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Applying engineering principles to the design and

construction of transcriptional devices

by

Reshma P. Shetty

Submitted to the Department of Biological Engineering
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The aim of this thesis is to consider how fundamental engineering principles might
best be applied to the design and construction of engineered biological systems. I
begin by applying these principles to a key application area of synthetic biology:
metabolic engineering. Abstraction is used to compile a desired system function,
reprogramming bacterial odor, to devices with human-defined function, then to bio-
logical parts, and finally to genetic sequences. Standardization is used to make the
process of engineering a multi-component system easier. I then focus on devices that
implement digital information processing through transcriptional regulation in Es-
cherichia coli. For simplicity, I limit the discussion to a particular type of device, a
trancriptional inverter, although much of the work applies to other devices as well.
First, I discuss basic issues in transcriptional inverter design. Identification of key
metrics for evaluating the quality of a static device behavior allows informed device
design that optimizes digital performance. Second, I address the issue of ensuring
that transcriptional devices work in combination by presenting a framework for de-
veloping standards for functional composition. The framework relies on additional
measures of device performance, such as error rate and the operational demand the
device places on the cellular chassis, in order to proscribe standard device signal
thresholds. Third, I develop an experimental, proof-of-principle implementation of a
transcriptional inverter based on a synthetic transcription factor derived from a zinc
finger DNA binding domain and a leucine zipper dimerization domain. Zinc fingers
and leucine zippers offer a potential scalable solution to the challenge of building
libraries of transcription-based logic devices for arbitrary information processing in
cells. Finally, I extend the principle of physical composition standards from parts
and devices to the vectors that propagate those parts and devices. The new vectors
support the assembly of biological systems. Taken together, the work helps to ad-
vance the transformation of biological system design from an ad hoc, artisanal craft
to a more predictable, engineering discipline.
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Chapter 1

Introduction

Formally, engineering is defined as the application of scientific knowledge to meet

human needs. In practice, a key goal of engineering is to make the process of engi-

neering many component systems faster, cheaper, and more predictable. To do so,

engineers employ a variety of approaches that are broadly applicable to all branches

of engineering. Mathematical models inform the design of complex systems. Stan-

dards ensure that components can be combined to build composite components that

work as predicted. Finally, rigorous measurement tools and techniques characterize

and quantify component behavior. I begin by discussing two examples from mature

engineering disciplines that highlight how fundamental engineering principles make

the engineering of many component systems easier.

Engineers have long known that many component engineered systems should be

built from standard parts. For instance, after the War of 1812, the United States was

left with thousands of broken guns that were beyond repair [1]. These guns could not

be fixed because, at the time, guns were hand-crafted and lacked uniformity. Each gun

part only fitted together with the other parts from that same gun. As a result, when

individual gun parts broke, they could not be easily replaced and the gun was rendered

useless. In response to prohibitive gun maintenance and repair costs, a handful of

armory authorities began to advocate for the standardization of gun part design

and manufacturing across national armories. The result was a massive engineering

effort, spanning many years, to standardize gun part design and manufacture, so
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that gun parts were interchangeable. In the long term, the armories found that

standardization led to less development effort, higher quality and cheaper production

costs. Advancements in engineering of standard, interchangeable parts also eventually

propagated into other industries like manufacturing of sewing machines, agricultural

machinery, and railroad equipment.

Arguably the best example of how functional standards can enable engineering of

many component systems is the Internet. In the early 1970s, the Defense Advanced

Research Projects Agency (DARPA) was interested in enabling satellite networks and

ground-based networks to communicate with each other [2]. In response, DARPA-

sponsored researchers developed common standards that govern how computers send

data back and forth across networks [3]. The eventual result, the TCP/IP protocol

suite, is still used today. The set of standards underlying the Internet allows desk-

top computers, laptop computers, server farms, cell phones, and more to connect

and share information. Moreover, these devices can share information via a variety

of high-level services, such as email, video streaming, file sharing, and static web-

pages, all using a common set of underlying standards specifying how data packets

should be sent back and forth. Stated more generally, functional standards that allow

components to connect and work reliably and predictably in combination enable the

engineering of complex, multi-component systems, such as the Internet.

In 1978, Waclaw Szybalski and Ann Skalka wrote, in an editorial congratulating

Werner Arber, Hamilton Smith, and Daniel Nathans on winning the Nobel Prize, that,

“The work on restriction nucleases not only permits us easily to construct recombinant

DNA molecules and to analyze individual genes but also has led us into the new

era of ‘synthetic biology’ where not only existing genes are described and analyzed

but also new gene arrangements can be constructed and evaluated” [4]. Over the

course of the past thirty years, researchers have made extensive use of recombinant

DNA technology both to understand how cells work and to build cells that have

novel functions [5, 6]. Yet biological research remains largely a craft. The field is

primarily driven by a small number of highly-skilled experts. To be successful in the

field, newcomers must usually learn the trade through years of apprenticeship. To
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realize the extraordinary capabilities of biology to produce materials and to sense and

respond to information, design and construction of biological systems must transition

from a craft to an industrialized process, just as other technologies have. The goal of

synthetic biology is to bring about this transition, by systematizing and standardizing

the process of engineering biology.

Many argue that biology can’t be standardized in the same way that gun man-

ufacturing and computer networks were. Biology is simply too complicated, and we

understand too little of it, to engineer multi-component systems of the scale that

we can in mature engineering disciplines. There is little doubt that the challenge

is tremendous: in addition to the challenges of physical and functional composition

in the face of imperfect understanding that is common to other engineering disci-

plines, biological systems also have the added dimension of being self-reproducing

in the presence of error (mutation). Yet it is worth noting that standardization did

not come easily in mature engineering disciplines either. When the United States

Ordnance Department decided to standardize gun part design and manufacturing in

1815, the idea of uniformity and interchangeability in gun parts had already been

promulgated as early as the 1780s by several French armories [1]. Indeed, it took

many years of sustained effort as well as several machine innovations post-1815 to

achieve a significant standardization across just two national armories. Interestingly,

a significant hurdle in the process was the resistance and skepticism of armory per-

sonnel that standardization was possible or even desirable. Even over a century later

when engineers were trying to establish functional standards for computer networks,

it took several years of iterative refinements to develop the TCP/IP protocol suite

used today. In biological engineering, an even larger scale of foundational engineering

investment is needed, since there is an interest not in any one problem but in opening

a diverse array of problems to biological solutions [7].

In this thesis, I consider how fundamental engineering principles might be best

applied to the design and construction of engineered biological systems. In Chapter 2,

I apply these principles to a key application area of synthetic biology: metabolic en-

gineering. Abstraction is used to compile a desired system function, reprogramming
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bacterial odor, to devices with human-defined function, then to biological parts, and

finally to genetic sequence. Standardization is used to make the process of engineering

a multi-component system easier. In the following three chapters, I focus on devices

that implement digital information processing through transcriptional regulation in

Escherichia coli. For simplicity, I limit the discussion to a particular type of device, a

trancriptional inverter, although much of the work applies more generally as well. In

Chapter 3, I discuss basic issues in transcriptional inverter design. A transfer curve

describes static device behavior. Identification of key metrics for evaluating the qual-

ity of a transfer curve allows informed device design that optimizes performance. In

Chapter 4, I address the issue of ensuring that transcriptional devices work in combi-

nation by presenting a framework for developing standards for functional composition.

The framework relies on additional measures of device performance, such as error rate

and the operational demand that the device places on the cellular chassis, to proscribe

device signal thresholds. Digital devices must have compatible signal thresholds to

work in combination. In Chapter 5, I describe a proof-of-principle implementation

of a transcriptional inverter based on a synthetic transcription factor derived from a

zinc finger DNA binding domain and a leucine zipper dimerization domain. Zinc fin-

gers and leucine zippers offer a potential scalable solution to the challenge of building

libraries of transcription-based logic devices for arbitrary information processing in

cells. Finally in Chapter 6, I extend the principle of physical composition standards

from parts and devices to the vectors that propagate those parts and devices. The

new vectors support the assembly of biological systems. Taken together, the work

advances the transformation of biological system design from an ad hoc, artisanal

craft to a more predictable engineering discipline.
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Chapter 2

Eau d’E coli: A synthetic biology

approach to reprogramming

bacterial odor

This chapter is based on a manuscript that I co-wrote with Stephen T. Payne and

Drew Endy (Payne et al., submitted). The initial project conception was mine. The

research work was done primarily by a very talented undergraduate Stephen T. Payne,

in collaboration with Veena Venkatachalam, Kate Broadbent, Delbert Green II, and

Boyuan Zhu, and supervised by Barry Canton, Austin J. Che, Jason R. Kelly, Saman-

tha C. Sutton, Thomas F. Knight, Jr., Drew Endy, and myself.

2.1 Summary

The underlying goal of synthetic biology is to make the design, construction, and

characterization of engineered biological systems easier. Here, we evaluate whether

synthetic biology approaches can support the process of metabolic engineering. As

a model problem, we chose to reprogram the odor of Escherichia coli. We first de-

signed and produced a bacterial chassis with reduced fecal odor. Then, by applying

fundamental engineering principles such as abstraction and standardization, we (1)

implemented wintergreen and banana odorant generators that use exogenously sup-
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plied precursors, (2) developed transcriptional control devices for exponential and

stationary phase protein production, and (3) combined a stationary phase transcrip-

tional control device with a banana odorant generator to produce banana odor in

a growth phase-dependent manner. Our results also confirm that the enzymes that

produce odorants can serve as reporters of gene expression, complementing exist-

ing genetically-encoded reporters such as β-galactosidase, fluorescent proteins, and

luciferases.

2.2 Introduction

Metabolic engineers have demonstrated successful construction of novel biosynthetic

pathways in industrial microorganisms for the purpose of producing commercially

useful compounds [8, 9, 10, 11, 12, 13]. However, such engineering feats require

huge investments of labor, time, and capital by world-renowned genetic engineers

[14, 15, 16]. Typically, such large resource investments are only justified when the

product is overwhelmingly compelling from an industrial or medical perspective.

The underlying goal of synthetic biology is to make the design, construction, and

characterization of engineered biological systems easier. A proposed approach advo-

cates applying fundamental engineering principles such as abstraction, standardiza-

tion, and decoupling to the substrate of biology and the process of biological engi-

neering [7]. However, the relevance of principles from classical engineering disciplines

to biological engineering has not yet been fully explored.

We examined how the ideas of abstraction and standardization can be applied to

metabolic engineering problems. Abstraction is an approach for managing complexity

by hiding unnecessary detail [7, 17]. An abstraction hierarchy is organized around

a set of functional layers (Figure 2-1). For synthetic biology, the lowest abstraction

layer is currently defined at the level of primary nucleic acid sequences. Moving up

one level in the abstraction hierarchy, parts are defined as nucleic acid sequences that

encode basic biological functions such as a transcriptional promoter or enzyme coding

sequence [18]; parts are specified by their innate biological function(s), while details
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regarding nucleic acid sequence remain hidden. At the next level in the abstraction

hierarchy, devices are defined as human-defined functions that can be realized via a

combination of one or more parts. Devices are specified in terms of their inputs and

outputs, with details regarding all underlying parts hidden. Different classes of de-

vices have different types of inputs and outputs. For example, transcriptional devices

either receive transcriptional input(s), produce transcriptional output(s), or both. As

a second example, biosynthetic devices convert one or more chemical precursor inputs

to one or more chemical product outputs. At the topmost layer of the abstraction

hierarchy, engineered biological systems are defined as combinations of devices that

produce more powerful behaviors, such as a tumor-killing microbe [19]. Systems are

specified by their overarching behavior, while details regarding the input/output rela-

tionships of the component devices remain hidden. By using an abstraction hierarchy,

the behavior of an engineered biological system can be implemented as a combination

of devices, each device can be defined in terms of its component parts, and each part

can be specified by its primary nucleic acid sequence.

The utility of the abstraction hierarchy depends on standards that define how

components in each layer of the hierarchy are combined and shared across layers. For

example, standards for physical composition specify how parts physically connect;

Knight developed the BioBrick standard for physical composition of genetic parts

[20]. Using the BioBrick standard, the synthetic biology community has developed

a collection of genetic parts in the Registry of Standard Biological Parts (Registry,

http://partsregistry.org). All parts in the Registry can be readily assembled

using the BioBrick assembly standard. As a second example, standards for functional

composition specify how device inputs and outputs are functionally connected. A

proposed signal standard for transcriptional devices is the rate at which RNA poly-

merases move past a particular point on a strand of nucleic acid, Polymerases Per

Second (PoPS) [21, 22]. By using the PoPS signal standard, transcriptional devices

can have one or more PoPS inputs, one or more PoPS outputs, or both. Thus, PoPS

defines a standard, common signal carrier for transcriptional devices. In practice,

while the goal of functional composition standards is to ensure that devices work reli-
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Figure 2-1: (A) Systems are defined by their overarching behavior, such as repro-
gramming bacterial odor. (B) A biosynthetic device, such as a wintergreen or banana
odorant generator, takes one or more chemical inputs and produces one or more
chemical outputs. Biosynthetic devices are made up of two transcriptional devices:
a transcription source and a biosynthetic enzyme generator. A transcription source
produces a transcriptional signal output. A biosynthetic enzyme generator takes as
input a transcriptional signal and produces as output an enzyme, such as BSMT1
or ATF1, that catalyzes the conversion of a precursor to a product. (C) Biological
parts are nucleic acid sequences that encode basic biological functions. A transcrip-
tion source can be made up of a single part such as a promoter. An odorant enzyme
generator is made up of three parts: a ribosome binding site (RBS), an enzyme cod-
ing sequence, and a transcriptional terminator (stop). (D) In synthetic biology, the
lowest layer of the abstraction hierarchy is nucleic acid sequence.
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ably and predictably when used in combination, only a few parts in the Registry and

elsewhere have yet been shown to function reliably in combination [23, 24, 25]. Nev-

ertheless, the modularity afforded by abstraction and standardization already enables

parts and devices to be used as “off-the-shelf” components that can be independently

tested, optimized for function as necessary, and improved over time.

As a model problem for exploring the relevance of synthetic biology to metabolic

engineering, we chose to reprogram the odor of Escherichia coli. Odorants are volatile

chemicals that have an odor or smell detectable by the human olfactory system [26].

For example, most flowers produce a complex array of odorants to generate a unique

smell [27]. As a second example, the common laboratory chemical dithiothreitol has

a distinctive “wet dog” odor [28]. As a final example, cultures of most laboratory

strains of E. coli have a fecal odor. To reprogram bacterial odor, we had the option

of eliminating natural odorants from E. coli, adding novel odorants to E. coli, or

both. Eliminating natural odorants from E. coli requires modifying existing cellular

biosynthetic pathways. Adding novel odorants to E. coli involves engineering new

biosynthetic pathways for chemical production.

2.3 Results

2.3.1 Identifying an odor-free chassis

We named our project to reprogram bacterial odor, Eau d’E coli. The first challenge

in the project was to ensure that the natural, fecal odor of E. coli did not overpower

our engineered odors. Indole was suggested to be the primary contributor to the fecal

odor of E. coli (E Pichersky, personal communication, 2006). We confirmed that

indole is the primary odorant produced by E. coli by smelling LB Lennox medium

supplemented with indole at a concentration comparable to that produced in LB cul-

tures of E. coli strain MG1655 (∼300 µM) [29]. LB medium supplemented with indole

smelled similar to typical E. coli laboratory cultures. In nature, E. coli uses indole

for intercellular signaling in biofilm formation [30, 31, 32]. There are also reports of
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indole playing a role in multidrug exporter gene regulation and ColE1 plasmid main-

tenance [33, 34]. Regardless, since indole is not essential for cell viability, we could

begin to reprogram bacterial odor by attempting to modify cellular metabolism for

decreased indole production.

Indole is a product of the tryptophanase enzyme encoded by the tnaA gene of

the tna operon in E. coli [35]. Mutations to the tna operon can reduce indole levels

[36]. We tested four E. coli strains as potential odor-free chassis for the Eau d’E

coli project: YYC912, JC12337, MEB61, and MB408 (CGSC 7602, CGSC 6373,

CGSC 6836, and CGSC 7152, respectively, and provided by Mary Berlyn at The

Coli Genetic Stock Center) [37, 38, 39]. The four strains all carry mutations in the

tnaA gene. By smelling overnight liquid LB cultures of each strain, we determined

that E. coli strain YYC912 likely did not produce indole. We confirmed via gas

chromatography analysis that E. coli strain YYC912 produced no measurable indole

in comparison to E. coli strain TOP10 (Figure 2-2) [40]. Thus, we selected E. coli

strain YYC912 as an odor-free chassis for Eau d’E coli.

2.3.2 Engineering E. coli to smell like wintergreen and ba-

nana

Next, we started our work to add new odors to E. coli by considering what was already

known about bacterial odorant production [41]. Several groups have demonstrated

odorant production in E. coli during studies of enzymes involved in floral odorant

emission [42, 43, 44, 45]. However, published reports do not state whether the E.

coli cultures produced sufficient levels of odorant to actually smell. When contacted,

the authors confirmed that expression of some enzymes resulted in E. coli cultures

that had the expected floral odor (N Dudareva and E Pichersky, personal commu-

nication, 2006). Similarly, Horton et al. demonstrated production of the odorant

isoamyl acetate in E. coli but did not report whether the isoamyl acetate-producing

cultures had the expected banana odor [46]. From our initial survey of the literature,

we considered five candidate odorants that might be added to E. coli (Table 2.1).
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Figure 2-2: To verify the selection of E. coli strain YYC912 as an odor-free chassis,
cultures of each strain for indole production were analyzed by gas chromatography.
A) E. coli strain YYC912 had no detectable indole. B) E. coli strain TOP10 had
high levels of indole. C) The retention time of the indole peak from E. coli strain
TOP10 is identical to that of the pure indole standard.
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Odorant Part no. Enzyme Organism Evaluation Reference
Cinnamon n/a CCMT Ocimum No sequence [47]

basilicum available
Jasmine BBa J45003 JMT Arabidopsis Failed [48]

thaliana construction
Floral BBa J45002 BAMT Antirrhinum No [49]

majus odor [50]
Wintergreen BBa J45005 SAMT Clarkia No source [44]

breweri DNA
BBa J45001 SAMT Antirrhinum Works [45]

majus
BBa J45004 BSMT1 Petunia × Works; [51]

hybrida selected [52]
Banana BBa J45014 ATF1 Saccharomyces Works; [53]

cerevisiae selected [46]

Table 2.1: Candidate odorants and enzymes for reprogramming bacterial odor

We selected wintergreen and banana odorant production for the initial Eau d’E coli

system.

We constructed two biosynthetic devices for odorant production in E. coli (Fig-

ure 2-1). Biosynthetic devices catalyze the conversion of one or more chemical

precursors to one or more chemical products. For example, an odorant generator

is a biosynthetic device that catalyzes the conversion of a precursor to an odor-

ant. The wintergreen odorant generator (BBa J45120) is based on the S -adenosyl-

L-methionine:benzoic acid/salicylic acid carboxyl methyltransferase I (BSMT1 ) gene

from Petunia × hybrida (plasmid encoding BSMT1 provided by Natalia Dudareva,

Department of Horticulture and Landscape Architecture, Purdue University) [51,

52]. BSMT1 catalyzes the conversion of the precursor salicylic acid to the odor-

ant methyl salicylate, which has a wintergreen odor. The banana odorant generator

(BBa J45200) is based on the Saccharomyces cerevisiae alcohol acetyltransferase I

(ATF1 ) gene [53, 46, 54]. ATF1 catalyzes the conversion of the precursor isoamyl

alcohol to the odorant isoamyl acetate, which has a banana odor. Each biosyn-

thetic device is made up of two transcriptional devices: a transcription source and an

odorant enzyme generator. Transcription sources, such as promoters, produce a tran-
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Description Salicylic acid Retention time Abundance
Wintergreen odorant + 11.471 1.0× 108

generator (BBa J45120) − 11.473 3.3× 104

Methyl salicylate standard n/a 11.461 2.1× 108

E. coli strain TOP10 + 11.347 2.2× 104

Table 2.2: Wintergreen odorant generator produces methyl salicylate.

Description Isoamyl alcohol Retention time Abundance
Banana odorant + 4.456 4.7× 108

generator (BBa J45200) − 4.400 3.6× 106

Isoamyl acetate standard n/a 4.388 9.6× 107

E. coli strain TOP10 + 4.432 8.0× 105

Table 2.3: Banana odorant generator produces isoamyl acetate.

scriptional signal output. Odorant enzyme generators take as input a transcriptional

signal and produce as output an enzyme that catalyzes production of an odorant from

a chemical precursor. All transcriptional devices in this work use PoPS as a common

signal carrier.

To confirm that our biosynthetic devices produced the correct odorants we ana-

lyzed the E. coli cultures for odorant production by gas chromatography. The winter-

green odorant generator (BBa J45120) produced high levels of methyl salicylate when

the precursor salicylic acid was added to the culture medium (Table 2.2, Figure 2-3).

The cellular chassis, E. coli strain TOP10, did not produce methyl salicylate in the

presence of exogenous salicylic acid, demonstrating that our biosynthetic device was

indeed responsible for methyl salicylate production. Similarly, the banana odorant

generator (BBa J45200) produced high levels of isoamyl acetate when the precursor

isoamyl alcohol was added to the culture medium, whereas the cellular chassis did

not (Table 2.3, Figure 2-4).

A blind smell test demonstrated that we had successfully reprogrammed the odor

of bacteria. Smell test participants distinguished between cultures producing winter-

green odorant, banana odorant, or the natural fecal odorant of E. coli. Of the 116

respondents, 64% were able to correctly identify the culture producing methyl sali-
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Figure 2-3: To confirm that the wintergreen odorant generator produced methyl sali-
cylate, cultures with the device supplemented with 2 mM salicylic acid were analyzed
by gas chromatography. (A) The wintergreen odorant generator (BBa J45120) pro-
duced high levels of methyl salicylate when the precursor salicylic acid was added to
the culture medium. (B) The cellular chassis alone (E. coli strain TOP10) did not
produce methyl salicylate, although salicylic acid was added to the culture medium.
(C) The retention time of the methyl salicylate peak from the wintergreen odorant
generator (BBa J45120) is identical to that of the pure methyl salicylate standard.
Most E. coli strains produce indole.
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Figure 2-4: To confirm that the banana odorant generator produced isoamyl acetate,
cultures with the device supplemented with 5mM isoamyl alcohol were analyzed by
gas chromatography. (A) The banana odorant generator (BBa J45200) produced high
levels of isoamyl acetate when the precursor isoamyl alcohol was added to the culture
medium. (B) The cellular chassis alone (E. coli strain TOP10) did not produce
isoamyl acetate, although isoamyl alcohol was added to the culture medium. (C)
The retention time of the isoamyl acetate peak from the banana odorant generator
(BBa J45200) is identical to that of the pure isoamyl acetate standard. Most E. coli
strains produce indole. Octyl acetate was used as an internal standard for all samples
containing isoamyl acetate.
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Figure 2-5: During a blind smell test at the 2006 iGEM Jamboree (http://www.
igem2006.com), participants smelled cultures of the wintergreen odorant generator,
the banana odorant generator, and E. coli strain TOP10. Participants were asked
to characterize each culture as smelling like wintergreen (green bars), banana (yellow
bars), or the natural fecal odor of E. coli (brown bars). Based on the survey results,
people can smell the odorant from both odorant generators (Pearson’s chi-square test
yields p ¡ 0.01). For the smell test, the odor-free chassis (E. coli strain YYC912) was
used for the wintergreen and banana odorant generators.

cylate through its wintergreen odor, 87% were able to correctly identify the culture

producing isoamyl acetate through its banana odor, and 86% were able to correctly

identify the laboratory E. coli strain TOP10 through its fecal odor (Figure 2-5). Both

the wintergreen and banana odorant generators were propagated in the odor-free

chassis for the smell test. Based on the survey results, humans can smell the odorant

produced by both odorant generators (Pearson’s chi-square test yields p < 0.01).

2.3.3 Engineering growth-dependent transcriptional control

devices

We sought to extend the initial Eau d’E coli system by developing and demonstrat-

ing that odorant production could be regulated and, in turn, used as a genetically
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encoded reporter of cell state. Specifically, we sought to engineer E. coli to produce

one odorant during exponential growth and a different odorant during stationary

phase. We use the terms exponential growth and stationary phase practically; we

define exponential growth as the period of culture during which cells are growing and

dividing and stationary phase as the subsequent period during which cells undergo

little or no growth. In our smell tests of the constitutive odorant generators, the

culture producing banana odorant had a stronger odor than the culture producing

wintergreen odorant. Thus, we opted to design a system to produce wintergreen

odorant only during exponential growth and, as the culture transitions to station-

ary phase, wintergreen odorant production should plateau or decrease, while banana

odorant production begins. We predicted that batch cultures of such cells would ini-

tially smell like wintergreen, and then the banana odor would overpower any residual

wintergreen odor.

We considered different designs for exponential and stationary phase regulation

of odorant production. All designs focused on using transcriptional control devices

to regulate the odorant enzyme generators and thus odorant production. To start,

we noted that several E. coli promoters that are primarily active in stationary phase

have been previously characterized [55, 56]. We evaluated two stationary phase pro-

moters as potential transcriptional control devices. First, we tested the promoter

that controls transcription of rpoS in E. coli (plasmid pBS-rrnBTrpoSpUV provided

by Masayasu Mie and Masuo Aizawa, Department of Biological Information, Tokyo

Institute of Technology) [57]. The rpoS gene encodes σS factor, a transcription fac-

tor known to be present at increased levels during late exponential phase and early

stationary phase [58, 59]. Funabashi et al. previously demonstrated that cells with

an rpoS::GFP fusion only showed fluorescence in stationary phase [60]. Second, we

tested the promoter that controls transcription of osmY [61, 62]. Expression of osmY

is dependent on σS in vivo [63]. Schellhorn et al. previously demonstrated that an

osmY::lacZ fusion generated the highest transcriptional signal in stationary phase as

compared to nine other σS-dependent promoter-lacZ fusions [55, 56]. In addition, the

osmY::lacZ fusion generated only a small transcriptional signal during exponential
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Figure 2-6: To test and verify function of the constitutive, stationary phase and
exponential phase transcriptional control devices, each control device was assembled
with the GFP generator (BBa E0840), and the fluorescence of E. coli cultures with
each device was monitored over time. A plot of the change in fluorescence per unit
time (normalized GFP synthesis rate) versus the cell density (OD600nm) for each
device is shown. The constitutive transcriptional control device produced a high GFP
synthesis rate irrespective of cell density. The stationary phase transcriptional control
device produced a low initial GFP synthesis rate which increased with culture cell
density. The exponential phase transcriptional control device produced an initially
high GFP synthesis rate which dropped off as cell density increased. Data shown are
averages of triplicate measurements of cultures grown from three individual colonies
of each device. Error bars are the 95% confidence interval of the mean of the three
independent cultures.

growth. We constructed both a short and long version of the osmY promoter. The

short osmY promoter (BBa J45993) consisted of only 57 base pairs encompassing

the -35 and -10 promoter regions, while the long osmY promoter (BBa J45992) in-

cluded 199 base pairs [62]. Preliminary tests demonstrated that only the long osmY

promoter met our requirements for control device function: it produced a low GFP

synthesis rate during exponential growth and a high GFP synthesis rate in stationary

phase (Figure 2-6). Thus, we selected the long osmY promoter as our stationary

phase transcriptional control device.
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Since we had already engineered a stationary phase transcriptional control device

(BBa J45992) and we had access to an “off-the-shelf” working transcriptional inverter

(BBa Q04401) from the Registry [64], we opted to construct an exponential phase

transcriptional device by combining the osmY promoter and transcriptional inverter

(an inverter is a device that converts a HIGH input signal to a LOW output signal and

vice versa). The resulting composite exponential phase device (BBa J45994) worked

well when tested: the device only produced a high GFP synthesis rate in exponential

phase (Figure 2-6). As expected, the timing of the exponential and stationary phase

devices are well-coordinated, with the GFP synthesis rate of the exponential phase

device decreasing just as the GFP synthesis rate of the stationary phase device in-

creases. Our reuse of a preexisting transcriptional inverter from the Registry saved

us considerable effort in constructing an exponential phase control device. Moreover,

functional composition of the stationary phase promoter and transcriptional inverter

yielded an exponential phase transcriptional control device that worked as designed.

2.3.4 Growth-dependent regulation of odorant production

To enable growth-dependent regulation of odorant production, we used the engi-

neered exponential and stationary phase control devices to control the wintergreen

and banana odorant enzyme generators, respectively. Since reliable functional com-

position of genetically-encoded devices remains a challenge [23], we could not assume

that the transcriptional control devices would properly regulate the odorant enzyme

generators simply because they correctly regulated a GFP test device. Thus, to

evaluate the function of the constitutive, exponential and stationary phase odorant

generators, we quantified the odorant production of cultures at different cell densi-

ties using gas chromatography. The exponential phase wintergreen odorant generator

(BBa J45181) produced methyl salicylate, but its methyl salicylate levels were indis-

tinguishable from the constitutive device during stationary phase (Figure 2-7). In

contrast, the stationary phase banana odorant generator (BBa J45250) worked as

designed: the composite device produced little isoamyl acetate at low cell densities

and more isoamyl acetate in stationary phase (Figure 2-8). As a comparative control,
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Figure 2-7: (A) The constitutive wintergreen odorant generator (BBa J45120) is
made up of the constitutive transcriptional control devices and the BSMT1 en-
zyme generator. (B) The exponential phase-dependent wintergreen odorant generator
(BBa J45181) is made up of the exponential phase transcriptional control device and
the BSMT1 enzyme generator. (C) To demonstrate growth phase-dependent winter-
green odorant production, relative methyl salicylate concentrations of cultures of the
constitutive and exponential phase-dependent wintergreen odorant generators were
measured at different cell densities (OD600nm). The constitutive and exponential
phase wintergreen odorant generators produced similar levels of methyl salicylate at
all cell densities examined. We conducted two independent experiments (days 1-2).
To aid visual comparison of the two odorant generators, a linear fit to the data for
each device is shown.

the constitutive banana odorant generator (BBa J45200) produced isoamyl acetate

across all cell densities.

