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Abstract

Rare-Event Estimation and Calibration for Large-Scale Stochastic Simulation Models

Yuanlu Bai

Stochastic simulation has been widely applied in many domains. More recently, however,

the rapid surge of sophisticated problems such as safety evaluation of intelligent systems has posed

various challenges to conventional statistical methods. Motivated by these challenges, in this the-

sis, we develop novel methodologies with theoretical guarantees and numerical applications to

tackle them from different perspectives. In particular, our works can be categorized into two areas:

(1) rare-event estimation (Chapters 2 to 5) where we develop approaches to estimating the prob-

abilities of rare events via simulation; (2) model calibration (Chapters 6 and 7) where we aim at

calibrating the simulation model so that it is close to reality.

In Chapter 2, we study rare-event simulation for a class of problems where the target hit-

ting sets of interest are defined via modern machine learning tools such as neural networks and

random forests. We investigate an importance sampling scheme that integrates the dominating

point machinery in large deviations and sequential mixed integer programming to locate the un-

derlying dominating points. We provide efficiency guarantees and numerical demonstration of our

approach. In Chapter 3, we propose a new efficiency criterion for importance sampling, which

we call probabilistic efficiency. Conventionally, an estimator is regarded as efficient if its relative

error is sufficiently controlled. It is widely known that when a rare-event set contains multiple

“important regions" encoded by the dominating points, importance sampling needs to account for

all of them via mixing to achieve efficiency. We argue that the traditional analysis recipe could



suffer from intrinsic looseness by using relative error as an efficiency criterion. Thus, we pro-

pose the new efficiency notion to tighten this gap. In particular, we show that under the standard

Gartner-Ellis large deviations regime, an importance sampling that uses only the most significant

dominating points is sufficient to attain this efficiency notion. In Chapter 4, we consider the estima-

tion of rare-event probabilities using sample proportions output by crude Monte Carlo. Due to the

recent surge of sophisticated rare-event problems, efficiency-guaranteed variance reduction may

face implementation challenges, which motivate one to look at naive estimators. In this chapter

we construct confidence intervals for the target probability using this naive estimator from vari-

ous techniques, and then analyze their validity as well as tightness respectively quantified by the

coverage probability and relative half-width. In Chapter 5, we propose the use of extreme value

analysis, in particular the peak-over-threshold method which is popularly employed for extremal

estimation of real datasets, in the simulation setting. More specifically, we view crude Monte

Carlo samples as data to fit on a generalized Pareto distribution. We test this idea on several nu-

merical examples. The results show that in the absence of efficient variance reduction schemes, it

appears to offer potential benefits to enhance crude Monte Carlo estimates. In Chapter 6, we inves-

tigate a framework to develop calibration schemes in parametric settings, which satisfies rigorous

frequentist statistical guarantees via a basic notion that we call eligibility set designed to bypass

non-identifiability via a set-based estimation. We investigate a feature extraction-then-aggregation

approach to construct these sets that target at multivariate outputs. We demonstrate our method-

ology on several numerical examples, including an application to calibration of a limit order book

market simulator. In Chapter 7, we study a methodology to tackle the NASA Langley Uncertainty

Quantification Challenge, a model calibration problem under both aleatory and epistemic uncer-

tainties. Our methodology is based on an integration of distributionally robust optimization and

importance sampling. The main computation machinery in this integrated methodology amounts to

solving sampled linear programs. We present theoretical statistical guarantees of our approach via

connections to nonparametric hypothesis testing, and numerical performances including parameter

calibration and downstream decision and risk evaluation tasks.
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Chapter 1: Introduction

Stochastic simulation has been widely applied in many domains such as queueing systems,

finance, insurance and engineering reliability. It is especially useful in the cases where real-world

data are difficult or expensive to collect. More recently, however, the rapid surge of sophisticated

problems such as safety evaluation of intelligent systems has posed various challenges to conven-

tional statistical methods. On the one hand, the model structures are becoming complicated and

even black-box, and hence it is hard or impossible to solve the problem analytically. On the other

hand, large-scale simulation models can be expensive to run, which causes high computational

demand. Therefore, in the modern context, in many cases it is still an open problem how to ef-

ficiently obtain a reliable conclusion. Motivated by these challenges, in this thesis, we develop

novel methodologies with theoretical guarantees and numerical applications to tackle them from

different perspectives. In particular, our works can be categorized into two areas: (1) rare-event

estimation (Chapters 2 to 5) about estimating the probabilities of rare events via simulation; (2)

model calibration (Chapters 6 and 7) about calibrating the simulation model so that it is close to

reality.

Risk management is an important topic in the recent applications, which is closely related to

rare-event estimation. For instance, for autonomous vehicles, it is essential to carefully assess the

safety by estimating the risk probabilities such as crash rate before large-scale deployment. The

main challenge of applying crude Monte Carlo (MC) methods is that due to the intrinsic rarity, the

event of interest seldom occurs, and hence it requires a large sample size to guarantee an accurate

estimate. Traditionally, in order to improve the efficiency, various variance reduction techniques

have been developed which alter the naive sampling procedure so that adequate accuracy is attained

with less samples. Among them, importance sampling (IS) is one of the most popular approaches,

which generates simulation samples under an alternative probability measure and then corrects the
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bias with a likelihood ratio term. However, the efficiency of the IS estimator relies heavily on the

choice of the IS measure. Thus, to obtain a good IS estimator, we need to carefully design the

scheme based on the problem structures and also justify its efficiency.

