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Abstract.  One of the goals of synthetic biology is to build genetic circuits to 
control the behavior of a cell for different application domains, such as medical, 
environmental, and biotech. During the design process of genetic circuits, biolo-
gists are often interested in the probability of a system to work under different 
conditions. Since genetic circuits are noisy and stochastic in nature, the verifica-
tion process becomes very complicated. The state space of stochastic genetic cir-
cuit models is usually too large to be handled by classical model checking tech-
niques. Therefore, the verification of genetic circuit models is usually performed 
by the statistical approach of model checking. In this work, we present a work-
flow for checking genetic circuit models using a stochastic model checker (Up-
paal) and a stochastic simulator (D-VASim). We demonstrate with experimenta-
tions that the proposed workflow is not only sufficient for the model checking of 
genetic circuits, but can also be used to design the genetic circuits with desired 
timings.  

1 Introduction 

Synthetic biology has emerged as an important discipline in which the synthetic digital 
[1, 2] and analog [2] computations in living cells have been implemented. Computation 
in living cells will revolutionize the fields of medicine and biotechnology. The aim of 
biological computation is to develop genetic devices to address the real-world problems 
including tumor destruction [4], bio-fuels [5], consuming toxic wastes [6], pharmaceu-
ticals [7], etc. These biological devices are constructed from genetic circuits. A genetic 
circuit represents a gene regulatory network (GRN), which is composed of small ge-
netic components, e.g., promoter, operator, ribosome binding site, protein coding site, 
and terminator. These components interact with the external signals (like temperature, 
light, etc.) to control the behavior of a living cell. Similar to electronic engineers who 
develop circuits using electronic logic gates (such as AND, NAND, and NOT gates), 
genetic network engineers use biological equivalents of these components to control 
the function of a cell [1][8].  
 
Fig. 1(a) shows an example of a genetic implementation of a NAND gate represented 
in SBOL [9] notation. P1 and P2 are promoters, which are the regions of DNA that 
initiates the process of transcription (or production) of a gene. In this case, when two 



proteins, LacI and TetR, are present in sufficient amount within the cell, they inhibit 
promoters P1 and P2 to produce the output protein i.e. green fluorescent protein (GFP). 
This type of gene regulatory networks is based on the “central dogma” of molecular 
biology, which states that genes in the DNA specify the sequence of messenger RNA 
(the transcription process by RNA polymerase), which in turn specify the sequence of 
proteins (the translation process by ribosomes). Regulatory proteins can control gene 
expression by either preventing transcription (repression), which is the case for LacI 
and TetR in the NAND gate, or by promoting RNA polymerase binding to the promoter 
(activation). A careful selection and balance of the genetic components, as expressed 
in the NAND gate in Fig. 1, can provide a functional gene regulatory network. To make 
genetic circuits work, it is not enough to be able to control the production of certain 
proteins, i.e. increasing the concentration, but also to be able to reduce concentrations 
of proteins. This happens by natural degradation of proteins, i.e. a protein has a certain 
lifetime, before it is dissolved into the amino acids from which it was constructed.   
 

Signals in electronic logic gates propagate in separate electrical wires which do not 
interfere with each other, if designed correctly. However, in genetic circuits, signals are 
proteins drifting in the same volume of the cell, in order to establish a connection (a 
biological “wire”), compatibility between input- and output-proteins must be ensured 
and crosstalk with other signals from neighboring components, has to be avoided. This 
makes it challenging to work with genetic circuits, and thus requires a library of genetic 
components that can be used to develop complex circuits without causing crosstalk. 
The standard part libraries and toolboxes of well-characterized genetic components 
have been constructed through numerous laboratory experiments over the last decade 
[10-18]. These components have been extensively used to develop genetic circuits with 
different functionalities including oscillators [3], amplifiers [19, 20], linearizer gene 
circuit [21], memory devices [22, 23], switches [1, 12, 24], time-delay circuits [25,26], 
genetic logic gates [27-30] etc.   

 

 
Fig. 1. Genetic NAND gate [55]. (a) Genetic implementation in SBOL notation. (b) Circuit sche-
matic (c) Truth table.  
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The field of synthetic biology is still in its infancy, and the process of design and 
implementation of genetic circuits remains very slow. Similar to the electronic design 
automation (EDA) process which dramatically enhanced the design, verification, vali-
dation and production of electronic circuits, researchers have started to work on the 
development of genetic design automation (GDA) tools to automate the design, test and 
verification processes of genetic circuits prior to their validation in laboratory. Several 
computational tools [31-34] have been developed to assist users in the model construc-
tion and design [35-37], simulation [35, 36, 38-40], logic and timing analysis of genetic 
circuits [40], and model checking [36, 41-44]. Model checking of biological systems is 
getting popular as it is an effective means of analyzing the dynamics of complex bio-
logical systems [45-53]. The dynamics of genetic circuits, and hence their correct func-
tioning, are dependent on a large set of parameters (such as reaction and degradation 
rates) which in general are very difficult to predict and control. Hence, biologists are 
usually interested in determining the sensitivity of their circuits for fluctuations in these 
parameters. For instance, it might be a question of interest to find out, if the circuit 
behaves as expected when the values of certain parameters are varied within a specified 
range. Such sensitivity analysis is well suited for explorations using statistical model 
checking (SMC) and the aim of this work is to show how Uppaal SMC can be used to 
address the problem, effectively taming living logic. 