2.4 Discussion

2.4.1 Successes in reprogramming bacterial odor

There are five successes from our work that are worth noting. First, we identified a

bacterial chassis for odorant production that is free of the natural, fecal odor of most

E. coli strains. The odor-free chassis is useful for ensuring that the natural odor of E.
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Figure 2-8: (A) The constitutive banana odorant generator (BBa J45200) is made up
of the constitutive transcriptional control device and the ATF1 enzyme generator. (B)
The stationary phase-dependent banana odorant generator (BBa J45250) is made up
of the stationary phase transcriptional control device and the ATF1 enzyme generator.
(C) To demonstrate growth phase-dependent banana odorant production, isoamyl
acetate concentrations of cultures of the constitutive and stationary phase banana
odorant generators were measured at different cell densities (OD600nm). As expected,
the stationary phase banana odorant generator produced very little isoamyl acetate
at low cell densities but its isoamyl acetate production increased with cell density.
By comparison, the constitutive banana odorant generator produced more isoamyl
acetate at lower cell densities than the stationary phase banana odorant generator.
We conducted three independent experiments (days 1-3). To aid visual comparison
of the two odorant generators, an empirical fit to the data for each device is shown.
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coli does not overpower any engineered odors. Second, we implemented wintergreen

and banana odorant generators that use exogenously supplied precursors. Blind smell

tests demonstrated that most people can smell the wintergreen and banana odorants

produced in culture. Third, we successfully engineered exponential and stationary

phase transcriptional control devices. The exponential and stationary phase con-

trol devices can be combined with a GFP generator in order to produce regulated,

growth-dependent protein production. Fourth, we combined the stationary phase

transcriptional control device with the banana odorant enzyme generator to produce

regulated banana odorant production. Finally, taken together, our results demon-

strate that odorant-producing enzymes can serve as genetically-encoded reporters of

gene expression. Odor-based reporters complement existing optically-based reporters

such as β-galactosidase, fluorescent proteins, and luciferases. Furthermore, odor-

based reporters may prove useful in situations in which direct culture sampling and

measurement is difficult, such as industrial fermentation where off-gas analysis by gas

chromatography is already common [65].

2.4.2 Failures in reprogramming bacterial odor

In designing a system for producing wintergreen odorant during exponential growth

and banana odorant in stationary phase, we were unable to regulate wintergreen odor-

ant production in a growth-dependent fashion. The exponential phase wintergreen

odorant generator (BBa J45181) did produce wintergreen odorant when cultures were

supplemented with salicylic acid, but the exponential device produced methyl sali-

cylate levels indistinguishable from the constitutive device during stationary phase

(Figure 2-7). Furthermore, methyl salicylate production was roughly linear in cell

density. There are two possible explanations for the experimental results. First, as-

suming that the control devices regulated the BSMT1 generator similarly to the GFP

test device, then the experimental results suggest that enzyme concentration was not

rate-limiting in methyl saliylate production. Instead, the substrate salicylic acid or

the cofactor S -adenosyl-L-methionine may be limiting. Although rough estimates

of absolute methyl saliclylate levels suggest that at most ∼ 10% of the exogenously
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supplied precursor is consumed in the assay, the intracellular concentration of sal-

icylic acid could be limiting. Alternatively, the constitutive and exponential phase

transcriptional control devices may regulate the BSMT1 generator differently than

the GFP test device. Either both control devices maintained BSMT1 expression in

stationary phase, or both devices turned off BSMT1 expression. In other words, func-

tional composition of the transcriptional control devices with the BSMT1 generator

failed. We cannot definitively exclude either explanation based on the data.

2.4.3 Application of synthetic biology approaches to metabolic

engineering.

In drawing lessons from our experiences in reprogramming bacterial odor, it is worth

considering what is unique to the work and what may apply more generally to

metabolic engineering. In most classical metabolic engineering projects, the goal

is to produce a particular chemical at a target yield as defined by a specific applica-

tion [66, 67]. In contrast, the goal of Eau d’E coli was to engineer bacterial odorants

to change the odor of cultures in a regulated fashion. Thus, we were able to choose

which odorants to produce based on a preliminary evaluation of different candidate

odorants. Moreover, since the human olfactory system is known to be quite sensitive

[68, 69], production of just 0.3 µM methyl salicylate or 20 nM isoamyl acetate can

be sufficient to smell and therefore constitute successful implementation of our en-

gineered system (http://www.leffingwell.com/odorthre.htm) [70]. However, as

a practical aside, increased isoamyl acetate production by industrial microbes does

have commercial applications in the food flavoring industry [46].

In metabolic engineering, most engineered biosynthetic systems are built from ad

hoc collections of genetic components that can be assembled, tested, and used in

screens or selections if necessary. In this work, we instead used abstraction to sys-

tematically compile overall system function, reprogramming bacterial odor, into two

biosynthetic devices. The biosynthetic devices were in turn compiled to transcrip-

tional devices, and then BioBrick standard biological parts, and finally nucleic acid
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sequences. Thus, abstraction provides an approach for systematically mapping high-

level system behavior, such as reprogramming bacterial odor, to low-level primary

sequence data. As a result, abstraction allows biological engineers to cope with the

complexity of engineering multi-component synthetic biological systems; as the num-

ber of components in engineered biological systems increases from a few dozen parts

to hundreds of interacting devices, abstraction will become even more important.

Meanwhile, standards that support the physical composition of genetic parts make

construction of many-component, engineered biological systems, including metabolic

engineering projects, both easier and faster. For example, in the Eau d’E coli project,

we used the BioBrick standard for physical composition of genetic parts. Our use of

the BioBrick physical composition standard offered four advantages over classical

molecular cloning approaches. First, our use of a uniform part assembly procedure

reduced the learning curve associated with system construction. Making construction

easier was critical for our team of novice biological engineers to begin construction

of Eau d’E coli devices quickly despite limited prior research experience. Second,

standardization of the assembly procedure tends to make the device and system con-

struction process more reliable since the same reagents and protocols are used at

each stage. Third, since our system was constructed of BioBrick parts, we could

readily reuse preexisting parts from the Registry in our system design. For exam-

ple, we reused a promoter, a ribosome binding site, transcriptional terminator, GFP

generator, and transcriptional inverter from the Registry (BBa R0040, BBa B0032,

BBa B0015, BBa E0840, and BBa Q04401). Each reused part could be readily com-

bined “off-the-shelf” with our newly constructed parts because all parts adhered to

the BioBrick assembly standard. Our reuse of parts resulted in significant time and

effort savings since we did not have to develop parts de novo or redesign reused parts.

Fourth, the parts that encode growth-dependent transcriptional regulation and odor-

ant production are now freely available to the community via the Registry of Standard

Biological Parts for reuse and improvement (Table 2.4).

Functional composition builds upon physical composition: parts must not only be

readily connected but should also function as expected. Just as standards for physical
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Part number Description Source Works?
BBa J45004 BSMT1 : converts salicylic acid Petunia × Yes

to wintergreen odorant hybrida
BBa J45014 ATF1 : converts isoamyl alcohol S. cerevisiae Yes

to banana odorant
BBa R0040 constitutive promoter Registry Yes
BBa J45992 stationary phase-dependent E. coli osmY Yes

transcriptional control device promoter
BBa Q04401 tetR transcriptional inverter Registry Yes
BBa J45994 exponential phase-dependent composite Yes

transcriptional control device
BBa J45995 stationary phase-dependent composite Yes

GFP generator
BBa J45996 exponential phase-dependent composite Yes

GFP generator
BBa I7100 constitutive GFP generator Registry Yes
BBa B0015 part without GFP Registry Yes
BBa J45119 BSMT1 enzyme generator composite Yes
BBa J45199 ATF1 enzyme generator composite Yes
BBa E0840 GFP generator Registry Yes
BBa J45120 constitutive wintergreen composite Yes

odorant generator
BBa J45181 exponential phase-dependent composite No

wintergreen odorant generator
BBa J45200 constitutive banana composite Yes

odorant generator
BBa J45250 stationary phase-dependent composite Yes

banana odorant generator

Table 2.4: BioBrick standard biological parts for reprogramming bacterial odor.
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composition ensure that any two parts that adhere to a physical composition stan-

dard can be readily combined, standards for functional composition ensure that any

two parts or devices function as expected when combined. Today, we lack adequate

standards to ensure reliable functional composition; the only proposed standard for

functional composition is the use of PoPS as a common signal carrier for transcrip-

tional devices. The PoPS standard ensures that the output(s) of one transcriptional

device can be connected to the input(s) of another PoPS-based device. Additional

standards, such as prescribed PoPS signal ranges that ensure transcriptional device

signal levels are well-matched, are needed so that devices can be developed to meet

proscribed functional specifications, and evaluated for the reliability of their use in

combination.

In the absence of sufficient standards for functional composition, we relied on

trial-and-error in building the Eau d’E coli system. Such ad hoc approaches can yield

success. For example, to construct an exponential phase transcriptional control de-

vice, we combined a stationary phase promoter with an “off-the-shelf” transcriptional

inverter. Both devices were independently characterized, and we successfully com-

bined them to demonstrate growth-phase dependent GFP production (Figure 2-6).

Similarly, to construct a stationary phase banana odorant generator, we combined

a stationary phase PoPS source with the banana odorant enzyme generator. Again,

both devices had been independently characterized and behaved as expected when

combined (Figure 2-8). Nevertheless, functional composition of transcriptional de-

vices remains challenging. For example, when we combined the exponential phase

control device with the wintergreen odorant enzyme generator, the resulting com-

posite device produced methyl salicylate during exponential phase, but we did not

measure lower methyl salicylate levels in stationary phase as compared to the consti-

tutive wintergreen odorant generator (Figure 2-7).

Metabolic engineering depends on functional composition of not only transcrip-

tional devices but also biosynthetic devices. For instance, the Eau d’E coli system

could be further extended to produce odorants from endogenous cellular metabolites

rather than supplied exogenous precursors. Such an extension would require addi-
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tional biosynthetic devices that convert natural cellular metabolites to the odorant

precursors salicylic acid and isoamyl alcohol. In fact, salicylate production from the

cellular metabolite chorismate has already been shown in E. coli [71]. (Salicylate

is the anion of salicylic acid; at intracellular pH, salicylic acid is primarily in its

anion form.) Thus, we could construct biosynthetic device(s) that catalyze the con-

version of chorismate to salicylate. By combining the salicylate generator with the

wintergreen odorant generator, we could construct a complete wintergreen odorant

biosynthetic system based on methyl salicylate production from cellular metabolites

(Figure 2-9). Similarly, in the case of banana odor, isoamyl alcohol production from

the cellular metabolite α-ketoisocaproate has recently been reported in E. coli [72].

Thus, we might similarly engineer biosynthetic device(s) that catalyze the conver-

sion of α-ketoisocaproate to isoamyl alcohol and again combine the device(s) with

the banana odorant generator to make a complete banana odorant biosynthetic sys-

tem (Figure 2-9). The challenge in functional composition of biosynthetic devices

is therefore the classical metabolic engineering challenge of matching or maximizing

flux through the set of devices [73, 74, 75, 76]. It is interesting to speculate whether

it would be useful or even possible to define a common signal carrier, such as flux,

for biosynthetic devices. Could we then set standards for minimum and maximum

fluxes through biosynthetic devices? Similarly, could biological engineers construct

libraries of catabolic devices that degrade any number of feedstocks to a small set

of core metabolites as well as libraries of anabolic devices that can convert those

core metabolities to any number of useful chemicals? Although such steps pose great

technical challenges, they also hold promise for further reducing the work needed to

develop engineered biosynthetic systems.

2.5 Conclusions

Synthetic biology approaches are clearly not now sufficiently advanced to replace

classical metabolic engineering techniques. Nevertheless, fundamental engineering

principles, such as abstraction and standardization, can already enable rapid proto-
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Figure 2-9: (A) The wintergreen odorant biosynthetic system is made up of two
biosynthetic devices: a salicylate generator and a wintergreen odorant generator
(BBa J45120). The salicylate generator catalyzes the conversion of the cellular
metabolite chorismate to salicylate via enzymes PchA and PchB. (Salicylate is the
anion of salicylic acid; at intracellular pH, salicylic acid is primarily in its anion
form.) The wintergreen odorant generator catalyzes the conversion of salicylic acid
to methyl salicylate via the enzyme BSMT1. Methyl salicylate has a wintergreen
odor. (B) The banana odorant biosynthetic system is made up of two biosynthetic
devices: an isoamyl alcohol generator and a banana odorant generator (BBa J45200).
The isoamyl alcohol generator catalyzes the conversion of the cellular metabolite α-
ketoisocaproate to isoamyl alcohol via enzymes Kivd and ADH2. The banana odorant
generator catalyzes the conversion of isoamyl alcohol to isoamyl acetate via the en-
zyme ATF1. Isoamyl acetate has a banana odor.
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typing of many-component, biosynthetic systems. One benchmark for the power of

synthetic biology approaches is the annual international Genetically Engineered Ma-

chines (iGEM) competition (http://igem.org). In iGEM, teams of undergraduate

students engineer synthetic biological systems of their own design. In fact, we repro-

grammed bacterial odor as a part of the 2006 competition. The iGEM students are

largely novice biological engineers, many of whom have little or no prior biological re-

search experience. Using the BioBrick physical composition standard, the teams reuse

standard genetic parts from the Registry and design any new parts needed for their

engineered biological system. As new technical standards are developed, iGEM pro-

vides a convenient framework to further examine whether these standards make the

process of engineering biology easier. We propose that synthetic biology approaches,

when combined with classical metabolic engineering techniques, have the potential to

dramatically reduce the resources needed to engineer biosynthetic systems. In par-

ticular, synthetic biology may expand access to metabolic engineering from a small

number of expert labs and companies to a broader base of novice biological engineers.
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Chapter 3

Design of transcription-based logic

devices

3.1 Summary

To aid in the design of transcription-based logic devices, I constructed a physicochem-

ical model of the simplest transcription-based logic device: an inverter composed of a

homodimeric repressor and an operator to which it binds. The model serves as a tool

to explore which parameters most strongly impact device performance and to identify

target values for those biochemical parameters over which I have some control, such

as repressor-DNA affinity, translation rate and copy number.

My modeling results lead to a few key observations:

1. Quantitative measures of device performance, as characterized by the transfer

curve, include the trip point, swing, gain, and noise margins.

2. The lumped parameter αi, defined as the product of the ratio of mRNA and

protein synthesis to their decay rates and copy number, determines the device

input protein swing, the range of input protein concentration over which the

device operates, as well as the device fan out, the maximum number of outputs

the device can drive.

3. The dissociation constants governing the binding equilibrium between monomers
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and dimers and between unbound and bound operator DNA are the primary

determinants of the shape of the device transfer curve. I obtain some estimates

for target values of the dissociation constants.

4. The effects of explicit inclusion of nonspecific DNA binding on device perfor-

mance must be compensated for by increased cooperativity of protein binding

to operator DNA.

5. An alternate device design in which several nonfunctional, high-affinity pro-

tein binding sites are present yields a substantially improved transfer curve, as

measured by the noise margin.

3.2 Introduction

Synthetic biology distinguishes itself from previous efforts in genetic engineering in

its emphasis on genetically-encoded control of system behavior, among other things.

Thus, in Chapter 2, the system specification was not merely to produce odorants

but to do so in a regulated fashion. To achieve the desired system behavior, I used

transcriptional regulation and in particular, transcription-based logic. Here, I explore

the design of transcription-based logic devices in more detail.

Digital devices are devices that represent signals as being in one of two possible

states: logical zero or logical one [77]. Digital devices receive one or more digital

signals as input and produce one or more digital signals as output. Digital logic

devices perform simple boolean logic operations, such as logical NOT, logical AND,

and logical OR [78]. For example, an inverter implements a logical NOT operation by

converting its input to the opposite output: logical zero input is converted to logical

one output, and vice versa. An inverter is one of the simplest digital logic devices,

because it receives only one input and produces only one output. Thus, inverters offer

a useful model logic device through which to explore issues in device design.
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Figure 3-1: (A) An inverter receives an input, performs a logical NOT operation, and
produces a corresponding output. In transcription-based inverters, both input and
output signals are encoded as a transcription rate in units of PoPS. (B) An inverter
is composed of four parts: a ribosome binding site (RBS), a coding sequence for a
homodimeric repressor, a transcriptional terminator (stop), and a cognate promoter.

3.2.1 Representing digital signals in transcription-based de-

vices

Transcription-based logic devices encode device signals as a transcription rate (Fig-

ure 3-1). Logical zero is represented as a low transcription rate, and logical one

is represented as a high transcription rate. Transcriptional devices must be able

to unambiguously represent the two signal states to function as digital devices. In

transcription-based logic, an inverter is composed of four parts: a ribosome binding

site (RBS), a coding sequence for a homodimeric repressor, a transcriptional termina-

tor (stop), and a cognate promoter. A high input drives transcription of the repressor.

Upon translation and folding, the repressor dimerizes and binds to a cognate opera-

tor DNA sequence within the promoter to turn off transcription (Figure 3-2). A low

input, meaning no transcription of the repressor, results in the promoter producing a

transcription output signal.

Since transcription rates are the basis for logical signals in transcription-based

devices, it is important to specify the units of transcription rate. Here, the unit of

measure for transcription rate is the rate at which RNA polymerase transcribes past

a certain point on the DNA molecule called polymerases per second and abbreviated
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Figure 3-2: The input signal to a transcription-based inverter drives transcription of
a gene encoding a repressor. The mRNA is translated to yield a repressor monomer.
The repressor dimerizes and binds to its cognate promoter thereby regulating the
output signal.

PoPS [21, 22]. I use to the symbol Π to denote a signal in units of PoPS. Πi denotes

the input signal to a device or the PoPS just before the ribosome binding site (at the

device input). Πo denotes the output signal from a device or the PoPS just after the

promoter (at the device output).

A related but distinct parameter is the mRNA synthesis rate for a coding sequence

or how many full length transcripts are synthesized from a coding sequence in a given

period of time. This parameter is useful since it governs how many transcripts are

produced from a DNA molecule per unit time. The value of the mRNA synthesis rate

depends on the upstream promoter and the coding sequence itself. Since in general

only the full length transcripts give rise to functional proteins, mRNA synthesis rate

is often the parameter of interest in a system. Usually, the transcription rate and

mRNA synthesis rate are treated as equivalent. However, in this work I draw a

precise distinction between the two rates. Transcription rate, measured in PoPS, is

unique to a particular position on the DNA molecule whereas the mRNA synthesis

rate, measured in transcripts per second, is unique to a particular coding sequence on

the DNA molecule. So the transcription rate at the end of a coding sequence should

be equivalent to the mRNA synthesis rate, but the transcription rate at the beginning

of a coding sequence may not be. (It is likely, however, that the transcription rate
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Figure 3-3: A transfer curve for an inverter device is a plot of the device output as
a function of the device input. An ideal transfer curve has high output for all low
inputs and low output for all high inputs (red dashed line). Real transfer curves
approximate idea digital transfer curves (blue solid line). The swing, trip point, and
gain are all features of the device transfer curve.

at the end of a coding sequence is proportional to the the transcription rate at the

beginning.) In order for devices to be universally composable, the boundaries of the

device must be those shown (Figure 3-1), and therefore the relevant units for input

and output signals is PoPS.

3.2.2 Performance metrics for the device transfer curve

A transfer curve describes digital device behavior: it is a plot of device output(s) as a

function of input(s) (Figure 3-3) [78]. In electrical engineering, various metrics have

been developed to evaluate the quality of a device transfer curve [79, 80]. These met-

rics facilitate comparison of different device designs. Here, I focus on four measures

of the device transfer curve: the swing, trip point, gain, and noise margin.

The swing is the range of PoPS values over which the device operates. For the

device to operate properly, the swing should be much greater than the stochastic

fluctuation in the signal or else the device will change states sporadically. For devices

to behave well in series, the input and output swing should be comparable. Hence,

49



the swing is a quantitative parameter of the device transfer curve.

The trip point (also known as switch point or switching threshold) ΠM is the point

at which the Πi = Πo. Ideally, ΠM should be approximately half the swing of the

device, so that both noise margins (discussed below) have approximately equal size.

Thus, the deviation of ΠM from this value is one metric for assessing the quality of a

transfer curve.

The gain of a device is simply the slope of the transfer curve, denoted g here.

(Note that the gain is defined as the absolute value of the slope so that the sign can

be ignored.)

g =

∣∣∣∣dΠo

dΠi

∣∣∣∣ (3.1)

As mentioned before, for inputs in the valid low or valid high ranges, the device

should suppress noise meaning that the absolute value of the slope of the transfer

curve should be less than one (g < 1) and for the transition region, the gain is then

necessarily greater than one (g > 1) to ensure that the device never produces an

ambiguous signal. Unless otherwise specified, I use the term gain to refer to the slope

of the transfer curve around the trip point.

Taken together, the swing, trip point, and gain offer useful measures of device

performance. Each characteristic quantifies a particular aspect of the device trans-

fer curve. Additionally, I can experimentally measure each characteristic either from

the device transfer curve itself or independently from the device transfer curve. The

drawback to these three metrics is that their relative importance to device perfor-

mance is not clear. For example, if device A has a high gain but a very low trip

point, how does it compare to device B which has lower gain but a trip point close

to half the swing? Thus, in terms of both modeling device behavior and comparing

different device designs, it is useful to have a single performance metric to assess

device performance. Such a metric would enable direct comparison between different

designs. The noise margin, discussed below, offers a single quantitative measure of

device performance.

In logic devices, an important issue is that of noise. A key question is how much
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noise can a device tolerate and still behave correctly. To cope with noise, a digital

device must improve the quality of the signals it propagates. To do so, devices must

suppress noise for signal values representing logical zero or one and amplify noise over

the transition range. Such a transfer curve ensures that the device output will always

reside in the logical zero or one state. The noise margin is “the maximum spurious

signal that can be accepted by the device when used in a system whilst still giving

correct operation” [81]. Noise which exceeds the noise margin can cause erroneous

switching of state. As the device engineer, I want to maximize the noise margin so that

the device is as robust as possible to signal fluctuation from either intrinsic (stochastic

signal fluctuation) or extrinsic noise (variation in chassis components) [82]. Thus, an

important quantitative measure of device performance is the size of the noise margin.

Hill demonstrates a simple technique for calculating the noise margin [81, 83]. The

method, called maximum square, defines the noise margin as the length of a side of the

largest square that can be fit entirely within the loops created by two superimposed

transfer curves (Figure 3-4). The noise margin, under this definition, specifies exactly

how much noise the device can tolerate in the worst-case scenario of an infinite series

of devices that experience noise at every input. The noise margin is a convenient

measure of device performance, because it encapsulates the information in the trip

point, gain or swing. A device with a poor swing, trip point, or gain will have a small

noise margin. The primary drawback to the noise margin metric is that it cannot

be directly measured experimentally but rather must be inferred from the transfer

curve.

3.2.3 Modeling a transcriptional inverter

In order to gain a better understanding of the behavior of transcription-based logic de-

vices, I developed a mathematical model that describes the behavior of these devices.

The purpose of the model is to identify those parameters to which device behavior is

most sensitive and to elucidate the relationship between these biochemical parameters

and device performance, as captured by the transfer curve. The model should aid

device design in two ways. First, it should provide target ranges for those parameters
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Figure 3-4: To compute the noise margin of a transcription-based inverter, superim-
pose two transfer curves for an inverter device. The blue curve is a plot of output (y
axis) versus input (x axis), whereas the green curve is a plot of input (y axis) versus
output (x axis). Then, draw the largest possible square inside each loop to obtain
the maximum noise margin (N) of the device.

whose values I can control as the device engineer. Second, it should facilitate the

study of alternate device designs that lead to improved device behavior.

There have been several previous efforts to model the behavior of simple logic

devices [84, 85, 86, 25]. My work distinguishes itself from previous efforts in two

key respects. First, as discussed already, I use transcription rate (PoPS) rather than

protein concentration as the common signal carrier. The advantage of using tran-

scription rate as the signal carrier is that devices are composable: any device may

be connected to any other device. Devices whose output is protein concentration

can only be connected to devices which take the same protein as input. The focus

on composable devices is critical to developing general guidelines for device design.

Second, most previous modeling efforts ask the question, given typical biological pa-

rameter values, what kind of device performance is expected? In this work, I instead

ask, given that I as the device engineer have some measure of control over device

design, how should I design the device in order to achieve the best possible device
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performance? By approaching the model from a purely design perspective, I obtain

somewhat different results.

In this chapter, I reserve the terms input and output to refer to the input signal

and output signal respectively. I refer to the DNA encoding the repressor as the

device input and the DNA encoding the promoter as the device output. Similarly, I

will use the term device input mRNA to refer to the mRNA encoding the repressor

and device input protein to refer to the repressor itself.

3.3 Model formulation

3.3.1 Assumptions

As in any model of a biological system, I make several simplifying (and possibly

invalid) assumptions in deriving the model. These assumptions significantly impact

the construction of the model and the device behavior that the model represents. I

list here some of the more sweeping assumptions behind my model so that the model

development is as transparent as possible.

1. I use reaction rate equations to model all reaction events meaning that the

system is assumed to be continuous and deterministic in nature. In reality,

within an Escherichia coli cell, molecular species are often present in small

numbers and thought to be subject to stochastic fluctuation.

2. All binding events are at equilibrium. It is relatively common to treat the

binding of two proteins as a rapid process that is in equilibrium because of the

relatively short timescale of binding events relative to other reactions in the

system like synthesis and decay. Additionally, I sometimes assume that synthe-

sis/decay processes are at steady-state. The purpose of this model is to gain a

general understanding of which parameters have a significant impact on inverter

transfer curves. Therefore, by making these assumptions, I may concentrate on

the statics of inverter behavior rather than the dynamics. However, it is not
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clear that synthesis and decay processes will be at steady state in the cell, and

therefore this assumption may not hold.

3. The device does not place a significant demand upon the cell’s resources. My

model implicitly assumes that the critical machinery, materials, and energy of

the cell necessary for device operation is not a limiting factor in device behavior.

Therefore, the effect of the available resource pool is captured in the parameter

values themselves. Again, this assumption is relatively common in these types

of models, but its validity has not been conclusively established.

4. I do not explicitly model the effects of cell growth and DNA replication upon

device behavior. As the cell grows and divides, mRNA and protein undergoes

dilution. Typically, biological models describe this process as a constant growth

rate which simply increases the degradation rate of molecular species. I omit

this from my model and assume that my degradation rate constants encompass

these effects as well. Additionally, the amount of DNA in the cell is not fixed.

In fact, just before division the DNA content of the cell should be twice its value

immediately after division. I neglect these effects and assume a constant DNA

copy number.

5. I ignore many of the details of the biological processes that I model. For ex-

ample, I describe transcription and translation each with a single rate constant

corresponding to the number of transcripts per gene copy per second and the

number of proteins per transcript per second respectively. These two lumped

rate constants omit the fact that both transcription and translation are really a

series of binding and reaction steps that include both initiation and elongation.

This assumption is again relatively common in these types of models but may

be inappropriate in this context.

6. The device input protein binds as a dimer to the device output regulating the

output signal. Transcription from the naked device output occurs at some

maximum rate. The bound device output is in a completely repressed state
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such that the output signal is zero. The fraction of device outputs bound to a

single device input protein is negligible and considered zero.

3.3.2 Specification of biochemical reactions

The first step in modeling any biological system is to define the system: enumerate

the relevant chemical reactions that will be included in the model. In this step, I

utilize several of the assumptions previously discussed. Since my models describe

transcription-based logic devices, I define device behavior as output transcription

rate as a function of input transcription rate. In the case of the transcription-based

inverter, the input signal leads to mRNA synthesis from DNA encoding a repressor

(the device input). Translation of the resulting mRNA transcripts leads to repressor

synthesis. The repressor binds to the operator region (device output) regulating the

output transcription rate and correspondingly the mRNA synthesis rate. The model

must capture these biological reactions.

Defining a device in this way allows me to draw a distinction between the device

input (the repressor) and the device output (the promoter). The device input and

output need not exist on the same piece of DNA and thus may in fact have different

copy number. The complete list of variables, species and parameters used are listed

(Tables 3.1 and 3.2). In the species names, DNA, mRNA and protein species are

denoted with d, m and p respectively. In the parameter names, k denotes a kinetic

rate and K represents a equilibrium dissociation constant. For the subscripts, i

denotes input, o denotes output, s denotes synthesis, and d denotes decay.

I list the biological reactions of the model below. Since I prefer to begin with the

simplest possible model that captures the relevant level at which I can design devices,

the only reactions that I include are transcription, translation, mRNA and protein

degradation, repressor dimerization and repressor-operator binding.

55



Variable Definition Units
di device input copies/cell
do device output copies/cell
mi device input mRNA transcripts/cell
mo device output mRNA transcripts/cell
pi device input protein proteins/cell

pi · pi dimerized device input protein complexes/cell
pi · pi · do dimerized device input protein complexes/cell

bound to device output
dn nonspecific DNA copies/cell

pi · pi · dn dimerized device input protein complexes/cell
bound to nonspecific DNA

da device alternate operators copies/cell
pi · pi · da dimerized device input protein complexes/cell

bound to device alternate operators

Table 3.1: Model molecular species

di

ksmi−−→ di + mi (mRNA synthesis)

mi

kdmi−−→ φ (mRNA degradation)

mi

kspi−−→ mi + pi (protein synthesis)

pi

kdpi−−→ φ (protein degradation)

pi · pi

kdpi−−→ φ (protein degradation)

pi · pi · do

kdpi−−→ do + φ (protein degradation)

pi + pi
K1←→ pi · pi (protein dimerization)

pi · pi + do
K2←→ pi · pi · do (protein-operator binding)

do
ksmo−−−→ do + mo (mRNA synthesis)

Note that ksmi
and ksmo are not rate constants but rather rate variables because both

will vary according to the input transcription signal to the device. This aspect of the

model is discussed further in section 3.4.1. The rates governing mRNA degradation,

protein synthesis and protein degradation are constants in this model.
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Parameter Definition Typical value Units Reference

max(ksmi
) maximum input 1 transcripts/genecopy

second
Drew Endy

mRNA synthesis rate

max(ksmo) maximum output 1 transcripts/genecopy
second

Drew Endy
mRNA synthesis rate

kspi
input protein 0.17 proteins/transcript

second
[87]

synthesis rate
t1/2m mRNA halflife 2 minutes [87]
t1/2p protein halflife 40 minutes [88]
[di]

T device input sites 1 copies/cell none
[do]

T device output sites 1 copies/cell none
[dn]T nonspecific binding sites 4.2 ∗ 106 copies/cell [89]
[da]

T device alternate sites copies/cell
K1 device input protein 8.4 proteins/cell [89, 90]

dimerization
dissociation constant

K2 device input protein 1.3 molecules/cell [89, 90]
dimer-device input
dissociation constant

K5 input protein- 4.2 ∗ 105 molecules/cell [89]
nonspecific DNA
dissociation constant

K6 input protein-singly bound K4/10 molecules/cell none
nonfunctional site
dissociation constant

Table 3.2: Model parameters
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3.4 Model derivation

I begin with a physicochemical model of my sample inverter system. Such a model is

simply a translation of the biological reactions into kinetic equations.

d[mi]

dt
= ksmi

[di]− kdmi
[mi]

d[pi]
T

dt
= kspi

[mi]− kdpi
[pi]

T

d[mo]

dt
= ksmo [do] (3.2)

I derive the degradation rate constants kdmi
, kdpi

, kdmo and kdpo by assuming

that molecules decay at a rate proportional to their concentration. Therefore, the

concentration of a molecule X as a function of time X(t) will adhere to the following

equation.

