figure S3.12 and S3.13 and Paragraph 3.8). Error bars and shaded area’s represent the standard error 
of the mean of the experiments. Experiments were performed in plurality (>3) and at three different days. C) The 
bar graphs displaying the BRET ratio were normalized to the mean of the negative controls for a clear 
visualizat ion. D) The activity or fraction in  opened conformation of the actuators were calculated by normalizing 
to positive and negative controls (Paragraph 3.8).  
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3.7 Discussion  

Our work shows the possibility of connecting enzymatically-enriched DNA circuits that are 

capable of displaying higher-order regulatory behaviour to a variety of biochemical actuators 

in vitro, such as a TEM1 β-lactamase and a luciferase based system. Previously, non-

enzymatic, nucleotide-based logic circuits have been used to engineer autonomous cell- free 

systems capable of programmable manipulation of protein activity in vitro.15,39,40 While non-

enzymatic circuits are capable of basic information processing functions such as logic 

operations, amplification and input thresholding, enzymatically-driven systems can display a 

much broader range of system-level behaviours such as bistability, oscillations and perfect 

adaptation.41,42 Each of these dynamic regulatory behaviours comes with a unique set of 

information processing functions. For example, bistable circuits in the living cell can generate 

sharp input thresholds and can either reversibly or irreversibly switch to an activated state.43 

In addition, bistable gene regulatory networks can also act as dynamic noise filters by 

ignoring transient changes in the input signal.44 Perfect adaptation, another type of non-

equilibrium dynamic behaviour, is an important feature of cellular regulation and is typically 

used to generate homeostatic behaviour.45 Finally, oscillatory circuits in living cells are not 

only used for time-keeping functions but can also transmit information via coding and 

decoding of temporal signaling patterns.46 These examples indicate that protein activity 

controlled via enzymatically-enriched nucleic acid-based computing systems can yield 

autonomous cell- free systems with more advanced information processing functions than is 

currently possible.  

While modularity has often been cited as a key advantage of nucleic-acid based chemical 

systems, our work reveals that in order to reliably connect an upstream DNA-based network 

to a downstream enzymatic load, retroactivity has to be taken into account. Our theoretical 

analysis shows that biochemical loads can bias the dynamical properties of bistable switches 

based on reciprocal inhibition in a manner that depends critically on the strength of the two 

states in the absence of load. In the living cell, bistability is found in many important gene 

regulatory networks and signal transduction pathways that regulate cell proliferation,47 cell-

fate determination48 and Ras activation.49 However, in many cases the mathematical models 

that describe these regulatory circuits do not incorporate the effects of downstream 

components while these are certainly present. In an insightful study, Prasad and co-workers50 

theoretically analysed the effect of downstream loads on bistable genetic and signaling 

switches and found that the addition of load changes the underlying potential energy 
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landscape skewing it in favour of the unloaded side. In addition, the authors found that in 

some cases the additional downstream load can abrogate bistable dynamics. Our experimental 

results on the effect of downstream loads on the DNA-based bistable switch indeed confirm 

these predictions as we observe failure of switching dynamics when the load is coupled to the 

weaker α-state of the network. Furthermore, because the PEN-based bistable switch is 

inherently asymmetric due to a difference in binding affinity of the α and β primers to their 

corresponding complementary sequences, the effect of a downstream load to each of the two 

states is also different. In the absence of load, the β-state is stronger than the α-state meaning 

the concentration of input δ needed to switch the network to the β-state is lower compared to 

the concentration of input γ that is needed to switch the system to the α-state. The theoretical 

analysis shows that coupling of a downstream load to the weaker α-state results in further 

weakening of the α-state and a concomitant narrowing of the concentration range of δ and γ  

for which bistability can be observed. However, when the load is applied to the stronger β-

state of the switch, the potential energy landscape becomes more symmetric resulting in a 

larger input parameter range for which bistable behaviour can be observed. While in general 

low retroactivity is desired, our work shows that retroactivity not necessarily has a negative 

effect.  

In summary, we have shown how a cell- free bistable switch can be used to time and control 

protein-based activity by engineering a new module enabling connection of the upstream 

circuit and downstream actuators, taking into account proper design constraints. By allowing 

the orthogonal integration of distinct molecular platforms our work represents a key step for 

the development of cell- free biochemical systems of increasing chemical complexity, 

providing the potential for new insights in cellular networks and ultimately the construction of 

synthetic cells. 

 

3.8 Experimental section 

Materials. Oligonucleotides (Table 3.1) were obtained from Integrated DNA Technologies 

(IDTDNA) or Biomers and were purified using High Performance Liquid Chromatography 

(HPLC). Templates which are not 5’ end labeled with a fluorophore or a quencher have three 

phosphorothioate backbone modifications at the 5’ end preventing them from degradation. 

Furthermore, since 3’-OH can be extended by DNA polymerase, the templates were ordered 

with a phosphate modification at their 3’ end to prevent circuit leakage. Templates at which 

primers are produced inevitably have an additional nickase recognition site at the template’s 
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output site. Based on previous work,25 to decrease the affinity of the nicking enzyme for the 

output site the thymine base in the nickase recognition site at the template’s output was 

replaced with a uracil base. Concentrations of DNA were verified using UV-

spectrophotometry. The nicking enzyme and polymerase were obtained from NEB, while 

ttRecJ, a thermophilic equivalent of the RecJ enzyme from Thermus Thermophilus was 

obtained from Dr. A. Estévez-Torres.  

 

PEN-based experiments. Throughout the study, reactions of total volume 20 µL were 

assembled in a master mix, containing 20 mM Tris-HCl, 10 mM KCl, 50 mM NaCl, 10 mM 

(NH4)2SO4, 8 mM MgSO4, 0.1% Triton x-100, 400 µM of each deoxyribonucleotide 

triphosphates (dNTP; New England Biolabs (NEB)), 0.1% Synperonic F108 (Sigma Aldrich), 

2 µM Netropsin (Sigma Aldrich), 1 mg/mL Bovine Serum Albumine (BSA; NEB), 4 mM 

Dithiothreitol (DTT) and a pH of 8.8. A 4x stock solution of the master mix was prepared, 

excluding BSA and DTT, which were added during reaction assembly together with enzymes, 

oligonucleotides and enzymatic actuators (which were pre-assembled as described vide infra). 

The activity of each batch of ttRecJ was determined using the experiments as described in 

Chapter 2 and batch to batch variations were compensated by changing the enzyme 

concentration. For experiments in which injections were done during the experiment an oil 

layer (15 µL) was used to prevent a shift of the signal after injection. Experiments were 

performed at a temperature of 42ᵒC and fluorescence was recorded over time (CFX96 PCR 

machine). 

Experimental data of FAM and DY530 were handled by subtracting the raw data by a 

baseline curve. This baseline curve was measured for both the FAM and DY530 channels in 

presence of the inhibition templates and in absence of amplification of α and β respectively. 

Subsequently, the signal of DY530 and FAM fluorophores were normalized to the charge 

levels of βtoiα and αtoiβ which is 0 in the absence of template’s input primer and 1 at the 

steady-state value of primer β and α respectively. The fluorescence of Cy5 and ROX 

fluorophore attached to the molecular beacons were converted to concentration of DNA 

strand σ and DNA strand ξ respectively using a standard curve.  

 

Assembling of the NanoLuc-based actuator. The NanoLuc-based actuator was constructed by 

our experimental partners W. Engelen and prof. M. Merkx. Protein-expression, conjugation 

and purification of NanoLuc was carried out as reported.31 In short, a cysteine was genetically 
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inserted in the C-terminus of NanoLuc via site-directed mutagenesis and the plasmid was 

transformed into E. coli BL21(DE3). Subsequently, the cells were cultured in LB-medium 

and protein expression was induced at OD600 = 0.6 by the addition of 100 μM IPTG. After 

overnight expression at 18 °C the cells were lysed by centrifuging the cells at 10,000xg for 10 

minutes and subsequently dissolving the pelleted cells in BugBuster protein extraction reagent 

(Novagen) and Benzonase endonuclease (Novagen). The lysed cells were subsequently 

centrifuged (40,000xg for 40 minutes) to obtain the soluble fraction, from which NanoLuc 

was purified using Ni2+-affinity chromatography.  

Amine-modified oligonucleotide (ODNNL) was dissolved in PBS (100 mM NaPi, 150 mM 

NaCl, pH 7.2) to a final concentration of 1 mM and mixed with 20 equivalents of Sulfo-

SMCC (freshly dissolved in DMSO to 20 mM) and incubated for 2 hours at room temperature 

while shaking at 850 rpm. Subsequently, the excess Sulfo-SMCC was removed by extracting 

the maleimide-activated oligonucleotide by 3 rounds of ethanol precipitations and the 

oligonucleotide was dried under vacuum. Prior to oligonucleotide conjugation, NanoLuc was 

buffer exchanged to 100 mM sodium phosphate, pH 7.0 by gel- filtration (PD-10 desalting 

column) and directly added to a 3-fold molar excess of maleimide-activated oligonucleotide 

and allowed to react for 2 hours at room temperature while shaking at 850 rpm. Subsequently, 

the oligonucleotide-NanoLuc conjugate (NL-ODNNL) was purified by consecutive Ni2+-

affinity chromatography to remove excess oligonucleotide and anion-exchange 

chromatography to remove unconjugated protein. The NanoLuc actuator was hybridized prior 

to use by mixing together 100 nM NL-ODNNL and 120 nM NLlink-σ and left at room 

temperature for at least one hour. 

 

Assembling of the β-lactamase actuator. The β-lactamase actuator was constructed by our 

experimental partners W. Engelen and prof. M. Merkx. Protein-expression, conjugation and 

purification of β-LactamaseE104D and BLIP were carried out by W. Engelen and prof. M. 

Merkx as previously reported.9 Furthermore, the complex was hybridized prior to use by 

mixing together 100 nM βlac-ODN, 200 nM BLIP-ODN and 120 nM βlacLink-ɛ and left at 

room temperature for at least one hour. 

 

Measuring the conformational state of the NanoLuc-based actuator. Because of technical 

reasons the hydrolysis rate of the TEM1 β- lactamase actuator and BRET ratio of the 

NanoLuc-based actuator could not be measured over time in the samples directly. NanoGlo 
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(substrate for NanoLuc) is not compatible with the PEN toolbox and somehow has an effect 

on the dynamics of the PEN based network. Moreover, BRET detection could not be 

performed by the CFX96 PCR machine in which the switching behavior was followed. Even 

so, the excitation and emission filters of the CFX96 PCR were not compatible with the 

excitation and emission wavelength of converted CCF2-FA substrate of TEM1 β-lactamase. 

Hence, the conformation of the NanoLuc-based actuator, controlled by the translator module 

in absence (Figure 3.5) or presence (Figure 3.6) of the switch, was determined by taking 16 

uL of the sample (out of 20 µl) and transferred to a 396 wells plate prefilled with 20 µL of 

master mix and 25 µL oil to prevent condensation. Negative and positive controls were 

carried out in parallel. Negative controls were run to quantify the decrease in BRET efficiency 

of the NanoLuc-based actuator at different time intervals and, therefore, the translator 

module(s) were omitted in the reactions of the negative controls (all other components were 

exactly the same as in the samples). Positive controls were run to quantify the BRET signal 

for maximal opening of the NanoLuc-based actuator at different time intervals. For positive 

controls the translator module(s) were also omitted in the reactions and excess of DNA strand 

σ (200 nM) was added to the wells plate (all other components were exactly the same as in the 

samples). Then, the plate was put in the centrifuge at 1000 rpm for 30 seconds. After 10 

minutes incubation at 42 ᵒC in the plate reader (Tecan, Spark 10M) 4 µL of 50x diluted Nano-

Glo (Promega) was added after which the mixtures were mixed and an emission spectrum 

(from 400 nm to 650 nm) was measured. The BRET ratio between 533 nm and 458 nm was 

calculated and the fraction of opened stem-loop structure of the NanoLuc-based actuator was 

calculated by subtracting the mean BRET ratio of the positive controls and normalizing to the 

mean BRET ratio of the negative controls.  

 

Measuring the activity of the β-lactamase actuator. Because of technical reasons the 

hydrolysis rate of the TEM1 β- lactamase actuator and BRET ratio of the NanoLuc-based 

actuator could not be measured over time in the samples directly. NanoGlo (substrate for 

NanoLuc) is not compatible with the PEN toolbox and somehow has an effect on the 

dynamics of the PEN based network. Moreover, BRET detection could not be performed by 

the CFX96 PCR machine in which the switching behavior was followed. Even so, the 

excitation and emission filters of the CFX96 PCR were not compatible with the excitation and 

emission wavelength of converted CCF2-FA substrate of TEM1 β- lactamase. Hence, the 

activity of TEM1 β-lactamase, activated by the translator module in absence (Figure 3.5) or 
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presence (Figure 3.6) of the switch, was determined by taking 16 uL of the sample (out of 20 

µl) and transferred to a 396 wells plate prefilled with 20 µL of master mix and 25 µL oil to 

prevent condensation. Negative and positive controls were carried out in parallel. Negative 

controls were run to account for the change in activity of TEM1 β-lactamase/BLIP/ξ complex 

in the PEN-toolbox buffer. For negative controls the translator module(s) were omitted in the 

reactions (all other components were exactly the same as in the samples). Positive controls 

were run to quantify the hydrolysis rate of maximal activated TEM1 β- lactamase/BLIP/ξ 

complex (Figure S3.6 and S3.7). For positive controls the translator module(s) were also 

omitted in the reactions and excess of DNA strand ξ (100 nM) was added to the wells plate 

(all other components were exactly the same as in the samples). Then, the plate was put in the 

centrifuge at 1000 rpm for 30 seconds. After 10 minutes incubation at 42 ᵒC in the plate 

reader (Tecan, Safire) 4 µL of 20 µM CCF2-FA (Invitrogen) was added after which the 

mixtures were mixed and fluorescence (ex: 410 nm; em: 447 nm) was measured for at least 

150 minutes. The hydrolysis rate of β- lactamase was determined by fitting the slope between 

50 and 150 minutes. The activity was normalized by subtracting the mean hydrolysis rate of 

the negative controls and normalizing to the mean hydrolysis rate of the positive controls.  

 

Determination of the forward rate constant of DNA hybridization. To characterize the forward 

rate constant of DNA hybridization (ka) experiments were performed using the stopped-flow 

device (BioLogic, MOS-500 spectrophotometer equipped with a SFM-2000 mixing system) 

with a dead time of 0.25 ms in absorbance mode (Figure S3.18 and Table 3.2). Multiple 

experiments (>6) were performed in which absorbance was recorded over time at 42 ᵒC after 

mixing 1 µM of primer β to 1 µM of template δtoβ both in 1 x TE buffer complemented with 

0.06 M Na+, 0.008 M Mg2+ and preheated at 42 ᵒC. This yielded final concentrations of 500 

nM primer β and 500 nM of template δtoβ. The raw data was subtracted by the absorbance at 

time = 0. Subsequently, the absorbance was converted to concentration of duplex (dsDNA) by 

assuming the reaction was equilibrated in 5 seconds and the experimentally determined 

thermodynamic dissociation constant. Finally, the mean of the multiple experiments was 

determined for further analysis. To obtain the second-order rate constant (ka) non- linear least 

squares multiple-curve fitting was performed using the Matlab routine lsqnonlin with a 

subspace trust-region method based on the interior-reflective Newton method. The 

hybridization dissociation equilibrium constant was determined experimentally and was fixed 

during the non-linear least-square analysis. The value of the ka is shown in Table 3.2. 
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Determination of the kinetics of the molecular beacon. To characterize the kinetics of the 

molecular beacon, experiments in triplicate were performed in which the molecular beacon in 

master mix without enzymes was added to a cuvette which was preheated at 42 ᵒC in a 

fluorescence spectrophotometer (Carry Eclipse equipped with a Varian Peltier Multicell 

Holder and a Cary Temperature Controller). Subsequently, the fluorescence of the molecular 

beacon was measured to obtain the baseline fluorescence. Then, DNA strand σ was added 

giving a volume of 120 µL after which the mixture was suspended and measurement started at 

42 ᵒC. Data handling was done for each single curve in the same way. First, the baseline 

fluorescence was determined by taking the mean of a one minute measurement of the 

fluorescence from the molecular beacon. After this, the fluorescence from the measurement 

was subtracted by this baseline value. Subsequently, the missing points due to suspending 

(10-15 seconds) were estimated by extrapolation. Then, the fluorescence was converted to 

concentration of opened beacon by assuming the reaction was equilibrated in 18 minutes. An 

ODE model based on the bimolecular reaction model of DNA strand displacement was 

developed to describe the kinetics of this step.5 To obtain the second-order rate constant (krep) 

of the toehold mediated strand displacement reaction non- linear least-square optimization of 

the experimental kinetic traces (Figure S3.19) to the mathematical model was performed. The 

Matlab routine lsqnonlin with a subspace trust-region method based on the interior-reflective 

Newton method was applied, yielding a krep of 5.3 x 107 M-1 min-1.  
 

Determination of the thermodynamic dissociation constant of DNA hybridization. This is 

described in detail in Chapter 2 and the values of the parameters are shown in Table 3.2.  