Conventionally, an IS estimator is regarded as efficient if its relative error, namely the ratio

between its standard deviation and mean, is sufficiently controlled. It is widely known that when

a rare-event set contains multiple “important regions" encoded by the dominating points, IS needs

to account for all of them via mixing to achieve efficiency. Following this idea, Chapter 2 studies

rare-event simulation for a class of problems where the target hitting sets of interest are defined

via modern machine learning tools such as neural networks and random forests. This problem

is motivated from fast emerging studies on the safety evaluation of intelligent systems, robust-

ness quantification of learning models, and other potential applications to large-scale simulation

in which machine learning tools can be used to approximate complex rare-event set boundaries.

We investigate an IS scheme that integrates the dominating point machinery and sequential mixed

integer programming to locate the underlying dominating points. Our approach works for a range

of neural network architectures including fully connected layers, rectified linear units, normaliza-

tion, pooling and convolutional layers, and random forests built from standard decision trees. We

provide efficiency guarantees and numerical demonstration of our approach using a classification

model in the UCI Machine Learning Repository.

While mixing all the dominating points is guaranteed to satisfy the conventional efficiency

criterion, in high-dimensional settings the computational effort to locate all the dominating points

can be enormous. In Chapter 3, we propose a new efficiency criterion for IS, which we call

probabilistic efficiency. We argue that in typical experiments, missing less significant dominating

points may not necessarily cause inefficiency, and the traditional analysis recipe could suffer from

intrinsic looseness by using relative error, or in turn estimation variance, as an efficiency criterion.

Thus, we propose the new efficiency notion to tighten this gap. In particular, we show that under the

standard Gartner-Ellis large deviations regime, an IS that uses only the most significant dominating

points is sufficient to attain this efficiency notion.
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While variance reduction techniques are demonstrated to be powerful in many applications,

as mentioned above, they often rely on tractable problem structures that allow careful algorithmic

design in order to attain good performance. Unfortunately, this requirement could still be diffi-

cult or even impossible to meet in complex practical applications. Motivated by this limitation,

in Chapters 4 and 5, we investigate how to take advantage of crude MC samples when variance

reduction is hard to apply. Chapter 4 considers the estimation of rare-event probabilities using

sample proportions output by crude MC. Unlike using variance reduction techniques, this naive

estimator does not have a priori relative efficiency guarantee. The implementation challenges of

efficiency-guaranteed variance reduction motivate us to look at naive estimators. In this chapter

we construct confidence intervals for the target probability using this naive estimator from various

techniques, and then analyze their validity as well as tightness respectively quantified by the cov-

erage probability and relative half-width. Chapter 5 proposes the use of extreme value analysis, in

particular the peak-over-threshold (POT) method which is popularly employed for extremal esti-

mation of real datasets, in the simulation setting. More specifically, we view crude MC samples

as data to fit on a generalized Pareto distribution. We test this idea on several numerical exam-

ples. The results show that our POT estimator appears more accurate than crude MC and, while

crude MC can easily give a trivial probability estimate 0, POT outputs a non-trivial estimate with

a roughly correct magnitude. Therefore, in the absence of efficient variance reduction schemes,

POT appears to offer potential benefits to enhance crude MC estimates.

Even if the problem is not related to rare events, the simulation result could still be misleading

if the model is far off reality. Thus, to ensure reliable decision making, model calibration is also an

important task, where we calibrate and validate simulation models against real data. Conventional

methods approach these tasks by assessing the model-data match via simple hypothesis tests or

distance minimization in an ad hoc fashion. However, for complex simulation models that lack

analytical tractability, they can encounter challenges arising from non-identifiability and high di-

mensionality. More specifically, first, when the simulation model is too complicated, it is possible

that different input configurations result in the same output distribution and hence they are indistin-
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guishable from output-level data, which is called non-identifiability. Second, when the simulation

model has high-dimensional input or output, it is difficult to measure the discrepancy between the

model and reality, and to calibrate the model to shrink this discrepancy.

To address these challenges, in Chapters 6 and 7, we develop effective calibration methods

involving feature extraction, distance metrics and optimization. Besides theoretical guarantees, we

also present applications to such complex but practical simulation models. In Chapter 6, we inves-

tigate a framework to develop calibration schemes in parametric settings, which satisfies rigorous

frequentist statistical guarantees via a basic notion that we call eligibility set designed to bypass

non-identifiability via a set-based estimation. We investigate a feature extraction-then-aggregation

approach to construct these sets that target at high-dimensional outputs. We demonstrate our

methodology on several numerical examples, including an application to a multi-agent financial

market simulator in our cooperation with JPMorgan Chase. In Chapter 7, we study a methodology

to tackle the NASA Langley Uncertainty Quantification Challenge, a physical system calibration

problem under both aleatory and epistemic uncertainties. That is, besides parameters to be cal-

ibrated, the model also contains random factors with unknown nonparametric distributions. Our

methodology is based on an integration of robust optimization, more specifically a recent line of

research known as distributionally robust optimization, and IS in MC simulation. The main com-

putation machinery in this integrated methodology amounts to solving sampled linear programs.