X(t) = X(0)e−kdxt (3.3)

X(0) denotes the initial concentration of X, kdx is the degradation rate constant for

X and t is time. The halflife of X is the time it takes for the concentration of X to

decrease to half of its initial value X(0). If I know the the halflife of X then I can

calculate the degradation rate constant for X using equation (3.4). Estimates for the

halflives of molecular species in the model are listed (Table 3.2).

kdx =
ln(2)

t1/2x

(3.4)

It is easy to overlook some of the subtleties of the model in the mapping of the

biological reactions into kinetic equations. In this section, I discuss the nuances of

the model, since the decisions I make in developing the model critically impact the

device behavior that the model predicts.
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3.4.1 Obtaining the device transfer curve from the model

A transfer curve specifies the device output as a function of its input. For transcription-

based devices, transcription rates measured in units of PoPs are the physical imple-

mentation of logical signals. Ideally, I should be able to obtain from the model a

device transfer curve of the following form.

Πo = f (Πi) (3.5)

On the basis of equation (3.5), it is clearly important that I be able to easily specify

the strength of the input to the device. In the model’s current form in equation

set (3.2), there is no way to specify input transcription rate to the device except

indirectly by changing the value of the mRNA synthesis rate ksmi
. Instead, I introduce

what is called a drive term in electrical engineering. Denoted Si, the drive term can

vary between zero and one and represents the fraction of maximal strength at which

the input is being driven. Both the input transcription rate Πi and the mRNA

synthesis rate ksmi
should be proportional to the input signal strength Si. Since Si is

dimensionless, the following equation holds.

Si =
Πi

max(Πi)
=

ksmi

max(ksmi
)

(3.6)

Thus, although the value of max(Πi) and the exact relationship between ksmi
and Πi

may be unknown, I can still explicitly specify Si in the model. Effectively, Si is a

non-dimensional form of the device input signal.

In the model, I assume that all device outputs exist in either the unbound (do) or

doubly bound (pi · pi · do) state. All unbound device outputs lead to the same mRNA

synthesis rate max(ksmo) (in units of transcripts per DNA copy per second) of the

downstream coding sequence. All doubly bound device outputs are not transcribed

at all (or min(ksmo) = 0). The maximum output transcription rate occurs when there

is no device input protein present so all device outputs are in the unbound state

do. Therefore, the output transcription rate is proportional to the fraction of device
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outputs in the unbound (do) state. I can therefore define a variable So as the fraction

of maximum output transcription rate and the following equations should hold.

So =
Πo

max(Πo)
=

ksmo

max(ksmo)

=
[do]

[do] + [pi · pi · do]

(3.7)

Rewriting of the model to include Si and So leads to the following set of equations.

Note that the differential equation for [mo] is no longer necessary since the output

variable of interest is So, and it is specified by a separate equation. Again, So is

effectively a non-dimensional form of the device output signal.

d[mi]

dt
= Si max(ksmi

)[di]− kdmi
[mi]

d[pi]
T

dt
= kspi

[mi]− kdpi
[pi]

T

So =
[do]

[do] + [pi · pi · do]
(3.8)

Although the model does not explicitly include the absolute input and output signals

Πi and Πo, it does include the fractional signal strengths Si and So. Thus, this model

should yield the transfer curve as So as a function of Si. I make use of the additional

assumptions enumerated in section 3.3.1 to simplify the model further and ultimately

use the model to generate the device transfer curve.

3.4.2 Use of the Boltzmann distribution to compute the frac-

tion of molecules in each binding state

I have some control over the copy number of the inverter. I can even place the device

input and device output on different plasmids such that they have different copy

number (denoted by [di]
T and [do]

T , respectively). The model should make use of

the constant number of DNA molecules in the cell. Since I assume that all binding

reactions are at equilibrium, the DNA molecules are partitioned between the two

binding states ([do] and [pi · pi · do]) according to a Boltzmann distribution with the
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total number of DNA molecules held fixed [91, 92, 93].

[di]
T = [di] (3.9)

[do]
T = [do] + [pi · pi · do] (3.10)

[do] = [do]
T [do]

[do] + K−1
1 K−1

2 [do][pi]2
(3.11)

[pi · pi · do] = [do]
T K−1

1 K−1
2 [do][pi]

2

[do] + K−1
1 K−1

2 [do][pi]2
(3.12)

Combining the above equations permits specification of So in terms of the dissociation

constants K1 and K2 and the free input protein concentration [pi].

So =
[do]

[do]T

=
[do]

[do] + K−1
1 K−1

2 [do][pi]2

=
K1K2

K1K2 + [pi]2

(3.13)

Since I treat the DNA molecules as distributed between different thermodynamic

states and since all binding reactions are at equilibrium relative to synthesis and

decay reactions, it follows that the regulatory protein pi should also be distributed

among binding states according to the Boltzmann distribution. In the expression for

So above, [pi] refers to the unbound input protein concentration in the cell. It is

important to distinguish between the total concentration of input protein ([pi] + 2 ∗

[pi ·pi]+2∗ [pi ·pi ·do]) in the cell and the amount of unbound protein in the cell ([pi]).

The total amount of input protein, which I denote [pi]
T , depends on the synthesis

and decay rates. The amount of free input protein in the cell, [pi], depends on the

dissociation constants and the number of binding sites within the cell. I can use mass

conservation to obtain an implicit expression for [pi] (equation (3.14)) and solve this

expression numerically for [pi].

[pi]
T = [pi] + 2K−1

1 [pi]
2 +

2[do]
T [pi]

2

K1K2 + [pi]2
(3.14)
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I now rewrite the entire model once more, being careful to distinguish between

[pi] and [pi]
T .

d[mi]

dt
= Si max(ksmi

)[di]
T − kdmi

[mi]

d[pi]
T

dt
= kspi

[mi]− kdpi
[pi]

T

[pi]
T = [pi] + 2K−1

1 [pi]
2 +

2[do]
T [pi]

2

K1K2 + [pi]2

So =
K1K2

K1K2 + [pi]2
(3.15)

3.4.3 mRNA levels are at steady-state relative to protein

levels

Generally, mRNA halflives are much shorter than protein halflives. Estimates of

mRNA lifetimes are approximately two minutes [87]. Others have extended mRNA

halflives to eight minutes by adding secondary structural elements to the transcript

[94, 95, 96]. Protein halflives, however, are much longer with some of the shortest

halflives being between twenty and thirty minutes [97, 98, 88]. Therefore, on average

proteins will outlast mRNA transcripts a minimum of two- to three-fold and usually

at least ten-fold if not more. So I can make an additional simplifying assumption that

the mRNA species is at its steady-state levels relative to protein concentration.

[mi]ss = Si

(
max(ksmi

)

kdmi

[di]
T

)
(3.16)

The mRNA steady-state assumption leads to the following simplified model.

d[pi]
T

dt
= kspi

Si

(
max(ksmi

)

kdmi

[di]
T

)
− kdpi

[pi]
T

[pi]
T = [pi] + 2K−1

1 [pi]
2 +

2[do]
T [pi]

2

K1K2 + [pi]2

So =
K1K2

K1K2 + [pi]2
(3.17)
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3.4.4 Use of the steady-state assumption to generate the de-

vice transfer curve

The model in equation set 3.17 describes the input and output protein concentration

as a function of time for a given input signal (provided as a signal strength between

zero and one). To obtain the transfer curve for the device, I compute the output

signal strength So as a function of the input signal strength Si at steady-state. I

obtain the transfer curve from the following equations.

[pi]
T
ss = Si

(
kspi

max(ksmi
)

kdpi
kdmi

[di]
T

)
[pi]

T
ss = [pi] + 2K−1

1 [pi]
2 +

2[do]
T [pi]

2

K1K2 + [pi]2

So =
K1K2

K1K2 + [pi]2
(3.18)

The key parameters in the model are the dissociation constants, the output part

copy number and the lumped parameter defined in equation (3.19) which I term αi.

The lumped parameter is the maximum attainable steady-state concentrations of the

input protein: when the input signal is at a maximum (Si = 1), [pi]
T
ss = αi.

αi ≡
kspi

max(ksmi
)

kdpi
kdmi

[di]
T (3.19)

Equating the first two expressions in the model (equation set (3.18)) and substituting

αi leads to the following simplified model describing the transfer curve of the inverter.

0 = [pi] + 2K−1
1 [pi]

2 +
2[do]

T [pi]
2

K1K2 + [pi]2
− Siαi

So =
K1K2

K1K2 + [pi]2
(3.20)

Although I do not have an explicit equation for So as a function of Si, I do have an

equation specifying So as a function of the free monomeric input protein concentration

[pi] as well as an equation relating [pi] to Si. Therefore, the model will still generate

a device transfer curve for So versus Si for the transcription-based inverter.
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3.5 Model analysis

The device behavior that the model predicts depends most critically on the assump-

tions made during construction of the model but also on the parameter values chosen.

The parameters which determine device behavior are αi, [do]
T , K1 and K2. Each of

these parameters will have a different impact on device behavior, and experimentally,

I have differing degrees of control over them. I discuss each model parameter in turn.

3.5.1 αi determines the input protein swing and is responsive

to tuning

The lumped parameter αi represents the maximum steady-state device input protein

concentration and thus determines the input protein swing of the device. Although

the device signal is encoded as a transcription rate, the protein concentration range

over which the device operates is also important. The value of αi should be sufficiently

high such that stochastic noise in protein number is unlikely to switch signal state.

Yet if αi is too high, then just a handful of devices will place an unacceptably high

operational demand upon the cell which may cause altered cell behavior. Ideally,

the target value for αi should be as low as possible without rendering the device

vulnerable to stochastic fluctuation, in order to minimize device demand on the cell.

As the device designer, I have some measure of control over αi by tuning the

various parameters that constitute the lumped parameter. I can alter the value of

kspi
by using different ribosome binding sites. However, translation initiation appears

to be a somewhat complex variable to tune, since changes in the Shine-Dalgarno

sequence may also affect transcription rates [99]. Researchers have shown 200-fold

range in gene expression by changing the translational initiation signal, but most of

this change is attributable to altered mRNA levels possibly due to protection of the

mRNA by bound ribosomes [99]. Yet if the desired goal is to simply change αi then

the fact that max(ksmi
) and kspi

are coupled may not be problematic.

In addition to controlling synthesis rates of transcripts and proteins, I can also

adjust degradation rates. I have very coarse control of the protein degradation rate
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kdpi
, since I can place different degradation tags on the protein to speed up protein

turnover. For example, green fluorescent protein (GFP) had an estimated halflife of

40, 60, or 110 minutes, depending on the sequence of a carboxy-terminal degradation

tag [88]. In the absence of a tag, GFP is indefinitely stable over the course of most

experiments. Enhancing protein stability to decrease degradation rate is significantly

more difficult and therefore not a promising means of control. In the case of the

mRNA degradation rate kdmi
, in vivo mRNA functional halflives range between 40

seconds and 20 minutes which again provides an approximate upper bound on my

range of control [100]. In fact, some engineering work has been done on stabilizing

mRNA transcripts. Transcript halflives between two and eight minutes have been

observed depending on the presence of stem loops at the 5’ and 3’ end of the tran-

scripts [94, 95, 96]. In summary, I currently have relatively coarse and weak control

over protein and mRNA degradation rates.

Finally, I can tune copy number in two ways to influence αi. I may place my device

on plasmids with different replication origins or include tandem duplicate copies of

my device. Thus, I should be able to set [d]T to either single copy, medium copy

(15-20) or high copy (100-200) or integer multiples thereof. Of course, in reality, the

copy number of my device will vary two-fold in vivo over the cell cycle.

Based on typical parameter values (Table 3.2), αi = 50, 000 proteins/cell. Since

typical parameter values are usually measured or estimated from genetic parts de-

signed to optimize protein expression, they tend to yield very high protein concen-

trations. The value of αi is clearly high enough such that random fluctuations in

protein concentration should not be a factor. In fact, the expected value of αi may

be too high since a typical E. coli cell only has 2.6 million proteins in the cell which

means that a single inverter device consumes nearly 2% of the cell’s protein content

[101]. Regardless, it is clear that αi primarily determines the input protein swing and

is likely regulatable over a few orders of magnitude using the techniques described

above.

Transfer curves for different values of αi with all other parameter values set to their

typical values are shown (Figure 3-5, Table 3.2). A couple of issues in the transfer
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curve are immediately apparent. First, the trip point is near the half-maximal input

only when αi = 50. For most of the plots, the trip point is lower than the ideal value.

Thus, either αi should have a value lower than typical parameter estimates, or other

parameter values need to change to compensate for high αi. A second issue is the

small noise margin of the transfer curves. The ideal device transfer curve should have

a low gain region for low as well as high inputs to ensure adequate noise margins.

The low gain regions are necessary to dampen noise effects reducing the likelihood of

erroneous signal propagation, especially when devices are in series. Devices that have

low gain regions for both low and high inputs are desirable, because they restore the

signal at every stage in a series of devices. In the plotted transfer curves, a low gain

region only exists for high inputs. Devices with this kind of skewed transfer curve are

functional, since signal restoration still occurs at every other stage in a device cascade.

Nevertheless, a device with a larger low gain region for low inputs is preferable.

3.5.2 Transcription-based devices have high fan out

The parameter [do]
T represents the copy number of the device output. Every copy of

the device output is capable of driving the transcription of a different output protein.

Therefore, [do]
T specifies the number of outputs the device controls. The maximum

number of outputs that a device can reliably drive is known as the “fan out” in

electrical engineering. If [do]
T exceeds the device fan out, then the device will be

unable to completely repress transcription from each of its outputs leading to a poor

device transfer curve. The number of outputs a device can successfully drive will

depend on the maximum level of input protein and the repressor-operator binding

affinity. Thus, αi is an important factor in the fan out. Based on the estimated value

of αi (Table 3.2), the device fan out is very high, because αi will likely exceed [do]
T

by multiple orders of magnitude, and repressor-operator binding affinity tends to be

quite high.

In considering device behavior for different values of [do]
T , it is important to

distinguish between the scenario in which each copy of the device output drives tran-

scription of a different protein and the scenario in which each copy of the device
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Figure 3-5: Transfer curve of transcription-based inverter using equation set (3.20)
for different values of the lumped parameter αi. The last plot shows the transfer
curve for the typical value of αi (Table 3.2). αi determines the input protein swing of
the device: the range of input protein concentrations over which the device operates.
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output drives transcription of the same protein. Transfer curves for different values

of [do]
T assuming that every copy of the device output regulates transcription of a

different device output protein are shown (Figure 3-6). As [do]
T increases, the output

signal for high input remains very low suggesting that transcription-based devices are

likely capable of driving a large number of different outputs. In fact, the transfer

curve actually looks better as [do]
T increases, since the trip point moves closer to the

ideal value of half the swing.

In the alternate scenario in which every copy of the device output drives tran-

scription of the same protein, the shape of the transfer curve will depend on the copy

number of the device output relative to the device input. If the device output copy

number exceeds the device input copy number by a sufficient margin, even in the

repressed state the output protein may experience a relatively high rate of transcrip-

tion. If the opposite situation occurs, then only a small input signal will be sufficient

to repress synthesis of the output protein.

3.5.3 Dissociation constants determine transfer curve shape

The dissociation constants K1 and K2 determine the concentration of protein at which

half-maximal binding occurs. K1 characterizes the monomer-dimer equilibrium, while

K2 determines the binding equilibrium between the device input protein dimer and

the device output. The transfer curve should have a high gain region for those input

values over which the device output signal transitions from high to low. In biological

terms, such behavior is generally characterized as “switch-like” behavior [102]. One

of the most common origins for switch-like behavior is cooperative interactions in

which the binding of one protein to the operator greatly enhances the affinity of the

operator for a second protein. In the transcription-based device I describe here, the

input proteins indeed form dimers with the operator. Since I assume that the dimer

binds to the operator and the monomer does not, I essentially assume cooperative

binding of the device input protein to the DNA.

Deconvolving the influence of K1 and K2 on the device transfer curve is difficult

since the two dissociation constants appear together in the model, yet K1 also appears
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Figure 3-6: Transfer curve of transcription-based inverter using equation set (3.20)
for different values of the parameter [do]

T , the device output copy number, assuming
that each output drives transcription of a different protein. The first plot shows the
transfer curve for the typical value of [do]

T (Table 3.2). Although the values shown
for [do]

T are not all realistic, they serve to illustrate the effect of [do]
T on the trip

point of the transfer curve.
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alone in the equation governing the free monomeric protein concentration [pi] (see

equation set (3.20)). Experimentation with different values for K1 and K2 shows that

a reasonable transfer curve is obtained using the following approximations.

K1 ≈ αi ∗ 10 (3.21)

K2 ≈ αi/500 (3.22)

Transfer curves for three sets of parameter values are shown (Figure 3-7): the

typical dissociation constant values (Table 3.2), dissociation constant values that

adhere to expressions (3.21) and (3.22), and an intermediate set of values. The curve

adhering to expressions (3.21) and (3.22) more closely resembles the ideal transfer

curve since its trip point is closer to half the swing, and it has a small but non-zero

noise margin. The model produces transfer curves of similar shape irrespective of the

value of αi (not shown) indicating that it is not the absolute value of the dissociation

constants but rather the value of the dissociation constants relative to αi that is

important.

The observed approximations for K1 and K2 can be rationalized intuitively. A

good device transfer curve must have two low gain regions separated by a high gain

region. K2, which defines the binding affinity between the repressor dimer and the

operator, primarily influences the slope in the high gain region, since it is repressor

dimer binding that is responsible for the transition from high output to low output

with increasing input. K2 must be low relative to αi, so that the transition region of

the transfer curve is high gain. As one might expect, if K2 is too low then the device

trip point is very low, because small quantities of protein are sufficient for repression.

K1, on the other hand, defines the binding affinity between repressor monomers. A

relatively high value for K1 (on the order of αi or slightly higher) ensures a low gain

region for low input values. For low inputs, there are low numbers of proteins around

and because the dimerization affinity is low, very few repressors are in the dimeric

state and thus capable of repression. Hence, for low input values, the input remains
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Figure 3-7: Transfer curve of transcription-based inverter using equation set (3.20) for
different sets of dissociation constant values. Typical values obtained from relevant
literature for all model parameters are listed (Table 3.2). In the blue transfer curve,
the following parameter values change: K1 = αi and K2 = αi/500. In the green
transfer curve, the following parameter values change: K1 = αi∗10 and K2 = αi/500.

high. If K1 is too high, then dimers do not form and device output is high irrespective

of input.

Since the dissociation constants have such a crucial impact upon the shape and

quality of the device transfer curve, a natural question is how much control does

the device engineer have over these parameter values. In general, rational design of

protein-protein interactions and protein-DNA interactions is tractable but not rou-

tine. To facilitate control over the dissociation constants, I use synthetic transcription

factors to implement a transcriptional inverter (Chapter 5). Leucine zippers consti-

tute the dimerization domains, and zinc fingers make up the DNA binding domains.

Much work has been done on both of these protein domain families, and there are

many possible candidate domains from which to choose. Leucine zipper pairs dimer-

ize with dissociation constants as low as 50 nM (∼20 proteins/cell) and as high as

3 uM (∼1264 proteins/cell) [103]. Zinc finger proteins have been engineered to bind

DNA sequences with very high affinity (pM range) [104]. Based on the model, such
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binding affinities are more than sufficient for transcription-based logic.

3.5.4 Enhanced cooperativity compensates for explicit con-

sideration of nonspecific DNA

The model as presented in equation set (3.20) neglects nonspecific binding: the bind-

ing of transcription factors to noncognate DNA sequences. In the case of bacterial

repressors, nonspecific DNA binding can involve a significant fraction of the total

protein concentration [105, 106, 107]. The amount of noncognate DNA exceeds the

amount of operator DNA in the cell by several orders of magnitude since every base

in the E. coli genome represents a potential nonspecific binding site for the repressor.

Therefore, nonspecific DNA binding competes with cognate DNA binding for the free

protein concentration in the cell, thereby affecting the device transfer curve. Inclusion

of nonspecific DNA binding requires the addition of a single reaction to the list of

biochemical reactions (see Table 3.1 and 3.2 for species and parameter definitions).

pi · pi + dn
K5←→ pi · pi · dn

Note that I assume that only repressor dimers are capable of binding to DNA. Such

an assumption is essentially equivalent to assuming that repressor monomers make

insufficient contacts with the DNA to constitute a significant fraction of the protein

in the cell. The addition of nonspecific binding only results in a minor modification

to the model.

0 = [pi] + 2K−1
1 [pi]

2 +
2[do]

T [pi]
2

K1K2 + [pi]2
+

2[dn]T [pi]
2

K1K5 + [pi]2
− Siαi

So =
K1K2

K1K2 + [pi]2
(3.23)

The presence of a large number of nonspecific DNA binding sites creates compe-

tition for the pool of free device input protein. Thus, for typical parameter values, a

higher input signal is necessary to achieve the same output signal, when nonspecific

DNA binding is included in the model (Figure 3-8). Thus, the trip point is shifted

72



to slightly higher signal values, and the transfer curve is slightly improved. Param-

eter values that yield reasonable transfer curves when nonspecific DNA binding is

not included in the model do not yield reasonable transfer curves when nonspecific

DNA binding is explicitly included in the model: in order for the device to achieve

significant repression of the output for logic one input, the affinity of the operator

for the protein dimer must be correspondingly higher when nonspecific DNA bind-

ing is explicitly included. Otherwise, most of the device input proteins are bound

nonspecifically and little repression occurs. However, at very high operator affinities,

even small quantities of protein are sufficient for repression, because the specific oper-

ator sites are assumed to have higher affinity than the nonspecific sites, resulting in a

small low gain region for low input. Thus, when nonspecific DNA binding is included

in the model, the device exhibits either a low gain region for low input or complete

repression at high input, but not both. Thus, in order to compensate for the increase

in operator affinity needed for complete repression, the repressor dimerization affinity

must be decreased, so that a low gain region for low input values exists. In short,

inclusion of nonspecific DNA binding in the model exacerbates the tension between

the dual goals of complete repression at high input values and little repression at low

input values. Regardless, nonspecific DNA binding is an important consideration in

transcriptional device design that cannot be neglected.

3.5.5 Transcriptional devices perform sufficiently well to im-

plement combinational digital logic

The transfer curve for the transcription-based inverter device derived from equation

set (3.23) is shown (Figure 3-9). Typical parameter values were used to generate the

curve with the following exceptions: K1 = αi ∗ 100 and K2 = αi/10, 000 (Table 3.2).

A plot of not only the output signal strength as a function of input signal strength but

also the input as a function of output is shown. Graphing the superimposed transfer

curves permits calculation of the device noise margin. The noise margin is about 0.05.

Although the noise margin is not very high, note that it represents the noise margin
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Figure 3-8: Transfer curve of transcription-based inverter using equation set (3.23)
for different sets of dissociation constant values. The model used to generate these
transfer curves explicitly includes nonspecific binding. Typical values obtained from
relevant literature for all model parameters are listed (Table 3.2). To retain the
same basic shape of the transfer curve as obtained in the absence of nonspecific DNA
binding, K1 must be increased ten-fold and K2 decreased ten- to twenty-fold (Figure 3-
8). The increased affinity between the input protein dimer and operator compensates
for the competition from nonspecific DNA binding to achieve sufficiently low output
for logic one input. The decreased dimerization affinity maintains the existence of a
low gain region for low input.
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Figure 3-9: Superimposed transfer curves of a transcription-based inverter using equa-
tion set (3.23). Typical parameter values were used to generate the curve with the
following exceptions:: K1 = αi ∗ 100 and K2 = αi/10000 (Table 3.2). The noise
margin N and trip point SM are shown. The transfer curve is of sufficient quality
that transcription-based devices can be used in combinational digital logic.

in the worst-case scenario of an infinite number of inverters with noise at every input.

The trip point SM , at 0.2, is relatively close to the ideal value of 0.5. Therefore,

using these parameter values, the model yields a transfer curve that suggests that

transcription-based devices may behave sufficiently well to implement combinational

digital logic. Nevertheless, there remains considerable room for improvement.

3.6 Parameter sensitivity analysis

A prime consideration in the rational design of synthetic transcription factors is how

sensitive device behavior is to the biochemical parameters describing the parts. For

instance, if the device only performs well if the protein binds to the DNA within a

narrow target range of affinities, then it is unlikely that the device will work when

built. Sensitivity analysis can give insight into which biochemical parameters are

most important to device behavior. Since the noise margin is a single quantitative
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measure of device performance (encompassing the quality of the swing, trip point, and

gain), I use the noise margin to quantify device behavior in the sensitivity analyses.

There are two possible ways to perform parameter sensitivity analysis. In the

first method, all parameters are held constant except one which is varied over an

appropriate range of values. This approach reflects the fact that it may not be

possible to achieve the target parameter value when designing the device. Therefore,

it is useful to know how close to the target value is sufficient for acceptable device

performance. In the second method, a particular parameter is varied over a range of

parameter values and the other parameters are reoptimized appropriately to give the

best possible device behavior.1 The latter approach reflects the fact that the influence

of different parameters on device performance is often co-dependent. Thus, it may be

that other parameters can compensate if one parameter is not at its optimal value.

Equation set (3.23) was used in all parameter sensitivity analyses. It is reproduced

here for reference. As before, Si is the independent variable describing device input

and So is the dependent variable describing device output.

0 = [pi] + 2K−1
1 [pi]

2 +
2[do]

T [pi]
2

K1K2 + [pi]2
+

2[dn]T [pi]
2

K1K5 + [pi]2
− Siαi

So =
K1K2

K1K2 + [pi]2

3.6.1 Device behavior is insensitive to αi

If the values of the dissociation constants are held fixed as αi is varied, device behavior

is very dependent on αi (Figure 3-5). If instead, the dissociation constants are defined

in terms of αi, and αi is varied over an appropriate range of values, device performance

is insensitive to αi (Figure 3-10). The sensitivity analysis confirms that it is the values

of the dissociation constants relative to αi, not the absolute parameter values, that

affect device performance. Thus, one method of tuning device behavior is simply

1The optimization function used in this sensitivity analysis minimized the difference between
the transfer curve and a square transfer function. Computational difficulties prevented use of noise
margin maximization as the optimization function.
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Figure 3-10: Parameter sensitivity analysis of αi: the maximum steady-state protein
concentration in the cell (or the input protein swing). Device performance is insen-
sitive to αi as long as the dissociation constants are kept in constant proportion to
αi. Thus, it is the value of the dissociation constants relative to αi not the absolute
values of the parameters that affects device performance.

to change the protein concentration range. Clearly, however, the device designer

must use some discretion in tuning the device swing, since stochastic fluctuations can

impact performance for low αi, and excessive device demand may be a factor for high

αi.

3.6.2 Device noise margin is sensitive to K1 and K2

K1 and K2 are the binding affinities for input protein dimerization and input protein

dimer-DNA binding, respectively. Device performance is critically dependent on the

value of K1 and K2 relative to the input protein swing αi. The device noise margin

(in percent of signal strength) versus K1 and K2 using equation set (3.23) is shown

(Figure 3-11). The noise margin is nonzero for high values of K1 (greater than αi)

and very low values of K2 (Figure 3-11). Again, the sensitivity analysis confirms that

low affinity for protein dimerization ensures that there is a low gain region for low
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Figure 3-11: Parameter sensitivity analysis of K1 (the dissociation constant for input
protein dimerization) and K2 (the dissociation constant for input protein dimer-DNA
binding). Device performance is very sensitive to the value of K1 and K2 relative to
αi. In the plot, the noise margin (in percent of signal strength) is indicated via color
as a function of K1 (y axis) and K2 (x axis). See the colorbar to the right of the plot
for the correspondence between color and noise margin. The white lines on the plot
indicate the value of αi used to construct the plot and serve as a reference for the
value of the dissociation constants relative to αi. Thus, K1 should be higher than αi

and K2 should be very low in order to achieve nonzero noise margins.

inputs and high affinity for DNA binding by the dimer ensures that there is a steep

transition region from high to low output.

3.7 Alternate device designs

The model presented in section 3.4 focused on the simplest possible design of a

transcription-based inverter: an input signal measured in PoPS which drives the

transcription of a homodimeric device input protein which regulates the signal from

the device output. By tuning the various biochemical parameters appropriately, the

model yields reasonable device transfer curves. Yet in naturally occurring systems,

biology generally relies on sophisticated layers of regulation to precisely regulate sys-

tem behavior. Here, I consider alternate device designs that lead to improved static
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device performance.

3.7.1 Including nonfunctional high affinity protein binding

sites improves the noise margins of the transfer curve

The primary problem in device behavior is that for low inputs, the size of the low

gain region is very small (Figure 3-9). The result being that the device has rather

small noise margins. If the size of this low gain region could be increased, the device

noise margin would similarly increase. Thus, the device should ideally be altered

such that a higher level of input is needed for repression of the output signal. One

possible solution is to introduce additional, high affinity protein binding sites into the

device. The sites may effectively be able to sequester the repressor for low inputs.

Thus, such a modification may increase the size of the low gain region (for low input)

resulting in enhanced noise margins. The additional protein binding sites should be

nonfunctional, meaning that they have no direct effect on the output signal.

