199 research outputs found

    Robust Linear Precoder Design for Multi-cell Downlink Transmission

    Full text link
    Coordinated information processing by the base stations of multi-cell wireless networks enhances the overall quality of communication in the network. Such coordinations for optimizing any desired network-wide quality of service (QoS) necessitate the base stations to acquire and share some channel state information (CSI). With perfect knowledge of channel states, the base stations can adjust their transmissions for achieving a network-wise QoS optimality. In practice, however, the CSI can be obtained only imperfectly. As a result, due to the uncertainties involved, the network is not guaranteed to benefit from a globally optimal QoS. Nevertheless, if the channel estimation perturbations are confined within bounded regions, the QoS measure will also lie within a bounded region. Therefore, by exploiting the notion of robustness in the worst-case sense some worst-case QoS guarantees for the network can be asserted. We adopt a popular model for noisy channel estimates that assumes that estimation noise terms lie within known hyper-spheres. We aim to design linear transceivers that optimize a worst-case QoS measure in downlink transmissions. In particular, we focus on maximizing the worst-case weighted sum-rate of the network and the minimum worst-case rate of the network. For obtaining such transceiver designs, we offer several centralized (fully cooperative) and distributed (limited cooperation) algorithms which entail different levels of complexity and information exchange among the base stations.Comment: 38 Pages, 7 Figures, To appear in the IEEE Transactions on Signal Processin

    Robust Monotonic Optimization Framework for Multicell MISO Systems

    Full text link
    The performance of multiuser systems is both difficult to measure fairly and to optimize. Most resource allocation problems are non-convex and NP-hard, even under simplifying assumptions such as perfect channel knowledge, homogeneous channel properties among users, and simple power constraints. We establish a general optimization framework that systematically solves these problems to global optimality. The proposed branch-reduce-and-bound (BRB) algorithm handles general multicell downlink systems with single-antenna users, multiantenna transmitters, arbitrary quadratic power constraints, and robustness to channel uncertainty. A robust fairness-profile optimization (RFO) problem is solved at each iteration, which is a quasi-convex problem and a novel generalization of max-min fairness. The BRB algorithm is computationally costly, but it shows better convergence than the previously proposed outer polyblock approximation algorithm. Our framework is suitable for computing benchmarks in general multicell systems with or without channel uncertainty. We illustrate this by deriving and evaluating a zero-forcing solution to the general problem.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 9 figures, 2 table

    Mathematical optimization techniques for resource allocation and spatial multiplexing in spectrum sharing networks

    Get PDF
    Due to introduction of smart phones with data intensive multimedia and interactive applications and exponential growth of wireless devices, there is a shortage for useful radio spectrum. Even though the spectrum has become crowded, many spectrum occupancy measurements indicate that most of the allocated spectrum is underutilised. Hence radically new approaches in terms of allocation of wireless resources are required for better utilization of radio spectrum. This has motivated the concept of opportunistic spectrum sharing or the so-called cognitive radio technology that has great potential to improve spectrum utilization. The cognitive radio technology allows an opportunistic user namely the secondary user to access the spectrum of the licensed user (known as primary user) provided that the secondary transmission does not harmfully affect the primary user. This is possible with the introduction of advanced resource allocation techniques together with the use of wireless relays and spatial diversity techniques. In this thesis, various mathematical optimization techniques have been developed for the efficient use of radio spectrum within the context of spectrum sharing networks. In particular, optimal power allocation techniques and centralised and distributed beamforming techniques have been developed. Initially, an optimization technique for subcarrier and power allocation has been proposed for an Orthogonal Frequency Division Multiple Access (OFDMA) based secondary wireless network in the presence of multiple primary users. The solution is based on integer linear programming with multiple interference leakage and transmission power constraints. In order to enhance the spectrum efficiency further, the work has been extended to allow multiple secondary users to occupy the same frequency band under a multiple-input and multiple-output (MIMO) framework. A sum rate maximization technique based on uplink-downlink duality and dirty paper coding has been developed for the MIMO based OFDMA network. The work has also been extended to handle fading scenarios based on maximization of ergodic capacity. The optimization techniques for MIMO network has been extended to a spectrum sharing network with relays. This has the advantage of extending the coverage of the secondary network and assisting the primary network in return for the use of the primary spectrum. Finally, instead of considering interference mitigation, the recently emerged concept of interference alignment has been used for the resource allocation in spectrum sharing networks. The performances of all these new algorithms have been demonstrated using MATLAB based simulation studies
    corecore