 
In this work, we propose a flow of statistical model checking for genetic circuits 

using Uppaal [41] and D-VASim [39]. In particular, we performed experimentations 
on genetic circuit models and explored their design parameter sensitivity using Uppaal 
SMC [42]. There are a certain number of tasks which cannot be performed in Uppaal 
[41]. We therefore used D-VASim [39] to address those, which will be detailed in the 
experimentation section. The paper is organized as follows; Section 2 describes the 
digital abstraction and a brief introduction to D-VASim and Uppaal SMC. Section 3 
contains the experimentation on genetic circuit models and Section 4 concludes the 
results.    

2 Methodology 

To determine the range of parameter values for which the genetic circuit would work, 
it is first important to know the threshold concentration levels of the inputs of those 
circuits.  The threshold level of a genetic circuit can be defined as the minimum con-
centration of input protein(s), which causes the average concentration of output protein 
to cross the level of input protein(s) concentration [40]. D-VASim [39] is a simulation 
tool which supports the capability of analyzing the threshold value and timings of ge-
netic circuits through an automated process. It further allows the user to perform 
runtime interactive simulations. For example, Fig. 2(d) shows the stochastic simulation 
traces of a genetic NOT gate obtained from D-VASim. The input is TetR protein and 
the output is GFP protein. When the input concentration of TetR goes high, the output 
concentration of GFP goes low.  



In Fig. 2(d), the initial output concentration is about 100 molecules when the input 
concentration of TetR protein is low. When the concentration of TetR is triggered to 4 
molecules, the concentration of output protein starts to degrade, but stays above the 
input concentration level. Increasing the input concentration further up (10 molecules) 
causes the output concentration to oscillate around the input concentration level. When 
we increase the input concentration level further (21 molecules), the output concentra-
tion stops oscillating around the input concentration level and settles down to zero. 
Here, the first input concentration level (up to 4 molecules) can be considered as low-
threshold level as it does not cause the output concentration level to fall below it. Sim-
ilarly, the third input concentration level (21 or more molecules) can be considered as 
high-threshold level as it causes the output concentration level to be in a clear logic-
low state. The region between these two levels is considered as a transition region. This 
behavior is analogous to electronic circuits where the logic levels are well character-
ized. For example, the logic-1 of a 3.3V CMOS-based electronic device is at least 2.4V, 
which means that a minimum of 2.4V is required to turn the circuit on. Similarly, the 
circuit is considered off, when the output voltage is below 0.8V. The region between 
0.8V and 2.4V is considered as a transition region, where the output is considered in-
valid. 

 

 
Fig. 2. Genetic inverter (NOT) gate. (a) Genetic implementation in SBOL notation. (b) Circuit 

schematic. (c) Truth table. (d) Stochastic simulation traces in D-VASim.  
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Once the correct threshold levels are found, the inputs are triggered to that level and 
the circuit parameters can be varied to determine if the circuit still behaves correctly. 
As shown in Fig. 2(d), the threshold value and the logic of a circuit can be determined 
by varying the input concentration level and check if it significantly effects the concen-
tration level of output. The case discussed above is a very simple case in which the 
genetic circuit has only one input and one output. However, this analysis could be very 
time consuming for large genetic circuit models with more inputs. For large-scale cir-
cuits, it is difficult to determine or verify the expected logic of a circuit without careful 
analysis. To determine or verify the logic of a genetic circuit, it is important to know 
the correct input combination with the correct threshold levels which trigger the output 
of the circuit. This may apparently become a tedious task to check different input con-
centration levels for each input combination.  