Inclusion of nonfunctional DNA binding sites requires the addition of another

reaction to the list of biochemical reactions. The dimer binds to this nonfunctional

DNA binding site with a dissociation constant of K6.

pi · pi + da
K6←→ pi · pi · da

By again assuming that there are a fixed number of nonfunctional binding sites

([da]
T ) and that these DNA molecules are partitioned between the different binding

states (da and pi ·pi ·da) according to a Boltzmann distribution, I obtain the following

equations.

[da]
T = [da] + [pi · pi · da] (3.24)

[da] = [da]
T [da]

[da] + K−1
1 K−1

6 [da][pi]2
(3.25)

[pi · pi · da] = [da]
T K−1

1 K−1
6 [da][pi]

2

[da] + K−1
1 K−1

6 [da][pi]2
(3.26)
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The addition of these reactions requires modification of the final kinetic model de-

scribing the transfer curve.

0 = [pi] + 2K−1
1 [pi]

2 +
2[do]

T [pi]
2

K1K2 + [pi]2
+

2[dn]T [pi]
2

K1K5 + [pi]2
+

2[da]
T [pi]

2

K1K6 + [pi]2
− Siαi

So =
K1K2

K1K2 + [pi]2
(3.27)

The purpose of including these nonfunctional binding sites is to increase the size

of the low gain region in the transfer curve in order to enlarge the noise margins.

Therefore, at low input signal, the input protein should preferentially bind to the

nonfunctional sites. In other words, the input protein should have greater affinity for

the nonfunctional binding sites than for the operator DNA. To ensure this result, the

following inequality must hold.

K6 < K2 (3.28)

The number of nonfunctional binding sites [da]
T determines how much the noise

margins are increased in the transfer curve. When [da]
T = 0.1 ∗ αi and K6 = K2/10,

the noise margin N increases to 0.1 (Figure 3-12). Thus, the inclusion of nonfunctional

binding sites leads to a much improved transfer curve as long as these sites have higher

affinity than the operator sites and there are a sufficient number of them to actually

make an impact on the transfer curve. Interestingly, by including these alternate

binding sites, the dimerization affinity need not be as weak (Figure 3-9), because the

alternate binding sites are used to sequester low levels of protein dimer. Hence, the

new design permits dimerization affinities that are more characteristic of dimerization

domains.

The explicit inclusion of nonfunctional binding sites leads to a better transfer curve

than nonspecific DNA binding alone. I can design nonfunctional binding sites to have

a higher DNA binding affinity than the functional operator, whereas I assume that the

input protein dimer generally has lower affinity for nonspecific DNA than its cognate

operator. Thus, nonfunctional binding sites create a larger low gain region for low

inputs than nonspecific DNA binding does, thereby leading to a better transfer curve.
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Figure 3-12: Superimposed transfer curves of a transcription-based inverter using
equation set (3.27). Typical parameter values were used to generate the curve with
the following exceptions: K1 = αi∗10, K2 = αi/1000, K6 = K2/10 and [da]

T = 0.1∗αi

(Table 3.2. The noise margin N and trip point SM are improved as a result of the
inclusion of nonfunctional alternate high affinity protein binding sites.

Additionally, since I can more easily control the number of nonfunctional binding sites

than the number of nonspecific DNA binding sites, I can also ensure that the device

is capable of complete repression. Natural repressors, such as lac repressor and λ cI

repressor are well know for having multiple operator sites as well [108, 89]. However,

the multiple operator sites are generally believed to contribute to improved repression

through local concentration and DNA looping effects [108, 109, 110, 89].

3.8 Conclusions

The central challenge in designing digital logic devices using transcription factors

and cognate promoters is achieving good digital behavior, as measured by device

performance characteristics such as the noise margin. Many of the potential device

designs explored in this chapter yield devices that either do not repress transcription

completely or have a small low gain region for low input signals; devices with either
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issue generally have poor noise margins. Device performance is most sensitive to

the binding affinities for input protein dimerization and input protein dimer-DNA

binding, respectively. Careful tuning of the binding affinities relative to the steady-

state concentration of input protein can yield improved device performance. Finally,

I demonstrate that device performance can be further improved via alternative device

designs that include high affinity, nonfunctional protein binding sites that ensure a

low gain region for low inputs without sacrificing complete transcriptional repression

at high inputs.
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Chapter 4

A framework for developing device

family specifications

4.1 Summary

A primary goal of this thesis is to lay the groundwork for implementation of combi-

national digital logic using transcription-based devices. To implement combinational

digital logic, devices must work in combination: the output of one device must be

able to drive the input of a second device. A critical issue in combinational logic is

ensuring that device signals are well-matched so that devices operate over the same

range of signal values. In electrical engineering, the challenge of signal matching

is addressed through device family specifications that prescribe thresholds for valid

signal ranges. Devices that adhere to the device family specification should work in

combination. Here, I present a framework for developing device family specifications

based on device performance metrics, such as device error rate and the amount of

resources that a device draws from the cellular chassis. The framework should aid

device engineers in setting device family specifications and building logic devices that

meet those specifications.
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4.2 Introduction

Engineering many-component biological systems relies not only on designing devices

that work but also designing devices that work in combination. Therefore, an over-

arching goal of this thesis is to lay the groundwork for implementation of combi-

national digital logic using transcription-based devices. Pioneering work by several

groups has demonstrated the implementation of genetically-encoded digital logic de-

vices and simple systems built from those devices [111, 112, 113]. However, eight

years later, the engineering of systems from digital logic devices based on gene ex-

pression remains largely ad hoc. In the Eau d’E coli project, I showed that even if

two transcription-based devices work independently, they will not necessarily work in

combination (Chapter 2). Thus, reliable functional composition of devices remains a

key challenge [23]. A common problem in functional composition of logic devices is

that of signal level matching: the output from one device must be able to drive the

input of another. If device signal levels are mismatched, then devices will not work

in combination (Figure 4-1).

To address the problem of signal level matching, devices can be engineered to

meet a device family specification [78]. A device family specification consists of a set

of functional standards to which a device must adhere. In particular, device family

specifications prescribe thresholds for device signals (Figure 4-2). Devices that adhere

to a device family specification must produce signals that fall within the valid range

defined by the thresholds. Such signal thresholds are set so that the output of one

device can successfully drive the input of a second device, assuming both devices meet

the specification. The signal thresholds of digital devices are further constrained by

the requirement that the output signal must have equal or better quality than the

input signal [79, 80]. In the absence of such a constraint, the signal will degrade

as it is transmitted through a device and information will be lost. Therefore, the

thresholds must be set so that the output signal representing logical zero should be

lower than the highest acceptable input signal for logical zero, and the output signal

representing logical one should be higher than the lowest acceptable input signal for
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Device 1 Device 2

A

B

C

Figure 4-1: For devices to work in combination, device signal levels must matched.
A) Two digital inverters are combined in series so that the output of device 1 drives
the input of device 2. B) Example transfer curves of two devices whose signal levels
are not matched. Device 1 switches from logical one to logical zero over a high output
signal range. All device 1 output signal values are interpreted by device 2 as a logical
one input signal. Thus, the two devices do not work in combination. B) Example
transfer curves of two devices whose signal levels are well-matched. The output signal
range of device 1 is similar to the input signal range of device 2.
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Figure 4-2: Signal thresholds for a transcriptional inverter. ΠIL denotes the maximum
PoPS that the device will recognize as a logic zero input. Similarly, ΠIH denotes the
minimum PoPS that the device will recognize as a logic one input. Likewise, ΠOL

and ΠOH represent the threshold PoPS for the output.

logical one. These constraints on digital device signal thresholds ensure that digital

devices operate reliably and accurately even in the presence of noise.

Currently, a device family specification for transcription-based devices has not

been proposed. In this work, I seek to provide a framework for developing novel device

family specifications. I focus on developing guidelines for establishing device signal

thresholds based on two criteria: the target device demand and target device error

rate. Device demand is the chassis resources that the device uses during operation

[114, 115]. If the device demand is too high, a chassis will not be able to provide

sufficient resources for the device to operate reliably. To build many-component

systems, biological engineers must ensure that each device has a sufficiently small

demand, such that the chassis can support the operation of multiple devices. The

device error rate is the frequency with which a device produces an incorrect output for

a valid input. Errors occur because physical device implementations are vulnerable to

noise [116, 117, 118, 119, 120]. Different applications will require devices with different

error rates. For example, engineered metabolic systems might tolerate reasonably high

error rates as long as they achieve a target product yield. In contrast, systems used
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in medical applications, such as tumor killing microbes, might require significantly

lower device error rates [19]. There is an inherent tradeoff between device demand

and device error rate: devices that use more resources can have lower error rates and

vice versa. To establish suitable device signal thresholds, the device engineer must

balance the device demand with an acceptable error rate.

4.3 Results and discussion

4.3.1 Device demand and latency increases with swing

The demand of a device is the resources that the device consumes from the cellular

chassis during operation. Demand can take the form of the device occupying cellular

machinery such as RNA polymerases or ribosomes, using materials such as charged

tRNAs, or consuming energy such as ATP (Barry Canton, unpublished work). One

convenient measure of demand is the number of amino acids synthesized per unit time

[22]. Since, in general, the number of nucleotides in a transcript is approximately

proportional to the number of amino acids, the nucleotide demand per unit time

should scale with the amino acid demand. Similarly, assuming that the device is

not saturating the chassis, the machinery and energy demands of the cell should also

scale with the amino acid demand. Thus, I use translational demand as a surrogate

measure for the total demand a device places on the cellular chassis.

The translational demand of a device depends on the translation rate, the steady-

state mRNA level, and the protein length. The steady-state mRNA level in turn

depends on the transcription rate, the mRNA degradation rate, and the DNA copy

number. The device engineer can crudely control several of these gene expression pa-

rameters by altering the genetic sequence that encodes device function (Chapter 3).

However, for the purpose of a framework for developing a device family specification,

I assume that the device engineer can only tune the mean high signal value µH repre-

senting logical one. To meet a proscribed device family specification, the mean high

signal value must be compatible with the signal thresholds set by a device family
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Figure 4-3: The translational demand, measured in amino acids synthesized per unit
time, scales linearly with the mean high signal based on simple models of gene expres-
sion. The relationship between translational demand and mean high signal derived
for a device with typical biochemical parameters is shown. Some devices, such as the
receiver (BBa F2620), place a greater demand on the cell for a given mean high signal
[22]. Other devices, such as a transcriptional inverter based on λ cI repressor, place
a smaller demand on the cell [124]. For reference, a line corresponding to 3% of the
total chassis capacity for an E. coli cell with 60 minute doubling time is indicated
[125].

specification. Similarly, to develop suitable device family specifications, the signal

thresholds must be selected according to physically attainable mean high signal val-

ues. According to a simple model of gene expression (Chapter 3), the translational

demand should scale linearly with the mean high signal (Figure 4-3). The simple

model is obviously insufficient to account for the sophisticated regulation and feed-

back that determines a cell’s capacity to provide resources to a device [121, 122, 123].

Nevertheless, it does provide an crude indicator of how much of the cell’s resources

a device consumes, and therefore how many devices I might expect to operate si-

multaneously in a cell. Thus, the percentage of the cell’s capacity consumed by the

device provides an upper limit to the device’s mean high signal and by extension to

the signal thresholds defined by a device family specification.
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Although I do not explicitly consider dynamic device behavior in this work, note

that the device propagation delay also increases with swing. The device propagation

delay is the time it takes for a change in input signal to result in a change in output

signal [78]. The device propagation delay, when switching from a low to high input,

depends on the time needed for transcription, translation, and protein folding. The

device propagation delay, when switching from a high to low input, depends primarily

on the protein degradation rate: how long it takes for the repressor to degrade so that

the output switches from low to high. For most proteins, the timescale of synthesis

is of order tens of minutes [126, 22], while the timescale of degradation is even longer

[97, 98, 88]. As a result, the device propagation delay is generally determined by the

protein degradation rate. Higher mean signal values generally mean higher numbers

of proteins and thus slower device propagation delays.

4.3.2 PoPS signals are noisy

As with all physical instantiations of digital signals, transcriptional device signals are

noisy [82, 127]. Thus, I expect signals to be a distribution of values with corresponding

mean µ and standard deviation σ. Noise in device signals may be intrinsic arising from

stochastic fluctuations in biochemical reactions or extrinsic arising from fluctuations

in cellular resources [82, 128]. However, for the purposes of developing a framework

for a device family specification, I focus on noise in transcriptional device signals that

can impact device performance, by causing a device to produce erroneous signals.

Typically, noise in device signals is characterized by its amplitude and frequency.

Noise with an autocorrelation time shorter that the device propagation delay does

not impact device performance, because the noise is averaged out by the device. Noise

with an autocorrelation time longer than the device propagation delay can lead to

erroneous device signals. Rosenfeld et al. determined that intrinsic noise in gene

expression has an autocorrelation time of less than ten minutes, whereas extrinsic

noise has an autocorrelation time of forty minutes [124]. Thus, much of the noise

relevant to device performance likely arises from extrinsic sources. Regardless, for

the purposes of the this work, I do not assume anything about the source of signal
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noise, only that it exists.

To our knowledge, there is no available experimental characterization of PoPS

signal value distributions. Few single cell E. coli mRNA measurements have been

performed to date. Le et al. measured RNA concentration in single cells after addition

of an inducer [129]. They measured an initial peak of RNA concentration ∼20 minutes

after induction, followed by a drop in RNA concentration, followed by another peak in

RNA concentration after cell division. Similarly, Golding et al. measured the number

of transcripts per cell as a function of time after addition of an inducer [130]. Golding

et al. reported that transcription is bursty with exponentially-distributed periods of

transcriptional inactivity punctuated by Poissonian transcriptional events. Neither

Le et al. nor Golding et al. directly reported the distribution of transcription rates

observed in their experiments. However, based on the supplementary data provided

by Le et al., I estimate that their observed PoPS signal distribution has a mean of

0.2 µM/minute and a standard deviation of 0.1 µM/minute (N=18). It is difficult

to draw definitive conclusions regarding the PoPS signal value distribution given the

small sample size.

Alternatively, single cell E. coli protein measurements are more common, but most

measurements are done using fluorescence and do not report results in actual molecule

number. As an exception, Rosenfeld et al. recently measured the protein production

rate of a transcriptional inverter as a function of repressor concentration in single cells

[124]. They characterized a transcriptional inverter based on λ cI repressor and the

cognate PR promoter. One version of the promoter had a wild-type OR2 operator,

and a second promoter had a mutated OR2∗ operator. In the supporting online ma-

terials, they report that the measured protein production rates, when divided by the

mean protein production rate at a given repressor concentration, were log-normally

distributed with mean close to 1 and standard deviation of 0.35 for the OR2∗ operator.

They report obtaining a similar distribution of protein production rates at a given

repressor concentration. The observed log-normal distribution is unsurprising, since

log-normal distributions tend to arise for variables that are the multiplicative product

of many small independent factors [131, 132, 133]. Gene expression is dependent on
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a sequence of several biochemical steps that give rise to an overall protein production

rate. By a similar argument, I suggest that PoPS signal distributions are also log-

normal. However, the framework I present for developing device family specifications

is not strictly dependent on PoPS signal values having a log-normal distribution and

may be straightforwardly re-derived for other distributions.

4.3.3 Computing the device error rate from the device signal

cumulative distribution function

Errors in digital logic devices occur when the device produces an incorrect output

signal for a valid input signal. Errors arise because device signals are noisy. The

device error rate for a transcriptional device can be considered in one of two ways.

First, given a population of cells, each containing an identical genetically-encoded

device that should be producing a particular output either in the high or low state,

what fraction of cells are producing an incorrect output? Second, for any particular

cell, what fraction of time does the cell spend producing an incorrect signal? The error

rate calculated from either approach should be the same assuming that in the former

approach, a sufficiently large population is measured, and in the latter approach,

the signal is measured a sufficient number of times over a period longer than the

autocorrelation time of the noise.

To estimate the device error rate, I use the expected signal distributions (Figure 4-

4). Only signal values that adhere to the prescribed signal thresholds are considered

correct signals. Initially, assume that all thresholds are set to the trip point or ΠIL =

ΠIH = ΠOL = ΠOH = ΠM . Therefore, signal values that are lower than the device

trip point are interpreted as logical zero, and signal values that are higher than the

trip point are interpreted as logical one. Logical zero signals are usually low but

occasionally assume higher values that are erroneously interpreted as logical one.

Similarly, logical one signals are usually high but occasionally assume lower values

that are erroneously interpreted as logical zero. Such situations yield errors in device

behavior. The device error rate is computed by summing the probability that a logical
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Figure 4-4: Device signals are noisy, and thus device signal values have a character-
istic probability density function. Sample probability density functions for signals
representing logical zero (low) and logical one (high) are shown. Both distributions
are log-normal with a coefficient of variation of 0.35. A sample trip point for the
device is indicated. Logical zero signal values that are greater than the trip point and
logical one signal values that are less than the trip point give rise to errors.
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zero signal (Π0) is greater than the trip point and the probability that a logical one

signal (Π1) is less than the trip point. Stated differently, the device error rate is the

sum of the logical zero signal error and the logical one signal error.

Error = P (Π0 > ΠM) + P (Π1 < ΠM) (4.1)

Error = (1− P (Π0 < ΠM)) + P (Π1 < ΠM) (4.2)

The errors in the logical zero and logical one signals can be computed using the

cumulative distribution function of the respective signal distributions. Using our

assumption that PoPS-based signals are log-normally distributed, I can calculate the

device error rate as a function of the mean low signal µL, the standard deviation in

the low signal σL, the mean high signal µH , the standard deviation in the high signal

σH , and the trip point ΠM .

Error =

(
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2
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2
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σH

µH

)2

+ 1

)
(4.8)

Since there is no closed form solution to the log-normal cumulative distribution func-

tion [134], I compute device error rates numerically as needed.
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4.3.4 Device error rate decreases as swing increases

Although the goal of this work is ultimately to enable device engineers to develop a

transcriptional device specification, I begin by assuming that the signals thresholds are

already defined. The challenge then becomes designing a device that both adheres to

the device specification and has an error rate appropriate for the end-user application.

In designing transcriptional logic devices, the device engineer has some discretion

over device design (Chapter 3). The device engineer can alter the device transfer

curve by changing the translation rate, repressor-DNA binding affinity, and more

[135, 136, 124]. To change the device error rate, the device engineer has the option

of varying the mean or standard deviation of the signals representing logical zero and

one. As discussed, the standard deviation of the PoPS signal distributions is largely

dependent on noise extrinsic to the device. Extrinsic noise tends to vary based on the

chassis and environmental conditions rendering it largely beyond the control of the

device engineer [137]. The mean low signal tends to be set by the interaction of the

repressor with the promoter and RNA polymerase. Efforts to reduce mean low signals

have yielded mixed success (Chapter 5). The mean high signal, in contrast, largely

depends on the promoter strength, and the relationship between promoter sequence

and strength has been studied extensively [138, 139, 140, 141, 142, 143, 144, 145, 146,

147, 148]. Therefore, I can change the device error rate by changing the device swing

via the mean high signal µH . The device error rate drops off with increasing swing

(Figure 4-5). In designing a device to meet a particular specification, device engineers

must select a swing that is high enough to yield a suitable device error rate but low

enough to avoid placing too much demand on the chassis resources.

4.3.5 Choosing appropriate signal thresholds

I now explore the dependence of error rate on signal thresholds in order to inform the

selection of appropriate signal thresholds for transcription-based logic devices. Thus

far, we’ve calculated the device error rate by assuming that logical zero and logical

one signal thresholds are equal to the trip point. Generally however, signal thresholds
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Figure 4-5: The device error rate drops off as the mean high signal µH increases.
The mean high signal determines the device swing if the mean low signal is held
constant. The relationship between error rate and mean high signal is shown for
µL = 0.028 PoPS per DNA copy, coefficient of variation for logical zero and one signal
distributions of 0.35, and with a trip point ΠM selected to minimize device error rate.
For reference, the estimated mean high signal for the receiver (BBa F2620) and the
λ cI-based inverter is indicated [124, 22]. The estimated mutation rate for a device
with length ∼1 kilobase operating for 10 generations is also shown [149].
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are not set to the trip point, but rather specified so that signal values representing

logical zero and logical one are readily distinguished. Or more formally, the following

inequalities hold.1

ΠIL < ΠIH (4.9)

ΠOL < ΠOH (4.10)

Thus, a logical zero signal is a valid low output signal only if it is less than ΠOL. Sim-

ilarly, a logical one signal is a valid high output signal only if it is greater than ΠOH .

(Input signals have similar valid signal ranges set by their corresponding thresholds.)

The device error rate is again calculated using the cumulative distribution function

of the logical zero and logical one signals, but using the relevant signal thresholds

in place of the trip point. For the purposes of calculating the device error rate, I

focus on the output signals produced by a device. To simplify notation, I drop the

subscript O indicating output.

Error = P (Π0 > ΠL) + P (Π1 < ΠH) (4.11)

Error = (1− P (Π0 < ΠL)) + P (Π1 < ΠH) (4.12)

Again, the device error rate is the sum of the error in the logical zero and logical

one signals. It is a function of the mean low signal µL, the standard deviation in the

low signal σL, the mean high signal µH , the standard deviation in the high signal

σH , and now the signal thresholds ΠL and ΠH . Note that the error rate in the signal

is dependent not on the mean and threshold values themselves but rather on their

relative values, for a given coefficient of variation in the signal. Such a result can be

understood intuitively by recognizing that multiplying both the mean signal value and

threshold by the same factor is the equivalent of sliding the signal probability density

1In truth, the inequality ΠOL < ΠIL < ΠIH < ΠOH should hold for digital logic devices, so that
the quality of the output signal is guaranteed to be better than the input signal.
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Figure 4-6: The error rate in the logical zero signal decreases roughly exponentially
with the ratio of the low signal threshold ΠL to the mean low signal µL. Similarly,
the error rate in the logical one signal decreases with the ratio of the mean high signal
µH to the high signal threshold ΠH . The relationship between signal error rate and
relative value of the mean signal and threshold are plotted assuming a coefficient of
variation of either 0.35 or 0.70 for the signal distribution. The logical zero and one
signals have a slightly different dependence on the relative value of the mean signal
and threshold, because log-normal distributions are asymmetric.

function to the left or right. The error in the signal, derived from the cumulative

distribution function, is the same regardless. The error rate of a logical zero signal

decreases approximately exponentially with the ratio of the low signal threshold to the

mean low signal (Figure 4-6). Similarly, the error rate of a logical one signal decreases

exponentially with the ratio of the mean high signal to the high signal threshold.

Choosing appropriate signal thresholds for a new device family specification is

complicated by both the summed contributions of the logical zero and logical one

signal errors to the overall device error rate as well as the interdependence of the

mean signal value and signal threshold. In the absence of any information on typical

mean signal values and desired error rate, selection of signal thresholds is arbitrary.

However, if there is any available information regarding expected mean low or high

signals and desired device error rates, then selection of signal thresholds is much
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Figure 4-7: The device error rate as a function of the ratio of the mean high signal to
high signal threshold and the low signal threshold to mean low signal. Contour lines
corresponding to selected error rates are shown. High error rates in the logical zero
signal due to small ΠL/µL can be compensated by high µH/ΠH and vice versa. The
plots were obtained assuming that both the logical zero and logical one signals have
a coefficient of variation of 0.35 (left) or 0.7 (right).

easier (Figure 4-7). For example, assume that a device engineer wishes to engineer

a family of devices with an error rate of 0.1. Further assume that the device family

specification should be compatible with Rosenfeld et al.’s inverter based on the λ cI

repressor and cognate PR promoter [124, 22]. Rosenfeld et al. measured a mean low

signal of 25 proteins per cell per minute and a mean high signal of 220 proteins per

cell per minute when encoded on the genome. (By way of comparison, the receiver

device BBa F2620 has a mean low signal of 900 proteins per cell per minute and a

mean high signal of 30,180 proteins per cell per minute, when encoded on a medium

copy plasmid [22].) Protein synthesis rates can be converted to transcription rates

with units of PoPS via the following equation where b is the burst size or proteins

produced per transcript [128, 22].

PoPS =
Protein synthesis rate

60 ∗ b
(4.13)

Using equation (4.13), I estimate that Rosenfeld et al.’s inverter has µL = 0.028 and
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µH = 0.24. Finally, assume that the device signal is quite noisy and has coefficient

of variation of 0.7. Then to achieve an error rate of 0.1, I can set ΠL = 2 ∗ µL

and ΠH = µH/2.6 (Figure 4-7). The chosen thresholds constitute a valid device

specification, because they satisfy inequality (4.10) as required for digital logic. I

estimate the translational demand of Rosenfeld et al.’s inverter to be approximately

0.5% of chassis capacity (Figure 4-3), so under this device family specification I can

operate 20 devices in parallel and only consume 10% of the chassis capacity. It is worth

noting that in some cases, selection of appropriate signal thresholds is impossible.

Consider again the example of Rosenfeld et al.’s inverter with a signal coefficient of

variation of 0.7: it is impossible to choose ΠL and ΠH to achieve an error rate of

0.01 without violating inequality (4.10). Rosenfeld et al.’s inverter based on the λ cI

repressor and cognate PR promoter has an estimated error rate of 0.0014, based on

the measured coefficient of variation in the protein production rate signal of 0.35.

In practice, the process of developing device family specifications will likely be an

iterative process of building multiple transcription-based devices, prescribing a device

family specification that is compatible with those devices, reengineering of the devices

to better meet the specification, and refining the specification again. Looking forward,

assuming that useful and realizable device family specifications for transcription-based

logic are developed, the challenge of engineering new devices will likely focus more

and more on tuning device behavior to meet a proscribed device family specification.

I anticipate that the framework presented here will still prove relevant to device

engineering. Rather than choosing signal thresholds, device engineers will instead

choose target mean low and high signals that both meet the device family specification

and yield acceptable error rates and device demands.

4.4 Conclusions

In the future, there will be many available families of transcription-based logic. Just

as electrical engineers wishing to use TTL logic devices can choose from among the

74xx, 74Lxx, 74Hxx, 74Sxx, or other families [78], biological engineers wishing to
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use transcription-based logic will choose from several device family specifications.

Some will be optimized for low error rates, others for low device demand, and still

others will likely be optimized for parameters not considered in detail here, such

as device propagation delay or portability across chassis. The work presented here

sought to provide an initial framework for developing device family specifications

for transcription-based logic. Critical next steps are both to develop the framework

further and to engineer libraries of transcription-based devices that meet a common,

proscribed device family specification.
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Chapter 5

Implementation of

transcription-based logic using

synthetic transcription factors

5.1 Summary

A grand challenge in synthetic biology is to implement memory and logic in cells.

Many potential applications in environmental remediation, therapeutics, and sophis-

ticated materials production rely on the ability of cell to sense cues from the environ-

ment, process that information, and actuate an appropriate response. Yet the scale of

information processing systems that are realizable is severely limited by the limited

number of available devices. For example, many well-known engineered biological

systems, such as the repressilator, the “coliroid” bacterial photography system, and

the band detector, are constructed from just a handful of devices [112, 150, 151].

To address this problem, I present an initial, proof-of-principle implementation of a

transcription-based inverter using a synthetic transcription factor constructed from

a zinc finger DNA binding domain and a leucine zipper dimerization domain. Zinc

fingers and leucine zippers are both common protein domains that have been well-

studied and are readily amenable to redesign via computational and experimental
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techniques. Thus, synthetic transcription factors built from zinc fingers and leucine

zippers potentially offer a scalable solution to the challenge of engineering memory

and logic in cells. Although the resulting device could benefit from further improve-

ments, data on device performance suggests that the performance may be sufficient

to implement transcription-based logic.

5.2 Introduction

A grand challenge in synthetic biology is to implement memory and logic in cells.

With even modest amounts of information processing, a range of applications be-

comes realizable. Specifically, any applications that requires cells to sense a set of

inputs, process that information and actuate a response depends on implementation

information processing [152, 153]. As such, several groups are working to imple-

ment information processing in cells at the transcriptional, translational and post-

translational level [135, 154, 155, 156, 157, 158]. In electrical engineering, digital

logic has proven an attractive framework for information processing due to its reli-

ability [77]. More importantly, the implementation of the digital abstraction using

imperfect physical devices is well-understood.

The scale of the information processing systems that we can currently build in

biology is limited. Transcription-based circuits are arguably the most common kind

of system, yet most transcription-based genetic circuits are constructed from just a

handful of components [112, 113, 159, 151]. Most available logic gates are based on

bacterial repressors/activators and their cognate promoters, such as lacI, tetR, λ cI,

luxR, and araC [64, 135]. Transcription-based logic devices, like most other biological

devices, rely on diffusion and intermolecular binding to operate. Since the cellular

chassis can often be thought of as a self-mixing system [160], logic devices cannot

be reused in biological engineering as they can in electrical engineering. Therefore,

a critical hurdle in implementing multi-component systems using transcription-based

logic is the relatively small number of logic gates available. A central contribution of

my thesis work is to demonstrate an alternative implementation of transcription-based
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Figure 5-1: (A) An inverter receives an input, performs a logical NOT operation, and
produces a corresponding output. In transcription-based inverters, both input and
output signals are encoded as a transcription rate in units of PoPS. (B) An inverter
is composed of four parts: a ribosome binding site (RBS), a coding sequence for a
homodimeric repressor, a transcriptional terminator (stop), and a cognate promoter.
(Reproduced here from Figure 3-1 for convenience.)

logic using synthetic transcription factors.

