23 research outputs found

    Application of wavelets and artificial neural network for indoor optical wireless communication systems

    Get PDF
    Abstract This study investigates the use of error control code, discrete wavelet transform (DWT) and artificial neural network (ANN) to improve the link performance of an indoor optical wireless communication in a physical channel. The key constraints that barricade the realization of unlimited bandwidth in optical wavelengths are the eye-safety issue, the ambient light interference and the multipath induced intersymbol interference (ISI). Eye-safety limits the maximum average transmitted optical power. The rational solution is to use power efficient modulation techniques. Further reduction in transmitted power can be achieved using error control coding. A mathematical analysis of retransmission scheme is investigated for variable length modulation techniques and verified using computer simulations. Though the retransmission scheme is simple to implement, the shortfall in terms of reduced throughput will limit higher code gain. Due to practical limitation, the block code cannot be applied to the variable length modulation techniques and hence the convolutional code is the only possible option. The upper bound for slot error probability of the convolutional coded dual header pulse interval modulation (DH-PIM) and digital pulse interval modulation (DPIM) schemes are calculated and verified using simulations. The power penalty due to fluorescent light interference (FL I) is very high in indoor optical channel making the optical link practically infeasible. A denoising method based on a DWT to remove the FLI from the received signal is devised. The received signal is first decomposed into different DWT levels; the FLI is then removed from the signal before reconstructing the signal. A significant reduction in the power penalty is observed using DWT. Comparative study of DWT based denoising scheme with that of the high pass filter (HPF) show that DWT not only can match the best performance obtain using a HPF, but also offers a reduced complexity and design simplicity. The high power penalty due to multipath induced ISI makes a diffuse optical link practically infeasible at higher data rates. An ANN based linear and DF architectures are investigated to compensation the ISI. Unlike the unequalized cases, the equalized schemes don‘t show infinite power penalty and a significant performance improvement is observed for all modulation schemes. The comparative studies substantiate that ANN based equalizers match the performance of the traditional equalizers for all channel conditions with a reduced training data sequence. The study of the combined effect of the FLI and ISI shows that DWT-ANN based receiver perform equally well in the present of both interference. Adaptive decoding of error control code can offer flexibility of selecting the best possible encoder in a given environment. A suboptimal ?soft‘ sliding block convolutional decoder based on the ANN and a 1/2 rate convolutional code with a constraint length is investigated. Results show that the ANN decoder can match the performance of optimal Viterbi decoder for hard decision decoding but with slightly inferior performance compared to soft decision decoding. This provides a foundation for further investigation of the ANN decoder for convolutional code with higher constraint length values. Finally, the proposed DWT-ANN receiver is practically realized in digital signal processing (DSP) board. The output from the DSP board is compared with the computer simulations and found that the difference is marginal. However, the difference in results doesn‘t affect the overall error probability and identical error probability is obtained for DSP output and computer simulations

    Application of wavelets and artificial neural network for indoor optical wireless communication systems