 
The search process of threshold value can be automated by the use of statistical 

model checking in Uppaal. Uppaal is an integrated tool environment for modeling, ver-
ification and validation of real-time systems modeled as networks of timed automata. 
Uppaal SMC is an extended plug-in tool to Uppaal which allows the user to check the 
expected behavior of models in the form of probability distributions. In Uppaal SMC, 
it is possible to let the tool arbitrarily select any input concentration value, within a 
specified range, and see if the chosen value significantly effects the output concentra-
tion level. This can, however, only be achieved when the correct input combinations 
triggering the output of the circuit are known. As Uppaal does not have the capability 
to automatically detect the input combination which triggers the output of the circuit, 
the threshold value analysis of a genetic circuit cannot be performed automatically in 
Uppaal. D-VASim [39] is the only tool which allow users to perform threshold value 
and propagation delay analysis of genetic circuits through an automated process [40]. 
However, D-VASim is not capable of performing the automated statistical model 
checking. Thus, we used D-VASim for threshold value analysis and then perform the 
statistical model checking in Uppaal to determine the range of circuit parameters within 
which the circuit satisfy the desired behavior. 

 
The proposed experimental flow of checking genetic circuit models is shown in Fig. 

3. The genetic circuit models developed in the systems biology markup language 
(SBML) [53] are used in this work. The SBML model of a genetic circuit is used as 
input to D-VASim. D-VASim analyses the threshold and propagation delay (details are 
given in Section 3). The threshold value is then used in Uppaal to trigger the input 
levels to this value and observe the output behavior of the circuit while varying the 
circuit parameters. The effects of varying parameters on the threshold value and prop-
agation delay of the circuit are then analyzed in D-VASim.  

 



 
Fig. 3. Experimental flow of genetic circuit model checking and verification. 

3 Experimentation  

In this work, we test genetic circuit models from [55], by varying the degradation rate 
parameter (Kd) to determine the range within which the circuit exhibits the expected 
behavior. The aim is to propose an experimental flow for model checking of genetic 
circuits. To demonstrate that this flow can be applied to a complex genetic circuit as 
well, we have included the experimental results of a small (NAND gate) and a reason-
ably large (toggle switch with memory) genetic circuit models. The NAND gate con-
tains 5 species and 5 kinetic reactions, whereas the toggle switch contains 20 species 
and its behavior is defined by 18 kinetic reactions. The schematic circuit models of the 
NAND gate and the toggle switch are shown in Fig. 1 and Fig. 4, respectively. In Fig. 
4, the input protein A suppresses promoter P1 to produce protein D, which in turn in-
hibits promoter P4 to reduce the production of protein F, and so on. 



 

 
Fig. 4. Genetic toggle switch with memory [55]. (a) Genetic implementation in SBOL notation. 
(b) Circuit schematic. (c) Truth table. 

Table 1 shows the threshold and propagation delay values for both of the circuits 
obtained from D-VASim. The high threshold value specifies the input concentration 
level above which the logic is considered high, and the low threshold value specify the 
input concentration level below which the logic is considered low. The propagation 
delay is defined as the time from when the input concentration reaches its threshold 
value until the corresponding output concentration crosses the same threshold value 
[40]. The confidence intervals of threshold values are not specified in this table because 
D-VASim analyzes threshold values for pre-defined intervals of concentrations. For 
example, in the case of genetic NAND gate, the threshold level is analyzed for prede-
fined concentration intervals each of which have a difference of 5 molecules. Therefore, 
D-VASim gradually increases the concentration from 0 à 5 à 10 à 15 and so on, to 
determine the lower and upper threshold levels of a NAND gate. For more accurate 
results, the concentration intervals for these analyses can be minimized in D-VASim.   

Table 1. Threshold and propagation delay values obtained in D-VASim prior to SMC in Uppaal.  

Circuit name Threshold value 
(High) 

Threshold value 
(low) 

Propagation delay 
value 

NAND 15 5 324 (±51.61) 
Toggle Switch 10 5 1108 (±272.89) 

 
These models are then checked in Uppaal by randomly choosing the value of Kd 

within a certain interval and checking if the output of the circuit satisfy the expected 
behavior for all possible input combinations. Uppaal uses a continuous time markov 
chain model (CTMC) for model checking, therefore the SBML models were first con-
verted into CTMC models using the simple conversion utility in Uppaal.  It creates a 
separate automaton for each of the reaction kinetics defined in the SBML file. For in-
stance, Fig. 5(a) shows one of the processes, in the genetic NAND gate circuit, which 



represents the kinetic reaction (Fig. 5(b)) to produce the 10 molecules of GFP when the 
input protein LacI is not sufficiently present in the cell.  
 

 
Fig. 5. The process of a genetic NAND gate to produce the 10 molecules of GFP when the input 
LacI is not present in a cell (a) Uppaal interpretation. (b) Kinetic Reaction. Note that the value 
of ncLacIP1 is 2, due to which the factor KrLacIP1 is multiplied twice in (a).  

 
Fig. 6. Statistical model checking of the genetic NAND gate in Uppaal.  

Fig. 6 and 7 shows the Uppaal SMC simulation results of the genetic NAND and the 
toggle switch circuits, respectively. These figures show all the simulation traces for 100 
iterations. All possible input combinations are applied and the correct operation is ver-
ified within a defined range of Kd. Due to the stochastic nature of a model, the proba-
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bility of an expected behavior cannot be 100% satisfied when the value of Kd is ran-
domly chosen from a defined range. We, therefore, set the probability of the expected 
behavior to be greater than at least 90% as the acceptance criteria. Inputs correspond to 
the applied combination of input proteins over the course of simulation time. The logic-
1 for the NAND gate corresponds to 15 or more molecules and logic-0 corresponds to 
5 or less molecules. For the toggle switch, the logic-1 corresponds to 20 or more mol-
ecules and logic-0 corresponds to 10 or less molecules, as obtained from D-VASim. 
 

 
Fig. 7. Statistical model checking of the genetic toggle switch in Uppaal.  

Probability values at the bottom of both figures signifies the probability of the ex-
pected behavior of a circuit for all possible input combinations, where each input com-
bination is applied for 1000 time units for the NAND gate and 2000 time units for the 
toggle switch. These values are chosen sufficiently larger than their respective propa-
gation delay values, estimated from D-VASim, to ensure that the appropriate amount 
of delay is provided to observe the effects of applied input combinations on the output 
of the circuit.  

 
Satisfying Simulations indicates the percentage of simulations which satisfy the de-

fined condition for specific input combination. These conditions are set according to 
the truth tables of respective circuits. For example, for the NAND gate, the condition 
to be checked for when the input combination is 11, is to see if the concentration of 
output protein, GFP, falls below its lower threshold level i.e. 5 molecules. The NAND 
gate circuit exhibits the probability of greater than 98% to work correctly when the 
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value of Kd varies between 45x10-4 and 85 x10-4. Similarly, the toggle switch is at least 
93% probable to work correctly when the value of Kd varies between 60x10-4 and 
85x10-4. Outside, these ranges of Kd, the expected behavior do not satisfy the ac-
ceptance criteria mentioned above. In a similar manner, other circuit parameters can be 
varied to check the output response of genetic circuits. 

Table 2. Threshold and propagation delay values obtained in D-VASim for upper and lower 
bounds of Kd values found in Uppaal.  

Circuit name Kd 
(x10-4) 

Threshold 
value (High) 

Threshold 
value (low) 

Propagation  
delay value 

NAND 
45 20 10 554 (±56.07) 
85 15 0 274 (±91.78) 

Toggle 
Switch 

60 20 10 1228 (±135.11) 
85 10 5 833(±97.41) 

 
Finally, we used D-VASim to observe how the changes of Kd values impact the 

threshold value and the output of a circuit. In Table 2, we show the effects of the bound-
ary values of Kd for both circuits. For example, in the case of the NAND gate, the 
effects of lower and higher-bound values of a Kd, 45x10-4 and 85 x10-4, respectively, 
are checked. It is observed that the upper threshold concentration level required to trig-
ger the output of the NAND gate is increased from 15 to 20 molecules when the value 
of Kd was decreased from 75x10-4 (default value) to 45x10-4. An increment in the 
propagation delay value is also observed. The latter is due to the fact that a decrease in 
the degradation rate causes the output response of the circuit to be slower, and thus 
more input concentration may be required to trigger the output. If the threshold value 
of a circuit is kept to its previous value, i.e., 15 at Kd = 45x10-4, the output may appear 
after a very long time; in other words, the propagation delay increases further. Like-
wise, when the value of Kd is increased to 85x10-4, the threshold values as well as the 
propagation delays are decreased. Similar observations have been made for the toggle 
switch as shown in Table 2. These observations indicate the minimum-high and maxi-
mum-low threshold values. For example, in order for the toggle switch to work within 
a range of Kd between 60 x10-4 and 85 x10-4, the minimum-high threshold value would 
be 20 molecules and a maximum-low threshold value would be 10 molecules.   

4 Conclusion  

In this paper, we propose a workflow for checking genetic circuit models using sta-
tistical model checking and stochastic simulation. We performed experimentations on 
two different-sized genetic circuit models to demonstrate that the proposed workflow 
can be applied for the timing and threshold values analysis of any genetic circuit model. 
We varied the design parameters of the genetic circuits and checked their probabilities 



of working correctly. Furthermore, we analyzed the effects of changing design param-
eters on the behavior of a given circuit. The proposed work flow can be used to check 
any other property of a genetic circuit; such as the probability of a circuit to reach a 
certain state within a specific amount of time. Future work includes using the work 
flow to experiment with models of recently published genetic circuits [37] and to verify 
those results directly in the laboratory.  
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