As a first step towards a general implementation of transcription-based logic, I

focus on engineering a transcriptional inverter. A transcriptional inverter is composed

of four genetic parts: a ribosome binding site (RBS), a repressor coding sequence,

a transcriptional terminator (stop), and a transcriptional promoter with operator

site(s) for repressor binding (Figure 3-1, reproduced here for convenience). Tran-

scriptional inverters both receive an input and produce an output using the common

transcriptional signal carrier PoPS [21, 22]. A high input signal to the device drives

transcription of the repressor. The mRNA is subsequently translated, and the re-

pressor folds and dimerizes. The dimerized repressor can bind to the operator site(s)

of the promoter to repress transcription producing a low output signal. A low input

signal to the device means that the repressor is not expressed, so the transcriptional

promoter produces a high output signal.
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5.2.1 Zinc fingers DNA binding domains and and leucine zip-

pers dimerization domains are promising components

for synthetic transcription factors

To implement transcription-based digital logic, synthetic transcriptions factors must

fulfill two distinct roles: DNA binding and dimerization. Specific, high-affinity bind-

ing to cognate DNA ensures that we can eventually operate multiple logic devices in

cells, without interference between devices or with the chassis itself. Dimerization is

necessary because it provides some nonlinearity in the device transfer curve, which

is critical for implementing digital logic (Chapter 3). Thus, to develop a scalable

implementation of transcription-based logic, a large set of DNA binding domains and

dimerization domains are needed. In my thesis work, I focused on using zinc fingers

domains for DNA binding and leucine zipper domains for dimerization.

The Cys2His2 zinc finger DNA binding domains are an abundant family of DNA

binding proteins in eukaryotes [161]. The canonical Cys2His2 zinc finger DNA binding

domain, Zif268, consists of 3 fingers, each approximately 30 amino acids in length

[162, 163, 164]. Each finger binds a DNA subsite 3-4 base pairs in length [165, 166].

Zinc fingers bind DNA with high affinities and are capable of discriminating between

very similar DNA sequences [167, 168]. Moreover, zinc fingers are quite amenable to

redesign via directed evolution or rational approaches to bind specifically to arbitrary

DNA sequences [169, 170, 171, 172]. Individual fingers can be combined in tandem

to bind longer DNA sequences [173, 174, 175].

Significant resources have been invested in developing artificial DNA binding do-

mains in eukaryotes for industrial and medical applications [176, 177, 178, 179]. Sev-

eral groups have developed libraries of zinc fingers that can bind to most of the sixty-

four possible codons [180, 181, 182, 183, 184]. More recently, groups have invested

effort into standardizing the design and construction of zinc finger arrays for use in

targeting specific genome loci in eukaryotic cells, including accompanying software

tools [185, 186, 187].

In contrast, less work has been done with respect to Cys2His2 zinc finger DNA
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binding domains in prokaryotes. Zinc finger DNA binding domains are naturally

present in some prokaryotes but are quite rare relative to eukaryotes [188]. In E.

coli, most work to date involving zinc-finger proteins focuses on using bacterial one-

and two-hybrid methods for studying DNA binding specificities and selecting new

specificities [189, 104, 190, 185, 191, 192]. Such work demonstrates that three finger

domains can successfully be expressed, bind DNA, and activate transcription in E.

coli. My work seeks to build on these efforts by demonstrating that zinc finger proteins

can also be used as a component in synthetic repressors for transcription-based logic

in E. coli.

Though not as prevalent as zinc fingers, leucine zippers are also a common domain

in eukaryotes [193, 161, 194]. Leucine zippers mediate protein-protein interactions

and are distinguished by a characteristic heptad repeat of leucine residues [193, 195].

Each leucine zipper is an α-helix that, when bound to its cognate partner, forms a

coiled-coil structure [196, 197]. Leucine zippers are well-known for their ability to

homo- and heterodimerize with other leucine zippers [194]. As with zinc fingers, the

interaction specificities of leucine zippers have been extensively studied [198, 199, 200].

In particular, Newman and Keating exhaustively characterized each of the pairwise

interactions between the leucine zipper regions of bZIP transcription factors from

humans and yeast [103]. Newman and Keating made use of protein arrays to assess

binding affinity between protein pairs and validated interaction results with solution

studies and previous small-scale studies. From the Newman and Keating data set,

biological engineers can select leucine zipper pairs with high specificity for use in

synthetic transcription factors. Although the bZIP proteins in which leucine zippers

are found are a transcription factor family themselves, their DNA binding domains

have not been subject to as many systematic design efforts as zinc finger proteins and

therefore are less suitable for scalable synthetic transcription factor design.

5.2.2 Previous designs of dimeric zinc fingers

Carl Pabo’s lab has previously designed DNA binding proteins from dimeric zinc

fingers. Pomerantz et al. fused fingers 1 and 2 of Zif268 to the dimerization domain
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Figure 5-2: The structure of a dimeric zinc finger protein, Zif23-GCN4(-2) bound
to DNA has been solved (PDB 1LLM) [203]. The ribbon diagram of the protein
backbone is shown in blue, the DNA is shown in purple and gray, and the zinc ions
are labeled. The two zinc fingers of each monomer bind to the DNA. The α-helix of
finger 3 forms a continuous α-helix with the leucine zipper.

of GAL4 to form the fusion protein ZFGD1 [201]. The ZFGD1 homodimer bound

to two six-nucleotide subsites separated by a thirteen nucleotide spacer region. They

found that half-maximal binding occurred at a monomer concentration of 1 nM.

Later, Wolfe et al. designed a different dimeric zinc finger by directly fusing the α-

helix of finger 3 to the α-helix of GCN4 leucine zipper [202]. The resulting protein,

Zif23-GCN4, has similar affinities as ZFGD1. Wolfe et al. optimized the design with

phage display to achieve dissociation constants of up to ∼100-fold lower depending

on the operator site (protein Zif23-GCN4(-2)). Wolfe et al. also measured the Zif23-

GCN4(-2) protein to be more specific than Zif268. Finally, Wolfe et al. demonstrated

that the Zif23-GCN4(-2) protein, when fused to an activation domain, could activate

gene expression in human embryonic kidney cells. The structure of the dimeric zinc

finger was also solved (Figure 5-2) [203]. Thus, dimeric zinc fingers are capable of

binding DNA with high affinity and specificity and serve as a prototype for synthetic

transcription factors for a transcriptional inverter in E. coli.
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5.3 Results and discussion

5.3.1 Initial inverter design repressed transcription in vitro

but not in vivo

Although Carl Pabo’s lab demonstrated in vitro DNA binding of the designed dimeric

zinc fingers, there was an open question as to whether the proteins could function as

repressors in E. coli. I based my initial designs for a repressor upon the Zif23-GCN4

(BBa C2002) and Zif23-GCN4(-2) (BBa C2003) proteins designed by Wolfe et al..

Interestingly, I was unable to propagate a plasmid expressing Zif23-GCN4(-2) stably

in E. coli but could propagate Zif23-GCN4. I refer to the synthetic repressor based

on Zif23-GCN4 by the generic terms repressor or synthetic repressor. I used a cognate

promoter (BBa R2000) designed by the 2004 MIT IAP class in synthetic biology. To

test the effectiveness of the repressor/promoter pair as a transcriptional inverter, I

assembled the promoter with a GFP generator on one plasmid (BBa I2000) and a

constitutive promoter with a repressor generator on second plasmid (BBa P20020).

(A protein generator is a device that receives a transcriptional input and produces a

protein output.) Cultures containing BBa I2000, BBa P20020, and plasmids encoding

both parts together were assayed for fluorescence as a function of cell density. The

fluorescence of cultures with just the promoter driving GFP production was only

slightly higher than cultures with the promoter driving GFP production and the

cognate repressor, suggesting that the repressor only repressed transcription slightly

(Figure 5-3).

There were at least five potential reasons why the synthetic repressor failed to

repress transcription significantly. First, the repressor may not bind to the cognate

promoter. Second, the repressor may bind to the cognate promoter but not steri-

cally interfere with transcription initiation by E. coli RNA polymerase. Third, the

repressor may not be expressed in E. coli. Fourth, the protein may not be soluble in

the cell. Fifth, the repressor may bind nonspecifically to the cell’s genome. In vitro

experiments enabled testing of four of the five potential issues in transcriptional in-
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Figure 5-3: To test function of the inverter, the cognate promoter was assembled with
the GFP generator. Culture fluorescence was measured over time in the presence and
absence of the synthetic repressor (low and high output, respectively). The repressor
was encoded on a high copy number plasmid under the control of a constitutive
promoter. A plot of the fluorescence scaled to the culture cell density versus the cell
density is shown. The low and high output of the inverter are similar indicating that
the promoter is only slight repressed by the synthetic repressor. As a reference for
the minimum possible output from the inverter, cells not expressing any GFP were
also measured (minimum output).
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verter function. Results from these experiments helped to focus later inverter design

efforts.

To elucidate whether the protein could bind to the cognate promoter, I performed

an in vitro electrophoretic mobility shift assay [204]. As expected from previously

published work [202], the synthetic repressor binds to the cognate promoter based on

the observed electrophoretic shift of the promoter DNA in the presence of repressor

(Figure 5-4). A shift in the noncognate promoter DNA is only observed at very high

protein concentrations, indicating that nonspecific DNA binding may be a factor.

Note that the experimental setup of the electrophoretic mobility assay only provides

a qualitative assessment of in vitro DNA binding, not a quantitative one.

To elucidate whether the repressor could sterically hinder transcription initiation,

I tested the inverter in vitro. In vitro transcription reactions were electrophoresed on

a native agarose gel to visualize nucleic acids. The template DNA encoding the cog-

nate promoter controlling the GFP generator (BBa I2000) is transcribed efficiently

in vitro by commercially-obtained E. coli RNA polymerase holoenzyme (Figure 5-5,

lane 3). However, if the template DNA is incubated with purified repressor prior to

addition of E. coli RNA polymerase, then transcription is repressed (Figure 5-5, lane

4). Transcriptional repression is dependent on the addition of the repressor, since

incubation with the eluant from cells not expressing the repressor was insufficient

to repress transcription (Figure 5-5, lane 5). When RNA polymerase and purified

repressor were added simultaneously to the template DNA, little repression occurred

(Figure 5-5, lane 7). Given that I purified the 6xHis-tagged repressor under dena-

turing conditions with a Ni-NTA spin columns (QIAGEN), the data suggest that

pre-incubation of the template DNA was necessary for the binding reaction to equili-

brate to a state where most of the template DNA were bound by the correctly-folded

dimeric zinc finger. Thus, although the synthetic repressor was physically capable

of interfering with transcription from the cognate promoter, the reaction kinetics

seemed to favor transcription by RNA polymerase over repressor binding in vitro. It

is unclear to what extent such kinetic issues are also a factor in vivo.

A common issue with expression of heterologous proteins, including some zinc
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Figure 5-4: The synthetic repressor binds to the cognate promoter (BBa R2000) but
not to a noncognate promoter (BBa R0040). A) Electrophoretic mobility shift assay
results for the synthetic repressor and the cognate promoter. Lane 1 is 50 ng of
linear DNA encoding the promoter. Lane 2 is DNA plus 9 µL eluant from a protein
purification of cells not expressing the synthetic transcription factor. Lanes 3-10 is
DNA plus increasing amounts of purified synthetic repressor (0.3 µL, 0.5 µL, 1 µL,
2 µL, 4 µL, 6 µL, 8 µL, and 9 µL). Lane 12 is purified synthetic repressor only. The
promoter DNA undergoes a mobility shift in the presence of increasing amounts of
synthetic repressor, indicating repressor-DNA binding. B) Electrophoretic mobility
shift assay results for the synthetic repressor and a noncognate promoter. Lanes
are identical to those described in (A). At the highest protein concentrations, some
nonspecific retardation of DNA is apparent.
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Figure 5-5: The initial design for the transcriptional inverter worked in vitro:
transcription from the cognate promoter is repressed by the synthetic repressor
(BBa C2002) when the purified repressor is incubated with the DNA prior to ad-
dition of RNA polymerase. Lane 1 is 1 µg ssRNA ladder (New England Biolabs,
Inc.). Lane 2 is linear DNA encoding the cognate promoter regulating transcription
of a GFP generator (BBa R2000 and BBa E0840 assembled to make BBa I2000).
Lane 3 is the DNA transcribed by 2.5 units E. coli RNA polymerase holoenzyme
(RNAP, EPICENTRE R© Biotechnologies). Lane 4 is the DNA pre-incubated with
purified synthetic repressor and subsequently transcribed by RNAP. Lane 5 is the
DNA pre-incubated with eluant from a protein purification of cells not expressing
the synthetic transcription factor and subsequently transcribed by RNAP. Lane 6 is
the DNA pre-incubated with the elution buffer used during protein purification and
subsequently transcribed by RNAP. Lane 7 is the DNA transcribed by RNAP in the
presence of purified synthetic transcription factor. Lane 8 is 1 µg of 2-log DNA ladder
(New England Biolabs, Inc.).
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Figure 5-6: The purified synthetic repressor does not appear in the soluble fraction of
crude E. coli cell lysates. Lanes 1-3 are the insoluble, total, and soluble crude lysate
fractions, respectively, from cells expressing the synthetic repressor (BBa C2002).
The repressor is 11.5 kDa, and the corresponding band is indicated by the arrow.
Lanes 4-6 are the insoluble, total, and soluble crude lysate fractions, respectively,
from cells expressing a different zinc finger-leucine zipper fusion (BBa C2100). Lanes
7-9 are the total, soluble, and insoluble fractions from cells not expressing any zinc
finger protein. Lane 10 is 20 µL SeeBlue R©Plus2 Pre-Stained Standard (Invitrogen).
The other bright protein band in the gel corresponds to the molecular weight of GFP
(27 kDa).

finger proteins, in E. coli is protein solubility [205, 206]. To elucidate whether either

repressor expression or solubility was a factor in inverter function in vivo, I assayed the

solubility of the synthetic repressor in E. coli in cultures containing the transcriptional

inverter. The repressor was easily detectable in the crude cell lysate by polyacrylamide

gel electrophoresis (Figure 5-6). However, although some GFP is found in the soluble

fraction, little repressor was apparent in the soluble fraction of crude cell lysate,

indicating that protein solubility could be a factor in transcriptional inverter function.

Taken together, the experimental data suggest that the synthetic repressor was

physically capable of binding the cognate promoter and repressing transcription in
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vitro but not in vivo. The protein solubility assay suggested that the solubility and

folding of the protein was a factor. Finally, it may be that much of the repressor

is bound nonspecifically to the genome, since the number of potential nonspecific

binding sites greatly outnumbers the handful of cognate operator sites.

5.3.2 Redesigned transcriptional inverter demonstrates im-

proved transcriptional repression

In redesigning the synthetic repressor, I made two key modifications. First, I re-

moved the C-terminal 6xHis tag that I had added to facilitate protein purification.

The 6xHis tag could possibly interfere with proper zinc coordination by the two cys-

teine and two histidine residues in each finger, thereby preventing proper protein

folding. Second, I fused maltose binding protein domain to the N-terminus of the

repressor. A N-terminal maltose binding protein fusion to the repressor offered three

potential advantages to synthetic transcription factor function. First, N-terminal fu-

sions of maltose binding protein improve the solubility of a variety of heterologous

proteins in E. coli [207, 208]. Second, maltose binding protein has a molecular weight

of ∼40 kDa [209], so it provided additional bulk to the rather small synthetic tran-

scription factor (∼11.5 kDa). The in vitro transcription results suggested that the

repressor was capable of repressing transcription; however, since the inverter relied

primarily on steric hindrance of RNA polymerase for transcriptional repression, in-

creasing repressor size seemed potentially helpful. Third, maltose binding protein

enables easy protein purification in case additional in vitro experiments are necessary

[210, 211]. The resulting redesigned synthetic repressor was designated BBa C2006

and the corresponding transcriptional inverter BBa Q20060.

To evaluate the function of the redesigned inverter, I used a PoPS generator to

regulate inverter input and a PoPS reporter to measure inverter output (Figure 5-7).

I used a PoPS generator (BBa F2620) that produces a variable PoPS output depen-

dent on the concentration of exogenous inducer [22]. A PoPS reporter receives a PoPS

input and produces a signal that can be easily measured using common laboratory
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Figure 5-7: To measure transcriptional inverter behavior, the inverter input was reg-
ulated using an inducible PoPS generator (BBa F2620) [22]. Thus, the input to the
transcriptional inverter could be regulated via exogenous inducer addition to the cul-
ture. The inverter output was measured by a PoPS reporter: either a β-galactosidase
activity-based reporter derived from lacZα (BBa E0435) or a fluorescence-based re-
porter derived from gfp (BBa E0840).

equipment. I used two different PoPS reporters to measure inverter output: one based

on lacZα and one based on gfp [212, 213]. Consistency in measured behavior across

two different reporters provides confidence that the inverter is working as intended.

β-galactosidase assays indicated the inverter has a 2-3-fold difference between its high

and low output (Figure 5-8). Measurements using the second PoPS reporter, GFP

fluorescence as measured via flow cytometry, confirmed that the redesigned inverter

demonstrates 2-3-fold repression (Figure 5-9). To further characterize inverter func-

tion, I used the same measurement rig and assayed culture fluorescence at several

inducer concentrations. Although the resulting data does not depict a true device

transfer curve since the axis units are not defined in the common signal carrier PoPS,

the data do indicate that the inverter performs a logical NOT of its input to produce

its output as designed (Figure 5-10).

5.3.3 Repression by synthetic transcription factor is specific

for cognate promoter

Although the transcriptional inverter worked consistently in different assays, I could

not rule out the fact that the measured repression could be due to a nonspecific
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Figure 5-8: β-galactosidase activity was used as a reporter for inverter output. In
the absence of lacZα, cell cultures show no β-galactosidase activity (minimal output).
Cultures of the inverter, grown in the presence of AHL to induce a high input sig-
nal to the device, show some β-galactosidase activity (low output). Cultures of the
inverter, grown in the absence of AHL so there is little input to the device, show
2-3 fold higher β-galactosidase activities (high output). Cultures of just the cognate
promoter driving transcription of lacZα show similar levels of β-galactosidase activity
(maximum output). Data shown are averages of triplicate measurements of cultures
grown from three individual colonies with an A600 between 0.16 and 0.22. Error bars
are 95% confidence intervals of the mean.
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Figure 5-9: GFP fluorescence, as measured by flow cytometry, was used as a second
reporter for inverter output. In the absence of GFP, cells produce little fluorescence
(minimal output). Cultures of the inverter, grown in the presence of AHL to induce
a high input signal to the device, yield cells with some fluorescence (low output).
Cultures of the inverter, grown in the absence of AHL so there is little input to the
device, yield cells with 2-3 fold higher fluorescence (high output). Cultures of just
the cognate promoter driving transcription of gfp yield cells with similar levels of
fluorescence (maximum output).
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Figure 5-10: To characterize inverter output as a function of input, cultures of the
inverter were grown in the presence of various inducer concentrations and their popu-
lation fluorescence measured. The culture fluorescence, scaled to the cell density and
normalized, is plotted as a function of inducer concentration ([AHL]). The inverter
performs a logical not of its input to produce its output as designed. Data shown are
averages of triplicate measurements of cultures grown from three individual colonies.
Error bars are 95% confidence intervals of the mean.

impact of repressor expression on the PoPS reporter. In some cases, expression of

one protein may cause a drop in expression of another due to, for example, excessive

demands on cellular resources. To confirm that the measured drop in inverter output

was not due to nonspecific effects, I co-transformed a plasmid encoding the inverter

measurement rig containing the β-galactosidase activity-based reporter with a second

plasmid encoding a noncognate promoter containing a fluorescence-based reporter

(BBa I7101). Expression of the redesigned synthetic repressor caused a clear drop in

β-galactosidase activity but no measurable drop in fluorescence (Figure 5-11). Thus,

the redesigned synthetic repressor appears to be specifically repressing transcription

from its cognate promoter. As a second test for nonspecific repression, I replaced

the cognate promoter in the inverter measurement rig using the fluorescence-based

reporter with a non-cognate promoter. Again, there was no measurable drop in

fluorescence upon expression of the redesigned synthetic repressor, as measured by

flow cytometry (Figure 5-12). Taken together, the data demonstrate that the inverter
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Figure 5-11: To establish whether the measured repression was due to nonspecific
effects, a plasmid encoding the inverter measurement rig using the β-galactosidase
activity-based reporter was co-transformed with a second plasmid encoding a noncog-
nate promoter driving transcription of gfp. Cultures grown in the absence of inducer
so there is little input to the device have high levels of both β-galactosidase activity
and fluorescence (high output). Cultures grown in the presence of inducer to in-
duce a high device input have a lower level of β-galactosidase activity but the same
level of fluorescence. Thus, redesigned synthetic repressor expression does not impact
expression from a noncognate promoter. Data shown are averages of triplicate mea-
surements of cultures grown from three individual colonies with an A600 close to 0.1.
Error bars are 95% confidence intervals of the mean.

encoded by BBa Q20060 represents the first functional inverter based on zinc finger

and leucine zipper technology. It serves as a proof-of-principle that transcription-

based logic based on synthetic transcription factors is tractable, and thus that a

scalable implementation of transcription-based logic may be a realizable goal.

5.3.4 Biochemical mechanism of transcriptional inverter is

unclear

An underlying premise behind the use of zinc finger and leucine zipper domains is

that the resulting synthetic transcription factors may be more amenable to redesign

and reengineering than naturally-occurring repressors. The implication is that we, as

biological engineers, “understand” the function of zinc fingers and leucine zippers to
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Figure 5-12: A) Cultures with the fluorescence-based inverter measurement rig
demonstrate a drop in fluorescence when grown in the absence versus presence of
inducer (high versus low output). B) When the cognate promoter is replaced by a
noncognate promoter (BBa R0040), there is no observed drop in fluorescence between
cultures grown in the absence versus presence of inducer (high versus low output).
Thus, redesigned synthetic repressor expression does not impact expression from a
noncognate promoter, even in the absence of an operator site.

a greater extent than natural repressors. To test this hypothesis, I made three mu-

tants of the redesigned synthetic repressor (BBa C2006); I designed each mutant to

impede function of the repressor. The first mutant was a cysteine to serine mutation

at position 396 (BBa C2009). The cysteine is one of the four residues responsible

for zinc coordination in finger 2 of the repressor [214, 215, 206]. Mutation of zinc

coordination residues often, but not always, disrupts zinc finger folding and function

[216, 217, 218]. The second mutant was a deletion of the zinc finger domain from the

redesigned synthetic repressor, resulting in a direct fusion of maltose binding protein

to the leucine zipper (BBa C20101). Such a deletion should eliminate any DNA bind-

ing. The third mutant was a frameshift mutation that resulted in a complete deletion

of both the zinc finger and leucine zipper domains, leaving only the maltose binding

protein in place (BBa C20091). Each mutant was characterized in the measurement

test rig using the β-galactosidase activity-based PoPS reporter. The function of the

device with a C396S mutation in the repressor was indistinguishable from the in-

verter encoded by BBa Q20060 (Figure 5-13). Thus, the cysteine to serine mutation

was insufficient to impact the structure and DNA binding of the redesigned synthetic
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Figure 5-13: Mutation of a cysteine involved in zinc coordination in finger 2 to a serine
does not impact repression. A plot of culture β-galactosidase activity as a function of
cell density, as measured by the absorbance at 600nm (A600), is shown. In the absence
of lacZα, a culture shows no β-galactosidase activity (minimal output). Cultures of
the inverter and the C396S mutant, grown in the presence of AHL to induce a high
input signal to the device, show similar levels of β-galactosidase activity (low output
and MBP.ZF(C396S).LZ low output, respectively). Cultures of the inverter and the
C396S mutant, grown in the absence of AHL so there is little input to the device,
show similar higher β-galactosidase activities (high output and MBP.ZF(C396S).LZ
high output, respectively), as does a culture of just the cognate promoter driving
transcription of lacZα (maximum output).

repressor. The device based on a repressor with a deleted zinc finger DNA binding

domain demonstrated approximately half the repression of the inverter (Figure 5-14).

The result was unexpected, since deletion of the zinc fingers should completely elimi-

nate repression of β-galactosidase activity if the zinc finger domain is responsible for

DNA binding. Deletion of both the zinc finger and leucine zipper domains eliminated

any observed repression (Figure 5-15).

The experimental result that deletion of the zinc finger domain does not completely

eliminate repression is at odds with my previous result that the redesigned synthetic

repressor does not repress a noncognate promoter at all. If the zinc finger domain

were entirely responsible for the specific binding of the redesigned synthetic repressor

to the operator DNA and therefore specificity of repression of the cognate promoter,

then deletion of the zinc finger domain should completely eliminate transcriptional
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Figure 5-14: Deletion of the entire zinc finger DNA binding domain from the re-
designed synthetic repressor reduces repression. A plot of culture β-galactosidase ac-
tivity as a function of cell density, as measured by the absorbance at 600nm (A600), is
shown. In the absence of lacZα, a culture shows no β-galactosidase activity (minimal
output). A culture of the inverter, grown in the presence of AHL to induce a high in-
put signal to the device, shows some β-galactosidase activity (low output). A culture
of the device with a zinc finger domain deletion has slightly higher β-galactosidase
activity when provided with a high input (MBP.LZ low output). Cultures of the
inverter and the deletion mutant, grown in the absence of AHL so there is little in-
put to the device, show higher β-galactosidase activities (high output and MBP.LZ
high output, respectively), as does a culture of just the cognate promoter driving
transcription of lacZα (maximum output).
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Figure 5-15: Deletion of both the zinc finger DNA binding domain and the leucine
zipper dimerization domain from the redesigned synthetic repressor eliminates re-
pression. A plot of culture β-galactosidase activity as a function of cell density, as
measured by the absorbance at 600nm (A600), is shown. In the absence of lacZα, a
culture shows no β-galactosidase activity (minimal output). A culture of the inverter,
grown in the presence of AHL to induce a high input signal to the device, shows some
β-galactosidase activity (low output). A culture of the inverter, grown in the absence
of AHL so there is little input to the device, shows higher β-galactosidase activity
(high output), as does a culture of just the cognate promoter driving transcription of
lacZα (maximum output). Similarly, cultures of the deletion mutant show the same
high level of β-galactosidase activity, irrespective of the input provided to the device.
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repression. In the absence of any unforeseen experimental errors, the data suggest

that both the zinc finger and leucine zipper domains contribute to DNA binding

specificity and thus transcriptional repression; however, I cannot definitively exclude

other, alternative explanations. Additional structure-function studies are necessary

to elucidate the details of how the transcription factor binds to the cognate promoter

to repress transcription. Thus, although the synthetic transcription factor yields a

functional, transcriptional inverter, we do not fully understand its mode of action.

5.3.5 Transcriptional inverter is sufficient for combinational

digital logic

The overarching goal of this work is to lay the groundwork for a scalable imple-

mentation of transcription-based logic, so that we can eventually engineer families

of hundreds of devices that work well in combination. Therefore, it is appropriate

to consider, at this point, whether the measured device performance is sufficient to

implement combinational digital logic. From the data, the transcriptional inverter

clearly meets the basic requirement of the digital abstraction: it is capable of rep-

resenting two distinguishable states given a suitable input. Estimates of the device

demand and the device error rate provide additional guidance as to whether multi-

ple transcription-based logic gates, based on the presented design, could be used in

combination. Finally, I explore whether inverter performance may be tuned to meet

a particular device specification.

In Chapter 4, a surrogate measure for the total device demand is the number of

amino acids synthesized per unit time. Although I presented my device characteriza-

tion data in arbitrary units such as β-galactosidase activity or fluorescence, absolute

measurements of translational demand are straightforward, albeit labor-intensive [22].

In the case of DNA binding proteins, however, there is an additional component to

the stress that a device places upon the chassis that I have thus far neglected: non-

specific DNA binding. If a DNA binding protein binds nonspecifically in the genome,

particularly in intergenic regions, the cell physiology may be affected. In the E. coli
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strain MG1655 genome sequence, there no exact matches for the 14 base pair oper-

ator site used in the inverter BBa Q20060, nor any 1-base pair mismatches. There

are 7 2-base pair mismatch operator sites in the genome, but none occur in an inter-

genic region. Finally, there are 148 3-base pair mismatch sites and 1292 4-base pair

mismatch sites. Thus, based on sequence analysis alone, it is difficult to conclusively

establish whether nonspecific DNA binding is an issue. An alternative approach to

assessing the stress or demand that a device places on the chassis is measuring the

device impact on growth. Cultures expressing the synthetic repressor exhibit slower

growth than cultures not expressing the synthetic repressor (Figure 5-16); therefore,

it appears that either device demand is exceeding cell chassis capacity, or the syn-

thetic repressor is binding nonspecifically in the cell thereby interfering with chassis

operation. Given that expression of maltose binding protein alone does not result

in slowed culture growth (Figure 5-15), nonspecific DNA binding is the more likely

explanation for slowed growth. Regardless of the explanation, it is likely that only a

handful of transcription-based devices based on the redesigned inverter could operate

simultaneously in the chassis. Future design improvements should aim to reduce the

impact of the device on the chassis.

The device error rate can be estimated based on the ratio of the mean high signal

to the mean low signal and the expected signal coefficient of variation (Chapter 4).

According to the experimental data, the transcriptional inverter demonstrated a 2-

3-fold change between the high and low output. To estimate the device error rate,

I make two assumptions. First, I assume that the measured 2-3-fold repression is a

reflection of the change in PoPS between the high and low state. Second, I assume

that the PoPS signal of my device will have a coefficient of variation of 0.35, similar

to that measured for λ cI and its cognate promoter [124]. Given the two assumptions,

the device has an estimated error rate between 10-30%. Such an error rate may in

fact be suitable for particular classes of applications, such as metabolic engineering,

but is likely unacceptable for others, such as therapeutics. Thus, my inverter can

implement digital logic but is only suitable for applications tolerant of relatively high

error rates. Improvements in device performance may render this implementation of
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Figure 5-16: Expression of the synthetic repressor slow cell culture growth. A plot
of culture cell density, as measured by the absorbance at 600nm (A600), versus time
post-induction (hours) is shown. Only growth data corresponding to relevant device
characterization conditions are shown. Cultures expressing the synthetic repressor
(minimum output and low output) show slower growth than cultures not expressing
the synthetic repressor (high output and maximum output).

transcription-based logic suitable for a broader range of applications. Note that more

rigorous characterization of the device behavior would yield PoPS signal values and

therefore more accurate estimates of the device error rate [22].