We present theoretical statistical guarantees of our approach via connections to nonparametric

hypothesis testing, and numerical performances including parameter calibration and downstream

decision and risk evaluation tasks.
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Chapter 2: Rare-Event Simulation for Neural Network and Random Forest

Predictors

2.1 Introduction

Due to the extensive development of artificial intelligence (AI), machine learning techniques

have been embedded in many safety-sensitive physical systems, including autonomous vehicles

[1] and unmanned aircraft [2]. In autonomous vehicles, for instance, machine learning predictors

can be applied to many tasks including perception [3, 4], path planning [5, 6], motion control [7],

or end-to-end driving systems [8, 9]. In these tasks, misprediction can cause catastrophic impacts

on public safety, as exemplified by the series of fatal accidents encountered by autonomous driving

systems due to the failures in detecting nearby vehicles or pedestrians (e.g. [10, 11]). To reduce the

risk of such catastrophe, machine learning models in these systems need to be carefully evaluated

against safety, especially before their mass deployment in public.

Recent research considers using probabilistic measures to quantify the risks of machine learn-

ing predictors or entire intelligent physical systems. These measures can be defined in a variety of

ways. In robustness evaluation, a prediction model, with neural network as a dominant example,

is considered more robust if it is more likely to make a consistent prediction under small perturba-

tions on the input [12]. When the perturbation is modeled via a random distribution, the robustness

of neural networks is measured by the probability that the prediction value persists [13, 14, 15]. In

more complex intelligent system evaluation, risks can be quantified by the occurrence probabilities

of safety-critical events. These events can be defined as the violation in terms of certain safety met-

rics (e.g., [16] listed seven potential safety metrics for autonomous vehicles including crashes per

driving hour and disengagements per scenario), and recent studies use the probabilities of crash or

injury in driving tasks as safety metrics [17, 18, 19, 20]. For AI-equipped autonomous vehicles, the
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evaluation target would implicitly involve a probabilistic measurement on the embedded machine

learning model. Moreover, in [21], neural networks are further used to approximate sophisticated

safety-critical sets defined from complex system dynamics, and the target probabilities comprise

hitting sets defined via these neural network outputs.

Our study is motivated from the estimation of probabilistic risk measures described above. Due

to the complexity of machine learning predictors, these probabilities are typically unamenable to

analytical formulas, even when the underlying stochastic distribution is fully modeled. This thus

calls for the use of Monte Carlo simulation. However, the target probabilities, which signify the

risks of dangerous yet unlikely events, are tiny. The problem thus falls into the domain of rare-

event simulation, in which it is widely known that crude Monte Carlo can be extremely inefficient

and variance reduction is necessarily employed. Traditionally, rare-event simulation techniques

(e.g. [22, 23]) have been applied in broad application areas including queueing systems [24, 25,

26, 27, 28, 29, 30, 31], communication networks [32, 33], finance [34, 35, 36], insurance [37,

38, 39], reliability [40, 41, 42, 43, 44], biological processes [45, 46], dynamical systems [47, 48],

and combinatorics [49, 50]. The evaluation of machine learning models and intelligent physical

systems that we focus on here is a new application that is propelled rapidly by the growth of AI. Our

goal is to provide a first step into building rare-event simulation algorithms in these applications,

which integrate tools from both the disciplines of machine learning and rare-event simulation,

and which are statistically guaranteed in terms of the classical efficiency notions in the rare-event

literature.

More specifically, we study importance sampling (IS) [51] to design efficient estimators. In

rare-event estimation, the rarity nature of hitting set dictates that crude Monte Carlo samples have

a low frequency of observing the hitting occurrence, and this inefficiency exhibits statistically

as a large relative error (i.e., ratio of standard deviation to mean) in the estimation. To mitigate

this issue, IS uses an alternate distribution to generate samples that can attain a higher frequency

in hitting the target event, and reweights the outputs to maintain unbiasedness via the likelihood

ratios. To achieve a small relative error, the new generating distribution (i.e., the IS distribution)
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is carefully selected, often by analyzing the weights in interaction with the hitting set geometry

and the underlying system dynamics [52, 53]. In this chapter, we follow the above analysis path in

the literature and use the common theoretical notion of efficiency called asymptotic optimality or

logarithmic efficiency [54, 23, 40] that we will detail in the sequel.

In terms of our scope of study, we focus on piecewise linear machine learning predictors, which

include random forests and neural networks with common activation functions such as rectified

linear units (ReLU). The former is an ensemble or weighted average of decision trees [55], and

the latter is a network of neurons connected in multiple layers, via the activation functions [56].