 

Determination of the kinetics of exonuclease. This is described in detail in Chapter 2 and the 

values of the parameters are shown in Table 3.2. 
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Table 3.1: DNA sequences 
 Sequence (5’ -> 3’) Length  

(# bases) 

3’ mod 5’ mod 

INVERTER/Bistable switch 

Templates αtoα C*C*A*AGACUCAG-

CCAAGACTCAG 

22 phosphate  

βtoβ A*A*C*AGACUCGA-

AACAGACTCGA 

22 phosphate  

αtoiβ T*T*A*CTCGAAACAGAC-

CCAAGACTCAG 

26 FAM  

βtoiα T*T*A*CTCAGCCAAGAC-

AACAGACTCGA 

26 DY530  

γtoα C*C*A*AGACUCAG-

GCATGACTCAT 

22 phosphate  

δtoβ A*A*C*AGACUCGA-

CACTGACTCCT 

22 phosphate  

Inputs 

 

α CTGAGTCTTGG 11   

β TCGAGTCTGTT 11   

γ ATGAGTCATGC 11   

δ AGGAGTCAGTG 11   

Inhibitors iα GTCTTGGCTGAGTAA 15   

iβ GTCTGTTTCGAGTAA 15   

Translator in isolation from upstream and downstream network (Figure 3.2) 

Template αtoX36 G*T*A*GTAGTTCATTAGTGTCGT

TCGTTCACAGTAATA-

CCAAGACTCAG 

46 phosphate  

Output X36 TATTACTGTGAACGAACGACACT

AATGAACTACTAC 

36   

Template αtoX46 C*G*T*TCGTATGGTAGTAGTTCA

TTAGTGTCGTTCGTTCACAGTAA

TA-CCAAGACTCAG 

46 phosphate  

Output X46 TATTACTGTGAACGAACGACACT

AATGAACTACTACCATACGAACG 

36   
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Table 3.1 (continued): DNA sequences 

 Sequence (5’ -> 3’) Length  

(# bases) 

3’ mod 5’ mod 

Translator in isolation from upstream and downstream network (Figure 3.2) 

Template αtoX56 G*C*G*TATTCAGCGTTCGTATGG

TAGTAGTTCATTAGTGTCGTTCG

TTCACAGTAATA-

CCAAGACTCAG 

46 phosphate  

Output X56 TATTACTGTGAACGAACGACACT

AATGAACTACTACCATACGAACG

CTGAATACGC 

36   

Reporter MBX  TATTACTGTGA-

GTAGTTCATTAGTGTCGTTCGT-

TCACAGTAATA 

44 Iowa Black 

RQ-Sp    

Cy5 

Translator INVERTER (Figure 3.3) 

Template αtoσ T*A*T*TACTGTGAGTAGTTCATT

AGTGTC GTTCGTTC-

CCAAGACTCAG 

46 phosphate  

Output σ GAACGAACGACACTAATGAACT

ACTCACAGTAATA 

35   

Reporters MBσ TATTACTGTGAG-

TAGTTCATTAGTGTCGTTCGT-

CTCACAGTAATA 

45 Iowa Black 

RQ-Sp 

Cy5 

Orthogonal system (Figure 3.4-3.6) 

Templates αtoσ T*A*T*TACTGTGAGTAGTTCATT

AGTGTC GTTCGTTC-

CCAAGACTCAG 

46 phosphate  

βtoσ  

(Fig. 4) 

T*A*T*TACTGTGAGTAGTTCATT

AGTGTCGTTCGTTC-

AACAGACTCGA 

46 phosphate  

βtoɛ 

(Fig. 5, 6) 

C*A*A*CACAACCCACAACACAC

CACCACCGCAACCACCCACCACC

AACACCA-AACAGACTCGA 

61 phosphate  

Outputs σ GAACGAACGACACTAATGAACT

ACTCACAGTAATA 

35   

ξ TGGTGTTGGTGGTGGGTGGTTGC

GGTGGTGGTGTGTTGTGGGTTGT

GTTG 

50   
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Table 3.1 (continued): DNA sequences 

 Sequence (5’ -> 3’) Length  

(# bases) 

3’ mod 5’ mod 

Orthogonal system (Figure 3.4-3.6) 

Molecular 

beacons 

MBσ TATTACTGTGAG-

TAGTTCATTAGTGTCGTTCGT-

CTCACAGTAATA 

45 Iowa Black 

RQ-Sp 

Cy5 

MBξ CAACACAACCCA-

CAACACACCACCACCGCAACC-

TGGGTTGTGTTG 

45 Iowa 

BlackRQ-

Sp 

ROX 

βlac-

actuator 

βlac-ODN TGTCACCGATGAAACTGTCTA 21 C6-Amine  

BLIP-ODN GTGATGTAGGTGGTAGAGGAA 21  Amine-C6 

βlacLink- ξ TTCCTCTACCACCTACATCAC-

CAACACAACCCACAACACACCA

CCACCGCAACCACCCACCACCAA

CACCA-

TAGACAGTTTCATCGGTGACA 

92   

NanoLuc-

actuator 

NL-ODNNL GTGATGTAGGTGGTAGAGGAA 

 

21  Amine 

NLlink- σ T*T*C*CTCTACCACCTACATCAC-

TATTACTGTGAG-

TAGTTCATTAGTGTCGTTCGT-

CTCACAGTAATA 

66 FAM  

1 * Indicate phosphorothioate modifications 

2 Complementary sequences are represented by the colors, except for iα and iβ with the autocatalytic templates 
3 Underlined sequences represent the nickase recognition site 
4 Replacement of thymine by an uracil is indicated in italic bold 
5 The complementary sequences of the stem of the molecular beacons is denoted in italic 
6 Different domains in the sequences are separated by ‘-‘ 
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Table 3.2: Model parameters 

 

Parameters determined in separate experiments 

Thermodynamic dissociation constants of DNA hybridization 

Kα/KLα 6 nM Kiβ 0.86 nM 

Kβ/KLβ 24 nM Kγ 26 nM 

Kiα 0.25 nM Kδ 18 nM 

DNA association rate constant (ka) 

0.13 nM-1 min-1 

Exonuclease (10 nM) 

Vexo  27 nM min-1 Kexo 45 nM 

Rate constant of toehold-mediated strand displacement of the reporter (krep) 

5.3 x 107 M-1 min-1 

 

Empirical model parameters  

Vγ 8.5 nM min-1 Viβ 0.8 nM min-1 

Vδ 7.2 nM min-1 λα 25 

Vα 6.5 nM min-1 λβ 28 

Vβ 15 nM min-1 Vexo
* 23.4 nM min-1 

Viα 1.6 nM min-1   
* The parameter Vexo was estimated to be lower as experimentally determined in isolation, since sequestration of 

exonuclease by the templates is present. We manually adapted this value. 
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Supplementary Information I: Supplementary figures 

 

 
Figure S3.1: Production of DNA strand X36 requires the presence of translator module and primer α. A) 
Schemat ic illustration of the reactions, which were carried out as described in Paragraph 3.8 (PEN-based 
experiments). The black dots at the 5’-end of the DNA strands represent phosphorothioate modificat ions which 
protect the DNA strand from degradation. B) An experiment was performed in the presence and absence of 50 
nM of primer α and using 0, 5, 7.5, 10, 15 and 20 nM (from light to dark color) of translator template αtoX36 in 
the presence of molecular beacon MBx, 10 U/mL Nt. bstNBI and 15 U/mL Bst. 2.0 warmstart DNA polymerase. 
Fluorescence was converted to concentration using a standard curve (Figure S3.16). The results in Figure S3.1 
show an increase in fluorescence when both primer α and translator are present evidencing that the increase in 
fluorescence is only caused by the production of DNA strand X36 and, importantly, not by any unwanted 
background reaction.  
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Figure S3.2: Comparing the production rate of DNA strand X36 using primer α or protected primer α. A) 
Schemat ic illustration of the experiment in which the translator module produces DNA strand X36 using primer α 
or protected primer α and measured with a molecular beacon. Experiments were performed as described in  
Paragraph 3.8 (PEN-based experiments). The black dots represent phosphorothioate modifications. The 
experiment was performed  using 5, 7.5 and 10 nM (from light to dark color) o f translator template αtoX36 in the 
presence of 10 U/mL Nt.BstNBI, 15 U/mL Bst 2.0 warmstart and molecular beacon MBx and initiated with 50 
nM of unprotected primer α or 50 nM of protected primer α. B) Results of the experiments which show a similar 
production rate of X36 using either unprotected (red dotted lines) or protected (green dotted lines) primer α.  
 

 

 
Figure S3.3: Analysis of parameters potentially contributing to retroactivity. Simulations were performed using 
the heuristic model (Supplementary Information II) with the same concentrations of translator template as used 
for the experiments in Figure 3.3b. Besides the translator concentration the parameters ρ, KLα and the 
competition term of σ in the Michaelis-Menten derivation of exonuclease can contribute to retroactivity in 
theory. The results of the simulat ions show the dynamics of the INVERTER circuit for a concentration range of 
translator module with one of these parameters modified as indicated in red. The traces were converted to 
normalized units (n.u.) by normalizing α to the steady-state concentration and normalizing β to its maximum 
value. These results show that parameters ρ and KLα have a significant contribution to retroactivity while the 
competition term of σ  of the Michaelis-Menten derivation of exonuclease has a relatively small contribution to 
retroactivity.  
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Figure S3.4: Coupling of the translator module to a two-input bistable switch. A) Schematic illustration of the 
system, in which the translator module is coupled to β or α of the PEN-based bistable switch. The core of the 
bistable switch consists of four templates including the autocatalytic templates αtoα and βtoβ and the inhibitory 
templates αtoiβ and βtoiα. The network switches between states upon injection of γ and δ  which are received by 
templates γtoα and δtoβ. The dynamics of the bistable switch are followed v ia N-quenching using templates 
βtoiα and αtoiβ which are 3’-end labeled  with a DY530 and FAM fluorophore respectively. B) Results of the 
experiments in which a concentration range of t ranslator template was coupled to β or α. The sequence of the 
translator template was adapted for coupling to β enabling the translator module to receive β as input primer 
while producing σ as output strand. Experiments were carried out as described in Paragraph 3.8 (PEN-based 
experiments) using 20 nM βtoiα, 15 nM αtoiβ, 24 nM βtoβ, 10 nM αtoα, γtoα and δtoβ, 10 U/mL Bst 2.0 
warmstart DNA polymerase, 10 U/mL Nt. bstNBI and 200 nM ttRecJ. The switch was initiated with 1 nM of α 
when the network was switched from the α- to the β-state, while the network was init iated with 1 nM of β  when 
switched from the β- to the α-state. The dotted lines indicate the time point at which 30 nM δ (from α- to β-state) 
and γ (from β - to α-state) was injected. The charge level is the normalized fluorescence of the signal of DY530 
and FAM fluorophores which is 0 in the absence of template’s input primer and 1 at the steady-state value of 
primer β  and α respectively. The results of the translator coupled to α or β  show the production rate of σ  fo llows 
the dynamics of the switch instantaneously. Furthermore, the effect of retroactivity from the translator coupled to 
α or β was analysed by plotting the data in the phase plane of αtoiβ and βtoiα (Figure 3.4). C) Results of 
simulations performed using the heuristic model (Supplementary Information II). The traces of α and β were 
converted to normalized units (n.u.) by normalizing α and β  to their steady-state concentration. The results show 
the same trend in the dynamics of the switch with increasing translator module as for the experiments. 
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Figure S3.5: Switching from the β- to the α-state with no translator and with the translator module coupled to α. 
A) Schematic illustration of the system, in which the translator module is coupled to α of the PEN-based bistable 
switch. The core of the bistable switch consists of four templates including the autocatalytic templates αtoα and 
βtoβ and the inhibitory templates αtoiβ and βtoiα. The network starts in the β-state and switches from the β- to 
the α-stat upon inject ion of γ which  is received by template γtoα. The dynamics of the bistable switch are 
followed v ia N-quenching using templates βtoiα and αtoiβ which  are 3’-end labeled  with a DY530 and FAM 
fluorophore respectively. B) Results of the experiments in which switching from the β- to the α-state was 
initiated with 30 nM or 50 nM γ in absence of translator module and with 10 nM of the translator module (αtoσ) 
coupled to α. Experiments were carried  out as described in Paragraph 3.8 (PEN-based experiments) using 20 
nM βtoiα, 15 nM αtoiβ, 24 nM βtoβ, 10 nM αtoα, γtoα and δtoβ, 10 U/mL Bst 2.0 warmstart DNA polymerase, 
10 U/mL Nt. bstNBI and 200 nM ttRecJ. The switch was init iated with 1 nM of β. The dotted lines indicate the 
time point at which 30 nM or 50 nM γ was in jected. The charge level is the normalized fluorescence of the signal 
of DY530 and FAM fluorophores which is 0 in the absence of template’s input primer and 1 at the steady-state 
value of p rimer β and α respectively. The results show switching from the β - to the α-state without translator 
module after in jection of both 30 nM and 50 nM of γ, while switching from the β- to the α-state with 10 nM of 
the translator module coupled to α only succeeded after injection of 50 nM of γ. Hence, these results verify the 
predictions of the theoretical model as illustrated in the bifurcation diagrams in Figure 3.4. 
 

 

 



Chapter 3 

80 
 

 
Figure S3.6: Comparing the β-lactamase actuator in the orig inal buffer at 28 oC and in the PEN toolbox buffer at  
42 o C. 1 nM of β-lactamase-ODN (dark red) or 1 nM β-lactamase-ODN in complex with BLIP-ODN and DNA 
linker (β lacLink-ξ) in  ratio  1:2:1.2 were incubated in  a 396 wells-plate with a volume of 36 µL and 25 µL oil to 
prevent evaporation for different time periods as shown above the graphs. The experiment was performed in  
either the original buffer9 (upper graphs) or PEN toolbox buffer (lower graphs, Paragraph 3.8 (PEN-based 
experiments)). Enzymatic activ ity of TEM1 β -lactamase was measured by adding 4 µL fluorescent substrate 
CCF2-FA (final concentration of 2 μM) prior to the measurement (Tecan, Safire). Furthermore, experiments 
were performed where CCF2-FA substrate was incubated on its own as shown by the grey traces. Shaded area’s 
represent the standard deviation of the mean of the experiments. The results show that the β-lactamase-ODN 
(dark red) and the β-lac/BLIP/template complex (blue) are relatively stable in the original buffer at 28 o C for at  
least 3 hours. However, β-lactamase-ODN (dark red) and the self-inhibitory  β-lactamase construct (blue) show a 
decrease in activity in PEN toolbox buffer at 42 oC over time. Furthermore, while CCF2-FA is stable in the 
original buffer at 28 oC it is slowly hydrolyzed in PEN toolbox buffer at 42 oC.  
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Figure S3.7: The activation of the β-lactamase actuator in the PEN toolbox buffer at 42 oC for different 
incubation periods. 1 nM of β-lactamase-ODN or 1 nM β-lactamase-ODN in complex with BLIP-ODN and 
DNA linker βlacLink-ξ (ratio  1:2:1.2) were incubated in a volume of 36 µL with 25 µL oil to prevent 
evaporation for different time periods as shown above the graphs. The experiment was performed  in  the PEN 
toolbox buffer (Paragraph 3.8). Samples included the β-lactamase-ODN (dark red), the inactivated complex 
(blue), the complex activated (with 50 nM ξ) at the start of the incubation (pink) and the complex activated (with 
50 nM ξ) at ‘X’ hours (red) as indicated above the graphs. Enzymatic activ ity of TEM1 β -lactamase was 
measured by adding 4 µL fluorescent substrate CCF2-FA (final concentration of 2 μM) prior to the measurement 
(Tecan, Safire). Shaded area’s represent the standard deviation of the mean of the experiments. The results show 
that TEM1 β-lactamase decreases in activity over incubation time. However, the activated complexes (pink and 
red traces) after 2 and 3 hours incubation do not reach the activity of the free β-lactamase-ODN. Moreover, the 
increase in activity by activation of the complex becomes lower with increasing incubation time of the 
inactivated complex (red traces). Possibly the TEM1 β-lactamase is less stable in complex with BLIP compared  
to the free TEM1 β-lactamase-ODN. Furthermore, the complex possibly dissociates over time exp laining why 
the negative control (b lue) decreases less in activity compared to the free TEM1 β-lactamase-ODN (dark red). 
For these reasons, as a positive control we use the complex act ivated (by ξ) after ‘x’ hours in the PEN toolbox 
environment.  
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Figure S3.8: Controlling the activity of a TEM1 β-lactamase enzyme by a two-input bistable switch. A) 
Schemat ics of the experiment in which the two-input bistable network is used to control the activity of a self-
inhibitory TEM1 β-lactamase construct. B) Results of the experiments which  were carried out as described in  
Paragraph 3.8 (PEN-based experiments) using 20 nM βtoiα, αtoiβ, and βtoβ, 10 nM αtoα, γtoα and δtoβ, 15 
U/mL Bst 2.0 warmstart DNA polymerase, 10 U/mL Nt. bstNBI, 75 nM ttRecJ, 5 nM self-inhibitory TEM1 β-
lactamase construct or 20 nM molecular beacon MBξ in absence and presence of 10 nM βtoξ and initiated with 1 
nM of α. The upper three graphs show the dynamics of the bistable switch and the production of DNA strand ξ 
measured using a molecu lar beacon labeled with ROX fluorophore and a quencher. The dotted lines show the 
time at which  the Inputs δ and γ were added. The charge level is the normalized fluorescence of the signal of 
DY530 and FAM fluorophores which is 0 in the absence of template’s input primer and 1 at the steady-state 
value of primer β and α respectively. The fluorescence of the ROX fluorophore was converted to concentration 
of DNA strand ξ using a standard curve (Figure S3.16). The experiments were performed in presence (dark blue, 
green and dark yellow) and absence (light blue, light green and light yellow) of translator module and the results 
show that the dynamics of the bistable switch are not disturbed by addition of the translator module. In parallel, 
experiments were run were the molecu lar beacon was replaced with the self-inhibitory TEM1 β-lactamase 
construct. The activity of the TEM1 β -lactamase was determined at two different states of the switch including 
70 and 380 minutes after init iation of the switch, indicated by the black arrows, by measuring the conversion rate 
of fluorogenic substrate CCF2-FA. Negative and positive controls were carried out in  parallel. For negative 
controls (grey) the translator module was omitted in the reactions. For positive controls (red) the translator 
module was also omitted and excess of DNA strand ξ (100 nM) was added to the wells plate. The results show 
we are able to control the activity of the self-inhib itory TEM1 β -lactamase construct by the dynamics of the 
bistable switch. 
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Figure S3.9: Control of a NanoLuc-based enzymatic actuator by a two-input bistable switch. A) Schemat ics of 
the experiment in which the two-input bistable network is used to control a NanoLuc-based enzymat ic actuator. 
B) Results of the experiments which were carried out as described in Paragraph 3.8 using 20 nM βtoiα, 15 nM 
αtoiβ, 24 nM βtoβ, 10 nM αtoα, γtoα and δtoβ, 15 U/mL Bst 2.0 warmstart DNA polymerase, 10 U/mL Nt. 
bstNBI, 200 nM ttRecJ, 5 nM NanoLuc actuator or molecular beacon MBσ in absence and presence of 2 nM 
αtoσ and initiated with 1 nM of α. The upper three graphs show the dynamics of the bistable switch and the 
production of DNA strand σ measured using a molecular beacon labeled with Cy5 fluorophore and a quencher. 
The dotted lines show the time at which the Inputs δ and γ were added. The charge level is the normalized  
fluorescence of the signal of DY530 and FAM fluorophores which is 0 in the absence of template’s input primer 
and 1 at the steady-state value of primer β and α respectively. The fluorescence of the Cy5 fluorophore was 
converted to concentration of DNA strand σ using a standard curve (Figure S3.16). The experiments were 
performed in  presence (dark blue, green  and yellow) and absence (light blue, light green and light yellow) of 
translator module and the results show that the dynamics of the bistable switch are not disturbed by addition of 
the translator module. In parallel, experiments were run were the molecular beacon was replaced with the 
NanoLuc-based enzymat ic actuator. The conformational state of the actuator was determined at different states 
of the switch including 0, 50, 300 and 500 minutes after initiat ion of the switch by primer α, shown in the bar 
graph. The fraction of opened conformation in normalized units (n.u.) was calculated by subtracting the mean  
BRET rat io of the positive controls and normalizing to the mean BRET rat io of the negative controls (Figure 
S3.10). For negative and positive controls the translator module was omitted and excess of DNA strand σ was 
added for the positive control. Error bars represent the standard deviation of the mean of the experiments 
performed in triplicate. The results show we are able to control the NanoLuc-based actuator by the dynamics of 
the bistable switch. 
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Figure S3.10: Normalized raw data of the control of the NanoLuc-complex at different states of the switch 
(Figure S3.9). A detailed description of the protocol can be found in Paragraph 3.8. For negative (‒, grey) and 
positive (+, red) controls the translator module was omitted and excess of DNA strand σ was added to the wells 
plate for the positive controls. The BRET ratio at 533 nm and 458 nm was calculated for samples and controls. 
Experiments were performed  in  triplicate. Error bars and shaded area’s represent the standard deviation of the 
mean of the experiments. 