A final consideration in evaluating the utility of synthetic transcription factors

in implementing digital logic is whether device behavior might be tuned to meet a

particular device specification. Device family specifications help to ensure that devices

function reliably in combination by setting thresholds for what constitutes valid input

and output signals (Chapter 4). To meet a particular device family specification, the

mean low and high signal values must be adjusted. One attractive mechanism for

tuning device signals is through promoter redesign. Promoters are generally short

and the sequence-function relationship is reasonably well-understood [138, 139, 140,

141, 142, 143, 144, 145, 146, 147, 148]. Hence, de novo promoter construction is

easily realizable. However, a handful of failed attempts to reduce the mean low

signal via redesign of the cognate promoter, by varying operator location, promoter

strength, and number of operator sites, suggests that varying the mean low signal
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Figure 5-17: The mean high signal of the transcriptional inverter may be more readily
tunable than the mean low signal. A) The minimum, low, and high output state of
the transcriptional inverter BBa Q20060. B) The minimum, low, and high output of
the transcriptional inverter BBa Q20061, with a modified promoter BBa R2201. C)
Overlay of the minimum, low, and high output of both inverters. Redesign of the
cognate promoter to make it weaker lowered the high output but left the low output
the same, suggesting that the mean high signal may be independently tunable from
the mean low signal.

may be challenging. However, I was able to independently lower the mean high signal

without affecting the mean low signal by redesigning the cognate promoter (Figure 5-

17). Thus, to tune inverter function to meet a particular device specification, a

combination of rational and library-based approaches may be necessary [219].

5.3.6 Synthetic versus natural transcription factors

The driving motivation behind my work on synthetic transcription factors was to over-

come the limitations of the current small number of natural bacterial transcription

factors available to implement transcriptional logic. Yet natural bacterial transcrip-

tion factors have a distinct advantage over synthetic transcription factors in that they
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have undergone stringent evolutionary selection. Evolution has yielded transcrip-

tion factors that repress transcription significantly, bind to their cognate operator(s)

specifically, and do not interfere with cellular growth and operation. Despite exten-

sive studies of bacterial repressors over several decades, our understanding of how

bacterial repressors work remains imperfect. Hence, our ability to design functional

synthetic transcription factors is correspondingly impaired. For example, designing a

synthetic transcription factor capable of significant levels of transcriptional repression

was a core obstacle in my thesis work, yet natural repressors, such as lacI, are readily

capable of over 100-fold repression [64]. As a second example, although the dimeric

zinc finger protein used here was found to be quite specific in vitro [202], expression of

the protein still adversely impacted cell growth, likely due to nonspecific DNA bind-

ing. Nevertheless, the goal of implementing memory and logic in cells is sufficiently

compelling to warrant the investment needed to overcome the challenge of building

multiple, orthogonal logic devices in the cell.

5.4 Conclusions

The primary contribution of this work is a proof-of-principle demonstration that a

scalable implementation of transcription-based logic using zinc fingers and leucine zip-

pers is possible. The transcriptional inverter BBa Q20060 is capable of representing

a digital signal and is potentially sufficient to implement combinational digital logic,

albeit with nontrivial error rates and depressed chassis growth rate. Taken together,

my work highlights twin challenges in synthetic transcription factor design: minimiz-

ing nonspecific DNA binding and decreasing mean low output signals. With respect

to the former challenge, despite the work that has been invested in designing specific

zinc fingers [220, 168, 104, 192], nonspecific DNA binding continues to be an issue in

synthetic transcription factor design. Although the dimeric zinc finger upon which

the transcriptional inverter was based has high measured specificity in vitro [202], it

still appears to bind nonspecifically in vivo. With respect to the latter challenge of

decreasing mean low signals, there remains a general lack of understanding of how
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proteins repress transcription by RNA polymerase at the molecular-level, hindering

design of synthetic transcription factors for transcription-based logic.
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Chapter 6

Engineering BioBrick vectors from

BioBrick parts

This chapter is based on a manuscript that I co-wrote with Drew Endy and Thomas

F. Knight, Jr. [221].

6.1 Summary

The underlying goal of synthetic biology is to make the process of engineering bio-

logical systems easier. Recent work has focused on defining and developing standard

biological parts. The technical standard that has gained the most traction in the syn-

thetic biology community is the BioBrick standard for physical composition of genetic

parts. Parts that conform to the BioBrick assembly standard are BioBrick standard

biological parts. To date, over 2,000 BioBrick parts have been contributed to, and

are available from, the Registry of Standard Biological Parts. Here we extended the

same advantages of BioBrick standard biological parts to the plasmid-based vectors

that are used to provide and propagate BioBrick parts. We developed a process for

engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick

parts that encode many useful vector functions. We combined the new parts to make a

BioBrick base vector that facilitates BioBrick vector construction. We demonstrated

the utility of the process by constructing seven new BioBrick vectors. We also success-
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fully used the resulting vectors to assemble and propagate other BioBrick standard

biological parts. We extended the principles of part reuse and standardization to

BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced

from all existing and newly designed BioBrick parts. We invite the synthetic biology

community to (1) use the process to make and share new BioBrick vectors; (2) expand

the current collection of BioBrick vector parts; and (3) characterize and improve the

available collection of BioBrick vector parts.

6.2 Introduction

The fundamental goal of synthetic biology is to make the process of engineering

biology easier. Drawing upon lessons from the invention and development of other

fields of engineering, we have been working to produce methods and tools that support

the design and construction of genetic systems from standardized biological parts. As

developed, collections of standard biological parts will allow biological engineers to

assemble many engineered organisms rapidly [18]. For example, individual parts or

combinations of parts that encode defined functions (devices) can be independently

tested and characterized in order to improve the likelihood that higher-order systems

constructed from such devices work as intended [124, 158, 22]. As a second example,

parts or devices that do not function as expected can be identified, repaired, or

replaced readily [222, 136].

We define a biological part to be a natural nucleic acid sequence that encodes a

definable biological function, and a standard biological part to be a biological part

that has been refined in order to conform to one or more defined technical standards.

Very little work has been done to standardize the components or processes under-

lying genetic engineering [7]. For example, in 1996, Rebatchouk et al. developed

and implemented a general cloning strategy for assembly of nucleic acid fragments

[223]. However, the Rebatchouk et al. standard for physical composition of biological

parts failed to gain widespread acceptance by the biological research community. As

a second example, in 1999, Arkin and Endy proposed an initial list of useful standard
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biological parts but such a collection has not yet been fully realized [224]. In 2003,

Knight proposed the BioBrick standard for physical composition of biological parts

[20]. Parts that conform to the BioBrick assembly standard are BioBrick standard

biological parts. In contrast to the previous two examples, the BioBrick physical

composition standard has been used by multiple groups [225, 226, 150, 22], and adop-

tion of the standard is growing. For example, each summer, hundreds of students

develop and use BioBrick standard biological parts to engineer biological systems

of their own design as a part of the International Genetically Engineered Machines

competition (http://igem.org). Additional technical standards defining BioBrick

parts are set via an open standards setting process led by The BioBricks Foundation

(http://biobricks.org).

The key innovation of the BioBrick assembly standard is that a biological engineer

can assemble any two BioBrick parts, and the resulting composite object is itself a

BioBrick part that can be combined with any other BioBrick parts. The idempotent

physical composition standard underlying BioBrick parts has two fundamental ad-

vantages. First, the BioBrick assembly standard enables the distributed production

of a collection of compatible biological parts. Two engineers in different parts of the

world who have never interacted can each design a part that conforms to the Bio-

Brick assembly standard, and those two parts will be physically composable via the

standard. Second, since engineers carry out the exact same operation every time that

they want to combine two BioBrick parts, the assembly process is amenable to op-

timization and automation, in contrast to more traditional ad hoc molecular cloning

approaches.

The Registry of Standard Biological Parts (Registry) exemplifies the advantage

offered by a physical composition standard such as the BioBrick assembly standard

(http://partsregistry.org). The Registry currently maintains a collection of over

2,000 BioBrick standard biological parts. Every part in the Registry has a BioBrick

part number that serves as the unique identifier of the part (for example, BBa I51020).

The Registry maintains information about each part including its sequence, function,

and, if available, user experiences. DNA encoding each BioBrick standard biological
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part is stored and propagated in Escherichia coli plasmid-based vectors [227, 228,

229, 230]. Biological engineers can obtain parts from the Registry and assemble

them using the BioBrick assembly standard in order to construct many-component

synthetic biological systems.

All BioBrick parts are currently maintained on a set of plasmids that includes

pSB1A3-P1010, pSB3K3-P1010, pSB4A3-P1010 (section C). However, these Bio-

Brick vectors are ad hoc designs that were cobbled together from common cloning

plasmids such as pUC19 [231, 232, 233]. As a result, whenever a new vector is needed

for use with BioBrick parts, a biological engineer must design and assemble the new

BioBrick vector from scratch.

Several plasmid-based cloning systems that support the manipulation, propaga-

tion, and expression of DNA fragments have been developed [234, 235, 236, 237,

231, 232, 233, 238, 239, 64]. The Gateway R© recombinational cloning system and

associated vectors are arguably the closest example of a vector standard in biologi-

cal research [240, 241]. For example, several genome-wide collections of open read-

ing frames (ORFeomes) have been compiled using the Gateway R© cloning system

[242, 243, 244]. The Gateway R© system has even been extended to allow assembly

of multiple DNA fragments [245, 246]. However, the Gateway R© system generally

requires customized assembly strategies for each new system and therefore does not

provide the advantages afforded by the BioBrick standard (above).

Thus, we sought to extend the advantages of BioBrick standard biological parts

to the vectors that propagate BioBrick parts. To do this, we developed a new process

for engineering BioBrick vectors. The process leverages existing and newly designed

BioBrick parts for the ready construction of many BioBrick vectors. To demonstrate

the utility of the new process, we constructed seven new BioBrick vectors from the

base vector. We also successfully used the new vectors to assemble BioBrick standard

biological parts.
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Figure 6-1: Schematic diagram of BBa I51020: a BioBrick base vector designed to
facilitate construction of new BioBrick vectors. Parts from the collection listed in
Figure 6-5 were used to construct BBa I51020.

6.3 Results

6.3.1 The BioBrick base vector (BBa I51020)

The process for engineering BioBrick vectors from BioBrick parts is primarily based

upon a newly designed BioBrick part: BBa I51020 [Genbank:EU496089]. The new

part is a BioBrick base vector that serves as a scaffold for construction of new BioBrick

vectors (Figure 6-1). Starting from the base vector, new vectors can be built using

plasmid replication origins and antibiotic resistance markers that conform to the

BioBrick standard for physical composition. Thus, the base vector enables the ready

reuse of vector parts available from the Registry of Standard Biological Parts. Use of

the base vector to construct BioBrick vectors ensures standardization and uniformity

in any resulting BioBrick vectors. For convenience, the base vector includes both

a high copy replication origin and ampicillin resistance marker, so the base vector

itself is capable of autonomous plasmid replication for easy DNA propagation and

purification [247].

All BioBrick vectors derived from the BioBrick base vector have five key features.

First, BioBrick vectors include a complete BioBrick cloning site to support the prop-

agation and assembly of BioBrick standard biological parts [20]. Second, BioBrick

vectors contain a positive selection marker in the cloning site to ameliorate one of
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the most common problems during assembly of BioBrick parts: contamination of the

ligation reaction with uncut plasmid DNA [248]. Any cells transformed with the Bio-

Brick vector produce the toxic protein CcdB and do not grow [249, 250, 251]. Cloning

a BioBrick part into the cloning site of the vector removes the toxic ccdB gene. Third,

BioBrick vectors contain a high copy origin in the cloning site to facilitate increased

yields from plasmid DNA purification [252, 253]. Again, cloning a BioBrick part into

the cloning site removes the high copy origin in the cloning site thereby restoring

replication control to the vector origin. Fourth, BioBrick vectors include transcrip-

tional terminators and translational stop codons flanking the cloning site to insulate

the proper maintenance and propagation of the vector from any possibly disruptive

function encoded by inserted BioBrick parts [254, 255, 256, 257]. Fifth, BioBrick vec-

tors include verification primer annealing sites sufficiently distant from the cloning

site to check the length and sequence of the cloned BioBrick part. The primer an-

nealing sites are identical to those found in commonly used BioBrick vectors, such as

pSB1A3-P1010, to support backwards compatibility.

6.3.2 Constructing new BioBrick vectors using the BioBrick

base vector

Constructing new BioBrick vectors starting from the BioBrick base vector requires

just two assembly steps (Figure 6-2). The replication origin and antibiotic resistance

marker should each be BioBrick standard parts. To construct a BioBrick vector,

assemble the origin and antibiotic resistance marker via BioBrick standard assem-

bly (first assembly step). Then, digest the resulting composite part with restriction

enzymes XbaI and SpeI, and digest the BioBrick base vector with NheI to excise

the ampicillin resistance marker. Next, ligate the composite origin and resistance

marker to the linearized base vector (second assembly step). XbaI, SpeI, and NheI

all generate compatible DNA ends that, when ligated with a DNA end from one of

the other enzymes, produce a non-palindromic sequence that cannot be cut by any

of the three enzymes. Thus, proper assembly of the vector eliminates any BioBrick
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Figure 6-2: Assembly strategy for a new BioBrick vector using the BioBrick base vec-
tor BBa I51020. (A) The replication origin and antibiotic resistance cassette should
each be BioBrick standard biological parts. (B) Assemble the desired replication ori-
gin and antibiotic resistance cassette via BioBrick standard assembly to construct a
composite origin and antibiotic resistance cassette. (C) Digest the resulting BioBrick
composite part with XbaI and SpeI. (D) To excise the ampicillin resistance marker,
digest the base vector with NheI. XbaI, SpeI, and NheI all generate compatible cohe-
sive DNA ends that, when ligated with a DNA end from a one of the other enzymes,
produce a non-palindromic sequence that cannot be cut by any of the three enzymes.
Finally, ligate the digested composite origin and resistance marker to the digested
base vector. (E) The result is the new BioBrick vector pSB4K5-I52002.

enzyme sites and ensures that the resulting vector adheres to the BioBrick physical

composition standard. Finally, transform the ligation product into a strain tolerant

of ccdB expression, such as E. coli strain DB3.1 [258, 259].

To support the construction of new BioBrick vectors, we built four new antibi-

otic resistance markers and two replication origins all as BioBrick standard biologi-

cal parts. The four antibiotic resistance markers express proteins that confer resis-

tance to ampicillin (BBa P1002 [Genbank:EU496092]), kanamycin (BBa P1003 [Gen-

bank:EU496093]), chloramphenicol (BBa P1004 [Genbank:EU496094]), and tetracy-
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cline (BBa P1005 [Genbank:EU496095]), respectively [260, 261, 262, 263]. The two

replication origins were derived from the pSC101 (BBa I50042 [Genbank:EU496096])

and p15A (BBa I50032 [Genbank:EU496097]) replicons, respectively [264, 265]. We

used the described procedure, base vector, and new vector parts to construct seven

new BioBrick vectors: pSB4A5-I52002, pSB4K5-I52002, pSB4C5-I52002, pSB4T5-

I52001, pSB3K5-I52002, pSB3C5-I52001, and pSB3T5-I52001 [Genbank:EU496098-

EU496104] (section 6.5.4).

6.3.3 Assembling BioBrick parts using a new BioBrick vector

BioBrick vectors support assembly of new BioBrick standard parts. The new vec-

tors are compatible with prefix or postfix insertions of BioBrick parts as originally

described [20]. Alternatively, the new vectors also support three antibiotic based

assembly (3A assembly; Figure 6-3; Shetty, Rettberg, and Knight, in preparation)

[266]. 3A assembly is a method for assembling one part (the prefix part) upstream

or 5’ to a second part (the suffix part) in the BioBrick cloning site of a BioBrick

vector (the destination vector). 3A assembly favors correct assembly of the prefix

and suffix BioBrick parts in the destination vector through a combination of positive

and negative selection. Briefly, 3A assembly works as follows: Digest the prefix part

with EcoRI and SpeI, the suffix part with XbaI and PstI, and the destination vector

with EcoRI and PstI. Then, ligate the two parts and destination vector and transform

into competent E. coli. Plate the tranformed cells on LB agar plates supplemented

with antibiotic corresponding to the destination vector resistance marker. Most of

the resulting colonies should contain the composite BioBrick part cloned into the

destination vector.

To confirm that our new BioBrick vectors function as expected, we assembled

new BioBrick standard biological parts using four of the vectors that we constructed.

To demonstrate that the composite BioBrick parts were correctly assembled using

our new vectors, we performed a colony PCR amplification of the assembled parts

and determined that the PCR product length was correct (Figure 4). Each part was

also verified to be correct via sequencing with primers that anneal to the verification
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(Ligation product of prefix part DNA fragment, suffix
part DNA fragment, and destination vector backbone.)

Figure 6-3: Assembly strategy for two BioBrick standard biological parts using a
new BioBrick vector. (A) Digest the prefix part with enzymes EcoRI and SpeI.
(B) Digest the suffix part with restriction enzymes XbaI and PstI. (C) Digest the
destination vector (pSB4K5-I52002) into which the two parts will be assembled with
restriction enzymes EcoRI and PstI. Without agarose gel purification of the linearized
DNA, ligate the three fragments, transform into E. coli and plate on LB agar plates
supplemented with the antibiotic corresponding to the destination vector resistance
marker. (D) Most of the resulting colonies contain the composite BioBrick part cloned
into the destination vector.
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Figure 6-4: To verify the function of the new BioBrick vectors, we performed a colony
PCR using primers that anneal to the verification primer binding sites. To check the
length of the resulting PCR products, we electrophoresed the reactions through an
0.8% agarose gel. Lanes 1-8 are the PCR products resulting from the amplification
of the following BioBrick parts cloned into new BioBrick vectors. The desired PCR
product lengths are in parentheses. Lane 1 is pSB4A5-I52001 (1370 bp), lane 2 is
pSB4K5-T9003 (1883 bp), lane 3 is pSB4C5-E0435 (814 bp), lane 4 is pSB4T5-P20061
(2988 bp), lane 5 is pSB3K5-I52002 (1370 bp), lane 6 is pSB3C5-I52001 (1370 bp),
lane 7 is pSB3T5-I6413 (867 bp), and lane 8 is BBa I51020 (1370 bp). Lane 9 is 1 µg
of 2-log DNA ladder (New England Biolabs, Inc.). The 0.5 kb, 1 kb, and 3 kb DNA
fragments in the DNA ladder are annotated.

primer binding sites (BBa G00100 and BBa G00102).

6.4 Discussion

We developed a new process for engineering BioBrick vectors from BioBrick parts.

The process now makes possible the ready construction of many, new BioBrick vectors

using the growing collection of BioBrick parts available from the Registry of Standard

Biological Parts. Moreover, new BioBrick vectors can be constructed from the Bio-

Brick base vector in just two assembly steps. Finally, any BioBrick vectors derived

from the BioBrick base vector have five key features designed to facilitate the cloning,
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assembly, and propagation of BioBrick parts. We used the process to construct seven

new BioBrick vectors and used the vectors to assemble new BioBrick parts.

6.4.1 Design of new BioBrick vectors parts

To adhere to the BioBrick standard for physical composition, BioBrick vector parts

need only be free of the BioBrick restriction enzyme sites. However, we chose to de-

sign anew all BioBrick vector parts (Figure 6-5), so that we could completely specify

their DNA sequences. We compiled a list of potentially useful endonuclease sites for

removal from all new BioBrick vector parts (Table 6.1). We targeted each group of

endonuclease sites for removal for a different reason. We targeted recognition sites

of enzymes that produce compatible cohesive ends to the BioBrick enzymes because

such enzymes often prove useful in constructing new variants of BioBrick vectors.

We targeted offset cutter sites because they may be useful in alternative restric-

tion enzyme-based assembly methods [267]. We targeted homing endonuclease sites

because they are commonly used in genome engineering [268]. We targeted some

nicking endonuclease sites because they can be useful for specialized cloning appli-

cations [269]. Finally, we targeted several additional restriction endonuclease sites

to keep them available for use by new standards for physical composition. Our list

of endonuclease sites constitutes a set of target sequences that should be considered

for removal from any newly synthesized BioBrick part, if possible. The target se-

quence set will change as the synthetic biology community develops new standards

for physical composition of BioBrick parts. Some of the targeted endonuclease sites

were naturally absent from the DNA sequences encoding our new vector parts. For

any remaining sites, we removed the recognition sequences from the BioBrick vector

parts by introducing point mutations. However, the functions of the pSC101 and

pUC19-derived plasmid replication origins were sensitive to introduced mutations, so

the replication origins used in this work are not free of all targeted endonuclease sites

(sections 6.5.2 and 6.5.3). Similarly, issues during synthesis led to an unnecessary

redesign of the ccdB positive selection marker, so it too is not free of all targeted

endonuclease sites.
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Part Number Function Notation

BBa_G00000 BioBrick cloning site prefix

BBa_G00001 BioBrick cloning site suffix

BBa_P1016
ccdB positive selection 

marker

BBa_I50022
pUC19-derived high copy 

replication origin

BBa_B0042 translational stop sequence

BBa_B0053 &
BBa_B0054

forward transcriptional 
terminator

BBa_B0055 &
BBa_B0062

reverse transcriptional 
terminator

BBa_G00100
forward verification primer 

annealing site (VF2)

BBa_G00102
reverse verification primer 

annealing site (VR) 

BBa_B0045 NheI restriction site

BBa_P1006
ampicillin resistance marker 

(reverse orientation)

BBa_P1002 ampicillin resistance marker

BBa_P1003
kanamycin resistance 

marker

BBa_P1004
chloramphenicol resistance 

marker

BBa_P1005
tetracycline resistance 

marker

BBa_I50042 pSC101 replication origin

BBa_I50032 p15A replication origin
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N

*
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Figure 6-5: The Registry part number, function, and graphical notation of each con-
structed BioBrick vector part are listed. The part collection includes (1) BBa G00000:
BioBrick cloning site prefix including the EcoRI (E) and XbaI (X) restriction en-
zyme sites, (2) BBa G00001: BioBrick cloning site suffix including the SpeI (S) and
PstI (P) restriction enzyme sites which, together with the BioBrick prefix, forms a
BioBrick cloning site for compatibility with all BioBrick standard biological parts,
(3) BBa P1016: positive selection marker ccdB to improve yield of insert-containing
clones during part assemblies, (4) BBa I50022: pUC19-derived high copy replication
origin within the BioBrick cloning site that allows for easy plasmid DNA purification
of the base vector and any derived vectors, (5) BBa B0042: a short DNA sequence
that has translational stop codons in all six reading frames to prevent translation
into or out of the BioBrick cloning site, (6) BBa B0053-B0055 and BBa B0062: for-
ward and reverse transcriptional terminators flanking the BioBrick cloning site to
prevent transcription into or out of the BioBrick cloning site, (7) BBa G00100 and
BBa G00102: sequence verification primer annealing sites for primers VF2 and VR,
(8) BBa B0045: NheI (N) restriction site for insertion of desired replication origin and
resistance marker to construct vector of interest, (9) BBa P1006: ampicillin resistance
selection marker to facilitate propagation of the base vector, (10) BBa P1002-P1005:
four antibiotic resistance markers, and (11) BBa I50042 and BBa I50032: pSC101 and
p15A replication origins. Each part is used either as a component of the BioBrick
base vector BBa I51020 (1-9) or to construct new BioBrick vectors (10-11).

Endonuclease Description
EcoRI, XbaI, SpeI, PstI BioBrick restriction site
ApoI, MfeI Produces compatible ends to EcoRI
AvrII, NheI Produces compatible ends to XbaI and SpeI
NsiI SbfI Produces compatible ends to PstI
AarI, AcuI, BbsI, BciVI, BfuAI, BmrI, Offset cutter
BsaI, BsgI, BsmBI, BsmI, BspMI,
BsrDI, BtgZI, EarI, EcoP15I,
FokI, SapI, TspRI
I-CeuI, I-SceI, PI-PspI, PI-SceI, I-PpoI Homing endonuclease
Nt.BbvCI, Nt.BstNBI, Nt.AlwI Nicking endonuclease
AgeI, AscI, BamHI, BbvCI, FseI, Restriction endonuclease
HindIII, KasI, NcoI, NdeI, NgoMIV,
PacI, PmeI (MssI), RsrII, SacI, SalI,
SfiI, SgfI, SgrAI, SrfI, SwaI (SmiI),
XcmI, XhoI, XmaI, XmnI, ZraI

Table 6.1: Endonuclease sites targeted for removal from BioBrick vector parts.
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6.4.2 Construction of BioBrick base vector

To realize our designs for new BioBrick vectors, we contracted for DNA synthesis

of the four antibiotic resistance markers, pSC101 replication origin and the entire

BioBrick base vector. However, synthesis of the BioBrick base vector was problem-

atic (section 6.5.3). The issues that arose during synthesis are briefly discussed here,

because they are relevant to anyone interested in synthesizing new BioBrick parts.

Difficulties during synthesis stemmed from the inclusion of both a ccdB positive selec-

tion marker that is toxic to most E. coli strains and a synthetic replication origin that

proved incapable of supporting replication of the BioBrick base vector. Commercial

DNA synthesis processes currently rely on cloning, assembly, and propagation of syn-

thesized DNA in E. coli. In general, for parts whose function are incompatible with

growth and replication of E. coli, the processes of DNA design and DNA synthesis

cannot be easily decoupled. Improvements in commercial DNA synthesis are needed

that free the process from dependence on in vivo DNA propagation and replication.

6.5 Materials and methods

6.5.1 Design of BioBrick vector parts and the BioBrick base

vector

We designed all BioBrick vector parts and the BioBrick base vector using Vector

NTI R©Suite 7 for Mac OS X by Invitrogen Life Science Software in Carlsbad, CA.

We removed endonuclease recognition sites from the designed parts either manually

or using GeneDesign vβ2.1 Rev 5/26/06 [270].

6.5.2 Construction of BioBrick vector parts

We contracted for DNA synthesis of the four antibiotic resistance markers and the

pSC101 replication origin to the DNA synthesis company Codon Devices, Inc. in

Cambridge, MA. The four antibiotic resistance markers (BBa P1002-P1005) were
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easily synthesized as designed. Testing confirmed that the four markers conferred

resistance to the corresponding antibiotics. Synthesis of the pSC101 origin was also

straightforward. However, testing revealed that our design for the pSC101 origin

(BBa I50040) was nonfunctional as a replication origin. We successfully reconstructed

a functional pSC101 replication origin (BBa I50042) via PCR of an existing plasmid.

Thus, we presume that one or more of the introduced point mutations to eliminate

endonuclease sites were deleterious to the plasmid replication function of the designed

origin. We did not attempt to synthesize the p15A replication origin (BBa I50032).

Instead, like the pSC101 origin, we constructed p15A origin by PCR of an existing

plasmid.

We constructed the functional pSC101 replication origin by PCR using pSB4A3-

P1010 as a template and amplification primers I50042-f (5’-GTT TCT TCG AAT TCG

CGG CCG CTT CTA GAG CTG TCA GAC CAA GTT TAC GAG-3’) and I50042-r (5’-GTT

TCT TCC TGC AGC GGC CGC TAC TAG TAG TTA CAT TGT CGA TCT GTT C-3’). We con-

structed the p15A replication origin by PCR using pSB3K3-P1010 as a template and

amplification primers I50032-f (5’-GTT TCT TCG AAT TCG CGG CCG CTT CTA GAG ATG

GAA TAG ACT GGA TGG AG-3’) and I50032-r (5’-GTT TCT TCC TGC AGC GGC CGC TAC

TAG TAA ACA CCC CTT GTA TTA CTG-3’). Each reaction was a mix of 45 µL PCR

SuperMix High Fidelity, 31.25 pmoles each of forward and reverse primer, and 1 ng

template DNA in a 50 µL total volume. The PCR conditions were an initial denat-

uration step of 95◦C for 15 mins followed by 40 cycles of 94◦C for 30 seconds, 56◦C

for 30 seconds, and 68◦C for 2.5 minutes. Finally, the reactions were incubated at

68◦C for 20 minutes. We then added 20 units DpnI restriction enzyme to each reac-

tion to digest the template DNA. The reactions were incubated for 2 hours at 37◦C

and then heat-inactivated for 20 minutes at 80◦C. We purified both reactions using

a MinElute PCR Purification kit according to the manufacturer’s directions (QIA-

GEN, Germany). The pSC101 and p15A origin PCR products were used directly for

assembly of the BioBrick vectors.
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6.5.3 Construction of BioBrick base vector

We also contracted for synthesis of the entire BioBrick base vector. However, we

encountered two issues during synthesis of the base vector. First, troubleshooting

efforts during synthesis compromised the design of the base vector: failed attempts

to clone the base vector into an E. coli strain intolerant of expression of the toxic

protein CcdB led to an unnecessary redesign of the ccdB positive selection marker

in the BioBrick base vector (from BBa P1011 to BBa P1016 [Genbank:EU496090]).

Second, faulty part design adversely impacted the synthesis process: our pUC19-

based replication origin design was similarly nonfunctional, so the base vector could

not be propagated as specified. Yet, synthesized DNA for the BioBrick base vector was

nevertheless provided. We eventually determined that the provided DNA was actually

a fusion of two slightly different copies of the base vector: one with the designed,

nonfunctional version of the pUC19 origin (BBa I50020) and one with a functional

version of the pUC19 origin (BBa I50022 [Genbank:EU496091]). To obtain a single,

corrected version of the BioBrick base vector, we performed a restriction digest of the

provided base vector DNA with EcoRI. We then re-ligated 1 µL of a ten-fold dilution

of the linearized base vector DNA. For detailed reaction conditions, see section 6.5.5.

We transformed the religated BioBrick base vector into E. coli strain DB3.1 via

electroporation and plated the transformed cells on LB agar plates supplemented

with 100 µg/mL ampicillin to obtain the corrected BioBrick base vector BBa I51020

[258, 271, 272]. Correct construction of the BioBrick base vector was verified by DNA

sequencing by the MIT Biopolymers Laboratory.

6.5.4 Assembly of BioBrick vectors

We assembled the new BioBrick vectors as described (Figure 6-2). For detailed re-

action conditions, see section 6.5.5. However, we used the synthesized BioBrick base

vector BBa I51019 instead of the corrected BioBrick base vector BBa I51020, since, at

the time, we had not yet identified the issue with the provided synthesized DNA. As a

result, we obtained a mixture of new vectors. Four of the constructed vectors have a
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functional version of the pUC19 origin (BBa I50022) in the BioBrick cloning site and

propagate at high copy (vectors with BBa I52002: pSB4A5, pSB4K5, pSB4C5, and

pSB3K5). The other three vectors have a nonfunctional version of the pUC19 origin

(BBa I50020) in the BioBrick cloning site and propagate at low copy (vectors with

BBa I52001: pSB4T5, pSB3C5, and pSB3T5). We chose to describe all seven vectors

here for two reasons. First, all seven new BioBrick vectors can be used for the prop-

agation and assembly of BioBrick parts; the vectors pSB4T5, pSB3C5, and pSB3T5

are just slightly less convenient for plasmid DNA purification. Second, the difficulties

that we encountered during construction of the BioBrick base vector are illustrative

of the current interdependence of DNA design and DNA synthesis (section 6.4.2).