We also assume the underlying distribution is Gaussian or mixtures of such. Under this setting,

we design provably efficient IS schemes to estimate rare-event probabilities that the prediction

outputs hit above certain high thresholds. We will describe how our considered setup relates to the

risk quantification of AI-driven algorithms or intelligent physical systems presented earlier, where

our proposed approach provides a rigorous first step towards the resulting rare-event simulation

problems (see Section 2.3).

Our main methodology integrates the classical notion of dominating points for rare-event sets

with sequential mixed integer programming (MIP) to attain an efficient estimator. The notion of

dominating points, and the associated mixture-based IS scheme, is well-known in the literature

[53, 57]. The MIP, while conceptually straightforward, requires leveraging recent formulations

catered for the considered machine learning models. Let us explain the roles of these tools. In-

tuitively, a dominating point is the highest-density point in the rare-event set, so that using an IS

distribution that shifts the mean to this point (via exponential tilting) gives rise to a distribution

that hits the rare-event set more frequently, and the generated likelihood ratio contributes properly

to the probability of interest, which are desirable for controlling the relative error. However, this

is only a local characterization, as the simulation randomness could cause huge likelihood ratios

for some generated samples. Controlling these ratios in turn requires a geometric property that, in

the Gaussian case, implies the dominating point to be on the boundary of the rare-event set, and

that the latter lies completely inside one of the half-spaces cut by the tangential hyperplane passing
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through the dominating point (e.g., these occur when the rare-event set is convex). When this ge-

ometric property does not hold, then one needs to divide the rare-event set into a union of smaller

sets each bearing its own dominating point, and an efficient IS scheme is built via a mixture of ex-

ponential tiltings targeted at all these individual dominating points [53]. The sequential MIP in our

procedure serves to locate all these dominating points. It casts the search as a density maximiza-

tion problem constrained by hitting sets induced from the considered machine learning model. The

involved feasible regions shrink sequentially as we add more “cutting planes" to the constraints in

order to remove the half-spaces that are already considered by earlier dominating points. Our MIPs

are derived from the reformulation techniques that appeared recently in the machine learning liter-

ature, which leverage the geometric structures of ReLU neural networks [58] and random forests

[59]. We provide a step-by-step guide in formulating random forests and different neural network

architectures as suitable MIPs to be inserted into our sequential algorithm.

In terms of theoretical results, we show asymptotic optimality of our IS that targets at general

piecewise polyhedrons, which apply to our considered rare-event sets in particular. Towards this,

we also derive large deviations results for the associated probabilities of interest. Our results are

developed under a different regime from the conventional one in the literature. More specifically,

the latter typically scales the input random vector that falls into a fixed set (e.g. [53, 60]), while

we let the exceedance threshold on the output of the machine learning model to scale. Our setting

is more natural since the threshold provides meaning in defining the level of risk (e.g., in vehicle

safety test, the relative velocity at the crash time can be used to compute a so-called Maximum

Abbreviated Injury Score that predicts the severity of injuries [61], and hence the probabilities of

relative velocity at the crash time exceeding different thresholds are of interest). To this end, the

closest work that studies a similar regime is [62], but it only analyzes the tail probability that a

Gaussian random vector is componentwise larger than a threshold, which is a simplified version of

our regime without the machine learning transformation. While we leverage the results in [62], we

also develop mathematical techniques to make the generalization fit our setting.

The chapter is organized as follows. Section 2.2 first provides a literature review. Section 2.3
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describes and motivates our problem setting. Section 2.4 presents our algorithm and theoretical

guarantees. Section 2.5 provides the MIP formulations for random forests and different neural

network architectures. Section 2.6 shows numerical results. Section 2.7 contains the proofs of

theorems. Section 2.8 summarizes this chapter and discusses future works.

2.2 Related Work

A significant line of work studies the use of large deviations to invent efficient IS procedures,

which mathematically identifies the most likely path to trigger a rare event through minimizing

the so-called rate function (see, e.g., the surveys [22, 54, 63, 34, 23, 64]). This approach leads

to the concept of dominating points and mixture IS [53, 57] which our work follows. Despite

this utilization, our work differs from the previous works. First is that our considered machine

learning models, including random forests and neural networks, deem the rare-event boundaries

to be only expressible implicitly. This in turn necessitates the use of sequential MIP algorithm

that can leverage such expressions in the search of the dominating points. This distinguishes

our approach from [65] that similarly considers splitting rare-event sets via dominating points,

but constrain the rare-event sets to be unions of half-spaces that are explicitly given. Second,

we derive asymptotic results for the rare-event probability of interest and show efficiency of our

algorithm, as the exceedance threshold increases, a regime subtly different from the majority of

literature yet more natural in our setting. To this end, [62] appears closest to our work, with derived

bounds and asymptotic results for the tail probability of Gaussian random vectors. However, our

setting is considerably more complex as it involves piecewise linear machine learning predictor

output, and correspondingly requires more intricate analysis coming from the geometry of the

rare-event set. Next, similar to our derivations, [60] represents the asymptotic of probability on

convex sets using dominating points, but they focus on a different scaling from ours. Specifically,

like in standard large deviations theory, they focus on the conventional regime where the scaled

componentwise maximum of Gaussian random vectors lies in a fixed convex set, while our target

event is that the predictor output with Gaussian input (which is not scaled and cannot be expressed
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as a componentwise maximum) exceeds an increasing threshold.