Hierarchical control of enzymatic actuators using PEN-based switchable memories 

85 
 

 
Figure S3.11: Raw data displaying the dynamics of the switch while probing the activity o f the enzymatic 
actuators (Figure 3.6). Experiments were carried out as described in Paragraph 3.8 in absence of translator 
templates (for the measurement of the positive and negative controls in determin ing the activity of the enzymatic 
actuators) and in presence of the orthogonal set of translator templates including αtoσ and βtoξ. The charge level 
is the normalized fluorescence of the signal of DY530 and FAM fluorophores which is 0 in the absence of 
template’s input primer and 1 at  the steady-state value of primer β  and α respectively. The dotted lines show the 
time points at which 30 nM of Input δ or γ was added. Shaded area’s represent the standard deviation of the 
mean of the experiments. Experiments were performed in duplicate at three different days. 
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Figure S3.12: Raw data of the activity of β-lactamase at different states of the switch (Figure 3.6). The activ ity 
of β-lactamase was measured by adding CCF2-FA to the samples after which fluorescence at 447 nm was 
measured. A detailed description of the protocol can be found in Paragraph 3.8. Conversion of CCF2-FA is 
shown on the left for the different states of the switch. For negative (‒, grey) and positive (+, red) controls the 
translator templates αtoσ and βtoξ were omitted and excess of DNA strand ξ was added to the wells plate for the 
positive controls. The activity of β-lactamase was determined by deriving the slope between 50 and 150 minutes, 
shown on the right. Experiments were perfo rmed in duplicate at three d ifferent days. Error bars and shaded 
area’s represent the standard deviation of the mean of the experiments. 
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Figure S3.13: Normalized raw data of the control of the NanoLuc-complex at different states of the switch 
(Figure 3.6). A detailed description of the protocol can be found in Paragraph 3.8. For negative (‒, grey) and 
positive (+, red) controls the translator templates αtoσ and βtoξ were omitted and excess of DNA strand σ was 
added to the wells plate for the positive controls. The BRET ratio at 533 nm and 458 nm was calculated for 
samples and controls. Experiments were performed in duplicate at three different days. Error bars and shaded 
area’s represent the standard deviation of the mean of the experiments. 
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Figure S3.14: Characterizing the crosstalk between the molecular beacon and the switch. A) Schematic 
illustration of the switch. B) Results of the experiments which  were performed  as described in Paragraph 3.8 
(PEN-based experiments) in absence of molecular beacon (blue) and in presence of 20 nM molecular beacon 
MBσ (green). The black dotted lines are the timepoints at which primers δ and γ were added respectively. 
Experiments were performed  using 20 nM of βtoiα, αtoiβ and 20 nM βtoβ, 12 nM αtoα, 10 U/mL Bst 2.0 
warmstart DNA polymerase, 10 U/mL Nt. bstNBI and 50 nM ttRecJ. The experiment is init iated with 1 nM of 
primer α and, hence, the α-side of the switch is in itiated first. The charge level is the normalized fluorescence of 
the signal of DY530 and FAM fluorophores which is 0 in the absence of template’s input primer and 1 at  the 
steady-state value of primer β and α respectively. The experiments show the molecular beacon does not interact 
with the switch and does not change the dynamics significantly. Furthermore, the results on the bottom show the 
molecular beacon is not opened in these reaction mixtures. 
 

 
Figure S3.15: Characterizing crosstalk between the enzymatic actuators and the switch. A) Schematic 
illustration of the switch. B) Results of the experiments which  were performed  as described in Paragraph 3.8 
(PEN-based experiments) in presence of molecular beacons (black) or in presence of the enzymatic actuators 
(blue). The black dotted lines are the timepoints at which  primers δ and γ were added respectively. Experiments 
were performed  using 20 nM βtoiα, 15 nM αtoiβ, 24 nM βtoβ, 10 nM αtoα, γtoα and δtoβ, 15 U/mL Bst 2.0 
warmstart DNA polymerase, 10 U/mL Nt. bstNBI, 200 nM ttRecJ in presence of 5 nM NanoLuc actuator and 2.5 
nM β-lactamase actuator or 5 nM MBσ  and 2.5 nM MBξ. The experiment is init iated with 1 nM of primer α and, 
hence, the α-side of the switch is initiated first. The charge level is the normalized fluorescence of the signal of 
DY530 and FAM fluorophores which is 0 in the absence of template’s input primer and 1 at the steady-state 
value of primer β and α respectively. Experiments were performed in duplicate. Shaded area’s represent the 
standard deviation of the mean of the experiments. The experiments show that both enzymatic actuators have 
low cross-talk with the switch as evidenced by similar switching dynamics in the presence of beacons and 
actuators. 
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Figure S3.16: Standard curve of molecular beacons with different amounts of targets. A) Experiments were 
performed in mastermix without enzymes (Paragraph 3.8) and fluorescence was measured at 42 ᵒC. B) Standard 
curve of molecu lar beacon MBx and target X56. C) Standard curve of molecular beacon MBσ and target σ. D) 
Standard curve of molecular beacon MBξ and target ξ. b-d, To obtain the slope the experimental data was fitted 
to a linear equation.  
 
 
 

 
Figure S3.17: Amplification rate of α for a  range of nickase. Experiments were performed fo r a range of nickase 
concentration and 20 U/mL Bst. polymerase 2.0 warmstart using 20 nM (A) or 60 nM (B) of autocatalytic 
template. The amplification rate first increases to an optimum with increasing concentration of nickase after 
which the amplificat ion rate decreases with increasing concentration of nickase. Furthermore, the optimum ratio  
of nickase to polymerase is dependent on the concentration of the substrate. 
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Figure S3.18: Characterization of the kinetics of DNA hybridization. A) Schematic illustration of DNA 
hybridizat ion. B) Ord inary differential equations describing the kinetics of DNA hybrid ization. C) Results of 
non-linear least squares analysis (Table 3.2) of the data to the ODE model based on the equations in (B). 
Experiments were perfo rmed using 500 nM primer β and template δtoβ in 1x TE buffer with 0.06 nM Na+ and 
0.008 M Mg2+. A detailed description of the experiment and analysis is provided in Paragraph 3.8. 
 
 

 
Figure S3.19: Characterization of the kinetics of the molecu lar beacon. A) Schematic illustration of the 
experiment in which DNA strand σ binds to the loop of the beacon followed by strand displacement disrupting 
the stem of the beacon resulting in an increase in fluorescence. B) Ordinary d ifferential equations describing the 
kinetics of the molecular beacon using the bimolecular reaction approximat ion.37 C) Experiments were 
performed using 10 nM of molecu lar beacon and 5 (blue) and 20 nM (green) of DNA strand σ respectively in  
mastermix without enzymes and fluorescence was recorded over time. Non-linear least squares optimization was 
performed using the ODE model in order to obtain an estimate fo r the second-order rate k rep (Table 3.2). A  
detailed description of the experiment and analysis is provided in Supplementary Information II. 
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Figure S3.20: Comparison of dynamics of full heuristic model and the reduced model. iα, iβ and σ obtained with 
the full heuristic model (b lue) and its steady-state approximations fiα , fiβ , and fσ (red) for switches from α to β to 
α. A) 0 nM translator. B) 10 nM translator at α (VLα = 0.65 nM min−1). C) 20 nM translator at α (VLα = 1.3 nM 
min−1). D) 10 nM translator at β  (VLβ = 0.65 nM min−1). E) 20 nM t ranslator at β (VLβ = 1.3 nM min−1). Switches 
are initiated at t  = 160 min  and t = 310 min. Switching from α to β is in itiated by a δ -pulse and switching from β  
to α is initiated by a γ-pulse. The dynamical behavior of the heuristic model and its reduction are qualitative 
similar. Using the reduced model separatrices and switching planes are obtained (Figure S3.22 and S3.23). A  
detailed description of the heuristic model and its steady-state approximations is provided in Supplementary 
Information II. 
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Figure S3.21: Comparison of dynamics of fu ll heuristic model and the reduced model. Comparison of 
trajectories of the heuristic model (blue) and the reduced model (red) fo r switches from α to  β to α. A) 0 nM 
translator. B) 10 nM translator at α (VLα = 0.65 nM min−1). C) 20 nM translator at α (VLα = 1.3 nM min−1). D) 10 
nM translator at β (VLβ = 0.65 nM min−1). E) 20 nM translator at β (VLβ = 1.3 nM min−1). Switches are init iated at 
t = 160 min  and t = 310 min. Switching from α to β is initiated by a δ-pulse and switching from β to α is init iated 
by a γ-pulse. The dynamical behavior of the heuristic model and its reduction are qualitative similar. Using the 
reduced model separatrices and switching planes are obtained (Figure S3.22 and S.3.23).  
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Figure S3.22: Nullclines and seperatrices of the switch without and with translator. Nullclines and separatrices 
in the (α,β )-plane for various combinations of KLα and KLβ were obtained using the reduced model 
(Supplementary Information II). A) KLα = 6 nM, KLβ = 24 nM B) KLα = 6 nM, KLβ = 12 nM C) KLα = 12 nM, KLβ 
= 24 nM D) KLα = 24 nM, KLβ = 24 nM. A ll other parameter are set to their nominal value. Solid lines 
correspond to absence of translator, dashed line represent presence of translator with load of 10 nM, dotted line 
represent presence of translator with load of 20 nM. Black line is the seperatrix in absence of translator, green 
(dashed, dotted) lines are seperatrices for the translator coupled to the α-side of the switch, cyan (dashed, dotted) 
lines are seperatrices for the translator coupled to the β-side of the switch. Black circles are the (locally ) stable 
steady-states, stars indicate the unstable steady-states. These results show a shift in the nullclines and 
separatrices when the translator is coupled to the α- or β-side of the switch. Furthermore, the nullclines and 
separatrices with the translator module coupled show an increased shift with decreasing dissociation constant. 
 



Chapter 3 

94 
 

 
Figure S3.23: Computed switch-planes without and with translator module. Computed γ-switch-planes (green) 
and δ-switch-planes (red) for the switch without translator module and the translator module coupled to α or β. 
A) Switch p lanes of switch without translator module. B) Switch-planes of switch with 10 nM translator module 
coupled to α (VLα = 0.65 nM). C) Switch-planes of switch with 20 nM translator module coupled to α (VLα = 1.3 
nM). D) Switch-planes of switch with 10 nM translator module coupled to β (VLβ = 0.65 nM). E) Switch-planes 
of switch  with 20 nM translator module coupled to β  (VLβ = 1.3 nM). The switch-planes were obtained from the 
reduced model (Supplementary Informat ion II). Black t rajectories corresponding to a (successful/unsuccessful) 
switch from α to β, blue trajectories corresponding to a (successful/unsuccessful) switch from β to α. Black 
trajectories can not cross the red plane, blue trajectories can not cross the green plane. Open circles indicate the 
initial conditions and solid circles indicate the final steady-state. The switch-planes were computed with γ/δ  
pulses from 5 to 30 nM. Coupling of the translator template to β results in a shift in the switching plane in  favor 
of the α-state. By contrast, coupling of the translator template to α results in  a shift  in the switching plane in  
favor of the β-state. 
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Supplementary Information II: A reduced model 

 

In this section we present a reduced model of our heuristic model which was derived by dr. E. 

Steur. To reduce the model we: 

- ignore the dynamics of the reporter (by setting either krep = 0 nM min-1 or MB0 = 0 

nM); 

- assume that iα, iβ, σ and θ are instantly at steady-state. 

The first condition is reasonable as the reporter has minor influence on the occurrence of a 

switch. (In particular, note that MB is only ‘consumed’ such that after some switches [MB] = 

0 nM). The second assumptions are made without chemical nor mathematical justification. 

One of the main reasons for reduction is visualization of switch planes in three dimensions. 

However, from numerical simulations we observe that the steady-state assumption produces 

reasonably accurate results (Figure S3.20). Furthermore, as shown in Figure S3.21, the 

dynamical behavior of the heuristic model and its reduction are qualitative similar.  

 

Denoting by: 

 
 

the steady-states solutions of iα, iβ, σ and θ as function of and α and β, we obtain the reduced 

model: 
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where VLα VLβ = 0 (which implies that the translator is coupled to at most one side of the 

switch). The dynamics of the reduced model will be studied in detail, which provides valuable 

insights in the role of specific parameters in both the reduced model and the full model. 

 

Nullclines 

The nullclines of the bistable switch were computed by dr. E. Steur using the following 

procedure. Let us consider the dynamics of the reduced model with [γ] = 0 nM and [δ] = 0 

nM. We first determine the [α]-nullclines and [β]-nullclines, i.e. the set set of points at which 

[ ] 0=α
dt
d  and [ ] 0=β

dt
d  respectively.  

 

Obviously, the points of intersection of the [α]-nullclines and [β]-nullclines define the steady-

state solutions of the reduced model. Note that: 

[ ] [ ] 00 =⇒= αα
dt
d  and [ ] [ ] 00 =⇒= ββ

dt
d  

 

such that ([α], [β]) = (0, 0) is a steady-state solution. Furthermore, note that steady-state 

solutions of the reduced model coincide with (the [α] and [β] part of) the steady-state 

solutions of the full model. Figure S3.22 shows the nullclines depending on coupling of the 

translator. In all these plots: 
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• [ ]α
dt
d <0 for point above the red nullclines. 

• [ ]α
dt
d >0 for point below the red nullclines. 

and 

• [ ]β
dt
d <0 for point right of the blue nullclines. 

• [ ]β
dt
d >0 for point left of the blue nullclines. 

Computation of seperatrices and switch-planes 

The separatrices shown in Figure S3.22 divide the ([α], [β])-plane in two regions; Solutions of 

the reduced model (with [γ] = [δ] = 0 nM) starting in the region below a seperatrix converge 

to the steady-state with positive [α] and zero [β], whereas solutions of the reduced model 

(with [γ] = [δ] = 0 nM) with initial conditions in the region above a seperatrix converge to the 

steady-state with zero [α] and positive [β]. The seperatrices were computed by dr. E. Steur 

using the following procedure: 

1. Determine the positive steady-state solution (which is a saddle-point) and denote 

this positive steady-state by xss. 

2. Determine the Jacobian matrix at xss and compute the eigenvalues and 

eigenvectors. 

3. Let u be the eigenvector corresponding to the negative eigenvalue of the Jacobian 

and normalize u such that ||u|| = 1, then integrate the differential equations in 

negative t direction with initial conditions xss + 10-8 u and xss – 10-8 u.1 

Whether or not a switch from [α] to [β] or vice versa occurs can not be directly predicted from 

the location of the seperatrix; a switch is initiated by (the initial amplitude of) [γ] or [δ] rather 

than by controlling the initial conditions in the ([α],[ β])-plane. To gain further insights in 

whether a switch will be successful or not we compute the so-called switch-planes. These 

switch-planes are global invariant manifolds in the ([γ],[α],[β])-space or ([δ],[α],[β])-space for 

switching from β to α or from α to β respectively. As the switch-planes are global invariant 
                                                 
1 1Let );( xtφ be a solution of the systems through x. The stable manifold of ssx  is the set ( ) =:sss xW   

{ ssxxtx →);(:φ  as t →∞}, the unstable manifold of ssx  is the set ( ) =:ssu xW  

{ ssxxtx →);(:φ  as t →∞}. As the positive steady-state is a saddle-point, invoking the stable and 

unstable manifold theorem,51 ( )sss xW  and ( )ssu xW  are tangent to the stable, respectively, unstable 
eigenspaces of the linearization at xss. 
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manifolds, they divide the corresponding space in two parts; The part below the switch-planes 

defines the points at which switches can not occur whereas for points above the switch-planes 

there will be a switch (Figure S3.23). Note that the intersection of the switch-planes with the 

([α],[β])-plane should be the seperatrix (that we have computed before). We shall briefly 

discuss the computation of the [γ]-switch-plane. (Computation of the [δ]-switch-plane is done 

analogously.) In other words, we consider only switches from β to α such that we can set [δ] 

= 0 (and, consequently, [ ] 0=δ
dt
d ). Thus the dynamics are described by the three-dimensiona l 

system of ODEs: 

 

 
 

Because the switch-plane is the union of trajectories that converge to points on the seperatrix 

we can approximate the switch-planes by: 

 

1. taking initial conditions for [α] and [β] on the seperatrix and set the initial condition 

for [γ] to be 10-8. 

2. integrate the three-dimensional system of ODEs in negative t direction. 

It is interesting to note that the effect of asymmetry in the model (as the parameters of the α-

side of the switch are not identical to those of the β-side) can be compensated for by coupling 

the translator to the β-side (Figure S3.23d-e). Furthermore, in case of the translator being 

coupled to the α-side a (unrealistically) high amplitude is needed for successful switching 

from β to α (Figure S3.23b) and, in particular, Figure S3.23c). 
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4 
Antibody-controlled actuation of DNA-based molecular 

circuits 

 
Abstract DNA nanotechnology has emerged as a versatile method for the construction of 

molecular nanodevices and complex reaction networks with sophisticated signal 

integration, processing and actuation properties. However, the actuation of these 

nanostructures and circuits mostly relies on DNA-based inputs, limiting their application in 

synthetic biology and molecular diagnostics. Here we expand the scope of DNA-based 

molecular programming by introducing a generic approach enabling the use of antibodies 

as input for DNA-based computing. The strategy, antibody-templated strand exchange 

(ATSE), involves the bivalent structure of antibodies as a template to stimulate DNA 

strand exchange thermodynamically and kinetically, resulting in a unique output strand as 

an input for DNA computing. Experiments, performed by W. Engelen, showed the 

successful implementation of the antibody-templated strand exchange (ATSE) reaction. In 

order to obtain a fundamental understanding of the ATSE reaction we here develop a 

comprehensive model that describes the kinetics of the ATSE system as a function of 

toehold length, thermodynamics and kinetics of antibody–epitope binding and 

concentration of reactants.  

 

 

 

Part of the work in this chapter has been published in:  

Wouter Engelen, Lenny H.H. Meijer, Bram Somers, Tom F.A. de Greef and Maarten Merkx – 

Nature Communications, 2017, 8, 14473 
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4.1 Introduction 

The synthetic accessibility and predictable Watson-Crick base pairing makes DNA a 

versatile building block for a broad range of applications in bionanotechnology. Examples 

range from the bottom-up construction of 3-dimensional nanostructures for the delivery of 

cargo1 to molecular walkers,2,3 motors4,5 and complex DNA-based molecular circuits.6-13 

The advantage of DNA-based molecular nanostructures and circuits relies on their ability 

to sense and act at a molecular level with biological systems.14-18 Moreover, autonomous 

DNA-based molecular circuits are potentially useful in theranostic devices as they translate 

a specific input signal to a biological activity according to a predefined algorithm.19 Some 

examples of the downstream actuation of proteins by a DNA-based upstream circuit have 

been reported such as the activation of a split- luciferase20 or the release of an antibody21 by 

DNA-based Boolean logic operations, or the control of β- lactamase and a luciferase-based 

actuator by an upstream bistable switch.22 However, with the exception of a few protein-

binding aptamers,19,23 the upstream actuation of DNA-based circuits relies on DNA-based 

input triggers. Here, we expand the scope of DNA-based molecular programming by 

developing a generic approach to use antibodies as inputs for DNA-based computing. 