6.5.5 Assembly of BioBrick parts using the new BioBrick

vectors

We assembled BioBrick composite parts as described (Figure 6-3). We performed

all restriction digests by mixing 0.5-1 µg DNA, 1X NEBuffer 2, 100 µg/ml Bovine

Serum Albumin, and 1 µL each needed restriction enzyme in a 50 µL total volume.

Restriction digest reactions were incubated for at least 2 hours at 37◦C and then

heat-inactivated for 20 minutes at 80◦C. We then dephosphorylated the destination

vector into which the parts were assembled. (When assembling BioBrick vectors, we

dephosphorylated the composite origin and resistance marker to prevent circulariza-

tion of this DNA fragment.) We performed dephosphorylation reactions by adding 5

units Antarctic Phosphatase and 1X Antarctic Phosphatase Reaction Buffer in a to-

tal volume of 60 µL to the heat-inactivated restriction digest reaction. We incubated

dephosphorylation reactions for 1 hour at 37◦C and inactivated the phosphatase by

heating to 65◦C for 5 minutes. We purified all reactions using a MinElute PCR Pu-

rification kit according to the manufacturer’s directions (QIAGEN). We performed

all ligation steps by mixing 2-4 µL of each purified, linearized DNA, 1X T4 DNA

Ligase Reaction Buffer, and 200 units T4 DNA Ligase in a 10µL total volume. We

incubated the ligation reactions for 20 minutes at room temperature. We transformed
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all assembled BioBrick parts into E. coli strain TOP10 via chemical transformation

[273, 274, 275]. (We transformed the assembled BioBrick vectors into E. coli strain

DB3.1 via electroporation [258, 271, 272].) Transformed cells were plated on LB agar

plates supplemented with 100 µg/mL ampicillin, 50 µg/mL kanamycin, 35 µg/mL

chloramphenicol, or 15 µg/mL tetracycline as appropriate. We identified clones with

correct construction of BioBrick parts by growth on the plates supplemented with

the correct antibiotic, lack of growth on plates supplemented with other antibiotics,

length verification by colony PCR (section 6.5.6), and DNA sequencing by the MIT

Biopolymers Laboratory.

6.5.6 Verification of correct BioBrick part assembly via colony

PCR

To demonstrate the correct assembly of BioBrick parts using the new BioBrick vectors,

we performed a colony PCR using primers that anneal to the verification primer

binding sites. We picked one colony and diluted it into 100 µL water. Then we mixed 9

µL PCR SuperMix High Fidelity, 6.25 pmoles VF2 primer (5’-TGC CAC CTG ACG TCT

AAG AA-3’), 6.25 pmoles VR primer (5’-ATT ACC GCC TTT GAG TGA GC-3’), and 1

µL colony suspension. The PCR conditions were as described previously but using

an annealing temperature of 62◦C and an elongation time of 3.5 minutes. We diluted

the reactions four-fold with water and then performed an agarose gel electrophoresis

of 20 µL of each diluted reaction using a 0.8% E-Gel R©. We also electrophoresed

1 µg of 2-log DNA ladder (New England Biolabs, Inc., Ipswich, MA) to verify the

length of each PCR product. The gel was imaged with 302 nm transilluminating

ultraviolet light using an ethidium bromide emission filter and an exposure time of

614 milliseconds.

Materials for all PCR and agarose gel electrophoresis steps in this work were

purchased from the Invitrogen Corporation in Carlsbad, CA unless otherwise speci-

fied. Reagents for all restriction digest, dephophorylation, and ligation reactions were

purchased from New England Biolabs, Inc., Ipswich, MA. All PCR and temperature-
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controlled incubation steps were done in a DNA Engine Peltier Thermal Cycler (PTC-

200) or DNA Engine OPTICONTMfrom MJ Research, Inc. (now Bio-Rad Laborato-

ries, Inc., Hercules, CA).

6.6 Conclusions

The goal of synthetic biology is to make the process of design and construction of

many-component, engineered biological systems easier. In support of this goal, a

technical standard for the physical composition of biological parts was developed

[20]. Here, we extended the same principles of part reusability and standardization of

physical composition to the vectors that are used to assemble and propagate BioBrick

parts. Using the process described here, new BioBrick vectors can be produced from

existing and newly designed BioBrick parts. As a result, myriad new vectors with

diverse functions can be built readily to support the engineering of many-component

systems. We invite the community to build on this work in several ways. First, we

invite the community to use the process described here to construct more BioBrick

vectors and share them via the Registry of Standard Biological Parts. Second, we

invite the community to expand the collection of parts for making BioBrick vectors.

For example, shuttle vector parts, compatible replication origins, and additional an-

tibiotic resistance markers would all be useful contributions to the Registry. Third,

we invite the community to further characterize and improve the BioBrick parts that

make up BioBrick vectors. For example, important parameters to measure include

plasmid copy number, and transcriptional and translational read-through into and

out of the BioBrick cloning site.
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Chapter 7

Future work

Synthetic biology seeks to make the process of design, construction, and testing of

multi-component, engineered biological systems easier. My thesis focused on the

application of fundamental engineering principles, such as abstraction, standards for

physical composition, standards for functional composition, and design scalability to

the engineering of biology. I drew upon a combination of mathematical modeling,

experimental implementation, and measurement tools. Yet this thesis merely takes

the first few steps towards the larger goal of making biological engineering cheap,

fast, and predictable. Here, I list several areas where additional work is needed.

7.1 Relevance of lessons from electrical engineer-

ing to biological engineering

A central theme in my thesis is the application of principles from electrical engineer-

ing disciplines to biological engineering. In particular, I make extensive use of ideas

regarding how to assess digital device performance and how to design digital devices

so that they work in combination. Ideas from electrical engineering are relevant to bi-

ological engineering, because electrical engineering makes effective use of abstraction.

For example, electrical engineers evaluate digital device performance using metrics,

such as noise margin, propagation delay, and power consumption, that are indepen-
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dent of the underlying implementation. In fact, digital device performance metrics

are often used to compare one device implementation to another. Hence, approaches

for evaluating digital device performance in electrical engineering readily apply to

transcription-based implementations. It should be noted, however, that biological im-

plementations of combinational digital logic do face additional issues that are mostly

unique to biology. For example, by relying on molecular specificity to isolate one

device’s operation from another, crosstalk between transcription-based devices is a

key issue. Implementations in electrical engineering largely bypass the crosstalk is-

sue through spatial separation of signals. As a second example, genetically-encoded

devices and systems self-replicate in the presence of error. To date, mature engi-

neering disciplines have not needed a rigorous design framework for self-replicating

systems that are vulnerable to error. Developing such a framework represents a key

challenge in biological engineering that likely cannot readily draw upon lessons from

other fields.

7.2 Models of device operation do not capture in

vivo device behavior

There is an significant disconnect between the design principles obtained from simple

gene expression models of transcriptional inverters (Chapter 3) and the issues faced

during experimental implementation of transcriptional inverters (Chaper 5). For in-

stance, a general observation from the presented model of a transcriptional inverter

is that low input signals are sufficient to turn off the device output. The observed

behavior is due in large part to the typically high repressor-operator DNA affinities

measured for most naturally occurring bacterial repressors, such as lacI, tetR, and λ

cI. Even if the model explicitly accounts for nonspecific binding, it still predicts that

relatively low input signals will turn off device output. Such a prediction is at odds

with the experimental characterization of the transcriptional inverter based on a syn-

thetic transcription factor (Chapter 5). Even at maximum input, the inverter failed
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to turn off the device output completely. The disconnect between the model and the

experiments arises because our models generally assume that repressor binding is suf-

ficient to sterically hinder transcriptional initiation. In practice, complete repression

of transcriptional initiation is hard to achieve. Thus, either the repressor occupancy

time on the promoter DNA is far lower than simple models predict or transcriptional

initiation can still occur even in the presence of the repressor. Regardless, there is an

apparent lack of understanding of transcriptional repression at the molecular level.

Good models for understanding the interplay between repressor binding and RNAP

polymerase binding to the promoter do not exist. The postulated mechanisms by

which natural repressors achieve high levels of repression, such as local concentration

effects and DNA looping, are not so well-understood that we can straightforwardly

map the ideas to design of transcriptional inverters.

A second area where our models completely fail to capture device operation at the

relevant level of detail is nonspecific DNA binding. Although the presented model

takes into account the impact of nonspecific DNA binding on free repressor levels, it

clearly has no means of capturing second-order effects of nonspecific DNA binding,

such as reduced chassis growth rate. It would be useful to have even a heuristic

understanding for how much nonspecific DNA binding a chassis can tolerate without

adversely effecting its ability to support system operation.

One source of confusion in mapping model predictions to experimental characteri-

zations is how transfer curves are plotted. I plotted transfer curves obtained from the

model on linear axes. However, for expediency, most experimental characterizations

of transcriptional devices are measured using indirect reporters of gene expression,

such as fluorescence or enzymatic activity. Such measurements usually yield data in

arbitrary units rather than absolute numbers of molecules and are often plotted on

logarithmic axes rather than linear axes. Logarithmic plots tend to highlight low gain

regions for low inputs, whereas linear plots do not. Hence, depending on the shape

of the transfer curve, the device behavior may appear to be more “switch-like” on

a logarithmic plot than on a linear plot. Absolute measurements of device transfer

curves in PoPS are needed for direct comparison of models to experimental data.
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In a similar vein, proposal of suitable device family specifications is severely ham-

pered by the lack of data on device signals and variability in device signals. The crude

estimates of PoPS signal values and their distributions based on published data that

I have presented are not sufficient to prescribe device signal thresholds in good faith.

More extensive device characterization data is needed to inform models for device

operation and performance. In particular, measurement of not only transcriptional

signals but also device material, energy, and machinery demands at the single cell

level is needed. Such data is key to being able to develop suitable device family

specifications to which engineers can build their devices.

7.3 Engineering combinational, transcription-based

logic

The long-term aim of much of the work in this thesis is to develop libraries of

transcription-based logic devices. Ideally, devices in the library would meet at least

four criteria. First, devices must be well-characterized. For example, the transfer

curve, propagation delay, demand, error rate for each transcription-based devices

should be measured. Devices should be sufficiently well-characterized that end-users

can simply consult a device datasheet to determine whether the device will work in

their system or not [22]. Second, families of devices in the collection should work

in combination: a string of devices should be able to faithfully propagate a signal.

Thus, devices must adhere to proscribed device family specifications. Third, the de-

vices should be orthogonal. Two devices which are not connected should not interfere

with each other’s operations. In practice, orthogonality means that proteins from two

different devices should not dimerize and that proteins should not bind to noncognate

operators. Fourth, the devices should implement any logical operations not just logi-

cal NOT. By building logic devices that can implement the universal logic operations

of NAND or NOR, any logical operation is realizable.

As demonstrated in this thesis, achieving combinational, transcription-based dig-
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ital logic in E. coli is a challenging goal. My thesis work has largely relied on ra-

tional design approaches to build a prototype transcriptional inverter. Although the

transcriptional inverter presented here may be sufficient to implement combinational

digital logic, many classes of applications will require devices with improved perfor-

mance. Some applications will require lower error rates, other lower device demand

so that more devices can operate in parallel in the cell, and some will require both.

Going forward, a hybrid approach of rational design and combinatorial libraries may

prove fruitful. Rational design involves diagnostic experiments to identify likely fail-

ure modes combined with intentional device redesign to address the observed failure.

For example, I saw a significant improvement in inverter function through a rational

redesign of the repressor. By combinatorial libraries, I am not referring to the widely

used practice of generating sequence diversity through mutagenic PCR or random

oligos. Instead, I mean construction of libraries of different part combinations. For

example, libraries of promoters with different natural operator sites in different com-

binations have been constructed and screened for function [219]. Such an approach

may also prove useful in designing promoters repressible by synthetic transcription

factors for use in transcriptional inverters. Key parameters to vary in the promoter

library are operator number, operator position, and promoter strength.

A more ambitious approach to making devices with improved performance is to

construct and screen a library of transcriptional inverters based on different zinc

finger domains and cognate operators. Many zinc fingers and cognate binding sites

have been characterized based on Zif268 [202, 104, 276, 192]. Similarly, there are

several leucine zippers available [103]. Therefore, design of tens of different inverters

based on experimentally-validated zinc fingers and leucine zippers is readily realizable.

In addition to yielding novel functional, transcriptional inverters, such experiments

could help to establish definitively whether zinc fingers and leucine zippers proffer

a tractable solution to the challenge of building libraries of transcription-based logic

devices from synthetic transcription factors.

A natural question is why a library-based approach was not adopted in this thesis.

A library-based approach is greatly facilitated by access to three intersecting tech-
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nologies that are only now becoming readily available: ready access to cheap DNA

synthesis, high-throughput, automated assembly of genetic parts, and collections of

functional, standard biological parts. DNA synthesis allows ready construction of syn-

thetic transcription factors and cognate promoters from sequence information alone.

Gene synthesis costs have dropped from around $10 per base in 2002 to $0.70 per base

today [277]. High-throughput, automated assembly of genetic parts allows the engi-

neer to easily construct combinatorial libraries of zinc finger domains, leucine zipper

domains and cognate promoters. Although few companies offer commercial assembly

of genetic parts, the BioBrick idempotent physical composition standard and the im-

proved assembly procedures developed in this thesis renders parallelized assembly of

genetic parts far more tractable. Finally, construction of libraries of transcriptional

inverters depends on the availability of libraries of ribosome binding sites and tran-

scriptional terminators for use in the inverters, since reuse of the same parts over and

over can lead to issues of recombination and loss-of-function [22]. The Registry of

Standard Biological Parts has grown from about 10 parts in 2002 to over 2,000 today.

Yet, the number of well-characterized parts that implement basic biological functions

is still quite small.

The convergence of the technologies of synthesis, assembly, and an available col-

lection of standard biological parts also paves the way for other, related work towards

the larger goal of combinational, transcription-based logic. For example, as device

family specifications are further flushed out and more transcriptional devices are built,

devices will need to be tuned to meet a given device specification. Again, automated

assembly of genetic parts will be crucial. Tuning device behavior to meet a particular

device specification will likely require screening of device variants with different ribo-

some binding sites and promoter variants. As a second example, a more diverse set

of synthetic transcription factors and cognate promoters could be build to implement

a wider array of logic operations. Devices that implement logical NOR can be built

directly from the transcriptional inverters discussed here by including multiple copies

of the device input: the ribosome binding site, repressor coding sequence, and termi-

nator. Such a layout means that if any one of the inputs receives a high signal, then
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repressor is expressed and will turn off the output signal. In fact, devices that imple-

ment logical NAND are readily built from heterodimerizing synthetic transcription

factors. Thus, successful engineering of transcription factors for transcription-based

logic have the potential to make accessible arbitrary in vivo information processing

using digital devices.

7.4 Extending standardization and design scalabil-

ity to other classes of devices

More generally, I expect that many of the principles explored in this thesis with

respect to abstraction, standards for physical composition, standards for functional

composition, device performance measures, and design scalability will also be relevant

to other domains of synthetic biology. Just as cells rely on regulation at the transcrip-

tional, translational, degradation, and post-translational level, engineered information

systems will rely on digital logic devices that operate at each level. Advancements

in genetically-encoded sensors and actuators, such as those for catabolism and an-

abolism of chemicals, will render information processing devices even more valuable

in biological engineering.
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Appendix A

Materials and methods for

Chapter 2

A.1 Design

All genetic parts used in this work were designed and assembled according to the

BioBrick assembly standard unless otherwise specified [20]. We designed all BioBrick

standard biological parts using Vector NTI R© Suite 7 for Mac OS X by Invitrogen

Life Science Software in Carlsbad, CA and the Registry of Standard Biological Parts

(http://partsregistry.org).

A.2 System construction and assembly

A.2.1 Part construction

We constructed the long osmY promoter (BBa J45992) and all protein coding region

parts by PCR. Each reaction was a mix of 15 pmoles each of forward and reverse

primer and 1 ng of template with PCR Supermix High Fidelity added to a total

volume of 50 µL. The PCR conditions were an initial denaturation step of 95◦C for

3 minutes followed by 40 cycles of 94◦C for 30 seconds, 55◦C for 30 seconds, and

68◦C for 2.25 minutes. Finally, the reactions were incubated at 72◦C for 10 min-
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utes. We performed gel electrophoresis on 5 µL each PCR product using 1% agarose

gels supplemented with either 0.5 µg/mL ethidium bromide or 1X SYBR Safe DNA

gel stain in 1X TAE running buffer. To verify the length of the PCR products,

we also electrophoresed 1 µg of 2-log DNA ladder. If the PCR was successful, we

purified the PCR product using the QIAQuick PCR Purification Kit according to

the manufacturer’s directions (QIAGEN, Germany). We constructed the short osmY

promoter (BBa J45993) via primer annealing. We dissolved the primers in 50 mM

Tris buffer to yield a concentration of 500-1000 ng/µL. We mixed 8 µL each primer

and 1 mM NaCl in total volume of 40 µL. We incubated the reaction mix in a

beaker of boiling water and allowed the beaker and reaction to cool to room tem-

perature. Template and primer sequences used for each part are listed (Table A.1).

All primers were designed with the aid of IDT SciTools OligoAnalzer 3.1 (http:

//scitools.idtdna.com/analyzer/Applications/OligoAnalyzer/). We cloned

each BioBrick part into a BioBrick vector using the same restriction digest, ligation,

and transformation procedures described in Assembly of BioBrick standard biological

parts below.

A.2.2 Ensuring parts conform to the BioBrick standard for

physical composition

To ensure our parts complied with the BioBrick assembly standard, we used site-

directed mutagenesis to remove a BioBrick restriction site from the ATF1 coding

sequence (BBa J45014) with forward mutagenesis primer (5’-GAA GCA AAT ATT AGA

AGA GTT CAA AAA TAG TAA GGG-3’) and reverse mutagenesis primer (5’-CCC TTA

CTA TTT TTG AAC TCT TCT AAT ATT TGC TTC-3’). We performed the site-directed

mutagenesis reactions using the Quikchange Site-Directed Mutagenesis Kit according

to the manufacturer’s directions with three modifications (Stratagene, La Jolla, CA).

First, we phosphorylated the primers by preparing a reaction mix of 10 units T4

Polynucleotide Kinase, 1 µL T4 Ligase Buffer, and 8 µL primer. We incubated

the mix at 37◦C for 30 minutes and then heat-inactivated it at 65◦C for 20 minutes.
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Part number Template Forward primer Reverse primer
BBa J45004 pET-28a-BSMT1 5’-GTT TCT TCG AAT 5’-GTT TCT TCC TGC

[51] TCG CGG CCG CTT AGC GGC CGC TAC
CTA GAT GGA AGT TAG TAT TAT TAA
TGT TGA AGT TC-3’ TTT ATT TTG GTC

AAG GAG-3’
BBa J45014 S. cerevisiae 5’-GTT TCT TCG AAT 5’-GTT TCT TCC TGC

strain ACLY387 TCG CGG CCG CTT AGC GGC CGC TAC
genome CTA GAT GAA TGA TAG TAT TAT TAA

AAT CGA TGA GAA GGG CCT AAA AGG
AAA TC-3’ AGA GCT TTG-3’

BBa J45992 E. coli strain 5’-GTT TCT TCG AAT 5’-GTT TCT TCC TGC
MG1655 genome TCG CGG CCG CTT AGC GGC CGC TAC

CTA GCT GGC ACA TAG TAT TGT TAA
GGA ACG TTA TC-3’ ATA TAG ATC ACA

ATT TTG AAA CCG-3’
BBa J45993 none 5’-CTA GAG GCT TAT 5’-GCG GCC GCT ACT

GTT TTC GCT GAT AGT ATT TGT TAA
ATC CCG AGC GGT ATA TAG ATC ACA
TTC AAA ATT GTG ATT TTG AAA CCG
ATC TAT ATT TAA CTC GGG ATA TCA GCG
CAA ATA CTA GTA AAA ACA TAA GCC T-3’
GCG GCC GCT GCA-3’

Table A.1: Primers for part construction
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Second, the DpnI digestion step was extended to 2-3 hours. Third, we transformed the

mutated DNA into E. coli strain TOP10. We designed the primers for site-directed

mutagenesis with the aid of PrimerX (http://www.bioinformatics.org/primerx).

A.2.3 Assembly of BioBrick standard biological parts

We assembled all BioBrick standard biological parts by an iterative process of re-

striction digest, ligation, transformation, and plasmid DNA purification using three

antibiotic assembly [266]. We performed all restriction digests by mixing 0.5-1 µg

DNA, 1X NEBuffer 2, 100 µg/mL Bovine Serum Albumin, and each appropriate re-

striction enzyme (10 units EcoRI, 10 units XbaI, 5 units SpeI, and/or 10 units PstI)

in a 50 µL total volume. We incubated all restriction digest reactions for at least 2

hours at 37◦C and then heat-inactivated them for 20 minutes at 80◦C. We performed

all ligation reactions by mixing 1-5 µL of each linearized DNA, 1X T4 DNA Ligase

Buffer, and 200 units T4 DNA Ligase in a 10 µL total volume. All ligations were

three-way ligations involving (1) BioBrick vector cut with EcoRI and PstI, (2) the

upstream or 5’ part cut with EcoRI and SpeI, and (3) the downstream or 3’ part

cut with XbaI and PstI. All ligation reactions were incubated for 20 minutes at room

temperature. We transformed 2 µL each ligation reaction into E. coli strain TOP10

via chemical transformation [273, 274, 278, 40, 275]. Transformed cells were plated on

LB agar plates supplemented with 50 µg/mL ampicillin, 34 µg/mL chloramphenicol,

20 µg/mL kanamycin, and/or 5 µg/mL tetracycline as appropriate.

A.2.4 Verifying successful assemblies

We identified colonies with correctly assembled BioBrick composite parts by growth

on the plates supplemented with the correct antibiotic, length verification by colony

PCR (optional), and DNA sequencing by the MIT Biopolymers Laboratory. For

colony PCR, we picked several colonies and diluted each colony into 20 µL water.

Then we mixed 9 µL PCR Supermix High Fidelity, 10 picomoles each forward and

reverse primer, and 0.5 µL colony suspension. The PCR conditions were an initial
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denaturation step of 98◦C for 5 minutes followed by 40 cycles of 98◦C for 10 seconds,

58◦C for 30 seconds, and 72◦C for 1 minute per kilobase of expected product length.

Finally, the reactions were incubated at 72◦C for 10 minutes. The primers used for

both colony PCR and DNA sequencing were VF2 (5’-TGC CAC CTG ACG TCT AAG AA-

3’) and VR (5’-ATT ACC GCC TTT GAG TGA GC-3’), respectively. We used mutagenesis

primers as additional, internal primers for sequencing longer parts.

A.2.5 Debugging failed assemblies

In the event that the first attempt of an assembly was unsuccessful, we tried one or

more problem-solving strategies. First, gel electrophoresis was performed as described

above to verify digestion of the vectors and parts to be assembled. If we found that

digestion was incomplete, we repeated the digest and extended the incubation at

37◦C to several hours or overnight. Second, we purified the digested parts using

the QIAQuick PCR Purification Kit as described above. Third, we performed gel

extractions of the digested parts using the QIAQuick Gel Extraction Kit according

to the manufacturer’s directions (QIAGEN). Fourth, we tried two-way BioBrick part

assemblies as originally described [20].

The PCR Supermix High Fidelity, SYBR Safe DNA gel stain, and all primers were

purchased from the Invitrogen Corporation in Carlsbad, CA. All PCR steps were

done in a DNA Engine Peltier Thermal Cycler (PTC-200) from MJ Research, Inc.

(now Bio-Rad Laboratories, Inc., Hercules, CA). All reagents for restriction enzyme

digestions, phophorylations, and ligations as well as 2-log ladder were purchased from

New England Biolabs, Inc., Ipswich, MA.

A.3 Gas chromatography analysis of odorant pro-

duction

To test function of the constitutive wintergreen odorant generator (BBa J45120), con-

stitutive banana odorant generator (BBa J45200), and odor-free chassis (BBa J45999),
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we grew overnight cultures at 37◦C from single colonies in LB Lennox medium. Cul-

tures were supplemented with 50 µg/mL ampicillin, 34 µg/mL chloramphenicol, 20

µg/mL kanamycin, 5 µg/mL tetracycline, 2 mM salicylic acid (precursor to win-

tergreen odorant), and/or 5 mM isoamyl alcohol (precursor to banana odorant) as

appropriate. We prepared samples suitable for gas chromatography by extracting 20

mL culture into 2 mL heptane. In each case, we analyzed 200 µL of sample.

We analyzed samples for methyl salicylate or indole using an Agilent 6890N gas

chromatograph operated in pulsed spitless mode and equipped with a Restek Rtx-

1 (30 m length, 0.25 mm inner diameter, and 1.00 µm film thickness) crossbound,

100% dimethyl polysiloxane column and coupled to an Agilent 5973 mass-selective

detector. The carrier gas was helium held at a constant flow rate of 1.0 mL/minute.

Samples were injected at 250◦C. The GC oven was programmed with an initial 5

minute temperature hold at 100◦C, followed by a temperature ramp of 10◦C/minute

to 180◦C, followed by a temperature hold of 2 minutes, followed by a temperature

ramp of 70◦C/minute, and a final hold of 10 minutes. The Agilent 5973 had an

analyzer temperature of 150◦C and an ion source temperature of 230◦C and was

operated at 70 eV in full scan mode with a mass range m/z 50-500. Initial solvent

delay was 5 minutes. For reference, we analyzed samples containing 100 ppm pure

methyl salicylate and 100 ppm pure indole in the same manner.

We analyzed samples for isoamyl acetate using a HP 6890 gas chromatograph fitted

with a PTV injector operated in splitless mode and equipped with a J&W Scientific

DB-17 (30 m length, 0.32 mm inner diameter, and 0.25 µm film thickness) fused silica

capillary column and coupled to an Agilent 5973 mass-selective detector. The carrier

gas was helium held at a constant pressure of 22.7 psi. The samples were injected at

50◦C and the GC oven was programmed with an initial 5 minute temperature hold,

followed by a temperature ramp of 20◦C/minute to 200◦C, followed by a final hold of

5 minutes. The Agilent 5973 was operated at 70 eV in full scan mode with a mass

range m/z 50-750. Initial solvent delay was 3 minutes. For reference, we also analyzed

a sample containing 100 ppm pure isoamyl acetate in the same manner. All isoamyl

acetate samples also contained 100 ppm octyl acetate as an internal standard.
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A.4 Testing function of transcriptional control de-

vices

To measure the function of the transcriptional control devices, we assembled the

constitutive (BBa R0040), exponential phase (BBa J45994), and stationary phase

(BBa J45992) control devices with the GFP generator (BBa E0840). To control for

cellular autofluorescence, we also characterized a part which does not synthesize GFP

(BBa B0015). For each of the four constructs, we grew three cultures from single

colonies overnight at 37◦C. After 20 hours of growth, we diluted each culture 250-

fold into 25 mL culture volume in 250 mL flasks. We incubated diluted cultures at

220 rotations per minute (RPM) in an Innova 2300 Large-Capacity Benchtop Shaker

(New Brunswick Scientific Co., Inc., Edison, NJ) for 4 hours at 37◦C. We then diluted

the cultures again to an OD600nm of 0.0448 into a 25 mL final culture volume. The

rediluted cultures were grown under the same conditions for 50 minutes. We loaded

200 µL of each culture in triplicate into a 96-well plate. The plate was incubated

in a Wallac Victor3 multi-well fluorimeter (Perkin Elmer, Waltham, MA) at 37◦C

and assayed with an automatically repeating protocol of absorbance measurements

(600 nm absorbance filter, 0.1 seconds counting time through 5 mm of fluid) and

fluorescence measurements (488 nm excitation filter, 525 nm emission filter, 0.1 sec,

CW lamp energy 12901 units). Between each measurement, we included two identical

steps of a delay of 250 seconds followed by shaking (1 mm, linear, normal speed, 15

seconds). The time between repeated measurements was 10 minutes and 37 seconds.

A.5 Analysis of growth phase-dependent transcrip-

tional control devices

We analyzed the resulting data to compute the rate of synthesis of GFP per cell as

a function of culture density. We subtracted the appropriate backgrounds from the

raw data measured by the Wallac Victor3 multi-well fluorimeter. The absorbance
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of wells containing LB medium, Amedia, was subtracted from the sample absorbance

data, Araw. The resulting data, Acorrected, was assumed to be directly proportional to

the number of cells in the well.

Acorrected = Araw − Amedia (A.1)

Similarly, the fluorescence data for the GFP-free cells containing BBa B0015,

Gcells, was subtracted from the sample fluorescence data, Graw, and the resulting

data Gcorrected was assumed proportional to the total number of GFP molecules in

the well.

Gcorrected = Graw −Gcells (A.2)

A calibration curve relating absorbance measured by the multi-well fluorimeter to

OD600 was produced (data not shown). The calibration curve was used to convert

the corrected absorbance data to OD600. The calibration equation used is shown in

Equation (A.3).

OD = 3.11 ∗ Acorrected − 0.016 (A.3)

Synthesis rates of GFP per cell in relative units, Scell, were calculated by first

assuming the total GFP synthesis rate, Stotal, to be equal to the time differential

of GFP. Scell was then calculated via Equation (A.5). Since we measured the total

amount of GFP in the well and since we assume that GFP is not degraded, we

calculate the total synthesis rate of GFP and, from that, the per cell synthesis rate

of GFP without considering dilution due to cell growth.

Stotal =
dGFP

dt
(A.4)

Scell =
Stotal

OD
(A.5)

We averaged the data for each of the three replicates and three independent cul-
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tures. Error bars were calculated as the 95% confidence interval in the mean of the

three independent cultures.

A.6 Testing function of growth phase-dependent

odorant generators

To test the function of the growth phase-dependent odorant generators, we measured

the amount of odorant produced by the constitutive wintergreen odorant genera-

tor (BBa J45120), exponential phase wintergreen odorant generator (BBa J45181),

constitutive banana odorant generator (BBa J45200), and stationary phase banana

odorant generator (BBa J45250) as a function of the culture density. For each day’s

experiment, we grew 5 mL cultures of the constitutive and growth phase-dependent

device overnight at 37◦C in LB Lennox medium supplemented with 50 µg/mL ampi-

cillin and 5 µg/mL tetracycline. In two 2-L flasks, we diluted the overnight cultures

10,000-fold in LB medium supplemented with antibiotic to make master cultures.

We incubated the master cultures at 37◦C for 20 minutes at 220 RPM in an Innova

2300 Large-Capacity Benchtop Shaker (New Brunswick Scientific Co., Inc., Edison,

NJ). Then, we transferred the cultures to be shaken at 110 RPM in a Lab-Line 4645

shaker from Lab-Line Instrument in Melrose Park, IL (time zero). Periodically, we

aliquotted 25 mL of master culture into a new 125-mL flask and supplemented the

culture with 2 mM pure salicylic acid or 5 mM pure isoamyl alcohol as appropriate.

At this time, we measured the OD600nm of the culture aliquot in a 1 cm VWR

polystyrene semi-micro cuvette using the CO 8000 Biowave Cell Density Meter from

WPA (now Biochrom Ltd, United Kingdom). We returned the culture aliquot to

the same growth conditions as the master culture (110 RPM at 37◦C). After 3 addi-

tional hours of growth, we measured the OD600nm of the culture aliquot again. We

prepared and analyzed samples via gas chromatography as previously described. All

methyl salicylate samples also contained 10 ppm pentachloronitrobenzene as an in-

ternal standard. To quantify banana odorant levels in culture, we generated standard
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curves using varying concentrations of pure isoamyl acetate.

A.7 Quantification of isoamyl acetate production

by the constitutive and stationary phase ba-

nana odorant generators

Isoamyl acetate production by the constitutive and stationary phase banana odorant

generators as a function of cell density was analyzed as follows.

1. Reference samples of 5, 25, 100, 200, and 500 ppm isoamyl acetate (38 µM to

3.8 mM) were analyzed by gas chromatography during each day’s experiment.

Each reference sample also contained 100 ppm octyl acetate.

2. The peak height corresponding to the retention time of isoamyl acetate was

divided by the peak height corresponding to the retention time of the octyl

acetate internal standard.

3. A linear standard curve was fit to a plot of isoamyl alcohol concentration versus

ratio of isoamyl acetate to octyl acetate peak heights.

4. The data obtained for each experimental sample was converted to molar con-

centration using the standard curve obtained that day.

5. The molar concentration of isoamyl acetate was corrected for compound dilution

during sample preparation for gas chromatography and compound concentra-

tion during heptane extraction. We did not correct for extraction efficiency.

Extraction efficiencies were measured to be ∼70%.

6. The OD600nm of each culture was calculated by averaging the OD600nm read-

ing before and after the three hour growth in the presence of exogenous 5 mM

isoamyl alcohol.
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7. We plotted the corrected isoamyl acetate concentration (mM) versus the average

OD600nm.

The data from each of the three days was combined for each device and fit em-

pirically to the logistic equation.

[Isoamyl acetate] =
K

(1 + C ∗ e−r∗OD600nm)
(A.6)

The values for K, C, and r were fit by minimizing the sum of the squares of the errors

using solver in Microsoft R© Excel R© 2004 for Mac Version 11.3.7. For the constitutive

banana odorant generator (BBa J45200), we obtained K = 1.3, C = 94, and r = 8.3

with a least squares error of 0.31. For the stationary phase banana odorant generator

(BBa J45250), we obtained K = 0.98, C = 1900, and r = 7.8 with a least squares

error of 0.15.

A.8 Quantification of methyl salicylate production

by the constitutive and exponential phase win-

tergreen odorant generators

Methyl salicylate production by the constitutive and exponential phase wintergreen

odorant generators as a function of cell density was analyzed using a similar approach

to isoamyl acetate production. However, methyl salicylate levels were not converted

to absolute concentrations and were instead plotted as relative values to the 10 ppm

pentachloronitrobenzene internal standard (Figure 2-7).

The data from both days was combined for each device and fit by linear regression.

For the constitutive wintergreen odor generator, we obtained a slope of 5.7 and an

intercept of −1.1 (R2 = 0.88). For the exponential phase wintergreen odor generator,

we obtained a slope of 4.8 and an intercept of −0.1 (R2 = 0.86). The fitted lines

simply serve to emphasize the fact that there is no difference in methyl salicylate levels

produced by the constitutive and exponential phase wintergreen odorant generators.
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Appendix B

Materials and methods for

Chapter 5

B.1 Construction of transcriptional inverters

B.1.1 Fabrication of BioBrick basic parts

A part based on Zif23-GCN4 (BBa C2001) and cognate promoter (BBa R2000) were

originally designed as a part of the 2004 MIT IAP class in synthetic biology and

contracted for DNA synthesis to Blue Heron Biotechnology, Inc. The initial design

for the synthetic transcription factor BBa C2002 used in this work was constructed

by PCR using pSB2K3-C2001 as a template and amplification primers BioBrick-f

(5’-GTT TCT TCG AAT TCG CGG CCG CTT CTA G-3’) and C2002-r (5’-GTT TCT TCC

TGC AGC GGC CGC TAC TAG TAT TAT TAG TGA TGG TGA TGG TGA TGA CGT TCA CCA

ACC AGT TTT TTC-3’). The reaction was a mix of 18 µL PCR SuperMix High Fi-

delity, 12.5 pmoles each of forward and reverse primer, and 1 ng template DNA in a

20 µL total volume. The PCR conditions were an initial denaturation step of 95◦C

for 15 mins followed by 40 cycles of 94◦C for 30 seconds, 52◦C for 30 seconds, and

68◦C for 30 seconds. Finally, the reactions were incubated at 68◦C for 20 minutes.

The PCR product was TOPO TA cloned by mixing 1 µL PCR product with 0.5 µL

pCR4-TOPO vector and incubating at room temperature for 5 minutes before plac-
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ing on ice. The cloned PCR product was chemically transformed into E. coli strain

MachTM(Invitrogen Corporation, Carlsbad, CA). Correct clones were identified as

described in section B.1.2.

The redesigned synthetic repressor BBa C2006 was constructed by PCR. The mal-

tose binding protein domain was constructed by PCR using pMAL-c2x (New Eng-

land Biolabs, Inc. in Ipswich, MA) as a template and amplification primers C2006-f

(5’-GTT TCT TCG AAT TCG CGG CCG CTT CTA GAT GAA AAT CGA AGA AGG TAA AC-3’)

and C2006link-r (5’-ACG GCA CTG GAA CGG TTT CAT CCT TCC CTC GAT CCC G-3’).

The Zif23-GCN4 domain was constructed by PCR using pSB1AT3-B0030.C2005 as

a template and amplification primers C2006link-f (5’-CGG GAT CGA GGG AAG GAT

GAA ACC GTT CCA GTG CCG T-3’) and BioBrick-r (5’-GTT TCT TCC TGC AGC GGC

CGC TAC TAG TA-3’). Both reactions were a mix of 18 µL PCR SuperMix High

Fidelity, 12.5 pmoles each of forward and reverse primer, and 100-200 pg template

DNA in a 20 µL total volume. The PCR conditions were as before except that an an-

nealing temperature of 56◦C and an elongation time of either 90 or 30 seconds for the

maltose binding domain or Zif23-GCN4 domain, respectively, was used. 1 µL of each

reaction was diluted in a total volume of 40 µL. The composite synthetic transcrip-

tion factor was constructed by PCR by mixing 36 µL PCR SuperMix High Fidelity,

25 pmoles each of primers C2006-f and C2005-r, and 2 µL diluted PCR product as

template. The PCR conditions were the same as before except that the elongation

time was extended to 130 seconds. I purified both reactions using a PCR Purification

kit according to the manufacturer’s directions (QIAGEN, Germany). I performed a

restriction digest of the PCR product by mixing the DNA with 1X NEBuffer 3, 100

µg/ml Bovine Serum Albumin, and 0.5 µL each XbaI and PstI restriction enzyme in

a 20 µL total volume. The resulting digest was electrophoresed on an agarose gel and

purified via a QIAEX II Gel Extraction Kit (QIAGEN). The linear DNA fragment

was cloned as described below into BioBrick vector pSB4A3-P1010.

The modified cognate promoter BBa R2201 was constructed by primer annealing

and extension of primers R2201-f (5’-GTT TCT TCT CTA GAG AGT TTA TTC TTG ACC

CAC GCG CGT GGG AAT GTT ATA ATA C-3’) and R2201-r (5’-GTT TCT TCC TGC AGC

166



GGC CGC TAC TAG TAC TGA CGT ATT ATA ACA TTC CCA CGC G-3’). The reaction

was a mix of 9 µL PCR SuperMix High Fidelity and 12.5 pmoles each forward and

reverse primer. The reaction conditions were an initial denaturation step of 95◦C for

5 mins followed by 3 cycles of 94◦C for 30 seconds, 52◦C for 30 seconds, and 68◦C for

30 seconds. Finally, the reactions were incubated at 68◦C for 5 minutes. The product

was again cloned by TOPO TA cloning. Correct clones were identified as described

in section B.1.2.

B.1.2 Assembly of BioBrick composite parts

I assembled BioBrick composite parts as described (Figure 6-3). I performed all re-

striction digests by mixing 0.5-1 µg DNA, 1X NEBuffer 2, 100 µg/ml Bovine Serum

Albumin, and 1 µL each needed restriction enzyme in a 50 µL total volume. Re-

striction digest reactions were incubated for at least 2 hours at 37◦C and then heat-

inactivated for 20 minutes at 80◦C. I then dephosphorylated the destination vec-

tor into which the parts were assembled. I performed dephosphorylation reactions

by adding 5 units Antarctic Phosphatase and 1X Antarctic Phosphatase Reaction

Buffer in a total volume of 60 µL to the heat-inactivated restriction digest reaction. I

incubated dephosphorylation reactions for 1 hour at 37◦C and inactivated the phos-

phatase by heating to 65◦C for 5 minutes. I purified all reactions using a MinElute

PCR Purification kit according to the manufacturer’s directions (QIAGEN). I per-

formed all ligation steps by mixing 2-4 µL of each purified, linearized DNA, 1X T4

DNA Ligase Reaction Buffer, and 200 units T4 DNA Ligase in a 10µL total volume.

I incubated the ligation reactions for 20 minutes at room temperature. I transformed

all assembled BioBrick parts into E. coli strain TOP10 as described previously. I

identified clones with correct construction of BioBrick parts by growth on the plates

supplemented with the correct antibiotic, lack of growth on plates supplemented with

other antibiotics, length verification by colony PCR, and DNA sequencing by the

MIT Biopolymers Laboratory.
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B.1.3 Verification of correct BioBrick part assembly via colony

PCR

To verify correct assembly of BioBrick parts, I performed a colony PCR using primers

that anneal to the verification primer binding sites. I picked one colony and di-

luted it into 20 µL water. Then I mixed 9 µL PCR SuperMix High Fidelity, 6.25

pmoles VF2 primer (5’-TGC CAC CTG ACG TCT AAG AA-3’), 6.25 pmoles VR primer

(5’-ATT ACC GCC TTT GAG TGA GC-3’), and 1 µL colony suspension. The PCR con-

ditions were as described previously but using an annealing temperature of 56◦C and

an elongation time of 1 minuter per kb of expected product length. PCR product

size was verified by electrophoresis in a 1% or 1.5% agarose gel in 1X TAE running

buffer. I also electrophoresed 1 µg of 2-log DNA ladder (New England Biolabs, Inc.,

Ipswich, MA) to verify the length of each PCR product. The gel was imaged with

302 nm transilluminating ultraviolet light using an ethidium bromide emission filter.

Materials for all PCR and TOPO TA cloning were purchased from the Invitrogen

Corporation in Carlsbad, CA. Reagents for all restriction digest, dephophorylation,

and ligation reactions were purchased from New England Biolabs, Inc., Ipswich, MA.

All PCR and temperature-controlled incubation steps were done in a DNA Engine

Peltier Thermal Cycler (PTC-200) or DNA Engine OPTICONTMfrom MJ Research,

Inc. (now Bio-Rad Laboratories, Inc., Hercules, CA).

B.1.4 Construction of transcriptional inverter mutants

I mutated the cysteine residue at position 396 to serine with site-directed muta-

genesis using primers C2009-Mf (5’-GTT CCA GTG CCG TAT CAG CAT GCG TAA CTT

CTC-3’) and C2009-Mr (5’-GAG AAG TTA CGC ATG CTG ATA CGG CAC TGG AAC-3’)

and pSB4K5-I8500 as a template. The reaction was a mix of 1X PfuTurbo reac-

tion buffer, 0.5 mM each dNTP, 50 ng template, 25 pmoles each forward and reverse

primer, and 2.5 units PfuTurbo polymerase (Stratagene, La Jolla, CA) in a 50 µL

total volume. The reaction conditions were an initial denaturation step of 95◦C for 5

mins followed by 24 cycles of 95◦C for 30 seconds, 59◦C for 1 minute, and 68◦C for 8
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minutes. Finally, the reactions were incubated at 68◦C for 20 minutes. The reaction

was cooled to 37◦C and 20 units of restriction enzyme DpnI were added to the tube.

The reaction was incubated at 37◦C for 2 hours. I transformed 1 µL of the reaction

mix into competent E. coli strain TOP10 as described previously.

The deletion of the zinc finger domain from the transcriptional inverter was done

by PCR. Primers P20101-f (5’-CGT AAA TTG CAG CAC ATG AAA CAG CTG-3’) and

P20101-r (5’-AGT CTG CGC GTC TTT CAG GGC-3’) were first phosphorylated by mix-

ing 1X T4 Polynucleotide Kinase Reaction Buffer, 1 mM magnesium sulfate, 2 mM

ATP, 500 pmoles primer, and 10 units T4 Polynucleotide Kinase (New England Bio-

labs) in a 50 µL total volume. The reaction was incubated at 37◦C for 1 hour followed

by heat-inactivation at 65◦C for 20 minutes. Then a reaction mix identical to the site-

directed mutagenesis reaction mix was prepared, except that 10 pmoles each primer

was used. After digestion with DpnI, the reaction was heat-inacivated at 80◦C for 20

minutes. The PCR product was then purified, ligated, and transformed as described

previously.

The complete deletion of the zinc finger domain and leucine zipper domain was

constructed inadvertently during a site-directed mutagenesis reaction attempting to

introduce the C396S mutation.

B.2 In vivo GFP expression assay as a function of

cell density

From single colonies, 1 mL cultures were grown overnight at 37◦C in EZ Rich media

supplemented with either 0.4% glycerol or 0.2% glucose (Teknova, Hollister, CA). For

each experimental sample, 3 cultures from different colonies were grown. Cultures

were diluted back to OD600nm of 0.01. I loaded 200 µL of each culture in tripli-

cate into a 96-well plate. The plate was incubated in a Wallac Victor3 multi-well

fluorimeter (Perkin Elmer, Waltham, MA) at 37◦C and assayed with an automati-

cally repeating protocol of absorbance measurements (600 nm absorbance filter, 0.1
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seconds counting time through 5 mm of fluid) and fluorescence measurements (488

nm excitation filter, 525 nm emission filter, 0.1 sec, CW lamp energy 12901 units).

Between each measurement, we included a shaking step (1 mm, linear, normal speed,

190 seconds), a delay of 150 seconds, and a second, identical shake step. The time

between repeated measurements was 12 minutes and 11 seconds.

We analyzed the resulting data to compute the fluorescence per cell density a

function of cell density. Raw data from the Wallac Victor3 multi-well fluorimeter was

processed by first subtracting the appropriate backgrounds. The absorbance of wells

containing EZ medium, Amedia, was subtracted from the sample absorbance data,

Araw. The resulting data, Acorrected, was assumed to be directly proportional to the

number of cells in the well.

Acorrected = Araw − Amedia (B.1)

Similarly, the fluorescence data for wells containing EZ medium, Gmedia, was sub-

tracted from the sample fluorescence data, Graw, and the resulting data Gcorrected was

assumed proportional to the total number of GFP molecules in the well.

Gcorrected = Graw −Gmedia (B.2)

The fluorescence data was then scaled to the corresponding absorbance data.

Gscaled =
Gcorrected

Acorrected

(B.3)

Measurements for each experimental sample were binned by absorbance into bins

of width 0.05 A600 units and averaged. Error bars are 95% confidence intervals for

each bin.

B.3 Protein purification

The synthetic repressor encoded by BBa C2002 was purified using a denaturing purifi-

cation on Ni-NTA column (QIAGEN). Two LB cultures, one expressing the synthetic
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repressor and one not expressing the synthetic repressor, were grown overnight from

a single colony. LB cultures (5 mL) were diluted back 50-fold in 50 mL of LB medium

supplemented with 10 µM ZnCl2 and the appropriate antibiotic. At around OD600nm

of 0.6, the cells were harvested by centrifugation at 400 × g for 15 minutes at 4◦C.

The supernatant was decanted and the cell pellet was stored at -80◦C. The pellets

were thawed on ice, transferred to a 2-mL Eppendorf tube, and resuspended in 1mL

lysis buffer with a 1/4 EDTA-free protease inhibitor cocktail tablet (Roche). Lysis

mixtures were agitated at room temperature for 1 hour. Lysates were then centrifuged

at 10,000 × g for 30 minutes. Two Ni-NTA columns were equilibrated with 600 µL

lysis buffer. The columns were centrifuged at 700 × g for 2 minutes with an open

lid, and the equilibration buffer was discarded. The cleared lysates were loaded onto

the columns, and columns were centrifuged at 700 × g for 5 minutes. This step was

repeated until all of the cleared lysates had been loaded. Then the columns were

washed twice with 600 µL wash buffer. Wash buffer was removed by centrifugation

at 700 × g for 2 minutes with an open lid. To elute the protein, I then transferred

the columns to a clean eppendorf tube and added 200 µL elution buffer. The column

was centrifuged at 700 × g for 2 minutes with an open lid.

The lysis buffer was 8 M urea, 100 mM NaH2PO4, 10 mM Tris Cl, 10 mM imidazole

at pH 8.0. The wash buffer and elution buffer were the same as the lysis buffer but

at pH 6.3 and 4.5, respectively. After pH adjustment, the solutions were degassed for

1 hour under vacuum. Finally, tris(2-carboxyethyl) phosphine or TCEP was added

to each to a 1mM final concentration, and the pH was rechecked. A stock urea

solution was always freshly prepared and deionized for 1 hour with AG 501-X8(D)

resin (Bio-Rad Laboratories, Hercules, CA) prior to use.

B.4 Electrophoretic mobility shift assay

Electrophoretic mobility shift assays were performed as follows. The synthetic re-

pressor and 50 ng linear promoter DNA were incubated in a protein-DNA binding

buffer consisting of 15 mM Hepes-sodium hydroxide (pH 7.9), 100 mM potassium
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chloride, 5 mM magnesium chloride, 100 µM zinc sulfate, 10% (v/v) glycerol, 100

µg/mL Bovine Serum Albumin, and 10 mM β-mercaptoethanol. The reaction was

incubated for 4 hour at room temperature. The reactions were run using a Novex R©

DNA Retardation Gel in 0.5X TBE buffer and stained in 1X SYBR green stain in

0.5X TBE at room temperature for 20 minutes. The gel was then washed twice with

150 mL water for ∼10 seconds prior to visualization.

B.5 In vitro transcription assay

In vitro transcription reactions were performed as follows. Reactions consisted of

1X E. coli RNA polymerase transcription buffer, 5 mM TCEP, 0.5 mM each NTP,

repressor-DNA mixture, and 2.5 units E. coli RNA polymerase holoenzyme (EPICENTRE R©

Biotechnologies, Madison, WI) in a 50 µL total volume. The repressor-DNA mixture

consisted of 20 µL eluant from protein purification and 60 ng linearized PCR ampli-

fied DNA. In reactions in which the protein and DNA were pre-incubated prior to

addition of RNA polymerase, the incubation was at room temperature for 2 hours.

Although the exact repressor concentration is unknown, I estimate that the protein

was in a molar excess of the DNA so most of the DNA should be bound. Subse-

quently, the reactions were run on a 1% agarose gel in 1X TAE buffer at 6.5 V/cm.

To verify nucleic acid fragment size, both 1 µg ssRNA ladder and 2-log DNA ladder

were run (New England Biolabs). The gel was stained with 1X SYBR gold in 1X

TAE buffer for 40 minutes prior to visualization.

B.6 Protein solubility assay

Protein solubility was assayed as follows. Cultures of the synthetic repressor encoded

by BBa C2002, a different synthetic repressor encoded by BBa C2100, and cells not

expressing any DNA binding protein were grown overnight in LB medium supple-

mented with the appropriate antibiotic from a single colony. I added 2 mL culture

aliquots to 2 2-mL Eppendorf tubes. The cells were pelleted by centrifugation at
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4,000 × g for 15 minutes at 4◦C. One tube was resuspended in 50 µL denaturing lysis

buffer (as above). The second tube was resuspended in 50 µL native lysis buffer (50

mM monobasic sodium phosphate, 300 mM sodium chloridge, 10 mM imidazole at pH

8.0). The lysis mixtures were freeze-thawed for 3 cycles using a dry ice-ethanol bath

and slushy ice. The denaturing lysis mixture was agitated for 1 hour at room temper-

ature. Both lysis mixtures were centrifuged at 10,000 × g at 4◦C for 30 minutes. The

supernatant of the denaturing lysis mixture was the total protein. The supernatant

of the native lysis mixture was the soluble protein fraction. I then resuspended the

pellet of the native lysate in 50 µL denaturing lysis buffer and centrifuged at 10,000

× g at 4◦C for 20 minutes to obtain the insoluble protein fraction. All samples were

run using a NuPAGE Novex 10% Bis-Tris Gel in 1X MES running buffer. To estimate

molecular weight, 20 µL of SeeBlue Plus2 Pre-Stained Standard was run as well. The

gel was stained using SimplyBlueTM SafeStain, using a modified version of the manu-

facturer’s instructions [279]. All reagents for SDS-polyacrylamide gel electrophoresis

were obtained from Invitrogen.

B.7 β-galactosidase assay

From single colonies, 1 mL cultures were grown overnight in EZ Rich media supple-

mented with either 0.4% glycerol or 0.2% glucose and 100 µM zinc sulfate (Teknova,

Hollister, CA). Cultures were diluted back to OD600nm of 0.01 in a 5 mL volume

and grown 37◦C for 2 hours. Then, 1 mM IPTG and 1 µM AHL was added to

the cultures, as appropriate. I periodically sampled the growing culture and assayed

for β-galactosidase activity [280, 281, 282]. Absorbance of 175 µL of culture was

measured in a Wallac Victor3 multi-well fluorimeter (Perkin Elmer, Waltham, MA)

at 30◦C (600 nm absorbance filter, 0.1 seconds counting time through 4.375 mm of

fluid). If appropriate, fluorescence measurements were taken as well (488 nm exci-

tation filter, 525 nm emission filter, 0.1 sec, CW lamp energy 12901 units). I then

added 20 µL of culture to 80 µL of permeabilization solution (100 mM dibasic sodium

phosphate, 20 mM potassium chloride, 2 mM magnesium sulfate, 0.8 mg/mL hex-
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adecyltrimethylammonium bromide or CTAB, 0.4 mg/mL sodium deoxycholate, and

2.7 mM TCEP) in a 96-well untreated, polystyrene, flat bottom microplate. When

doing multiple time points, wells were parafilmed to prevent evaporation and plate

was left at room temperature, since permeabilization renders the sample stable for

several hours. When all samples are permeabilized, 25 µL each permeabilized sample

was added to 150 µL substrate solution (60 mM dibasic sodium phosphate, 40 mM

monobasic sodium phosphate, 1 mg/mL o-nitrophenyl-β-D-Galactoside or ONPG,

and 1.35 mM TCEP) in a new microplate. The samples are then assayed using the

multi-well fluorimeter at 30◦C with an automatically repeating protocol of absorbance

measurements (430 nm absorbance filter, 0.1 seconds counting time through 5 mm of

fluid). β-galactosidase activity was calculated using the following equation.

β-galactosidase activity = 1000 ∗ Slope

v ∗ A600
(B.4)

Slope is the slope of a line fit through the linear portion of the A430 versus time

data, v is the culture volume used in the assay (0.005 mL), and A600 is the culture

absorbance.

B.8 In vivo fluorescence measurements using flow

cytometry

Cultures were grown under similar conditions to those described for β-galactosidase

activity except that 10 µM AHL was used. Cultures were then diluted 5-fold in

phosphate buffered saline and the fluorescence measured using a BD FACScan flow

cytometer equipped with a 488nm excitation laser and 530/30 filter (Becton Dickin-

son, MIT Flow Cytometry Facility). Data corresponding to cells were gated by both

forward and side scatter. Data were analyzed using FlowJo version 6.3 from Tree

Star, Inc. in Ashland, OR.
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B.9 Measurement of device transfer curve

From three single colonies, 1 mL cultures were grown overnight at 37◦C in EZ Rich

media supplemented with either 0.4% glycerol or 0.2% glucose (Teknova, Hollister,

CA). Cultures were diluted back to OD600nm of 0.01 and 1 mL aliquots were dis-

tributed into 96-deep well culture plates. Varying concentrations of AHL (0 M, 1

pM, 10 pM, 100 pM, 1 nM, 10 nM, 100 nM, 1 µM, 10 µM, and 50 µM) were added

to the wells and the cultures grown for several more hours. I loaded 200 µL of each

sample into a 96-well plate. The plate was incubated in a Wallac Victor3 multi-well

fluorimeter (Perkin Elmer, Waltham, MA) at 37◦C and assayed for absorbance (600

nm absorbance filter, 0.1 seconds counting time through 5 mm of fluid) and fluo-

rescence (488 nm excitation filter, 525 nm emission filter, 0.1 sec, CW lamp energy

12901 units).

We analyzed the resulting data to compute the fluorescence per cell density. Raw

data from the Wallac Victor3 multi-well fluorimeter was processed by first subtracting

the appropriate backgrounds and then scaling the fluorescence data to the correspond-

ing absorbance data as previously described. For each colony, data was normalized to

the maximum value across the three replicates. Data across the three colonies were

averaged. Error bars are 95% confidence intervals.
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Appendix C

Naming of BioBrick vectors

BioBrick vector names take the form pSB#X#. The letters pSB are an acronym

for plasmid Synthetic Biology. The first number denotes the origin of replication

(Table C.1). The letter X identifies the antibiotic resistance marker(s) present in the

vector (Table C.2). Vectors with multiple resistance markers have multiple, successive

letters. Finally, the last number in the vector name is a version number to differen-

tiate between the various implementations of the pSB series of vectors (Table C.3).

When referring to both a BioBrick standard biological part and the vector in which

it is cloned, the convention is to use the form [vector name]-[part number] such as

pSB4K5-T9003. To refer to BioBrick vectors to be used for construction of BioBrick

parts, use the full vector name and default cloned part. For example, pSB4A3-P1010,

pSB1A10-P1010, pSB4K5-I52002, and pSB3T5-I52001 are all available vectors from

the Registry of Standard Biological Parts. However, for convenience, vector names

are often abbreviated to pSB4A3, pSB1A10, pSB4K5, and pSB3T5, respectively.

New plasmid-based vectors constructed from the BioBrick base vector BBa I51020

should be named pSB#X5-I52002 where the # is determined by the identity of

the replication origin and the letter X is determined by the antibiotic resistance

marker(s) present. To expand the BioBrick vector nomenclature, submit new vec-

tors or vector parts to the Registry of Standard Biological Parts and then document

any new annotation needed at http://partsregistry.org/wiki/index.php/Help:

Plasmids/Nomenclature. The BioBricks Foundation is leading an open standards
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Number Replication origin Copy number [248] Purpose
1 modified pMB1 derived 500-700 Easy plasmid

from pUC19 DNA purification
2 F and P1 lytic derived 1-2 inducible Inducible copy number

from pSCANS-1-BNL [283] to high copy
3 p15A derived from 10-12 Multi-plasmid

pMR101 engineered systems

4 rep101, repA derived 5̃ Small cell to cell
from pSC101 copy number variation

5 derived from F plasmid 1-2 Improved plasmid
stability

6 pMB1 derived from 15-20 Multi-plasmid
pBR322 engineered systems

Table C.1: Numeric abbreviations for plasmid replication origins in BioBrick vector
nomenclature.

setting process should any revisions to the BioBrick vector nomenclature beyond ad-

dition of new replication origins, antibiotic resistance markers and version numbers

be needed.
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Code Antibiotic
A ampicillin
C chloramphenicol
E erythromycin
G gentamycin
K kanamycin
N neomycin
Na nalidixic acid
R rifampicin
S spectinomycin
St streptomycin
T tetracycline

Tm trimethoprim
Z zeocin

Table C.2: Letter abbreviations for antibiotic resistance markers in BioBrick vector
nomenclature.
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Number Key features Purpose Example Designer
0 absent or incomplete pSB2K0 Brookhaven

BioBrick cloning site National Lab
1 complete BioBrick assembly of BioBrick pSB4A1 Reshma Shetty

cloning site (BCS) parts
2 5’ terminator and transcriptional insulation pSB1A2 Tom Knight

BCS of vector upstream
of cloned BioBrick part

3 5’ terminator and transcriptional insulation pSB1AC3 Reshma Shetty
BCS and 3’ of vector downstream & Tom Knight
terminator of cloned BioBrick part

4 pSB2K3-derived Genome refactoring [284] pSB2K4 Leon Chan
vector free of many
restriction sites

5 constructed from standardized BioBrick pSB4K5 Reshma Shetty
BioBrick base vector vector design

6 Reserved - - -
7 BCS flanked by transcriptional insulation of pSB1A7 Karmella Haynes

terminators cloned BioBrick part [285] et al.
8 Unassigned - - -
9 Unassigned - - -
10 Screening plasmid characterization of single pSB1A10 Josh Michener

v1.0 [286] input, single output & Jason Kelly
transcriptional devices

Table C.3: Numeric abbreviations for vector version number in BioBrick vector
nomenclature.
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