In the machine learning literature, some studies use probabilistic measures to evaluate the ro-

bustness of prediction models. Since these measures can be extremely small, rare-event simulation

techniques are considered. [14] discusses an adaptive multilevel splitting approach to estimate

the statistical robustness of machine learning models. [66] considers the problem of estimating

agent failure probabilities and proposes to learn a failure probability predictor to approximate the

minimum-variance IS distribution. [13] proposes an approach to compute the lower and upper

bounds for a probabilistic robustness measure. Our work is motivated by the topics studied in

these works, and can be viewed as a step towards the provision of rigorous guarantees for method-

ologies driven by the corresponding applications.

Another related line of research studies optimization problems with machine learning models

in the objective. [59] discusses the optimization of tree ensemble models and provides treatment

for large scale problems. [58] formulates the robustness verification of neural networks as MIP

problems. These studies leverage the piecewise linear property of these machine learning models

to turn optimization on the prediction output into tractable MIPs. Our MIP formulations for finding

dominating points follow from these optimization studies.

We close this literature review by briefly discussing other IS schemes. The cross-entropy

method [67, 68, 69, 70] uses sequential stochastic optimization to search for an optimal IS dis-

tribution in a parametric family. Adaptive IS [71, 72, 73, 74] updates the IS distribution itera-

tively between simulated replications to approach the optimal (zero-variance) IS distribution and

generates non i.i.d samples for estimating the target expectation associated with finite-state dis-

crete Markov chains. Another line of studies use techniques such as Markov-chain Monte Carlo

(MCMC) to sample from the rare-event set of interest, or approximately from the conditional dis-

tribution given the occurrence of the rare event [75, 76, 77]. IS schemes have also been designed

for heavy-tailed systems [78, 79, 80, 33, 81, 82, 83], in contrast to the light-tailed settings con-

sidered in this chapter. Besides IS, other competing methods for rare-event simulation include

conditional Monte Carlo [84, 85] and splitting [86, 87, 88, 89, 90].
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2.3 Problem Setting

We state our problem setting. Consider a prediction model 𝑔(·), with input 𝑋 ∈ R𝑑 and output

𝑔(𝑋) ∈ R. Suppose that the input follows a Gaussian distribution, i.e, 𝑋 ∼ 𝑁 (`, Σ), where Σ

is a 𝑑 × 𝑑 positive definite matrix. We want to estimate the probability 𝑝 = 𝑃(𝑋 ∈ 𝑆), where

𝑆 = {𝑥 : 𝑔(𝑥) ≥ 𝛾} is a rare-event set with a threshold 𝛾 ∈ R that triggers the rare event. We

note that the Gaussian assumption can be relaxed without much difficulty in our framework to,

for instance, mixtures of Gaussians, which we will discuss later and can expand our scope of

applicability.

This problem setting is motivated from risk assessments involving machine learning models,

as exemplified below.

Example 2.1 (Statistical Robustness Metric). Studies on robustness of machine learning models

have become increasingly prevalent in recent years. The topic was initiated in computer vision

studies [12], where neural networks for image classification were found to be vulnerable to tiny

perturbation to the input. Such a perturbed input is considered as an adversarial example. Studies

have discussed how to find these adversarial examples [91] and to conduct adversarial learning

[92] in more general machine learning tasks. The vulnerability to perturbation has caused safety

and security concerns about using machine learning models in real-life applications. In order to

evaluate how robust a prediction model is under potential perturbations, robustness metrics are

proposed as quantitative benchmarks.

For instance, we consider a classification model 𝑔(·) that can correctly predict the input 𝑥0 as

category 𝑐. Intuitively, the model is “robust” at 𝑥0 if the correct prediction remains for all 𝑥 such

that 𝑑 (𝑥, 𝑥0) ≤ 𝜖 where 𝑑 denotes a certain distance and 𝜖 > 0 is a small real number. Based

on this intuition, a statistical robustness metric considers 𝑝 = 𝑃(𝑔(𝑋) ≠ 𝑐), where 𝑋 follows a

distribution concentrated around 𝑥0 [14, 13]. Here 𝑝 represents the probability that the output is

inconsistent with the baseline prediction at 𝑥0.

In particular, when 𝑔(·) predicts using “score functions” 𝑔𝑖 (·) with 𝑖 = 1, .., 𝐾 where 𝐾 denotes
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the number of categories, the predicted output is the category that has the maximum score, i.e. the

prediction at 𝑥 is given by arg max𝑖 𝑔𝑖 (𝑥). Then we note that 𝑔(𝑥) ≠ 𝑐 is equivalent to 𝑔𝑐 (𝑥) ≤

max𝑖≠𝑐 𝑔𝑖 (𝑥). Hence we can transform 𝑝 into 𝑃(�̃�(𝑋) ≥ 0) by defining �̃�(𝑥) = max𝑖≠𝑐 𝑔𝑖 (𝑥)−𝑔𝑐 (𝑥),

which reduces to our problem statement presented earlier.

