622 research outputs found

    Centralized and distributed semi-parametric compression of piecewise smooth functions

    No full text
    This thesis introduces novel wavelet-based semi-parametric centralized and distributed compression methods for a class of piecewise smooth functions. Our proposed compression schemes are based on a non-conventional transform coding structure with simple independent encoders and a complex joint decoder. Current centralized state-of-the-art compression schemes are based on the conventional structure where an encoder is relatively complex and nonlinear. In addition, the setting usually allows the encoder to observe the entire source. Recently, there has been an increasing need for compression schemes where the encoder is lower in complexity and, instead, the decoder has to handle more computationally intensive tasks. Furthermore, the setup may involve multiple encoders, where each one can only partially observe the source. Such scenario is often referred to as distributed source coding. In the first part, we focus on the dual situation of the centralized compression where the encoder is linear and the decoder is nonlinear. Our analysis is centered around a class of 1-D piecewise smooth functions. We show that, by incorporating parametric estimation into the decoding procedure, it is possible to achieve the same distortion- rate performance as that of a conventional wavelet-based compression scheme. We also present a new constructive approach to parametric estimation based on the sampling results of signals with finite rate of innovation. The second part of the thesis focuses on the distributed compression scenario, where each independent encoder partially observes the 1-D piecewise smooth function. We propose a new wavelet-based distributed compression scheme that uses parametric estimation to perform joint decoding. Our distortion-rate analysis shows that it is possible for the proposed scheme to achieve that same compression performance as that of a joint encoding scheme. Lastly, we apply the proposed theoretical framework in the context of distributed image and video compression. We start by considering a simplified model of the video signal and show that we can achieve distortion-rate performance close to that of a joint encoding scheme. We then present practical compression schemes for real world signals. Our simulations confirm the improvement in performance over classical schemes, both in terms of the PSNR and the visual quality

    A novel view-level target bit rate distribution estimation technique for real-time multi-view video plus depth

    Get PDF
    This paper presents a novel view-level target bit rate distribution estimation technique for real-time Multi-view video plus depth using a statistical model that is based on the prediction mode distribution. Experiments using various standard test sequences show the efficacy of the technique, as the model manages to estimate online the view-level target bit rate distribution with an absolute mean estimation error of 2% and a standard deviation of 0.9%. Moreover, this technique provides adaptation of the view-level bit rate distribution providing scene change handling capability.peer-reviewe

    Distributed Video Coding for Multiview and Video-plus-depth Coding

    Get PDF

    Side information exploitation, quality control and low complexity implementation for distributed video coding

    Get PDF
    Distributed video coding (DVC) is a new video coding methodology that shifts the highly complex motion search components from the encoder to the decoder, such a video coder would have a great advantage in encoding speed and it is still able to achieve similar rate-distortion performance as the conventional coding solutions. Applications include wireless video sensor networks, mobile video cameras and wireless video surveillance, etc. Although many progresses have been made in DVC over the past ten years, there is still a gap in RD performance between conventional video coding solutions and DVC. The latest development of DVC is still far from standardization and practical use. The key problems remain in the areas such as accurate and efficient side information generation and refinement, quality control between Wyner-Ziv frames and key frames, correlation noise modelling and decoder complexity, etc. Under this context, this thesis proposes solutions to improve the state-of-the-art side information refinement schemes, enable consistent quality control over decoded frames during coding process and implement highly efficient DVC codec. This thesis investigates the impact of reference frames on side information generation and reveals that reference frames have the potential to be better side information than the extensively used interpolated frames. Based on this investigation, we also propose a motion range prediction (MRP) method to exploit reference frames and precisely guide the statistical motion learning process. Extensive simulation results show that choosing reference frames as SI performs competitively, and sometimes even better than interpolated frames. Furthermore, the proposed MRP method is shown to significantly reduce the decoding complexity without degrading any RD performance. To minimize the block artifacts and achieve consistent improvement in both subjective and objective quality of side information, we propose a novel side information synthesis framework working on pixel granularity. We synthesize the SI at pixel level to minimize the block artifacts and adaptively change the correlation noise model according to the new SI. Furthermore, we have fully implemented a state-of-the-art DVC decoder with the proposed framework using serial and parallel processing technologies to identify bottlenecks and areas to further reduce the decoding complexity, which is another major challenge for future practical DVC system deployments. The performance is evaluated based on the latest transform domain DVC codec and compared with different standard codecs. Extensive experimental results show substantial and consistent rate-distortion gains over standard video codecs and significant speedup over serial implementation. In order to bring the state-of-the-art DVC one step closer to practical use, we address the problem of distortion variation introduced by typical rate control algorithms, especially in a variable bit rate environment. Simulation results show that the proposed quality control algorithm is capable to meet user defined target distortion and maintain a rather small variation for sequence with slow motion and performs similar to fixed quantization for fast motion sequence at the cost of some RD performance. Finally, we propose the first implementation of a distributed video encoder on a Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is efficiently implemented, using rate adaptive low-density-parity-check accumulative (LDPCA) codes, exploiting the hardware features and optimization techniques to improve the overall performance. Implementation results show that the WZ encoder is able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437 DSP running at 700MHz. This results in encoder speed 29 times faster than non-optimized encoder implementation. We also implemented a highly efficient DVC decoder using both serial and parallel technology based on a PC-HPC (high performance cluster) architecture, where the encoder is running in a general purpose PC and the decoder is running in a multicore HPC. The experimental results show that the parallelized decoder can achieve about 10 times speedup under various bit-rates and GOP sizes compared to the serial implementation and significant RD gains with regards to the state-of-the-art DISCOVER codec

    Object-based video representations: shape compression and object segmentation

    Get PDF
    Object-based video representations are considered to be useful for easing the process of multimedia content production and enhancing user interactivity in multimedia productions. Object-based video presents several new technical challenges, however. Firstly, as with conventional video representations, compression of the video data is a requirement. For object-based representations, it is necessary to compress the shape of each video object as it moves in time. This amounts to the compression of moving binary images. This is achieved by the use of a technique called context-based arithmetic encoding. The technique is utilised by applying it to rectangular pixel blocks and as such it is consistent with the standard tools of video compression. The blockbased application also facilitates well the exploitation of temporal redundancy in the sequence of binary shapes. For the first time, context-based arithmetic encoding is used in conjunction with motion compensation to provide inter-frame compression. The method, described in this thesis, has been thoroughly tested throughout the MPEG-4 core experiment process and due to favourable results, it has been adopted as part of the MPEG-4 video standard. The second challenge lies in the acquisition of the video objects. Under normal conditions, a video sequence is captured as a sequence of frames and there is no inherent information about what objects are in the sequence, not to mention information relating to the shape of each object. Some means for segmenting semantic objects from general video sequences is required. For this purpose, several image analysis tools may be of help and in particular, it is believed that video object tracking algorithms will be important. A new tracking algorithm is developed based on piecewise polynomial motion representations and statistical estimation tools, e.g. the expectationmaximisation method and the minimum description length principle

    Depth-based Multi-View 3D Video Coding

    Get PDF

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore