7 research outputs found

    Rate-limited secure function evaluation

    Get PDF
    We introduce the notion of rate-limited secure function evaluation (RL-SFE). Loosely speaking, in an RL-SFE protocol participants can monitor and limit the number of distinct inputs (i.e., rate) used by their counterparts in multiple executions of an SFE, in a private and verifiable manner. The need for RL-SFE naturally arises in a variety of scenarios: e.g., it enables service providers to “meter” their customers’ usage without compromising their privacy, or can be used to prevent oracle attacks against SFE constructions. We consider three variants of RL-SFE providing different levels of security. As a stepping stone, we also formalize the notion of commit-first SFE (CF-SFE) wherein parties are committed to their inputs before each SFE execution. We provide compilers for transforming any CF-SFE protocol into each of the three RL-SFE variants. Our compilers are accompanied with simulation-based proofs of security in the standard model and show a clear tradeoff between the level of security offered and the overhead required. Moreover, motivated by the fact that in many client-server applications clients do not keep state, we also describe a general approach for transforming the resulting RL-SFE protocols into stateless ones. As a case study, we take a closer look at the oblivious polynomial evaluation (OPE) protocol of Hazay and Lindell, show that it is commit-first, and instantiate efficient ratelimited variants of it

    Nothing Refreshes Like a RePSI: Reactive Private Set Intersection

    Get PDF
    Private Set Intersection (PSI) is a popular cryptographic primitive that allows two parties, a client and a server, to compute the intersection of their private sets, so that the client only receives the output of the computation, while the server learns nothing besides the size of the client\u27s set. A common limitation of PSI is that a dishonest client can progressively learn the server\u27s set by enumerating it over different executions. Although these oracle attacks do not formally violate security according to traditional secure computation definitions, in practice, they often hamper real-life deployment of PSI instantiations, especially if the server\u27s set does not change much over multiple interactions. In a first step to address this problem, this paper presents and studies the concept of Reactive PSI (RePSI). We model PSI as a reactive functionality, whereby the output depends on previous instances, and use it to limit the effectiveness of oracle attacks. We introduce a general security model for RePSI in the (augmented) semi-honest model and a construction which enables the server to control how many inputs have been used by the client across several executions. In the process, we also present the first practical construction of a Size-Hiding PSI (SHI-PSI) protocol in the standard model, which may be of independent interest

    The Cryptographic Security of the German Electronic Identity Card

    Get PDF
    In November 2010, the German government started to issue the new electronic identity card (eID) to its citizens. Besides its original utilization as a ’visual’ identification document, the eID card can be used by the cardholder to prove one’s identity at border control and to enhance security of authentication processes over the Internet, with the eID card serving as a token to reliably transmit personal data to service providers or terminals, respectively. To this end, the German Federal Office for Information Security (BSI) proposed several cryptographic protocols now deployed on the eID card. The Password Authenticated Connection Establishment (PACE) protocol secures the wireless communication between the eID card and the user’s local card reader, based on a cryptographically weak password like the PIN chosen by the card owner. Subsequently, the Extended Access Control (EAC) protocol is executed by the chip and the service provider to mutually authenticate and agree on a shared secret session key. This key is then used in the secure channel protocol, called Secure Messaging (SM). Finally, an optional protocol, called Restricted Identification (RI), provides a method to use pseudonyms such that they can be linked by individual service providers, but not across different service providers (even not by malicious ones). This thesis consists of two parts. First, we present the above protocols and provide a rigorous analysis on their security from a cryptographic point of view. We show that the Germen eID card provides reasonable security for authentication and exchange of sensitive information allaying concerns regarding its usage. In the second part of this thesis, we introduce two possible modifications to enhance the security of these protocols even further. Namely, we show how to (a) add to PACE an additional efficient chip authentication step, and (b) augment RI to allow also for signatures under pseudonyms

    Rate-limited secure function evaluation

    No full text
    We introduce the notion of rate-limited secure function evaluation (RL-SFE). Loosely speaking, in an RL-SFE protocol participants can monitor and limit the number of distinct inputs (i.e., rate) used by their counterparts in multiple executions of an SFE, in a private and verifiable manner. The need for RL-SFE naturally arises in a variety of scenarios: e.g., it enables service providers to ``meter\u27\u27 their customers\u27 usage without compromising their privacy, or can be used to prevent oracle attacks against SFE constructions. We consider three variants of RL-SFE providing different levels of security. As a stepping stone, we also formalize the notion of commit-first SFE (cf-SFE) wherein parties are committed to their inputs before each SFE execution. We provide compilers for transforming any cf-SFE protocol into each of the three RL-SFE variants. Our compilers are accompanied with simulation-based proofs of security in the standard model and show a clear tradeoff between the level of security offered and the overhead required. Moreover, motivated by the fact that in many client-server applications clients do not keep state, we also describe a general approach for transforming the resulting RL-SFE protocols into stateless ones. As a case study, we take a closer look at the oblivious polynomial evaluation (OPE) protocol of Hazay and Lindell, show that it is commit-first and instantiate efficient rate-limited variants of it
    corecore