Antibodies constitute regions which are highly specific and, therefore, are excellent 

biomarkers for infectious and autoimmune diseases. Additionally, they have proven to be 

useful as therapeutic agents.24,25 The design strategy of our molecular system relies on 

DNA strand exchange26 of peptide-functionalized oligonucleotides promoted by the 

bivalent architecture of antibodies as a template, resulting in a specific DNA output 

sequence. While experiments, performed by W. Engelen, demonstrate the efficiency and 

genericity of the antibody-templated strand exchange (ATSE) reaction, a kinetic model is 

required to obtain insights in kinetics and thermodynamics of the involved reaction steps. 

Here, we present a detailed theoretical characterization of this antibody-templated strand 

exchange reaction which describes the kinetics and thermodynamics of the ATSE system 

and is used to find relevant concentrations of reactants. The model provides a fundamental 

understanding of the ATSE reaction and is used to find optimal concentration regimes and 

to study the effect of thermodynamics and kinetics of antibody–epitope binding. 
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4.2 Antibody-templated strand exchange reactions 

The mechanism of the antibody-templated toehold-mediated strand exchange reaction is 

shown in Figure 4.1A. The ATSE module comprises a partial duplex (BO) containing a 

short single-stranded overhang region, i.e. toehold (T),26 and an invading strand (I). 

Conjugation of antibody-specific peptide epitopes to the 3′-ends of B and I, allows binding 

of BO and I to their target antibody. Binding of I to the toehold region of BO is followed 

by the displacement of the output strand (O). In absence of antibody this reaction is 

thermodynamically unfavourable as the number of base pairs in BI is lower than in BO 

and, hence, no output is produced. However, in presence of antibody the toehold exchange 

reaction is thermodynamically favourable as the product BI forms a bivalent interaction 

with the antibody, which has been shown to form a 1:1 complex with their target antibody 

with a 500-fold increase in affinity compared to the monovalent peptide-antibody 

interaction.21,27 Moreover, the colocalization of BI and O at the antibody increases their 

effective concentrations and, thereby, enhances the rate of the exchange reaction. 

The ATSE reaction was implemented by our experimental partners using a monoclonal 

antibody targeting the HA-tag, which is a peptide derived from the human influenza virus 

hemagglutinin protein. To follow the reaction over time the output strand O was measured by 

a reporter duplex (Rep) which releases, via toehold-mediated strand displacement (TMSD), a 

fluorescently labelled oligonucleotide. Importantly, to find the regime where background is 

minimal and the initiation of the ATSE reaction is fast the length of the toehold was 

systematically increased from 0 to 6 nucleotides (nt). Furthermore, the DNA strands were 

designed such that the product BI contains 24 basepairs. From Figure 4.1B it can be observed 

that in the absence of antibody the signal is minimal up to a toehold length of 3 nt. However, 

increasing the toehold beyond 3 nt drastically enhances the background reaction. In the 

presence of anti-HA antibody there is a significant increase in fluorescence even for a 1 nt 

toehold. Moreover, the strand exchange reaction rate is enhanced with increasing toehold 

length. In order to find the optimal toehold length, the apparent first-order rate constants for 

the ATSE reaction as a function of toehold length were determined in the presence and 

absence of anti-HA antibody (Figure 4.1C). While the increase of the apparent rate constant 

of the background is relatively low up to a toehold of 3 nt the increase of the apparent first 

order rate of the ATSE reaction ceases beyond 3 nt. Dividing the antibody-templated apparent 
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rate constant by the apparent rate constant of the background reaction (Figure 4.1D) gives a 

maximal signal-to-background ratio (S/B ratio) of ∼100 using a toehold length of 3 nt.  
 

 
Figure 4.1 : Antibody-templated strand exchange enables the translation of an antibody to an output DNA strand. 
A) The design principle of the ATSE reaction in which toehold-mediated DNA strand exchange is promoted in 
presence of antibody by colocalization of the reactants BO and I resulting in a stable intramolecu lar bivalent 
complex and the release of the output strand (O). O is measured by a reporter duplex (Rep), which releases a 
fluorescently labeled oligonucleotide upon binding of O. In absence of the antibody strand exchange is 
unfavourable and the output strand (O) remains hybridized to the peptide-functionalized base strand (B). B) 
Results of experiments which were performed in the absence (black) and presence of anti-HA antibody (red) for 
varying toehold length (T). One normalized unit (n.u.) represents the fluorescence generated by Rep from 
1 nM O. C) Apparent first-order rate constants (kobs) as a function of T obtained from fitt ing a single exponential 
to the experimental t races in (B). D) Signal to background ratios as a function of T calcu lated by divid ing the 
first-order rate constants in presence of antibody by the background rate constants. The experiments were 
conducted by mixing BO (5.5 nM), antibody (5 nM) and Reporter duplex (Rep, 10 nM) in TE/Mg2+supplemented 
with 1 mg ml−1 BSA and allowed to equilibrate for 1 h at 28 °C. Finally, the ATSE reaction was induced by the 
addition of I (5 nM) and fluorescence intensities were recorded with a platereader for 3 hours at 28 °C. Error bars 
represent the standard error of kobs obtained from the Fisher information matrix.  
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4.3 ODE model of the ATSE module 

To provide a thorough understanding of the critical parameters that determine the 

performance of the ATSE reaction, we constructed a mechanistic kinetic model consisting 

of a set of ordinary differential equations (ODEs). The model describes the time-dependent 

concentrations of all start, intermediate and end products of the antibody-templated strand 

exchange reaction. Figure 4.2 shows the reactions on which the ODE model is based starting 

from the two different peptide-DNA conjugates BO and I carrying the same peptide-epitope 

and a bivalent antibody Ab. Binding of the peptide-DNA conjugates to the antibody results in 

intramolecular strand displacement and the release of DNA strand O, which binds to a partial 

reporter duplex F·Q (Rep) releasing fluorescent oligonucleotide F as a result of strand 

displacement by output strand O.  

 
Figure 4.2 : Overv iew of reactions in the theoretical model in the presence of antibody (signal) and absence of 
antibody (background). 
 

To obtain an accurate model, most of the kinetic parameters were determined in separate 

experiments (Table 4.1),28 including the association rate constant (kf) for the binding of 

peptide-DNA conjugates to the anti-HA antibody and the forward rate constant (krep) of the 

toehold-mediated strand displacement of the reporter complex F·Q with ssDNA O. The 
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dissociation rate constant kb was calculated from the association rate constant (ka) and the 

dissociation equilibrium constant of peptide-DNA conjugates with the anti-HA antibody (Kd), 

which was also obtained independently. Moreover, the forward rate of the background 

reaction (kbg) and the rate constant for the antibody-templated intramolecular toehold-

mediated strand exchange reaction (kintra) were determined as a function of toehold length 

as described vide infra.  

Determination of the forward rate constant of the background reaction (kbg) 

To determine the forward rate constant (kbg) of the background reaction the experiment as 

shown in Figure 4.3A was performed. For each toehold length the fluorescence intensity was 

measurement in time in duplo and the mean was used for further analysis (Figure 4.3B). 

 

 
Figure 4.3: A) Schematic representation of the experiment performed to determine the forward rate constant of 
the background reaction. Peptide-DNA conjugate I can b ind to a toehold on duplex BO and displace strand O. 
This reaction is assumed to be irreversible. DNA strand O can bind to reporter duplex F·Q and displace strand F, 
resulting in an increase in fluorescence. B) Background strand exchange reaction (blue) for the ATSE react ion 
components in the absence of antibody for a range of toehold lengths. The shaded area represents the standard 
error of the mean of duplicate experiments. Non-linear least-squares optimization of the data using the ODE 
model depicted in Equation 4.1 was performed (black) to obtain the forward rate constant of the background 
reaction (kbg). Experiments were performed with 5.5 nM BO, 5 nM I and 10 nM F·Q. 
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First, the raw data was subtracted by a negative control where the BO duplexes were omitted. 

Subsequently, the fluorescence was converted to concentration of free oligonucleotide F using 

a control experiment in which 5.5 nM of O was mixed with 10 nM of F·Q. The fluorescence 

after completion of this reaction was used to calculate the conversion factor for fluorescence 

intensity to concentration of free F. A kinetic model was developed to characterize the 

kinetics of the background reaction: 

  

 
 

To obtain the forward rate constant of the background reaction (kbg) as function of toehold 

length non-linear least squares optimization of the ODE model in Equation 4.1 to the 

experimental data depicted in Figure 4.3B was performed with krep fixed to its experimentally 

determined value, using the Matlab routine lsqnonlin with a subspace trust-region method 

based on the interior-reflective Newton method. The lower bounds of the 95% confidence 

intervals and asymptotic standard errors were determined using the observed Fisher 

information matrix. Individual rate constants were obtained for the different toehold lengths 

(Table 4.1). 
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Determination of the intramolecular rate constant of cyclization of bivalent antibody with 

Peptide-DNA conjugates (kintra) 

The set of ODE’s describing the dynamics of the complete system was obtained by deriving 

an equation for each of the species in the network using mass-action kinetics. These equations 

were implemented in Matlab and solved numerically in time using parameters as in Table 4.1, 

resulting in a temporal evolution of all species in the system. The differential equations of the 

theoretical model were deduced from the reaction mechanisms shown in Figure 4.2 using the 

following assumptions: 

1. In order to experimentally determine the association rate constant of binding of the 

peptide to the anti-HA antibody (kf) and the thermodynamic dissociation constant of 

peptide-antibody binding (Kd) a fluorescently labeled peptide was used allowing kinetic 

studies by fluorescence and polarization assays.28 In the mathematical model the kf and kb 

(calculated from kf and Kd) of peptide-DNA conjugates to anti-HA antibody are assumed 

to be the same as the kinetics of binding and unbinding of fluorescently labeled peptide-

epitopes to the antibody. Furthermore, a statistical factor is used when a peptide-

oligonucleotide conjugate has two possibilities to bind or dissociate from the antibody. 

2. The formation of the cyclic bivalent Ab·B·I is assumed to be irreversible on the time 

scale of the experiment. Previous work has shown that the dissociation rate for this very 

stable bivalent interaction is very low, requiring overnight equilibration for competition 

experiments.27   

3. The cyclization of the antibody with the two heterogeneous peptide-DNA conjugates is 

described using an intramolecular rate constant (kintra).  

4. The toehold-mediated strand displacement of F from the reporter complex F·Q by DNA 

strand O is an irreversible reaction since the O·Q complex does not contain a toehold. The 

reaction is described using the bimolecular approximation developed by Zhang and 

Winfree.26  

5. The background reaction as shown in Figure 4.3 is described using the bimolecular 

approximation and is assumed to be effectively irreversible as DNA strand O is 

sequestered by an excess of reporter complex F·Q.  

6. Importantly, the background reaction can also take place in the presence of the antibody. 

Figure 4.4A shows all possible background reactions on the antibody. If this reaction 

happens it is assumed cyclization takes place, irrespective whether the other antigen 

binding site is occupied or not. In the mathematical model these multistep reactions are 
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coarse-grained into one step using a single rate constant kbg and assuming that cyclization 

is relatively fast and irreversible (Figure 4.4B), irrespective whether the other antigen 

binding site is occupied or not. Notably, this cyclization results from intramolecular 

binding of a second peptide epitope and is therefore relatively fast, while cyclization in 

Figure 4.2 results from strand displacement. This background reaction with the peptide-

DNA conjugates bound to the antibody effectively results in a decrease in free peptide-

DNA conjugates BO and I and antibody as well as an increase in DNA strand O and 

cyclized complex (Ab·B·I). Therefore, these reactions are included in the mathematical 

model in the ODE’s for free peptide-DNA conjugates BO and I and free Ab (Equation 

4.10a-c). 

 
Figure 4.4: Additional background reactions of various antibody-complexes that were also included in the 
mathematical model. A) Schemat ic illustration of all possible background reactions at the antibody. A factor 
of two indicates this reaction has two possibilities to happen. B) All these background reactions are included 
in the mathematical model as a single step with the forward rate constant of the background (kbg) being the 
rate limiting step. 
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7. Furthermore, the product of the background reaction (B·I), having two epitopes, is likely 

to bind to the antibody if there is a free antigen binding site available. Therefore, this 

reaction is also included in the model. Figure 4.5A shows the full reaction scheme, while 

in the kinetic model we use the simplified scheme in Figure 4.5B which is based on 

several assumptions. If an epitope of B·I  binds to an antigen binding site of the antibody 

it is assumed cyclisation, caused by binding of the second epitope, is faster than 

dissociation of the peptide-DNA conjugate B·I. Furthermore, it is assumed this cyclisation 

is relatively fast and irreversible, irrespective whether the other antigen binding site is 

occupied or not. Therefore, the reactions in Figure 4.5A are coarse-grained into one step 

(Figure 4.5B) with the association rate constant of a single peptide-DNA conjugate to the 

antibody as the rate limiting step. The statistical factor of four is used because two 

epitopes can bind at two positions of the antibody, while a statistical factor of two is used 

when one of these positions is occupied. 

 
Figure 4.5: Background reaction product captures antibody. A) Illustration of the binding of peptide-DNA 
conjugate [B·I] to the antibody having at least one free antigen binding site, followed by cyclization. B) 
Illustration of the simplified reaction scheme which is used in the kinetic model.   
 

Taking into account all these assumptions the dynamics of the system were obtained by 

deriving an ODE equation for each of the 14 species (Equation 4.10) in the network using the 

rate constants in Table 4.1.  
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The only unknown kinetic parameter in the mathematical model is the rate constant of 

cyclization of bivalent anti-HA antibody with peptide-DNA conjugates (kintra). An estimate of 

kintra for each toehold length was obtained by performing non- linear least square analysis of 

the kinetic model using the experimental data of the complete system in presence of anti-HA 

antibody (Figure 4.6). The raw data of the experiments (performed in duplo) was subtracted 

by the fluorescence intensity of a control lacking BO. Subsequently, the fluorescence was 

converted to concentration of ssDNA F using a control experiment in which 5.5 nM of 

ssDNA O was mixed with 10 nM of reporter duplex (F·Q). The fluorescence after completion 

of the control experiment (subtracted by the fluorescence from the unreacted reporter 

complex) was used to calculate the conversion factor for fluorescence intensity to 

concentration of ssDNA F. To obtain the intramolecular rate constant of cyclization (k intra) 

non- linear least squares optimization was performed (Figure 4.6) for each toehold length 

using Equations 4.10a-4.10n and the Matlab routine lsqnonlin with a subspace trust-region 

method based on the interior-reflective Newton method. The lower bounds of the 95% 

confidence intervals and asymptotic standard errors were determined using the observed 

Fisher information matrix. The concentration of antibody used in the non- linear least squares 

optimization was obtained experimentally from the ATSE reaction with a toehold of 3 nt, 

where it was assumed that the concentration of antibody was equal to the concentration of 

fluorescent product F after 300 min reaction. This reaction was chosen since the ATSE goes 

to complete conversion, whereas the contribution of the background reaction remains 

negligible. For a toehold length of 5 and 6 nucleotides, k intra could not be determined reliably 

since the ATSE reaction at these toehold lengths is dominated by the background reaction. 
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Figure 4.6: Experimental results of the system in presence of anti-HA antibody for a range of toehold lengths. 
The shaded area is the standard error of the mean of experiments performed in duplo. Non-linear least-squares 
optimization was perfo rmed (b lack) to obtain the rate constant of cyclisation via strand displacement (k intra) using 
the differential equations of Table 4.1. Experiments were performed with 5.5 nM BO, 5 nM I, 2 nM Ab and 10 
nM FQ. 
 

Table 4.1: Overview of parameters used in mathematical model for which the values were 

obtained from non-linear least square analysis of experimental data. 

Parameter Value 

Kd (nM) 0.24 

kf   (nM-1 s-1) 1.2E-2  

krep  (nM-1 s-1) 1.4E-3  

 

 Toehold length 

 0 1 2 3 4 5 6 

kbg (nM-1 s-1) 7.4E-07 ± 

4.4E-09 

8.9E-07 ± 

4.1E-09 

9.9E-07 ± 

5.3E-09 

1.7E-06 ± 

6.1E-09 

9.5E-06 ± 

2.4E-08 

3.5E-05 ± 

2.5E-07 

2.8E-04 ± 

3.6E-06 

kintra (s-1) 8.8E-06 ± 

2.4E-07 

6.3E-05 ± 

5.0E-07 

2.9E-04 ± 

2.0E-06 

2.5E-03 ± 

3.6E-05 

5.1E-02 ± 

1.3E-02 

N.D.a N.D.a 

a Not determined. At a toehold length of 5 and 6 nucleotides the ATSE reaction is dominated by the background 

reaction. Therefore, one cannot reliably obtain k intra.  
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4.3 Simulations 

Kinetic simulations 

Using the experimentally obtained kinetic parameters kb, kf, krep, kbg and kintra, we simulated 

the concentration of the individual reaction components as a function of time for the 

system with the optimal toehold length of 3 nucleotides. In the simulation shown in Figure 

4.7, all the components of the ATSE reaction except I were premixed and allowed to reach 

thermodynamic equilibrium before the start of the reaction. At t=0 the ATSE reaction was 

initiated by the addition of 5 nM I. Figure 4.7A shows a decrease in species I and an increase 

in BO resulting from the addition of 5 nM  I to the pre-equilibrated mixture of species BO, 

Ab and F·Q. This behavior is caused by competition of species BO and I for the same 

binding sites of specie Ab. Likewise, species Ab·BO and Ab·(BO)2 show a relatively fast 

initial decrease resulting from equilibration of binding of species BO, I and Ab after addition 

of species I. Next, a more gradual decrease results from cyclization. Furthermore, species  

Ab·I, Ab·I2 and Ab·BO·I show a relatively fast initial increase resulting from equilibrating 

of binding of species BO, I and Ab after addition of species I, followed by a more gradual 

decrease resulting from intramolecular cyclization. In Figure 4.7C and Figure 4.7F the time 

traces of the products of cyclization (Ab·B·I and O) are shown. Figure 4.7F shows that the 

amount of free output O increases in the first few minutes of the reaction, indicating that 

the anti-HA antibody (Ab) rapidly induces the toehold-mediated strand exchange reaction 

to form the intramolecular cyclic complex (Ab·B·I). Subsequently, O reacts rapidly 

with Rep in the downstream displacement reaction, establishing a low pseudo steady-state 

concentration of O. At this stage the increase in fluorescence closely mirrors the kinetics of 

the ATSE reaction as defined by the formation of the Ab·B·I complex. The analysis also 

shows that the background reaction only starts to contribute significantly to the 

fluorescence after 60 min, when the ATSE reaction has reached completion. 
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Figure 4.7: Simulation  of the various species formed during the ATSE reaction. A-C) The t ime traces of the 
various species were simulated by solving Equations 4.10 numerically in time using Matlab with the kinetic 
parameters as shown in Tab le 4.1 for a toehold length of 3 nt. The simulations were performed with 
concentrations of 2 nM, 5.5 nM, 5 nM and 10 nM for the species Ab, BO, I and probe F·Q respectively, with 
species BO, Ab and F·Q being pre-equilibrated. D-F) The time traces of the species for the first ten minutes of 
the simulation.  