Example 2.2 (Risk Evaluation of Intelligent Physical Systems). Many intelligent physical systems

(e.g. driver assistance systems) are built in a modular structure, which divides the overall task into

sub-tasks that are handled by different modules. The perception module extracts information from

the environment through various sensors (e.g. LIDAR [93], camera, etc.), which provides input for

the downstream tasks [94]. Nowadays, perception modules are usually integrated with machine

learning models, which play crucial roles in converting raw sensor data (e.g. images, point clouds)

into information that are readable by downstream modules (e.g. object class, bounding box) [95].

Consider an intelligent physical system that embeds a machine learning predictor 𝑔 for per-

ception (e.g. object detection). We then represent the decision of the system given an input 𝑥 as

ℎ(𝑔(𝑥)). The probability 𝑃(ℎ(𝑔(𝑋)) ∈ 𝑆), where 𝑆 represents a risky region, can be used to mea-

sure the risk of the system decision. For instance, suppose we are evaluating a collision avoidance

system via the probability of a severe injury. Here, 𝑥 can represent the sensor data of a collision

scenario, ℎ(𝑔(𝑥)) the relative speed when collision happens, which proxies the severity of potential

injuries, and the evaluation is equivalent to estimating 𝑃(ℎ(𝑔(𝑋)) ≥ 𝛾) for some speed threshold

𝛾.

In most cases, ℎ is random by itself and can have a different complexity structure than the

function class 𝑔. Our setup, which drops the general random ℎ, can be viewed as a simplified

probability 𝑃(𝑔(𝑋) ≥ 𝛾) that provides a first step of study along this direction.

Example 2.3 (Probability Evaluation for Learned Rare-Event Set). When the system that drives

the rare event is a black-box or too complicated to analyze [96], an approach to retain tractability

is to approximate or learn the rare-event set via machine learning tools [21]. An example in

operations research is the prediction of congestion risks in sophisticated queueing systems arising

in, e.g., healthcare applications [97], where the queue could have multiple classes of customers
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and complex priority rules [98] and the event of interest could be a transient probability of high

occupancy level. In such settings, we can collect data or run simulations for {𝑋,𝑌 }, where 𝑋

denotes the random object in the considered system and 𝑌 ∈ {0, 1} denotes either the occurrence

of the considered rare event or the numerical outcome under input 𝑋 . Then we train neural network

𝑔(·) to classify the rare-event region given 𝑋 . The learned rare-event set is then represented by

{𝑥 : 𝑔(𝑥) ≥ 𝛾}, where 𝛾 is the threshold for classifying rare-event (e.g. 𝛾 = 0.5) or the threshold

for the outcome to trigger the event. As a result, 𝑝 = 𝑃(𝑔(𝑋) ≥ 𝛾) provides an approximation to

the rare-event probability.

Example 2.4 (Validating Classification Models With Rare Categories). In classification model val-

idation tasks, estimating the predictive performance of the test model can be costly if the test data

requires human-annotation [99]. When we are interested in the performance on a rare category,

the estimation of predictive metrics, e.g. F-scores (or F-measures) [100], becomes more chal-

lenging and hence requires more efficient approaches than naive sampling [101]. Consider that

the input of the test classification model, denoted by 𝑋 , has a fixed probability distribution across

the population of samples. We use 𝑦(𝑋) ∈ {1, 0} to denote the correct annotation at the input 𝑋

and 𝑔(𝑋) to denote the prediction given by the test classifier. Suppose we are interested in the

prediction accuracy of the rare category 𝑦(𝑋) = 1 (i.e. 𝑃(𝑦(𝑋) = 1) is extremely small). The

𝐹𝛼-measure of the classification model is defined by:

𝐹𝛼 =
𝑃(𝑦(𝑋) = 1, 𝑔(𝑋) = 1)

𝛼𝑃(𝑔(𝑋) = 1) + (1 − 𝛼)𝑃(𝑦(𝑋) = 1) , (2.1)

with 𝛼 ∈ (0, 1). We observe that when 𝑦(𝑋) = 1 is a rare event and the classifier 𝑔 is well trained,

all three probabilities in the 𝐹𝛼-measure can be extremely small. Therefore, accurately estimating

the 𝐹𝛼-measure is closely related to estimating the rare-event probabilities 𝑃(𝑦(𝑋) = 1, 𝑔(𝑋) = 1)

and 𝑃(𝑔(𝑋) = 1), which are defined via the test prediction model 𝑔.

Our setup described in the beginning of this section thus relates to the four emerging examples

above. Though we could not resolve all the issues in these examples, notably with restrictions on
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the input distribution and model complexity, we view our study as a first step towards a rigorous

use of rare-event simulation techniques developed among the stochastic simulation community in

the surging domain of safety and risk evaluation of AI-driven systems.