    Get PDF
    This study investigates the use of error control code, discrete wavelet transform (DWT) and artificial neural network (ANN) to improve the link performance of an indoor optical wireless communication in a physical channel. The key constraints that barricade the realization of unlimited bandwidth in optical wavelengths are the eye-safety issue, the ambient light interference and the multipath induced intersymbol interference (ISI). Eye-safety limits the maximum average transmitted optical power. The rational solution is to use power efficient modulation techniques. Further reduction in transmitted power can be achieved using error control coding. A mathematical analysis of retransmission scheme is investigated for variable length modulation techniques and verified using computer simulations. Though the retransmission scheme is simple to implement, the shortfall in terms of reduced throughput will limit higher code gain. Due to practical limitation, the block code cannot be applied to the variable length modulation techniques and hence the convolutional code is the only possible option. The upper bound for slot error probability of the convolutional coded dual header pulse interval modulation (DH-PIM) and digital pulse interval modulation (DPIM) schemes are calculated and verified using simulations. The power penalty due to fluorescent light interference (FL I) is very high in indoor optical channel making the optical link practically infeasible. A denoising method based on a DWT to remove the FLI from the received signal is devised. The received signal is first decomposed into different DWT levels; the FLI is then removed from the signal before reconstructing the signal. A significant reduction in the power penalty is observed using DWT. Comparative study of DWT based denoising scheme with that of the high pass filter (HPF) show that DWT not only can match the best performance obtain using a HPF, but also offers a reduced complexity and design simplicity. The high power penalty due to multipath induced ISI makes a diffuse optical link practically infeasible at higher data rates. An ANN based linear and DF architectures are investigated to compensation the ISI. Unlike the unequalized cases, the equalized schemes don‘t show infinite power penalty and a significant performance improvement is observed for all modulation schemes. The comparative studies substantiate that ANN based equalizers match the performance of the traditional equalizers for all channel conditions with a reduced training data sequence. The study of the combined effect of the FLI and ISI shows that DWT-ANN based receiver perform equally well in the present of both interference. Adaptive decoding of error control code can offer flexibility of selecting the best possible encoder in a given environment. A suboptimal 'soft' sliding block convolutional decoder based on the ANN and a 1/2 rate convolutional code with a constraint length is investigated. Results show that the ANN decoder can match the performance of optimal Viterbi decoder for hard decision decoding but with slightly inferior performance compared to soft decision decoding. This provides a foundation for further investigation of the ANN decoder for convolutional code with higher constraint length values. Finally, the proposed DWT-ANN receiver is practically realized in digital signal processing (DSP) board. The output from the DSP board is compared with the computer simulations and found that the difference is marginal. However, the difference in results doesn‘t affect the overall error probability and identical error probability is obtained for DSP output and computer simulations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Polar coding for optical wireless communication

    Get PDF

    Physical Layer Techniques for Indoor Wireless Visible Light Communications

    Get PDF
    The growing demand for bandwidth-hungry applications and increasing number of smart interconnected devices has increased the data traffic on radio access networks. Subsequently, the saturating spectral efficiencies in crowded radio frequency spectrum has impelled the researchers to exploit the optical spectrum for communications. In particular, many developments in the visible light communication (VLC) as a combined lighting and communications system have taken place. Despite abundant optical bandwidth, the data transmission rates and power efficiencies in VLC are partly limited by the electrical channel bandwidth and the type of signalling sets which can be used in this intensity modulated, direct detected system. In order to improve the power and spectral efficiencies, this thesis focuses on physical layer (PHY) techniques. The state-of-the-art single channel modulations (SCM) based on M-PAM, multi-channel modulations (MCM) based on OFDM, and IEEE standardised multi-colour modulations are investigated comprehensively through simulations and theoretical analysis, over representative VLC channels considering the optical properties of front-end devices. The bit error performances and spectral efficiencies of DC-biased and non DC-biased MCM systems are compared. A new vector coding based MCM is proposed to optimally utilise the channel state information at the transmitter as an alternative to optical OFDM. The throughputs, peak-to-average power ratios and DC-bias requirements of SCM and MCM systems are investigated which show that the lower DC-bias requirements reduce power consumed for the same throughput in SCM systems when compared to MCM systems. A new quad-chromatic colour shift keying (CSK) system is proposed which reduces power requirements and complexity, enhances throughput and realises a four-dimensional signalling to outperform the IEEE standardised tri-chromatic CSK system. For improved power efficiency and throughput of VLC PHY, use of rate-adaptive binary convolutional coding and Viterbi decoding is proposed along with frequency domain channel equalisation to mitigate temporal dispersion over representative VLC channels

    Adaptive modulation schemes for optical wireless communication systems

    Get PDF
    High-speed wireless optical communication links have become more popular for personal mobile applications. This is a consequence of the increasing demand from the personal information service boom. Compared to the radio frequency domain, optical wireless communication offers much higher speeds and bit rates per unit power consumption. As stated by the official infrared standard IrDA optical communication enjoys much lower power consumption than Bluetooth, with an inherent security feature while in Line of Sight (LOS) applications. There are also drawbacks such as the infrared radiation cannot penetrate walls as radio frequencies do and interference from the background contribute to the channel dispersions. Focus on the modulation aspects of the optical wireless communication, this thesis try to improve the channel immunity by utilising optimised modulation to the channel. Modulation schemes such as on off keying (OOK), pulse amplitude modulation (PAM) and pulse position modulation (PPM) and pulse position and amplitude modulation PAPM schemes have been validated. The combined power and bandwidth requirements suggest that the adaptive modulation schemes can provide reliability when deployed in a real time channel, resulting in improved system performance. As a result, an adaptive modulation technique is proposed. Extensive simulations of severe noise distraction have been carried out to validate the new scheme. The simulation results indicate that the new scheme can provide increased immunity against channel noise fluctuation at a relatively low complexity. The scheme obtained formed a basis to support reliable mobile optical wireless communication applications. The adaptive scheme also takes the real time channel conditions into account, which is different from existing schemes. Guaranteed system performance can be secured without compromising power and bandwidth efficiency. This is also a new approach to realise reliable optical wireless links. Fuzzy logic control module has been developed to match the adaptive pattern