 
Finding optimal conditions for the ATSE reaction 

Importantly, the ODE model can also be used to determine the optimal conditions for the 

ATSE reaction by assessing the influence of both the oligonucleotides (BO, I) and antibody 

(Ab) concentrations. Figure 4.8A and Figure 4.8B show the amount of F formed at t=180 min 

for the background and antibody-templated reaction, respectively. As expected, the 

background increases proportional to increasing concentrations of BO and I, whereas the 

antibody-templated signal strongly depends on the concentrations of BO, I and Ab. The 

signal-to-background ratios (S/B, Figure 4.8C), obtained by dividing the fluorescence formed 

in the presence of antibody (S) by the fluorescence of the background reaction (B), shows a 

maximum at a concentration of Ab∼Kd and low concentrations of BO and I. The latter is 

caused by the strong, linear dependence of the background reaction on the concentration of 

BO and I. However, since the absolute increase in fluorescence becomes increasingly difficult 

to distinguish above the background fluorescence for low concentrations of BO and I, we 

defined an empirical formula for the optimal ATSE conditions as the product of the signal- to-

background ratio (S/B) and the absolute dynamic range (S–B; Figure 4.8D). The latter 

formula shows optimal performance at stoichiometric concentrations of antibody and 
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oligonucleotides, but the ATSE reaction is relatively robust and antibody can also be clearly 

detected above background at suboptimal stoichometries of antibody and oligonucleotides. 
 

 
 
Figure 4.8: A) Simulated background fluorescence as a funct ion o f init ial [BO, I] and [Ab] after 3 h. B) 
Simulated  fluorescence of the anti-HA ant ibody-templated  toeho ld-mediated  strand  exchange react ion as  a 
function  o f in it ial [BO, I] and  [Ab] after 3 h. C) Simulated  signal-to -background  (S/B) rat io  as a funct ion o f 
in itial [BO, I] and [Ab] after 3 h . D) Simulated product o f signal-to-background (S/B) rat io and dynamic 
range (S–B) as a funct ion o f in it ial [BO, I] and [Ab] after 3 h , y ield ing an  empirical estimation  of optimal 
in itial condit ions. Results were obtained  by  solv ing Equat ions 4.10 numerically  in  time with parameters 
values as shown in Table 4.1. 

The effect of the association and dissociation rate constant of epitope-antibody binding 

The ATSE reaction is generalizable to any antibody for which an epitope can be attached 

to a DNA-strand. However, the kinetics and thermodynamics of antibody-epitope binding 

vary among antibody-epitope pairs. In order to study the effect of the kinetics (kf, kb) and 

thermodynamics (Kd) of the antibody-peptide interaction on the performance of the ATSE 
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reaction we simulate the empirical estimation as a function of reactant concentrations and 

association (kf) and dissociation (kb) rate constants, shown in Figure 4.9. The heat map in 

the center is obtained from simulations with parameters as in Table 4.1, i.e. the heat map is 

identical to the heat map in Figure 4.8D. From the results it can be observed that a decrease 

in kf causes a shift of the optimal concentration regime to higher stoichiometric 

concentrations of reactants. This is followed from a shift of the optimal S/B ratio towards 

concentrations close to the Kd (= kb/kf). Likewise, a decrease in kb results in a shift of 

optimal concentration regime to lower stoichiometric concentrations of BO, I and Ab. 

However, when the kinetics are too slow the shift in concentration of reactants for which 

the system performs optimal does not reach the value of Kd as shown clearly in Figure 4.9 

by the heat maps on top. While a decreased kb, and thereby an enhanced binding affinity of 

the antibody and the epitope, results in an increased concentration of BO and I bound to 

Ab, the exchange rate of BO and I at Ab is decreased. This leads to an increased time to 

obtain the right configuration of BO, I and Ab required to form the cyclic product and, 

hence, a decreased S/B ratio. This effect is not observed for relatively high values of kf as 

the reaction is complete within 3 hours, even if the value of kb is low. Furthermore, with 

increasing kf and kb the optimal concentration regime increasingly broadens to sub 

stoichiometric concentrations of reactants. In other words, with relatively fast exchange 

rates of BO and I at Ab an increasing concentration of Ab beyond the concentrations of 

BO and I gives a constant value of S as the overall reaction rate is not limited by kb and kf. 

However, with increasing Ab beyond the concentrations of BO and I the chance to obtain 

the right configuration of BO, I and Ab is decreasing. Hence, at a given concentration of 

Ab this effect starts to dominate and limits the production rate of S. In summary, when the 

kinetics are relatively fast, the minimal stoichiometric concentrations of reactants required 

for optimal performance are mainly determined by the thermodynamic dissociation 

constant of antibody-epitope binding while the range of sub stoichiometric concentrations 

of BO, I and Ab for which the system keeps its optimal performance is determined by the 

kinetics of antibody-epitope binding. 
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Figure 4.9 : Simulated p roduct o f s ignal-to-background (S/B) rat io  and dynamic range (S–B) as a funct ion o f 
in itial concent rations o f Ab, BO and I and association and d issociation rate constant of ep itope-antibody  
binding . The b lack stars show the value o f the thermodynamic d issociation  constant (Kd) o f ant ibody-ep itope 
binding . Results were obtained by solv ing Equat ions 4.10 numerically in t ime with parameter values of k rep, 
kbg and kintra as shown in Tab le 4.1 fo r a toeho ld length of 3. The heat map in the center is simulated with a 
value of k f as shown in Table 4.1 and kb calculated from k f and Kd.  

4.4 Discussion 

Our work shows that antibody-templated strand exchange (ATSE) enables the translation 

of an antibody to a unique output strand. In presence of an antibody strand exchange is 

promoted thermodynamically by the formation of a 1:1 cyclic complex of the peptide-

dsDNA with the bivalent antibody. Furthermore, colocalization enhances the effective 

concentration of reactions and, thereby, increases the reaction rate. The ATSE reaction 

allows the use of antibodies as input for DNA-based molecular computing and the 

actuation of DNA-based architectures, as was validated experimentally.28 Here, by 
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developing a theoretical model, we obtained a fundamental understanding of the involved 

reaction steps and kinetics of the ATSE reaction. We found that the system performs 

optimal at stoichiometric concentrations of antibody and oligonucleotides, but the ATSE 

reaction is relatively robust and antibody can also be clearly detected above background at 

suboptimal stoichiometry of antibody and oligonucleotides. Moreover, results of 

simulations show the ATSE reaction performs well for varying association and dissociation 

rates of antibody-peptide binding showing the genericity of the ATSE reaction which in 

principle can be applied to any antibody for which the epitope is known. This was also 

validated by the experimental implementation of the ATSE reaction with the anti-HIV1-

p17 antibody as input, using peptide epitopes derived from the p17 coat protein of the 

HIV1 virus that bind with a monovalent Kd of 16 nM.28 The kinetic model describing the 

ATSE can also be applied to other molecular systems in which bivalent interactions 

dominate the performance of the molecular system. For example, Ricci and coworkers 

developed a DNA-based nanomachine generating an output strand in presence of an 

antibody using a different strategy than ours.29 The DNA nanomachine consists of a DNA 

strand forming a clamp-like structure carrying a cargo strand by Watson-Crick base pairs 

and Hoogsteen interactions. The DNA-based clamp is conjugated at each end with an 

antigen. Binding of these antigens to the bivalent antibody is energetically more favourable 

and disrupts the Hoogsteen interactions resulting in the release of the cargo strand. 

Likewise to the work presented here, the theoretical model could be applied to obtain 

insights in the thermodynamics and kinetics of the DNA-nanomachine. Furthermore, the 

theoretical model could predict the optimal concentration regime of reactants for any 

antibody-epitope pair which is highly valuable for the experimental implementation of new 

antibody-epitope pairs. Additionally, such mathematical models can be used to find 

limiting conditions in the molecular system such as the minimal binding affinity required 

to obtain both a sufficient signal/background ratio and a high dynamic range for 

concentrations of reactants experimentally realizable. Hence, this work provides an entry 

point for the quantitative insights into DNA-based circuits generating an output by making 

use of the bivalent character of the input and paves the way for the optimal use of such 

systems. 
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5 
Noise in cell-free gene expression 
 
Abstract Gene expression varies among identical cells resulting from the stochastic nature of 

collisions between reactants, which are present at low numbers. However, it is unknown how 

the physical environment contributes to the variation in gene expression level. Our 

experimental partners developed a robust method to quantify the variation in gene expression 

in vitro in picoliter droplets. To support the experimental findings and to obtain a detailed 

characterization of the in vitro system, we here develop two independent theoretical models 

including a Gillespie based model and a particle-based reaction-diffusion model. We study 

the variation in cell-free gene expression as a function of copy number and macromolecular 

crowding.  We find that decreasing diffusion coefficients and the formation of heterogeneous 

micro-environments caused by macromolecular crowding enhance uncorrelated noise in gene 

expression 
 
 

 
 
 
 
 

 

The work in this chapter has been partly published in:  

Maike M.K. Hansen, Lenny H.H. Meijer, Evan Spruijt, Roel J.M. Maas, Marta Ventosa 

Roquelles, Joost Groen, Hans A. Heus and Wilhelm T.S. Huck – Nature Nanotechnology, 

2016, 11, 191 
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5.1 Introduction 

Variation in gene expression is ubiquitous in all living cells and results from genetic and 

environmental differences. However, even genetically identical cells which have the same 

history and environmental exposure exhibit a remarkable variation in gene expression.1 

Variation, or noise, in gene expression has been extensively studied in prokaryotes and 

eukaryotes2 as well as in stem cells,3 cancer cells4 and cells expressing viruses.5 While 

biochemical reaction networks inside cells involve many different biomolecules, the 

concentration of each biomolecule is rather low. Hence, a degree of randomness in these 

reaction networks is expected and it is generally accepted that variation in gene expression 

results from the low number of reactants together with the stochastic nature of molecular 

collisions by diffusion.6-9 However, model systems of biochemical reactions often involve 

high concentrations of reactants in a dilute environment. Besides, while the cell’s interior is 

an inhomogeneous crowded environment macromolecular crowding is often ignored in model 

systems of biochemical reactions. For example ~30% of the cell volume of bacteria is 

occupied by macromolecules resulting in highly reduced diffusion.10,11 It has been shown that 

macromolecular crowding can lead to a heterogeneous environment due to limited diffusion 

of mRNA molecules.12 Besides decreasing the diffusion of molecules,13 macromolecular 

crowding has been shown to affect the reaction rates and dynamics of cellular processes.14-16 

Most studies thus far have dealt with either the quantification of noise17 or how cells exploit 

or suppress noise.2,18 It has been shown in silico using Green’s function reaction dynamics19 

that diffusivity plays a role in gene expression noise. However, the explicit effect of 

macromolecular crowding on the variation in gene expression has not been studied in silico. 

Furthermore, no experimental work has estimated the magnitude of the effect of cellular 

composition or crowded environment within a cell-sized compartment on the noise in 

biochemical reactions. 

In collaboration with our experimental partners, Dr. Maike Hansen, Dr. Evan Spruijt and Prof. 

Dr. Wilhelm Huck (Radboud University), we studied noise in gene expression in dilute 

environment and in a crowded environment. To this end, our experimental partners measured 

in vitro cell-free transcription and translation (IVTT) of cyan fluorescent protein (CFP) and 

yellow fluorescent protein (YFP) in monodisperse picoliter droplets.20,21 They measured noise 

in gene expression as a function of DNA copy number and macromolecular crowding. They 

applied the method developed by Elowitz22 as a reliable method to estimate the magnitude of 
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variation in gene expression, which has been used to study noise both in vivo and in 

vitro.20,23,24 

Here, we support and quantify the experimental results with two theoretical models including 

a Gillespie based theoretical model and an off-lattice particle based reaction-diffusion model 

(PBRD). The Gillespie model is used to analyse the noise of the IVTT system and its origins 

in a dilute environment. Specifically, we determine the contribution of different factors to 

noise in the IVTT system, including the stochastic reaction steps, the different folding rates of 

CFP and YFP and the plasmid distribution over the droplets. The PBRD model is used to 

study the effect of macromolecular crowding on noise in gene expression and allows us to 

study how a crowded environment affects noise in gene expression. Hence, these models 

allow us to obtain a detailed characterization of our IVTT set-up.   

 

5.2 Uncorrelated noise in cell-free gene expression 

Noise in gene expression has multiple sources leading to either extrinsic or intrinsic noise. 

Consider an in vivo model system in which two identical independent genes are expressed in a 

population of cells. Extrinsic noise arises from fluctuations in the cellular state or composition 

and results in differences in gene expression between cells while fluctuations of gene 

expression within one cell are correlated. By contrast, uncorrelated fluctuations of protein 

expression from two identical genes within a cell, resulting from the stochasticity of 

biochemical processes or other factors, is considered as intrinsic noise.22 In order to avoid 

misconceptions with other studies and taking into account the experimental setup, we here 

make the distinction between uncorrelated and correlated noise (Fig. 4.1a and 4.1b).25-27 In 

our experimental set-up, correlated noise arises from the inhomogeneous distribution of 

reactants over the population of droplets, leading to variation in gene expression between 

droplets, while CFP and YFP expression within a droplet is correlated. Hence, correlated 

noise can be quantified by the covariance between normalized CFP and YFP levels over the 

droplets. By contrast, uncorrelated noise is quantified by the extent to which CFP and YFP 

levels vary differently among droplets17,22 and, is calculated as the normalized root mean 

square distance from the line CFP = YFP. In the experimental set-up we identify four factors 

which contribute to uncorrelated noise. First, the Poisson distributions of the CFP and YFP 

plasmids over the droplets results in different quantities of CFP and YFP within one droplet 

and, therefore, contribute to uncorrelated noise. Additionally, uncorrelated noise arises from 

the low number of reacting biomolecules leading to stochastic biochemical reactions. 
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Furthermore, as the maturation time of CFP and YFP differ, we also consider this as a 

potential factor contributing to uncorrelated noise. Finally, we analyse the effect of 

macromolecular crowding, which causes limited diffusion and, thereby, potentially leads to an 

enhancement of uncorrelated noise.   
 

 
Figure 5.1: Correlated and uncorrelated noise in gene expression. A) Correlated noise in gene expression arises 
from the inhomogeneous Poisson distribution of reactants among droplets. The graph visually shows the 
normalized CFP intensity versus the normalized YFP intensity for a population of droplets with correlated noise 
in gene expression. Each dot represents the normalized CFP and YFP intensities for one droplet. Correlated 
noise results in differences in gene expression between droplets, while CFP and YFP levels within a droplet are 
correlated. B) Uncorrelated noise is quantified by the extent to which CFP and YFP levels vary independently 
among droplets. The graph visually shows the normalized CFP intensity versus the normalized YFP intensity for 
a population of droplets. Each dot represents the normalized CFP and YFP intensities for one droplet. 
Uncorrelated noise is the noise orthogonal to the line CFP=YFP. C) In our experimental set-up we analyse the 
contribution of the Poisson distributions of the plasmids, stochasticity of the biochemical reactions, differences 
in the maturation time of CFP and YFP and a crowded environment to uncorrelated noise. 
 

5.3 A stochastic model to analyse uncorrelated noise in gene expression under dilute 

conditions 

Gene expression of CFP and YFP was experimentally followed in time for a population of at 

least 200 picoliter droplets generated using a microfluidic chip (Figure 5.2A). The average 

expression of both fluorescent proteins over all droplets (Figure 5.2B) shows a constant 

increase in protein concentrations, as there was no protein degradation in the experiments. To 

obtain a quantitative understanding of the experimental set-up we developed a theoretical 

model based on Gillespie’s algorithm. The theoretical model describes transcription, 

translation and protein folding (Figure 5.2D) as single step reactions each with a different 

probability based on the corresponding reaction rates which are calculated using Michaelis-

Menten kinetics including substrate competition: 
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Here PTx,CFP/YFP, PTl,CFP/YFP and Pf,CFP/YFP are the probabilities of transcription, translation and 

folding of CFP/YFP respectively. Furthermore, pCFP/YFP, mRNACFP/YFP and CFP/YFPuf 

indicate the amount of plasmid, mRNA and unfolded CFP/YFP respectively. The distribution 

of CFP and YFP plasmids over the droplets was simulated by a Poisson distribution of both 

CFP and YFP over 200 iterations. Importantly, as we here focus on uncorrelated noise the 

Poisson distribution of other reactants was not included in the theoretical model. The Vmax,Tx, 

Michaelis-Menten parameter of transcription (KM,Tx) and first-order rate constants of 

posttranslational folding (kf,CFP and kf,YFP) were determined by our experimental partners 

(Table 5.1). The Michaelis-Menten parameter of translation (KM,Tl) was calculated using 

values previously determined by Stögbauer and co-workers.28 The only unknown parameter in 

the stochastic model is the maximum rate of translation (Vmax,Tl). An estimate of Vmax,Tl was 

obtained by performing non-linear least square analysis of the stochastic model (Equation 

5.1), from which the mean expression of CFP and YFP was obtained from 200 iterations, and 

the mean in vitro expression of CFP and YFP in 200 droplets with a plasmid copy number of 

7600 (Figure 5.2B and Figure 5.2E).  

 

Table 5.1: Overview of parameters used in the mathematical models 

 

Parameters used in Gillespie based simulations 

KM,Tx
1 3613.2 plasmids Vmax,Tx

1 722.64 mRNA min-1 

KM,Tl
2 4.3573E05 mRNA Vmax,TL

1 7200 prot min-1 

kf,YFP
1 0.0185 min-1 kf,CFP

1 0.0121 min-1 
1 determined by our experimental partners 
2 determined by Stögbauer and co-workers.28 
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By following the expression of both proteins per droplet or iteration, we can calculate the time 

evolution of uncorrelated, correlated and total noise. For every time point the same procedure 

from Elowitz and co-workers was followed.22 For each droplet the mean intensity of all pixels 

was calculated. Then, the mean intensity of each droplet was normalized by the mean 

intensity of all droplets. This was done for both CFP and YFP. Likewise, the in silico 

simulations were analysed by normalizing the number of CFP and YFP per iteration to the 

average amount of CFP and YFP respectively over the 200 iterations. The uncorrelated (ηu), 

correlated (ηc) and total noise can be calculated according: 

 

 
 

Here ICFP and IYFP are the mean normalized intensities of CFP and YFP (or number of CFP 

and YFP) respectively of one droplet/iteration). Angled brackets indicate means over the 

droplet population/iterations. The results in Figure 5.2C show that uncorrelated noise decrease 

over time, which is in agreement with the observed increase in protein concentration over 

time and is also shown by results of our theoretical model (Figure 5.2F). The significant 

difference in noise values in the experimental set-up and theoretical prediction arises from the 

background noise due to image analysis. Furthermore, as the Poisson distribution of reactants 

other than the plasmids was not included in the theoretical model the correlated noise values 

obtained from the simulations is equal to zero. 
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Figure 5.2: Quantifying noise in cell-free gene expression in picoliter droplets. A) Schematic illustration of the 
microfluidic chip including an inlet for the oil and an inlet for the IVTT reagents, an outlet and a storage 
chamber for the droplets. The IVTT mixture is pinched off by oil at regular intervals generating water in oil 
emulsions. The droplets are stored in the storage chamber and protein expression of CFP and YFP is monitored 
over time with fluorescence microscopy. B) The average CFP and YFP expression over all droplets. C) 
Uncorrelated (red squares), correlated (blue circles) and total noise (black empty triangles) values over time for 
on average 7600 copies of each plasmid per droplet. D) Schematic illustration of the Gillespie-based model of 
cell-free gene expression which includes transcription, translation and protein folding. Transcription and 
translation are described by the Michaelis-Menten approximation including substrate competition, while protein 
folding is simulated as a first-order reaction. Furthermore, simulations were performed with CFP and YFP 
numbers according to a Poisson distribution over the iterations. The parameters of the simulation are shown in 
Table 5.1. E) Results of the simulations displaying the average CFP and YFP expression over 200 iterations. F) 
Uncorrelated (red squares), correlated (blue circles) and total noise (black empty triangles) values over time for 
on average 7600 copies of each plasmid per iteration. B and E) Envelops represent the standard deviation of 
protein expression over the 200 droplets or iterations. C and F) Error bars show 95% confidence intervals, which 
were calculated by bootstrapping from the original distribution. 
 