2.4 Efficient Importance Sampling via Sequential Mixed Integer Programming

We present our IS methodology. Section 2.4.1 reviews IS basics. Section 2.4.2 describes how

we integrate the notions of dominating points and mixture IS with a sequential MIP algorithm.

Section 2.4.3 presents our theoretical efficiency guarantees. The reformulation and solution to the

MIP algorithms, which utilize recent developments in machine learning, are discussed in Section

2.5.

2.4.1 Basics of Importance Sampling

When 𝑝 is small, estimation using crude Monte Carlo is challenging since, intuitively, the

samples have a low frequency of hitting the target set. This is statistically manifested as a large

relative error. To be more specific, suppose that we use the crude Monte Carlo estimator 𝑝𝑁 =

1
𝑁

∑𝑁
𝑖=1 𝐼 (𝑔(𝑋𝑖) ≥ 𝛾) to estimate 𝑝. Since the probability 𝑝 is tiny, the error of the estimator should

be measured relative to the size of 𝑝. In other words, we would like the probability of having a

large relative error to be small, i.e., 𝑃( |𝑝𝑁 − 𝑝 | > Y𝑝) ≤ 𝛿 where 𝛿 is the confidence level and

0 < Y < 1. By Markov’s inequality, a sufficient condition for this is

𝑁 ≥ 𝑉𝑎𝑟 (𝐼 (𝑔(𝑋) ≥ 𝛾))
𝛿Y2𝐸 [𝐼 (𝑔(𝑋) ≥ 𝛾)]2

=
𝑅𝐸2

𝛿𝜖2 .

where 𝑅𝐸 =
√︁
𝑉𝑎𝑟 (𝐼 (𝑔(𝑋) ≥ 𝛾))/𝐸 [𝐼 (𝑔(𝑋) ≥ 𝛾)] is the relative error. For the crude Monte

Carlo estimator, the RE is given by
√︁
(1 − 𝑝)/𝑝. That is, the simulation size 𝑁 has to be roughly

proportional to 1/𝑝 in order to achieve a given relative error. Under the settings that 𝑋 has a

Gaussian distribution and 𝑔 is piecewise linear (see Corollary 2.1), 𝑝 is exponentially small in the

threshold level 𝛾, and hence the required simulation size would grow exponentially in 𝛾.
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A common approach to speed up simulation in such contexts is to use IS (see, e.g. the surveys

[22, 54, 63, 34, 23, 64], among others). Suppose 𝑋 has a density 𝑓 . The basic idea of IS is to

change the sampling distribution to say 𝑓 , and output

𝑍 = 𝐼 (𝑔( �̃�) ≥ 𝛾) 𝑓 ( �̃�)
𝑓 ( �̃�)

, (2.2)

where �̃� is sampled from 𝑓 . This output is unbiased if 𝑓 is absolutely continuous with respect to

𝑓 over the rare-event set {𝑥 : 𝑔(𝑥) ≥ 𝛾} since

�̃� [𝑍] =
∫
R
𝐼 (𝑔(𝑥) ≥ 𝛾) 𝑓 (𝑥)

𝑓 (𝑥)
𝑓 (𝑥)𝑑𝑥 =

∫
R
𝐼 (𝑔(𝑥) ≥ 𝛾) 𝑓 (𝑥)𝑑𝑥

= 𝐸 [𝐼 (𝑔(𝑋) ≥ 𝛾)] = 𝑃(𝑔(𝑋) ≥ 𝛾).

By choosing 𝑓 appropriately, one can substantially reduce the simulation variance.

In order to measure the efficiency of an IS scheme, we introduce a rarity parameter, say 𝛾, that

parameterizes the rare-event probability 𝑝𝛾 such that 𝑝𝛾 → 0 as 𝛾 → ∞. As discussed before,

since the probability of interest is small, one should focus on the relative error of the Monte Carlo

estimator with respect to the magnitude of this probability. To this end, we call an IS estimator 𝑍𝛾

for 𝑝𝛾 asymptotically optimal [54, 23] if

lim
𝛾→∞

log �̃� [𝑍2
𝛾]

log �̃� [𝑍𝛾]
= 2, (2.3)

where �̃� denotes the expectation with regard to 𝑓 . The notion (2.3) is equivalent to saying that

�̃� [𝑍2
𝛾] and �̃� [𝑍𝛾]2 grow in the same exponential rate in 𝛾. This ensures that the second moment,

or the variance, does not explode exponentially relative to the probability of interest as 𝛾 increases,

thus preventing an exponentially large number of simulation replications to achieve a given relative

accuracy. We will use asymptotic optimality as our efficiency criterion in this chapter. Moreover,

in the large deviations settings where 𝑝𝛾 = �̃� [𝑍𝛾] decays exponentially in 𝛾, �̃� [𝑍2
𝛾]/�̃� [𝑍𝛾]2 at

most growing polynomially in 𝛾 is a sufficient condition for asymptotic optimality.
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Another commonly used efficiency criterion is the bounded relative error, which is defined as

lim sup
𝛾→∞

�̃� [𝑍2
𝛾]

�̃� [𝑍𝛾]2
< ∞.

