7 research outputs found

    A behavior driven approach for sampling rare event situations for autonomous vehicles

    Full text link
    Performance evaluation of urban autonomous vehicles requires a realistic model of the behavior of other road users in the environment. Learning such models from data involves collecting naturalistic data of real-world human behavior. In many cases, acquisition of this data can be prohibitively expensive or intrusive. Additionally, the available data often contain only typical behaviors and exclude behaviors that are classified as rare events. To evaluate the performance of AV in such situations, we develop a model of traffic behavior based on the theory of bounded rationality. Based on the experiments performed on a large naturalistic driving data, we show that the developed model can be applied to estimate probability of rare events, as well as to generate new traffic situations

    Approximation of event probabilities in noisy cellular processes

    Get PDF
    Molecular noise, which arises from the randomness of the discrete events in the cell, significantly influences fundamental biological processes. Discrete-state continuous-time stochastic models (CTMC) can be used to describe such effects, but the calculation of the probabilities of certain events is computationally expensive. We present a comparison of two analysis approaches for CTMC. On one hand, we estimate the probabilities of interest using repeated Gillespie simulation and determine the statistical accuracy that we obtain. On the other hand, we apply a numerical reachability analysis that approximates the probability distributions of the system at several time instances. We use examples of cellular processes to demonstrate the superiority of the reachability analysis if accurate results are required

    Numerical analysis of stochastic biochemical reaction networks

    Get PDF
    Numerical solution of the chemical master equation for stochastic reaction networks typically suffers from the state space explosion problem due to the curse of dimensionality and from stiffness due to multiple time scales. The dimension of the state space equals the number of molecular species involved in the reaction network and the size of the system of differential equations equals the number of states in the corresponding continuous-time Markov chain, which is usually enormously huge and often even infinite. Thus, efficient numerical solution approaches must be able to handle huge, possibly infinite and stiff systems of differential equations efficiently. In this thesis, we present efficient techniques for the numerical analysis of the biochemical reaction networks. We present an approximate numerical integration approach that combines a dynamical state space truncation procedure with efficient numerical integration schemes for systems of ordinary differential equations including adaptive step size selection based on local error estimates. We combine our dynamical state space truncation with the method of conditional moments, and present the implementation details and numerical results. We also incorporate ideas from importance sampling simulations into a non-simulative numerical method that approximates transient rare event probabilities based on a dynamical truncation of the state space. Finally, we present a maximum likelihood method for the estimation of the model parameters given noisy time series measurements of molecular counts. All approaches presented in this thesis are implemented as part of the tool STAR, which allows to model and simulate the biochemical reaction networks. The efficiency and accuracy is demonstrated by numerical examples.Numerische Lösungen der chemischen Master-Gleichung für stochastische Reaktionsnetzwerke leiden typischerweise an dem Zustandsraumexplosionsproblem aufgrund der hohen Dimensionalität und der Steifigkeit durch mehrfache Zeitskalen. Die Dimension des Zustandsraumes entspricht der Anzahl der molekularen Spezies von dem Reaktionsnetzwerk und die Größe des Systems von Differentialgleichungen entspricht der Anzahl der Zustände in der entsprechenden kontinuierlichen Markov-Kette, die in der Regel enorm gross und oft sogar unendlich gross ist. Daher müssen numerische Methoden in der Lage sein, riesige, eventuell unendlich grosse und steife Systeme von Differentialgleichungen effizient lösen zu können. In dieser Arbeit beschreiben wir effiziente Methoden für die numerische Analyse biochemischer Reaktionsnetzwerke. Wir betrachten einen inexakten numerischen Integrationsansatz, bei dem eine dynamische Zustandsraumbeschneidung und ein Verfahren mit einem effizienten numerischen Integrationsschema für Systeme von gewöhnlichen Differentialgleichungen benutzt werden. Wir kombinieren unsere dynamische Zustandsraumbeschneidungsmethode mit der Methode der bedingten Momente und beschreiben die Implementierungdetails und numerischen Ergebnisse. Wir benutzen auch Ideen des importance sampling für eine nicht-simulative numerische Methode, die basierend auf der Zustandsraumbeschneidung die Wahrscheinlichkeiten von seltenen Ereignissen berechnen kann. Schließlich beschreiben wir eine Maximum-Likelihood-Methode für die Schätzung der Modellparameter bei verrauschten Zeitreihenmessungen von molekularen Anzahlen. Alle in dieser Arbeit beschriebenen Ansätze sind in dem Software-Tool STAR implementiert, das erlaubt, biochemische Reaktionsnetzwerke zu modellieren und zu simulieren. Die Effizienz und die Genauigkeit werden durch numerische Beispiele gezeigt

    Development and application of accurate molecular mechanics sampling methods : from atomic clusters to protein tetramers

    Get PDF
    In this PhD Thesis molecular systems off increasing size and complexity are investigated, using both standard sampling and advanced sampling methods. The implementation and validation of two of those rare events sampling methods is described, namely the SA-MC and PINS algorithm. The development and use of a toolkit for fitting force fields parameters (for the Lennard-Jones and Multipoles parameters), the Fitting Wizard, is presented. The stability of the Hæmoglobin tetramer is also investigated in solution using standard Molecular Dynamics. The two first Chapters introduce the necessary theoretical background, and are followed by the results sections containing the articles written during this PhD

    Empirical Game Theoretic Models for Autonomous Driving: Methods and Applications

    Get PDF
    In recent years, there has been enormous public interest in autonomous vehicles (AV), with more than 80 billion dollars invested in self-driving car technology. However, for the foreseeable future, self-driving cars will interact with human driven vehicles and other human road users, such as pedestrians and cyclists. Therefore, in order to ensure safe operation of AVs, there is need for computational models of humans traffic behaviour that can be used for testing and verification of autonomous vehicles. Game theoretic models of human driving behaviour is a promising computational tool that can be used in many phases of AV development. However, traditional game theoretic models are typically built around the idea of rationality, i.e., selection of the most optimal action based on individual preferences. In reality, not only is it hard to infer diverse human preferences from observational data, but real-world traffic shows that humans rarely choose the most optimal action that a computational model suggests. The thesis makes a set of methodological contributions towards modelling sub-optimality in driving behaviour within a game theoretic framework. These include solution concepts that account for boundedly rational behaviour in hierarchical games, addressing challenges of bounded rationality in dynamic games, and estimation of multi-objective utility aggregation from observational data. Each of these contributions are evaluated based on a novel multi-agent traffic dataset. Building on the game theoretic models, the second part of the thesis demonstrates the application of the models by developing novel safety validation methodologies for testing AV planners. The first application is an automated generation of interpretable variations of lane change behaviour based on Quantal Best Response model. The proposed model is shown to be effective for generating both rare-event situations and to replicate the typical behaviour distribution observed in naturalistic data. The second application is safety validation of strategic planners in situations of dynamic occlusion. Using the concept of hypergames, in which different agents have different views of the game, the thesis develops a new safety surrogate metric, dynamic occlusion risk (DOR), that can be used to evaluate the risk associated with each action in situations of dynamic occlusion. The thesis concludes with a taxonomy of strategic interactions that maps complex design specific strategies in a game to a simpler taxonomy of traffic interactions. Regulations around what strategies an AV should execute in traffic can be developed over the simpler taxonomy, and a process of automated mapping can protect the proprietary design decisions of an AV manufacturer

    Rare Event Simulation Methodologies in Systems Biology

    No full text
    corecore