5.3.1 Uncorrelated noise increases with decreasing plasmid copy number 

In order to analyse the effect of stochasticity on uncorrelated noise in the experimental set-up 

and our theoretical model we repeated the in vitro and in silico experiments for a wide range 

of initial plasmid concentrations and plotted noise versus the plasmid copy number (Figure 

5.3A). The concentrations of all other components were kept constant throughout the 

experiments and simulations. From the results in Figure 5.3A and Figure 5.3D it can be 

observed that the correlated noise, i.e. distribution of biomolecules over the 

droplets/iterations, shows no statistically significant correlation with plasmid copy number (-

0.393 Spearman’s rho correlation for experimental results). However, uncorrelated noise 

shows a clear negative correlation with plasmid copy number for both the experimental (-

0.929 Spearman’s rho correlation) and theoretical results. This is caused by gene expression 
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becoming increasingly stochastic with decreasing numbers of reacting molecules, which is in 

line with the theory of stochasticity.29 Moreover, this trend is also visible 30 and 50 minutes 

after the start of expression (Figure 5.3B and Figure 5.3E), indicating that it is independent of 

the number of proteins produced. We chose to calculate noise 100 minutes after the start of 

fluorescence increase as this yielded experimentally higher signal-to-background ratios and 

thus more reliable data. Furthermore, we plotted uncorrelated noise at equal average protein 

concentration over the population of droplets/iterations for all DNA copy numbers (Figure 

5.3C and Figure 5.3F) to confirm that uncorrelated noise increases as we decrease copy 

number and is not due to lower protein levels. 
 

 
Figure 5.3: Effect of a decreasing copy number on the inherent stochasticity of gene expression. A-C) Results of 
the IVTT reaction in picoliter droplets. The dotted line represents the background noise due to imaging and 
analysis. D-F) Results of simulations using the Gillespie algorithm. The probabilities of transcription, translation 
and protein folding were calculated according to Equation 5.1 using the parameter values in Table 5.1. A/D) 
Uncorrelated (red squares), correlated (blue empty circles) and total noise (black empty triangles) at 100 minutes 
after start of protein expression for a range of DNA concentrations. B/E) Uncorrelated noise values versus DNA 
copy number at 10 (empty triangles), 30 (full circles), 50 (full triangles) and 100 (empty squares) minutes after 
start of protein expression. C/F) DNA copy number versus uncorrelated noise values (empty circles) determined 
at time points where the average protein concentration over the droplets/iterations had reached 0.2 µM for the 
IVTT experiments and 0.01 µM for the Gillespie simulations (full circles). A-F) Error bars show 95% 
confidence intervals, which were calculated by bootstrapping from the original distribution. 
 

5.3.2 The contribution of DNA copy number, Poisson distribution and protein folding to 

uncorrelated noise in gene expression 

To obtain a deeper understanding of the contribution of the Poisson distribution of plasmids, 

protein folding and stochasticity to uncorrelated noise we first simulated transcription and 

translation with stochasticity as the only contributing factor (Figure 5.4). Thereby, we 
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excluded the Poisson distribution of the plasmids and protein maturation. Addition of the 

Poisson distribution of CFP and YFP shows a significant increase in uncorrelated noise 

values. However, as can be observed in Figure 5.4 the addition of folding of proteins only 

slightly enhances uncorrelated noise values. In conclusion, we find that protein folding barely 

increases uncorrelated noise (mean of 1% over the plasmid copy numbers) while the average 

contributions of stochasticity of the reactions and Poisson distributions of the plasmids are 

18% and 40% respectively.  
 

 
Figure 5.4: The contribution of stochasticity, plasmid distribution and protein maturation to uncorrelated noise 
in Gillespie-based simulations of gene expression. First, the contribution of stochasticity to uncorrelated noise 
was determined by performing Gillespie-based simulations including only transcription and translation and using 
a constant plasmid number of CFP and YFP over the 200 iterations. The contribution of the plasmid distribution 
and protein folding were determined by adding the Poisson distribution of the plasmids over the 200 iterations 
followed by the addition of protein maturation. The probabilities of transcription, translation and protein folding 
required for the Gillespie-based simulations were calculated according to Equation 5.1 using the parameter 
values in Table 5.1. Error bars show 95% confidence intervals, which were calculated by bootstrapping from the 
original distribution. 
 

5.4 A particle based reaction-diffusion model to analyse uncorrelated noise in gene 

expression in crowded environments 

The particle based reaction-diffusion (PBRD) model is based on several experimental 

observations. Hence, prior to discussing the PBRD model we shortly summarize the key 

experimental results which form the foundation of the model. Our experimental partners 

performed a study in which Ficoll 70 was added to the IVTT system (Figure 5.4A), a common 

macromolecular crowding agent, to mimic the crowded conditions inside cells.30,31 

Uncorrelated noise values were obtained from cell-free gene expression for a range of DNA 

concentrations in the presence of 0, 40, 70 and 90 mg mL-1 Ficoll. In the presence of 40 mg 

mL-1 Ficoll 70 the levels of uncorrelated noise were similar to those in the absence of Ficoll 
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70. However, the results of protein expression in presence of both 70 and 90 mg mL-1 Ficoll 

showed an enhancement of uncorrelated noise. Hence, macromolecular crowding enhances 

uncorrelated noise of gene expression. 

As limited diffusion induced by macromolecular crowding could potentially limit the 

homogeneous distribution of synthesized mRNA molecules,12,32 thereby increasing the spatial 

heterogeneity, our experimental partners decided to study the spatial distribution of mRNA 

molecules. They found that transcription in crowded droplets leads to a heterogeneous spatial 

distribution of mRNA molecules (Figure 5.4B) and, hence, that this is a potential factor 

contributing to uncorrelated noise.   
 

 
Figure 5.5: A) Uncorrelated noise at 100 minutes after the start of protein expression as a function of DNA copy 
number at different Ficoll concentrations including 0 mg mL-1 (black full squares), 40 mg mL-1 (green empty 
triangles), 70 mg mL-1 (blue empty circles) and 90 mg mL-1 (red full triangles). The dotted line represents the 
background noise due to imaging and analysis and error bars show 95% confidence intervals, which were 
calculated by bootstrapping from the original distribution. B) In vitro transcription only experiments in droplets 
with 0.6 nM pET-32xBT showing the distribution of mRNA using a molecular beacon in dilute environment 
(left) and in presence of 90 mg mL-1 of Ficoll (right). 
 
Here, we examine whether decreased diffusion caused by molecular crowding could play a 

role in localised gene expression resulting from the heterogeneous distribution of mRNA 

molecules and, hence, could enhance uncorrelated noise in gene expression. To this end, we 

simulate gene expression using a particle based reaction-diffusion (PBRD) model. Different 

techniques have been developed to simulate PBRD including lattice-based models and 

continuous space models. While lattice-based approaches in which the position of particles 

are restricted to an artificial grid are computationally efficient, these models are less accurate 

to simulate the effect of limited diffusion.33 Hence, we here use a model which simulates 

Brownian motion of particles in continuous space and implement this model using the freely 

available software package Smoldyn. Using this model we can track every single molecule 
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and, hence, follow the distribution of molecules in space and time. Molecules are represented 

by point-like particles in 2-dimensional continuous space (100 µm x 100 µm), diffuse and 

react when they collide. We simulate protein expression as a very simple two-step process 

involving transcription and translation. Importantly, macromolecular crowding can increase 

or decrease reaction rates. However, here we are not interested in the effect of 

macromolecular crowding on the production rate of mRNA, but we focus on the effect of 

limited diffusion of mRNA molecules on uncorrelated noise. Hence, in order to keep the 

model simple, we simulate transcription as a first-order reaction. Translation is simulated as a 

second-order reaction where ribosomes react with the mRNA molecules. Furthermore, mRNA 

molecules are degraded over time allowing the number of mRNA molecules to equilibrate. In 

total we track 7 species by simulating the expression of CFP and YFP according to the 

following reaction scheme:  
 

 
 

The first-order rate constant kTx represents the rate constant of transcription (Table 5.2) which 

was  calculated by assuming a transcription rate of 80 nucleotides per second.34 Furthermore, 

mRNA degradation is described by the first-order rate constant kdeg which is assumed to be 

0.0042 s-1 calculated by assuming a mRNA lifetime of 4 minutes.35 The rate constant kTl is the 

translation rate of a single ribosome and is calculated by assuming a translation rate of 20 

amino acids per second.36  

 

Table 5.2: Overview of parameters of reaction rates used in the particle based reaction-

diffusion model 

Reaction rates 

kTx
1 0.11 s-1 kTL

2 0.08 protein-1 s-1 

kdeg
3 0.0042 s-1   

1 calculated by assuming a transcription rate of 80 nucleotides per second.34  
2 calculated by assuming a translation rate of 20 amino acids per second36  

3 calculated by assuming a mRNA lifetime of 4 minutes35 
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To simulate a trajectory based on Brownian motion,time is discretized in small fixed time 

steps ∆t. The new particle position is calculated by: 

 

 
  

with ( )ttx ∆+  the new particle position in the x- or y-direction, ( )tx  the current particle 

position, ξ a normally distributed random number, D the diffusion coefficient (μm2 s-1) and ∆t 

the time step (s). Equivalently the new position is calculated for the other space coordinate. 

To solely analyse the effect of a decreased diffusion coefficient of mRNA molecules and 

ribosomes we chose the plasmids to not diffuse in the simulation area. After each time step, 

molecules diffuse and react. In order to establish whether a reaction takes place, Smoldyn 

converts the reaction rate to a reaction probability for unimolecular reactions, while a binding 

radius is calculated for bimolecular reactions. When an mRNA molecule and a ribosome have 

reacted and produced a protein the molecules are placed 1.5 times the binding radius from 

each other preventing the occurrence of the same reaction. Smoldyn becomes more accurate, 

but runs more slowly, with decreasing ∆t. We chose a time step of 0.0001 seconds to be a fair 

trade-off between accuracy and simulation time, which results in a spatial resolution of at 

least 0.06 µm. Furthermore, we use periodic boundaries to avoid edge effects.  

 

5.4.1 Macromolecular crowding decreases the effective diffusion coefficients 

Generally, macromolecular crowding affects the diffusion rates of biomolecules. Hence, we 

first investigate the effect of the presence of crowder molecules on the diffusion constants in 

the simulations. To this end, we use Smoldyn to generate static crowder molecules with a 

diameter of 2 µm. These crowder molecules are randomly distributed over the simulation area 

and the number of crowder molecules is dependent on the chosen fraction of depleted volume. 

We simulate the trajectories of 100.000 mRNA molecules and ribosomes for increasing 

fraction of crowder molecules and obtain the mean squared displacement (MSD): 

 

 
As expected, Figure 5.6A-B shows a decreasing MSD with increasing fraction of crowder 

molecules. Moreover, molecules are subjected to anomalous diffusion as the MSD curves are 

not linear. In order to quantify the diffusion of the molecules in more detail we determine the 
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long-time or effective diffusion constants of the mRNA molecules and ribosomes from the 

MSD at 1.5 seconds and Equation 5.7:  

 

 
 

with D the diffusion constant (µm2 s-1), d the dimensions of the simulation are and t the time 

at which the MSD was determined. Figure 5.6A-B shows a negative linear correlation 

between the effective diffusion constant of mRNA and the fraction area occupied by the 

crowder molecules. However, results of experiments, performed by our experimental partners, 

show an exponential decay of the effective diffusion constant of ribosomes with increasing 

crowder density (Figure 5.6C), as also shown in other experimental studies.11,37 They found a 

diffusion coefficient of 70S ribosomes of 4.7 ± 0.215 μm2 s-1 in the absence of Ficoll and 0.4 

± 0.001 μm2 s-1 in the presence of 90 mg mL-1 of Ficoll. Clearly, the decrease in diffusion 

constant with increasing crowder in the simulations is biased and is not representative. This 

dissimilarity results from the relative simplicity of the mathematical model. For example, 

whereas the viscosity of the solution is not incorporated in the simulations it determines the 

effective diffusion constant in the experiments (Stokes-Einstein relation) and has a positive 

exponential relation to the crowder density.38 In addition, Smoldyn simulates molecules as 

point-like particles with no volume and, hence, the excluded volume effect resulting from 

crowder molecules is considerably low explaining the relatively small decrease in effective 

diffusion constants with increasing fraction of crowder molecules. Hence, in order to simulate 

the effect of macromolecular crowding we refrain from adding crowder molecules to the 

simulation area but will simulate the effect of crowding by adjusting the diffusion 

coefficients. 
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Figure 5.6: Macromolecular crowding enhances uncorrelated noise. A) Mean squared displacement (MSD) of 
100.000 mRNA molecules in presence of crowder occupying 0%, 20%, 40% and 60% (from light to dark color) 
of the simulation area. The dotted black line represents the MSD in dilute environment predicted by theory 
(Equation 5.6). The inset shows the effective diffusion constant of mRNA over the percentage of occupied area 
by crowder molecules calculated from the MSD after 100 minutes and Equation 5.6. The dashed line is a linear 
fit to the effective diffusion constants for a clear visualization. B) Mean squared displacement (MSD) of 100.000 
ribosomes in presence of crowder occupying 0%, 20%, 40% and 60% (from light to dark color) of the simulation 
area. The dotted black line represents the MSD in dilute environment predicted by theory (Equation 5.6). The 
inset shows the effective diffusion constant of ribosomes calculated from the MSD after 100 minutes and 
Equation 5.6. The dashed line is a linear fit to the effective diffusion constants for a clear visualization. C) 
Experimentally determined effective diffusion coefficients of ribosomes over a range of Ficoll 70 concentrations 
using fluorescence recovery after photo bleaching. The dashed line is a Stokes-Einstein fit of the effective 
diffusion coefficients where D ~ 1/μ, with μ being the concentration-dependent dynamic viscosity of Ficoll 70. 
 

5.4.2 Uncorrelated noise increases with decreasing effective diffusion coefficients  

Simulations with Smoldyn show that the effect of the crowder molecules on the effective 

diffusion constants is not representative. To capture a more realistic effect of the decreasing 

diffusion constants in presence of macromolecular crowding, we simulate gene expression for 

decreasing diffusion coefficients of the reactants in a dilute environment. To this end, we use 

diffusion coefficients for the ribosomes as experimentally determined (Figure 5.6C). 

Furthermore, the diffusion coefficients of the mRNA molecules and proteins are assumed to 

follow the same trend over the range of Ficoll 70 concentrations as for the ribosomes. The 

diffusion coefficient of mRNA at 0 mg mL-1 Ficoll 70 is calculated by the Stokes-Einstein 

relation using room temperature and the viscosity of water and  assuming a radius of gyration 

of 20 nm (Table 5.3).39  
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Table 5.3: Overview of diffusion coefficients used in the particle based reaction-diffusion 

model 

Plasmid 0 μm2 s-1 Protein3 77 μm2 s-1 

 

Diffusion constants over the concentration range of Ficoll 70 

Ficoll 70 (mg mL-1) Ribosome2 (μm2 s-1) mRNA1 (μm2 s-1)  

0 4.7  10 

10 3.2 6.81 

20 2.18 4.64 

40 1.01 2.15 

70 0.32 0.68 
1 Calculated by the Stokes-Einstein relation using room temperature and the viscosity of                  

  water and  assuming a radius of gyration of 20 nm.39 
2 Determined experimentally in isolation using FRAP 
3 From Bu et al.40 

 

Figure 5.7B shows the results of simulations with diffusion coefficients representing a dilute 

environment. In agreement with experimental results (vide supra) and results from the 

Gillespie model (vide supra) uncorrelated noise decreases in time, while correlated noise is 

constant. As we are interested in the contribution of translation to uncorrelated noise we also 

follow the synthesis of mRNA molecules in time and calculate the noise values (Figure 5.7C). 

We repeat the simulations for decreasing diffusion coefficients of the mRNA molecules and 

ribosomes representing increasing concentration of Ficoll 70. The results in Figure 5.7D show 

that uncorrelated noise at the mRNA level is independent of the diffusion coefficient which is 

expected as the production rate and degradation rate of the mRNA molecules are described as 

zeroth order reactions and, hence, independent of the diffusion coefficients. After 

approximately 12 minutes the average production and degradation rates of mRNA are 

balanced meaning that on average every 10 seconds 1 mRNA is produced and degraded 

(Table 5.2). Uncorrelated noise at the protein level increases with decreasing diffusion 

coefficients representing concentrations of Ficoll 70 beyond 20 mg mL-1. The sudden increase 

in uncorrelated noise with increasing concentrations of Ficoll 70 was also observed in 

experimental results. In conclusion, translation provides an additional source to uncorrelated 

noise in presence of sufficient macromolecular crowding agent.  
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Figure 5.7: Illustration of the theoretical model based on Brownian dynamics in continuous space using 
Smoldyn. The particle-based model includes transcription and translation. B-C) Results of the off-lattice particle-
based tracking simulations over 200 iterations in dilute environment. The simulations were performed with 1 
plasmid for both CFP and YFP production with rate constants and diffusion coefficients as shown in Table 5.2 
and Table 5.3. B) Results of the off-lattice particle-based tracking simulations displaying the average CFP and 
YFP expression and noise values over time. C) Results of the off-lattice particle-based tracking simulations 
displaying the average mRNA for the production of CFP and YFP and noise values at the mRNA level over 
time. D) Uncorrelated noise of mRNA and protein expression at 20 minutes after start of expression as a function 
of Ficoll concentration. All simulations where performed in dilute environment with decreasing diffusion 
coefficients for mRNA and the ribosome (Table 5.3) representing the effect of increasing concentrations of 
Ficoll 70. Error bars show 95% confidence intervals, which were calculated by bootstrapping from the original 
distribution. Envelops represent the standard deviation of protein expression over the 200 iterations. 
 

5.4.3 Decreasing diffusion coefficients and the formation of heterogeneous micro- 

environments enhance uncorrelated noise  

Interestingly, decreasing diffusion coefficients of mRNA and ribosomes result in translational 

bursting (Figure 5.8A-B). It has been reported that translational bursting is a major source of 

gene expression noise in prokaryotes.41-43 In order to obtain a deeper understanding how 

uncorrelated noise increases with decreasing diffusion coefficients we examine the spatial 

distribution of the mRNA molecules. Figure 5.8D-E displays the distribution of mRNA 

molecules with diffusion coefficients in dilute environment and in presence of 70 mg mL-1 

Ficoll 70. Clearly, the diffusion coefficient of mRNA greatly affects the spatial distribution of 

respective molecule. From the spatial distribution of the mRNA molecules we can calculate 

the mean distance to the plasmid from which it is produced. Figure 5.8C displays the mean 

distance of the mRNA molecules to the plasmid as a function of Ficoll 70 (decreasing 

diffusion coefficients). As can be observed the spatial distribution of the mRNA molecules 
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becomes increasingly heterogeneous beyond 20 mg mL-1 Ficoll 70. Obviously, the decreasing 

diffusion coefficients of mRNA result in an increased heterogeneous distribution of 

synthesized mRNA molecules in our simulations. However, the increase in uncorrelated noise 

with increasing Ficoll 70 can result from an increasing heterogeneous distribution of mRNA 

molecules and/or decreasing diffusion coefficient of the ribosomes. In order to analyse the 

effect of the spatial distribution of the mRNA molecules and the decreasing diffusion 

constants of ribosomes to uncorrelated noise separately we developed a theoretical model 

using Smoldyn in which we simulate only translation in the same manner as in the 

transcription-translation simulations. In these simulations mRNA molecules are fixed to 

specific positions and are not degraded, while ribosomes diffuse in the simulation area. First, 

we quantified uncorrelated noise as a function of Ficoll 70 representing both an increasing 

spatial heterogeneous distribution of the mRNA molecules and decreasing diffusion constant 

of the ribosomes (DR), shown in Figure 5.8F. To this end, the positions of the mRNA 

molecules over the range of Ficoll 70 were obtained from the transcription-translation 

simulations after 20 minutes of protein expression while the decreasing diffusion constants 

were obtained from experimental results (Table 5.3). Similar to the results of the 

transcription-translation simulations, uncorrelated noise increases at concentration of Ficoll 

70 at 40 and 70 mg mL-1. Subsequently, we plotted uncorrelated noise as a function of Ficoll 

70 representing solely a decreasing diffusion constant of the ribosome. While uncorrelated 

noise shows a similar increase at 40 mg mL-1 the enhancement at 70 mg mL-1 is significantly 

lower compared to the results including both factors. Finally, we determine uncorrelated noise 

as a function of Ficoll 70 representing solely an increasing spatial heterogeneous distribution 

of the mRNA molecules. As can be observed, uncorrelated noise increases at 40 mg mL-1 and 

70 mg mL-1 Ficoll 70 when these simulations were performed with a diffusion constant of 

ribosomes of 0.32 µm2 s-1. However, uncorrelated noise is not increasing with an increasing 

spatial heterogeneous distribution of mRNA molecules when these simulations were 

performed with a diffusion constant of ribosomes of 4.7 µm2 s-1. Hence, a heterogeneous 

distribution of mRNA molecules only contributes to uncorrelated noise at sufficient low 

diffusion coefficients of ribosomes. This also explains why the heterogeneous spatial 

distribution of mRNA molecules at 40 mg mL-1 does not provide an additional contribution to 

uncorrelated noise as here the ribosomes are moving relatively fast and do not sense the 

heterogeneous environment. However, at 70 mg mL-1 the heterogeneous distribution of 

mRNA molecules significantly enhances uncorrelated noise. Not much is known about the 
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exact mechanism of localised transcription and translation in bacterial cells, though there has 

been much speculation that slower diffusion plays a role.44,12 Our results show that decreasing 

diffusion coefficients and the formation of spatial heterogeneous microenvironments could 

play a prominent role in localised gene expression and translational bursting and enhance 

uncorrelated noise of gene expression.  
 

 
Figure 5.8: A) Protein expression of 10 iterations using the off-lattice PBRD model including transcription and 
translation with diffusion constants representing dilute environment. B) Protein expression of 10 iterations using 
the off-lattice PBRD model including transcription and translation with diffusion constants representing 70 mg 
mL-1 Ficoll 70. C) Mean distance to plasmid of the mRNA molecules as a function of Ficoll 70 (representing the 
decreasing diffusion constants of mRNA and ribosome) at 20 minutes of expression using the off-lattice PBRD 
model including transcription and translation. The mean distance was calculated from the mRNA distribution of 
200 iterations at 20 minutes after expression. D-E) Results of the off-lattice particle-based tracking simulations 
displaying the distribution of mRNA molecules at 20 minutes of transcription and translation, produced from a 
single plasmid (square) with diffusion coefficients representing (D) dilute environment and (E) 70 mg mL-1 
Ficoll 70. F) Results of simulations including only translation were mRNA molecules are fixed to specific 
positions and are not degraded, while ribosomes diffuse in the simulation area. Uncorrelated noise was 
determined as a function of Ficoll 70 representing solely the decreasing diffusion coefficients of ribosomes, DR 
(squares), an increasing spatial heterogeneous distribution of the mRNA molecules (circles) and the combination 
of both (triangles). Simulations were performed using the position of mRNA molecules obtained from the 
transcription-translation simulations after 20 minutes for the range of Ficoll 70. Moreover, diffusion constants of 
ribosomes for the range of Ficoll 70 were obtained by experiments (Table 5.3). 
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5.5 Conclusions  

In collaboration with our experimental partners, we here studied noise in gene expression in 

vitro and in silico in dilute environment and in a crowded environment. Using in silico 

Gillespie simulations we find that, additional to the stochastic nature of the reactions, 

uncorrelated noise in dilute environment in our in vitro set-up mostly results from the plasmid 

distribution over the droplets, while protein folding barely enhances uncorrelated noise. 

Importantly, our results show that decreasing diffusion coefficients and the formation of 

spatial heterogeneous microenvironments result in increased translational bursting and an 

enhancement of uncorrelated noise of gene expression. Due to the low diffusion constants of 

mRNA, a heterogeneous environment is maintained which enhances any already existing 

stochasticity caused by transcription and translation of low copies of DNA. It is expected that 

the formation of heterogeneous environments of mRNA is even more pronounced in the in-

vitro set-up resulting from two factors. First, the diffusion coefficient of mRNA as a function 

of concentration of crowder molecules was assumed to follow the same trend as for the 

ribosomes. However, mRNA molecules are reported to have a larger diameter39 compared to 

ribosomes,45 indicating that the diffusion of mRNA molecules is decreased to a greater extent 

than their smaller partners in presence of macromolecular crowding.46 Additionally, multiple 

ribosomes can interact with one mRNA and associate into a polysome47 which is expected to 

be promoted in a crowded environment and results in even lower diffusion coefficients. 

Different studies have shown the effect of macromolecular crowding on diffusion of reactants 

and reaction rates.48,49 Additionally, it has been shown in silico that diffusivity plays a role in 

gene expression noise.19 We here showed a detailed characterization of the origin of an 

enhanced uncorrelated noise in a crowded environment by extensive studies using particle-

based diffusion reaction model based on Brownian dynamics. 

Our finding of the heterogeneous mRNA distributions in crowded transcription-translation 

systems and the concomitant increase in uncorrelated noise has important implications for our 

understanding of living cells. It is conceivable that the synthesis of macromolecules (mRNA 

and proteins) in vivo leads to locally heterogeneous systems.12 This might explain the findings 

in literature on localisation of mRNA in E. coli,12,44 but also helps to explain the origin of 

experimentally determined uncorrelated noise in gene expression.41 Finally, our experiments 

and simulations enable us not only to take into account, but also predict the magnitude of 

noise when engineering synthetic biochemical pathways in artificial cellular mimics.  
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6.1 Introduction 

Cell-free synthetic biology entails the construction of complex molecular networks from 

simple molecules in a cell-free environment in a controllable fashion. Theoretical and 

experimental studies of such biochemical networks allow the extraction of fundamental 

principles of cellular network organization and function. The studies described in chapter 2-4 

involve the de novo construction of molecular networks. In chapter 2 we introduced the PEN 

toolbox and a heuristic model for the detailed characterization of PEN-based networks. In 

chapter 3, inspired by the hierarchical layers of signal generation and processing in cells, we 

expanded the chemical complexity by engineering hierarchical control of enzymatic actuators 

using the PEN-based bistable switch. To this end, we developed a translator module which 

converts signaling molecules from the upstream network to unique DNA strands driving 

downstream actuators. Furthermore, we quantified the effect of retroactivity by a detailed 

computational analysis of the experimental results. We showed our modular approach by 

coupling of a previously engineered switchable memories circuit to downstream actuators 

based on β-lactamase and luciferase. To further expand the scope of DNA-based molecular 

programming, we introduced the concept of antibody-templated strand exchange (ATSE), 

allowing the use of antibodies as input for DNA-based computing. In chapter 4 we 

developed a comprehensive model that described the kinetics of the ATSE system. The 

model provided a fundamental understanding of the ATSE reaction and was used to find 

optimal concentration regimes and to study the effect of thermodynamics and kinetics of 

antibody–epitope binding on the ATSE reaction. 

The study described in chapter 5 involved the reconstitution of protein expression in a 

crowded environment under cell-free conditions. To support the experimental findings and to 

obtain a detailed characterization of the experimental setup we developed two independent 

theoretical models. We studied the variation in cell-free gene expression as a function of copy 

number and macromolecular crowding. We found that decreasing diffusion coefficients and 

the formation of heterogeneous micro-environments caused by macromolecular crowding 

enhance uncorrelated noise in gene expression.  

This chapter discusses the aim and significance of cell-free synthetic biology followed by a 

discussion on the value of systems biology to this field. The subsequent sections elaborate on 

the prospective applications.  
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6.2 Cell-free synthetic biology: what have we learned? 

The cell is composed of many biomolecules interacting with high specificity in a crowded 

environment. These biomolecules form complex sets of interactions enabling the cell to 

respond to input cues, to withstand perturbations and to adapt to environmental changes. Our 

current knowledge of cellular circuits and feedback systems has raised the awareness of the 

daunting complexity of the cell. Yet, the tremendous developments in experimental and 

theoretical techniques have shifted the descriptive stage of biology to a stage where questions 

are amenable to experimental studies and theoretical approaches taken from biophysical and 

engineering sciences. Importantly, this allowed the rise and development of new research 

areas such as cell-free synthetic biology. Cell-free synthetic biology is a research area within 

the field of synthetic biology involving the engineering of biomolecular networks in a cell-

free controllable environment. This thesis is focussed on the cell-free construction of 

biochemical networks in which the main goal is to obtain a deeper understanding of the 

complex behaviour of cellular biochemical interactions. The cell-free reconstitution of 

existing intracellular networks using purified biological components has been shown to be a 

valuable method. For example, using this methodology the oscillatory phosphorylation of 

KaiC was shown to result from the synergistic action of KaiA and KaiB and even persists 

without transcription and translation.1 Moreover, Lim and coworkers applied this strategy to 

obtain a deeper understanding of Ras GTPase signaling, which is a protein crucial in cell 

proliferation and morphology.2 Clearly, the cell is governed by a vast number of reactions 

and biochemical networks each having a specific role. However, the existence and 

continuation of these networks in living cells are subjected to the central process of 

transcription and translation of genetic information to functional proteins. Transcription and 

translation are extremely complex processes involving multiple steps and numerous 

components. Hence, in vitro transcription and translation (IVTT) provides a unique platform 

to study the reaction steps involving the flow of information from genes to protein in a 

controlled fashion.3-5 IVTT is based on the finding that transcription and translation 

machinery is also active isolated from the cell and, hence, the cell integrity is not necessary 

for protein synthesis. In chapter 5 we described the IVTT set-up, implemented by our 

experimental partners, used to study the effect of macromolecular crowding on the 

uncorrelated noise in gene expression. IVTT allowed the manipulation of the concentration of 

plasmids and the concentration of crowding agent, which is not possible in an in vivo set-up. 

Supported by results from in silico simulations, we find that uncorrelated noise in gene 

expression in our IVTT set-up was enhanced by the heterogeneous distribution of mRNA 
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molecules by macromolecular crowding. It is very plausible that the synthesis of 

macromolecules in vivo creates locally heterogeneous systems, as production rates are often 

larger than local diffusion rates.6 Besides explaining the findings on localisation of mRNA in 

E. coli,6,7 our results explained the origin of experimentally determined uncorrelated noise in 

gene expression.8  

Besides the reconstitution of existing regulatory circuits using purified biochemical 

components, cell-free synthetic biology entails the rational design of new signaling circuits 

by applying a bottom-up approach. These de novo circuits consist of naturally occurring 

biomolecules or derivatives with well-established functions, which are now used in an 

unnatural network configuration and, hence, these biomolecules govern the interplay 

naturally not occurring in cells. Even when the biomolecules are not in their natural 

configuration studies on these networks provide valuable knowledge of signaling circuits, 

topology, dynamics and kinetics. While studies performed in vivo have provided valuable 

insights in cellular networks, cell-free mimics enable the detailed kinetic characterization and 

exploration of characteristic features such as bifurcations, unstable points, attractors and limit 

cycles.9 Maybe obvious, yet interesting, is that the kinetics is as important as the topology for 

the performance of a molecular circuit. For example, while a network topology consisting of 

two nodes with mutual inhibition implemented by the genelet toolbox gives rise to bistable 

behavior,10 implementation using the PEN toolbox does not show bistability as the kinetics 

are too linear.11 In order to make the PEN-based circuit bistable, Rondelez and coworkers 

extended their topology by two additional autocatalytic loops and, thereby, increased the 

kinetic nonlinearity in their system.12 Similarly, a delicate balance between production rates 

and degradation rates is required regarding the functioning of a network.13 Additionally, 

competition for resources causes hidden layers of interactions in cells. While competition is 

often masked in vivo by the large number of for example substrates competing for the same 

enzyme rendering the kinetics pseudo-first order,14 cell-free studies clearly show the effect of 

competition. For example Rondelez and coworkers showed in an experimental study that two 

independent PEN-based oscillators with distinct frequencies might synchronize when they 

were run in the same tube, resulting from competing for the same enzymes.15 Maybe cells 

exploit the global coupling among molecules by competition allowing the cells to 

synchronize pathways using fewer molecular connections. Hence, while competition for 

resources increases the complexity and unpredictability of the network by the non-linear 

interactions, it is not necessarily a nuisance. In addition, competition of different sigma 
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factors for the polymerase can be used to regulate gene expression.5 Moreover, De Greef and 

colleagues showed with an in silico model that competition for an enzyme responsible for 

degradation enhanced the quality and robustness of a PEN-based circuit with an adaptive 

response. Additionally, de novo engineered model systems have shown that competition can 

be used to generate winner-take-all behavior16 or amplify fluctuations in concentration.17 On 

a similar line, while in general low retroactivity is desired as this increases the 

unpredictability of the coupling of modules, we showed in chapter 3 by a de novo cell-free 

model system that retroactivity can sometimes increase the robustness of a circuit.  

Understanding the biochemical and mechanical features of cell-free limited subsystems does 

not suffice to tackle cellular complexity, let alone the function and organization of a complete 

organism. Yet, cell-free synthetic biology provides a deeper understanding of complex 

phenomena in cells by either rebuilding a target property or circuit or the de novo 

construction of signaling circuits. Besides, these cell-free molecular systems can be applied in 

different areas such as diagnostics, therapeutics and for the construction of a minimal cell 

which will be discussed in the last section of this chapter. 

6.3 Synthetic biology and systems biology 

It has become apparent in recent years that synthetic biology is more than simply the addition 

or removal of modules to molecular circuits. Every module added or changed inevitably 

affects the dynamics and kinetics of the already existing circuit. Therefore, instead of 

focusing on a single module the design and study of whole systems and circuits has 

tremendously increased. However, to be successful, synthetic biology has to join forces with 

systems biology as this provides a qualitative and quantitative understanding of fundamental 

properties of the target function. For this reason, the number of examples in literature of cell-

free systems which are analysed and supported by tools from systems biology has grown 

immensely. In this thesis we have developed several theoretical models using tools from 

systems biology. In chapter 2, 3 and 4 we constructed models based on ordinary differential 

equations and obtained a fundamental understanding of the involved reaction steps and 

kinetics of the systems. Moreover, we could identify the critical parameters and 

concentrations as well as analyze the system’s robustness. Understanding the system’s 

behaviour, dynamics and performance is highly important in the field of synthetic biology 

as this allows the manipulation of respective system by the addition, removal or 

interchanging of modules in a controlled manner. For example, the theoretical model in 

chapter 4 can predict the performance of the ATSE reaction and the optimal concentration 
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regimes of reactants for new antibody-epitope pairs. In addition, mathematical models are 

often essential for the validation of a hypothesis. For example, the reaction-diffusion model 

described in chapter 5 supports the experimental observations and validates that 

macromolecular crowding enhances uncorrelated noise by the increased heterogeneous 

distribution of mRNA molecules. These examples show that systems biology is crucial in the 

field of (cell-free) synthetic biology in order to understand, manage and control these 

synthetic systems.  

6.4 Applications of engineered biomolecular circuits 

The principles and knowledge from the engineering of cell-free biomolecular systems drives 

the construction of artificial cells with custom designed properties and function.18 While 

significant steps have been made in the field of (cell-free) synthetic biology, the engineering 

of a synthetic cell capable of self-maintaining, replicating and evolving is still far away as it 

involves the integration of many complex aspects such as metabolism, membrane 

regeneration, communication and genetic expression.19,20 However, on the road towards the 

construction of artificial cells valuable insights are obtained and engineered platforms can be 

readily applied for various purposes. Moreover, due to the modularity and inherent 

biocompatibility of engineered biomolecular circuits, applications of this technology in the 

biomedical sciences are within reach. In this section, we will briefly highlight several 

applications of this technology. First we focus on cell-free genetic biosensors and biological 

nanofactories capable of sensing and responding to the environment. We continue with a 

discussion on employing these systems in the intracellular environment. Then, we discuss the 

applications of non-living cellular mimics based on molecular circuits encapsulated in 

liposomes. Finally, we highlight applications in the area of autonomous materials. 