    Adaptive modulation schemes for optical wireless communication systems

    Get PDF
    High-speed wireless optical communication links have become more popular for personal mobile applications. This is a consequence of the increasing demand from the personal information service boom. Compared to the radio frequency domain, optical wireless communication offers much higher speeds and bit rates per unit power consumption. As stated by the official infrared standard IrDA optical communication enjoys much lower power consumption than Bluetooth, with an inherent security feature while in Line of Sight (LOS) applications. There are also drawbacks such as the infrared radiation cannot penetrate walls as radio frequencies do and interference from the background contribute to the channel dispersions. Focus on the modulation aspects of the optical wireless communication, this thesis try to improve the channel immunity by utilising optimised modulation to the channel. Modulation schemes such as on off keying (OOK), pulse amplitude modulation (PAM) and pulse position modulation (PPM) and pulse position and amplitude modulation PAPM schemes have been validated. The combined power and bandwidth requirements suggest that the adaptive modulation schemes can provide reliability when deployed in a real time channel, resulting in improved system performance. As a result, an adaptive modulation technique is proposed. Extensive simulations of severe noise distraction have been carried out to validate the new scheme. The simulation results indicate that the new scheme can provide increased immunity against channel noise fluctuation at a relatively low complexity. The scheme obtained formed a basis to support reliable mobile optical wireless communication applications. The adaptive scheme also takes the real time channel conditions into account, which is different from existing schemes. Guaranteed system performance can be secured without compromising power and bandwidth efficiency. This is also a new approach to realise reliable optical wireless links. Fuzzy logic control module has been developed to match the adaptive pattern.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Channel Coding in Molecular Communication

    Get PDF
    This dissertation establishes and analyzes a complete molecular transmission system from a communication engineering perspective. Its focus is on diffusion-based molecular communication in an unbounded three-dimensional fluid medium. As a basis for the investigation of transmission algorithms, an equivalent discrete-time channel model (EDTCM) is developed and the characterization of the channel is described by an analytical derivation, a random walk based simulation, a trained artificial neural network (ANN), and a proof of concept testbed setup. The investigated transmission algorithms cover modulation schemes at the transmitter side, as well as channel equalizers and detectors at the receiver side. In addition to the evaluation of state-of-the-art techniques and the introduction of orthogonal frequency-division multiplexing (OFDM), the novel variable concentration shift keying (VCSK) modulation adapted to the diffusion-based transmission channel, the lowcomplex adaptive threshold detector (ATD) working without explicit channel knowledge, the low-complex soft-output piecewise linear detector (PLD), and the optimal a posteriori probability (APP) detector are of particular importance and treated. To improve the error-prone information transmission, block codes, convolutional codes, line codes, spreading codes and spatial codes are investigated. The analysis is carried out under various approaches of normalization and gains or losses compared to the uncoded transmission are highlighted. In addition to state-of-the-art forward error correction (FEC) codes, novel line codes adapted to the error statistics of the diffusion-based channel are proposed. Moreover, the turbo principle is introduced into the field of molecular communication, where extrinsic information is exchanged iteratively between detector and decoder. By means of an extrinsic information transfer (EXIT) chart analysis, the potential of the iterative processing is shown and the communication channel capacity is computed, which represents the theoretical performance limit for the system under investigation. In addition, the construction of an irregular convolutional code (IRCC) using the EXIT chart is presented and its performance capability is demonstrated. For the evaluation of all considered transmission algorithms the bit error rate (BER) performance is chosen. The BER is determined by means of Monte Carlo simulations and for some algorithms by theoretical derivation
    corecore