A first emerging application comprises cell-free genetic biosensors. In contrast to genetically 

engineered biosensing cells, which might have limited detection ranges due to membrane 

impermeability of the analytes and which may be difficult to commercialize due to official 

regulations of genetically modified organisms, cell-free biosensors can be readily made using 

coupled in vitro transcription translation systems. Pellinen et al. for instance used an E. coli 

extract to produce firefly luciferase as reporter in response to specific analytes.21 The authors 

show that their cell-free approach allowed for improved sensitivity, wider detection range and 

faster assays combined with minimal preparation times. Collins et al.22 have taken this 

approach to the next level by freeze drying cell-free synthetic gene networks onto paper and 

other porous materials (Figure 6.1A). The resulting abiotic materials are sterile and stable at 
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room temperature, allowing for facile storage and distribution. Retaining their in vitro 

transcription and translation capability, these materials can be activated at will by simply 

adding water. As such, the paper-based platform allows for the safe use of engineered gene 

networks beyond the lab, e.g., in the clinic and industry, presumably at a low cost. The 

authors demonstrated their platform as glucose sensors and strain-specific Ebola virus sensors 

making use of a colorimetric output. Due to the modularity of the paper-based approach, 

arbitrary reaction networks from the ever growing toolbox of synthetic biology can be added 

resulting in paper-based biosensors for ultrasensitive multiplexed diagnostics. In addition, 

simple cameras present on many contemporary mobile phones can be used to quantitatively 

detect the optical readout. Therefore, this technique paves the way for the creation of low-

cost biosensors that can be embedded ubiquitously into daily life.  

A second emerging application of cell-free circuits consists of biological nanofactories which 

sense and respond to a specific input cue. For example, Tan and coworkers designed and 

implemented a cell-free non-enzymatic DNA-based molecular automaton which released a 

coagulation inhibitor when the input, thrombin, exceeded a predefined threshold.23 

Expanding the range of inputs available for DNA-based molecular automatons in chapter 4 

we introduced antibody-templated strand exchange allowing the translation of an antibody 

to a unique DNA strand. While non-enzymatic circuits are capable of basic information 

processing functions such as logic operations, amplification and input thresholding, 

enzymatically-driven systems can display a much broader range of system-level behaviours 

such as bistability, oscillations and perfect adaptation.24,25 In chapter 3 we expand the 

chemical complexity of enzymatically enriched DNA-based circuits by demonstrating that 

enzymatically-enriched DNA circuits that are capable of displaying higher-order regulatory 

behaviour can be connected to biochemical actuators in vitro. Also making use of 

enzymatically-enriched DNA computing, Shapiro and colleagues combined DNA and a 

restriction enzyme to construct a cell-free circuit that detects the levels of mRNA disease 

indicators and in response produces an output ssDNA which affects gene expression.26 

Taking this a step further, this technology can be applied to communicate with cells as these 

sense and respond to their environment, and each other, using extracellular molecules. 

Bentley et al.27 engineered nanofactories, i.e. macromolecules consisting of modules that can 

target, sense and synthesize molecules, to trigger communication between different bacterial 

populations. Their design comprises an antibody to selectively target the outer-membrane of 

bacteria where it triggers a quorum sensing response by means of cell-surface synthesis and 
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delivery of quorum signalling molecules (Figure 6.1B). In addition, the technology was used 

to trigger communication between two bacterial populations that otherwise are non-

communicative.  

Figure 6.1: Selected emerging applications of engineered biomolecular circuits in the fields of cell-free 
biosensing and cell-free nanofactories. A) Usage of synthetic-biology-based technologies outside the laboratory 
is facilitated by paper-based technology where cell-free genetic networks are freeze-dried and, after distribution, 
reactivated by rehydration. Figure from reference 21. B) Biological nanofactories consisting of a targeting (cell 
targeting antibody), sensing, synthesis and assembly module. The nanofactories bind specifically to the 
targeted bacteria (green circle) and trigger the quorum sensing response. Figure from reference 26. 

 

Molecular circuits which are able to receive and respond to specific signals from their 

environment could be used as diagnostic and/or therapeutic devices. Using these circuits in 

cells is rather challenging. For example, cellular uptake efficiency and timing, cell viability, 

lifetime of the nanofactories in cells, the effect of macromolecular crowding on the 

performance of the nanofactories and the activation of the immune response are just a few 

examples of limitations to overcome.28 Yet, several molecular circuits have been developed 

that operate within cells. For example, Modi and coworkers engineered a DNA-based 

nanomachine allowing the detection and visualization of the pH of endosomal pathways in 

living cells29 and, additionally, the pH-sensor could map multiple pathways simultaneously.30 

In addition, Pei et al. constructed a DNA logic-gate system based on a tetrahedral DNA 

nanostructure which changed its shape in response to intracellular ATP.31 This demonstrates 

the potential of employing a DNA nanostructure to sense and respond to an intracellular 

signal, which is essential for any ‘smart drug’ system. In addition, nanoflares, which consist 

of gold nanoparticles functionalized with DNA oligonucleotides, have been shown to be able 

to detect and regulate intracellular mRNA levels via strand displacement reactions32-34 and 

can be used to detect tumor cells from human blood.35 DNA strand displacement reactions 

have also shown to be a valuable method for logic gate operations in living cells to detect 
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combinations of miRNA36 or for the in vivo assembly of a functional siRNA to control gene 

expression.37  

Biochemical nanofactories have great promise in the fields of biomolecular diagnostics and 

therapeutics. Encapsulation these molecular systems in liposomes, often referred to as 

synthetic minimal cells, allow biochemical reactions to proceed in an isolated controlled 

environment. Here we highlight several studies and applications of these synthetic minimal 

cells. Mansy and coworkers engineered artificial, non-living cellular mimics to activate (or 

repress) existing sensory pathways of living cells through chemical communication.38 They 

expanded the senses of E. coli by adding liposomes containing a genetic network that 

converts a chemical message that E. coli cannot sense to a molecule that activates a natural 

cellular response (Figure 6.2A). This approach paves the way to revolutionize the treatment 

of bacterial infections as molecules that interrupt or modulate bacterial communication rather 

than their viability exert less selective pressure to develop resistance. This approach may 

allow for new opportunities in engineering cellular behaviour without exploiting genetically 

modified organisms. On a similar line, a recent study showed for the first time that artificial 

liposome-based cellular mimics containing the machinery for protein expression can be used 

for the production of anticancer proteins inside tumors in in vivo mice models.39 The authors 

developed a platform where liposomes were able to interact with their environment via 

diffusion of low-molecular weight nutrients over the membrane prolonging protein 

expression inside the tumors. Moreover, the anticancer proteins possessed a translocation 

domain directing the proteins across the lipid membrane. Synthetic minimal cells might 

represent a new drug delivery approach in the treatment for cancer or other diseases as these 

platforms might be powerful for the controlled production of drugs according to a predefined 

algorithm at the disease site and when desired. Demonstrating the versatility of liposome-

based synthetic minimal cells, Boyden and coworkers engineered multiple genetic cascades 

in liposomes controlled by external signals.40 Moreover, they showed communication 

between liposomes and controlled fusion of liposomes so that products of incompatible 

reactions can be brought together. In addition, the incorporation of mechanosensitive 

channels in the membrane allows non-permeable liposomes to sense the osmotic pressure and 

adapt accordingly, as shown by Liu and coworkers.41 To this end, they co-expressed the E. 

coli channel MscL together with a biosensor which fluoresces upon binding of calcium in the 

liposomes (Figure 6.1B). MscL senses an increase in membrane tension and opens a pore 

allowing the diffusion of molecules down the concentration gradient. The mechanosensitive 
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liposomes were capable of sensing the osmotic pressure and allowed the influx of calcium 

under hypo-osmotic shock. This approach provides increased mechanical robustness to non-

permeable liposomes and, additionally, allows the passage of small nutrients to fuel synthetic 

cells on demand while keeping the protein expression machinery inside. 

                                     

 
 
Figure 6.2: Engineered artificial non-living cellular mimics based on liposomes. A) Cellular mimics activate (or 
repress) natural sensory pathways in living cells through chemical communication, allowing new opportunities 
in controlling cellular behaviour without the use of genetically modified organisms. Figure from reference 37. 
B) Expressing MscL in liposomes enables the influx of calcium under hypo-osmotic shock and, thereby, 
provides increased mechanical robustness to the vesicles and allows the passage of small nutrients. Figure from 
reference 40. 

 

Other interesting applications of engineered circuits may arise from the coupling of 

biochemical and mechanical processes. Mechano-chemical conversions are abundant in 

living systems, which are able to mechanically respond to a changing chemical environment. 

However, although being a highly desired property for next-generation materials and 

biosensors, mechano-chemical feedback is generally lacking in synthetic systems. Interesting 

in this respect is the development of Self-regulated Mechano-chemical Adaptively 

Reconfigurable Tunable Systems (SMARTS) by Aizenberg and coworkers.42 This technology 

utilizes catalyst-bearing microstructures embedded into a hydrogel which mechanically 

deforms upon a biochemical signal. In this way for instance a pH change can switch on/off an 

optical output producing biochemical process (Figure 6.3). The vast variety of switchable 

biochemical reactions in combination with the wide variety of triggers that induce a hydrogel 

response (ranging from pH, glucose or other metabolic compounds, light to temperature) and 

the range of possible outputs (i.e. fluorescence, gas generation, visible colour change) paves 

the way for a new generation of bio-responsive materials and biosensors that can 

autonomously function in and on the human body. 
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Figure 6.3: A signal converter translating chemical signals at the nanoscale (pH changes) to macroscopic 
optical outputs using chemo-mechanical feedback loops. Figure from reference 41. 

 

6.5 Conclusion 

Cell-free synthetic biology relies on the controllable construction of molecular networks, 

which are completely defined and can be easily manipulated. The developments made in the 

field of cell-free synthetic biology drive fundamental understanding of complex signalling 

circuits. In this thesis DNA-based reaction networks were systematically increased in 

complexity using a learning-by-building approach. Our work shows the possibility of 

connecting enzymatically-enriched DNA circuits that are capable of displaying higher-order 

regulatory behaviour to biochemical actuators in vitro, such as a TEM1 β-lactamase and a 

luciferase based system. Such efforts should be expanded to networks based on other 

platforms, for example those based on solely DNA, genelets or transcription-translation. In 

addition, we introduce a generic approach, based on antibody-templated strand exchange, 

enabling the use of antibodies as input for DNA-based computing and the actuation of 3D 

DNA-nanoarchitectures. As a generic mechanism that allows protein-based control of 

DNA circuits, antibody-templated strand exchange complements developed molecular 

approaches for DNA-based control of protein activity. Such platforms can be integrated 

expanding the range of combinations of inputs received and processed by DNA-based 

circuits and the outputs produced by these circuits. Besides expanding network structures, 

input and output functions we explored the effect of macromolecular crowding on the 

variability of biochemical processes, a phenomenon which cannot be ignored in cells. We 

found that decreasing diffusion coefficients and the formation of spatial heterogeneous 
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microenvironments increased translational bursting and enhanced uncorrelated noise of gene 

expression. Our experiments and simulations enabled us not only to take into account, but 

also predict the magnitude of noise when engineering synthetic biochemical pathways in 

artificial cellular mimics. Finally, the engineered synthetic platforms and concomitant 

knowledge serve to affect and mimic cellular signaling pathways that can be applied in fields 

such as diagnostics, therapeutic, autonomous materials, and eventually, in the far future, 

could result in the construction of an artificial cell with programmed behaviour. 
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Summary 

The cell is composed of many biomolecules interacting in a high non-linear fashion in a 

crowded environment. These biomolecules form complex sets of interactions enabling the cell 

to respond to input cues, to withstand perturbations and to adapt to environmental changes. 

The main goal of cell-free synthetic biology is to obtain a deeper understanding of the modus 

operandi of molecular networks inside living cells by emulating a target property or feature of 

the cell. The goal of this thesis is to expand the scope of DNA-based molecular networks by 

developing tools enriching these networks and providing additional knowledge of 

biomolecular reactions in cells. To this end, we extended reaction networks based on the 

polymerase-exonuclease-nickase (PEN) toolbox. The PEN toolbox, developed by Rondelez 

and co-workers, allows the construction of biochemical circuits emulation complex dynamic 

behaviour in time and space similar to those in natural cells. We first implemented an 

INVERTER circuit and a previously designed bistable switch and introduced a heuristic 

model which we used for the detailed characterization of PEN-based networks. While 

regulatory circuits in cells control downstream processes through hierarchical layers of signal 

processing, coupling of enzymatically-driven DNA-based networks to downstream processes 

has rarely been reported. We engineered hierarchical control of enzymatic actuators using the 

PEN-based bistable switch. We developed a translator module which converted signaling 

molecules from the upstream network to unique DNA strands driving downstream actuators 

with minimal retroactivity and supported these findings with a detailed computational 

analysis. We showed our approach by coupling of a previously engineered switchable 

memories circuit to downstream actuators based on β-lactamase and luciferase. Moreover, 

while in general low retroactivity is desired, our work showed that retroactivity not 

necessarily has a negative effect. To further expand the scope of DNA-based molecular 

programming, we introduced a generic approach, based on antibody-templated strand 

exchange (ATSE), enabling the use of antibodies as input for DNA-based computing. In 

this thesis we developed a comprehensive model that described the kinetics of the ATSE 

system. The model provided a fundamental understanding of the ATSE reaction and was 

used to find optimal concentration regimes and to study the effect of thermodynamics and 

kinetics of antibody–epitope binding 

While cell-free biochemical reaction networks are often studied at high reactant 

concentrations in a well-stirred environment, the cell’s interior is an inhomogeneous crowded 

environment where reactions between biomolecules occur at low concentrations. Low 
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concentrations of biomolecules result in stochastic gene expression in cells. However, it is 

unknown how the physical environment contributes to the variation in signaling circuits. In 

this thesis, we studied the variation in cell-free gene expression as a function of plasmid copy 

number and macromolecular crowding. To support the experimental findings and to obtain a 

detailed characterization of the experimental setup we developed two independent theoretical 

models. We found that decreasing diffusion coefficients and the formation of heterogeneous 

micro-environments caused by macromolecular crowding enhance uncorrelated noise in gene 

expression. 

The cell-free networks developed in this thesis can provide further fundamental insights into 

biochemical reaction networks and correlated function, and/or can be applied in molecular 

therapeutics or diagnostics. Finally, in the far future, such molecular networks can aid in the 

construction of a synthetic cell with preprogrammed behaviour. 
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Samenvatting 

De cel bestaat uit enorm veel verschillende biomoleculen die via niet-lineaire processen met 

elkaar reageren in een omgeving volgepakt met macromoleculen. Deze biomoleculen vormen 

door hun interacties complexe signaalnetwerken waardoor de cel specifieke moleculen uit de 

omgeving kan ontvangen, verwerken, en hierop kan reageren. Hierdoor is de cel bestand 

tegen verstoringen of kan zich aanpassen aan veranderingen in de omgeving. Het voornaamste 

doel van het onderzoeksveld van de celvrije synthetische biologie is het begrijpen van de 

modus operandi van biomoleculaire netwerken in cellen door het emuleren van specifieke 

cellulaire eigenschappen. In dit proefschrift worden nieuwe modules of methodes beschreven 

die biomoleculaire signaalsystemen verrijken en potentieel aanvullende kennis bieden over 

reacties in cellen. Allereerst beschrijven we de ontwikkeling van een vertaalmodule die 

reactienetwerken gebaseerd op de polymerase-exonuclease-nickase-methode (PEN-methode) 

verrijkt. De PEN-methode is ontwikkeld door Rondelez en collegae. Deze methode kan 

toegepast worden om netwerken te construeren die complex gedrag in de tijd en de ruimte 

vertonen dat overeenkomstig is met dat van natuurlijke cellen. We implementeren een 

INVERTER-netwerk en een eerder ontwikkeld netwerk dat bistabiel gedrag vertoont. 

Regulerende netwerken in de cel vormen een hiërarchische structuur waarbij geproduceerde 

signalen als regulator dienen voor andere biochemische processen. De koppeling van op DNA 

gebaseerde enzymatisch gedreven netwerken aan andere biochemische processen is echter 

nauwelijks gerapporteerd in de literatuur. In dit proefschrift laten we zien dat het mogelijk is 

om twee verschillende op enzymen gebaseerde actuators aan te sturen via een PEN-gebaseerd 

systeem dat bistabiel gedrag vertoont. We hebben een vertaalmodule ontwikkeld die 

signaalmoleculen van het PEN-gebaseerd netwerk vertalen naar unieke DNA-sequenties die 

de actuators aansturen. Hierbij hebben we ervoor gezorgd dat de retroactiviteit die ontstond 

bij het koppelen van de modules zo laag mogelijk bleef. We hebben onze bevindingen 

ondersteund met behulp van een theoretisch model, en hebben de functionaliteit van de 

translatormodule laten zien door middel van het koppelen van het bistabiele netwerk aan 

actuators gebaseerd op β-lactamase en luciferase. Terwijl over het algemeen een lage 

retroactiviteit gewenst is, laten we in dit proefschrift zien dat retroactiveit niet altijd een 

negatief effect heeft op het gedrag van het netwerk.  

Om de variëteit aan types moleculen die ontvangen kunnen worden door op DNA gebaseerde 

netwerken uit te breiden, beschrijven we het principe van antilichaam-geïnduceerde 
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uitwisseling van DNA-strengen (AGUD). De AGUD-methode zorgt ervoor dat de 

aanwezigheid van een antilichaam wordt vertaald naar een DNA-streng die vervolgens 

gebruikt wordt in het op DNA gebaseerde netwerk. We hebben een theoretisch model 

ontwikkeld dat de kinetiek van het AGUD-systeem beschrijft. Het model werd gebruikt om de 

optimale concentratiegebieden van de reagerende moleculen te vinden, en om het effect van 

de thermodynamische en kinetische eigenschappen van de binding tussen antilichaam en 

epitoop op het AGUD-systeem te bestuderen. 

Celvrije signaalsystemen worden meestal bestudeerd bij hoge concentraties van de reagerende 

moleculen in een homogene omgeving. De inhoud van een cel, daarentegen, is een heterogene 

omgeving die volgepakt is met macromoleculen waarin reacties tussen moleculen bij lage 

concentraties plaatsvinden. Door de lage concentraties van reagentia is genexpressie in cellen 

een stochastisch proces. Het is echter onbekend hoe de fysische omgeving bijdraagt aan de 

variatie in signaalnetwerken. In dit proefschrift hebben we de variatie in genexpressie in een 

celvrije omgeving als functie van het aantal plasmiden en de concentratie van 

macromoleculen bestudeerd. We hebben twee afzonderlijke theoretische modellen ontwikkeld 

om de experimentele bevindingen te ondersteunen en om een gedetailleerd begrip van de 

experimentele opzet te krijgen. Onze bevindingen laten zien dat een afname in 

diffusiecoëfficiënt en de vorming van heterogene micro-omgevingen door de aanwezigheid 

van macromoleculen de variatie in genexpressie verhogen. 

De celvrije netwerken die ontwikkeld en beschreven zijn in dit proefschrift verlenen verdere 

inzichten in de organisatie en functie van signaalnetwerken en/of kunnen in de toekomst 

mogelijk toegepast worden in moleculaire therapie of diagnostiek. Uiteindelijk kunnen 

dergelijke moleculaire netwerken hun toepassing vinden in de constructie van een 

synthetische cel met voorgeprogrammeerd gedrag. 

 

https://nl.wikipedia.org/wiki/Diffusieco%C3%ABffici%C3%ABnt
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