This is a stronger condition than asymptotic optimality. More efficiency criteria can be found in

[23, 102].

2.4.2 Dominating Points and Mixture Importance Samplers

In the case of Gaussian input distributions, finding a good 𝑓 is particularly handy and one ap-

proach to devise good IS distributions uses the notion of so-called dominating point. As explained

in the introduction, a dominating point can be understood as the highest-density point in the rare-

event set that satisfies some conditions. More precisely, the collection of dominating points for a

rare-event set with Gaussian distributed input is defined in Definition 2.1.

Definition 2.1. Suppose that 𝑆 ⊂ R𝑑 is a rare-event set. Suppose that a set 𝐴 ⊂ R𝑑 satisfies

that 𝑆 ⊂ ⋃
𝑎∈𝐴{𝑥 : (𝑎 − `)𝑇Σ−1(𝑥 − 𝑎) ≥ 0} and that 𝑎 = arg min{(𝑥 − `)𝑇Σ−1(𝑥 − `) : 𝑥 ∈

𝑆 and (𝑎− `)𝑇Σ−1(𝑥 − 𝑎) ≥ 0} for any 𝑎 ∈ 𝐴. Moreover, suppose that the above conditions do not

hold anymore if we remove any element from 𝐴. Then the points in 𝐴 are called the dominating

points of 𝑆 with input distribution 𝑁 (`, Σ).

Note that minimizing (𝑥 − `)𝑇Σ−1(𝑥 − `) is equivalent to maximizing 𝜙(𝑥; `, Σ), the Gaussian

density with mean ` and covariance Σ. The condition 2(𝑎 − `)𝑇Σ−1(𝑥 − 𝑎) ≥ 0 is the first-order

condition of optimality for the optimization min𝑥 (𝑥 − `)𝑇Σ−1(𝑥 − `) over a convex set for 𝑥. Thus,

intuitively, each dominating point in the collection 𝐴 can be viewed as the highest-density point

in a “local" region formed by 𝑆 ∩ {𝑥 : (𝑎 − `)𝑇Σ−1(𝑥 − 𝑎) ≥ 0}. Figure 2.1 is an illustration

of the dominating points. In particular, if {𝑥 : 𝑔(𝑥) ≥ 𝛾} is a convex set, then there is only one

dominating point 𝑎. In this case, a well-known IS scheme is to use a Gaussian distribution 𝑁 (𝑎, Σ)

as the IS distribution 𝑓 .

We explain intuitively why we need more than one dominating point (the highest-density point
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Figure 2.1: Illustration of the dominating points. 𝑎1 is the globally highest-density point in the
rare-event set 𝑆, but the halfspace {𝑥 : (𝑎1 − `)𝑇Σ−1(𝑥 − 𝑎1) ≥ 0} does not fully cover 𝑆, so an
additional point 𝑎2 is needed to comprise a dominating set.

over 𝑆) and the pitfall if we omit the other ones in constructing efficient IS. Suppose that the

rare-event set consists of two disconnected convex components which are nearly equi-distant with

respect to the origin, and we choose the IS distribution to be centered at the dominating point of

one component. Then, if a sample from the IS distribution hits the other component, a scenario that

could be unlikely but possible, the resulting likelihood ratio, which now contributes to the output

as the rare-event set is hit, could possibly be tremendous. This ultimately leads to an explosion of

the relative error in the IS estimator. [103] presents more counterexamples which show that it is

essential to find all the dominating points in constructing an efficient IS based on mixtures.

In view of the aforementioned discussions, we consider the following IS scheme. If we can

split {𝑥 : 𝑔(𝑥) ≥ 𝛾} into R1, ...,R𝑟 , and for each R𝑖, 𝑖 = 1, ..., 𝑟 there exists a dominating point 𝑎𝑖

such that 𝑎𝑖 = arg min{(𝑥 − `)𝑇Σ−1(𝑥 − `) : 𝑥 ∈ R𝑖} and R𝑖 ⊆ {𝑥 : (𝑎𝑖 − `)𝑇Σ−1(𝑥 − 𝑎𝑖) ≥ 0},

then we use a Gaussian mixture distribution with 𝑟 components as the IS distribution 𝑓 , where

the 𝑖th component has mean 𝑎𝑖. This proposal guarantees the asymptotic optimality of the IS (see

Theorem 2.1).

In our task, because the machine learning predictor 𝑔(𝑥) is nonlinear and 𝑥 is high-dimensional

in general, splitting {𝑥 : 𝑔(𝑥) ≥ 𝛾} into R1, ...,R𝑟 that have dominating points is challenging even

with known parameters. This challenge motivates us to use Algorithm 2.1 to obtain the dominating
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points 𝑎1, ..., 𝑎𝑟 that constructs an efficient IS distribution. The procedure uses a sequential “cutting

plane" approach to exhaustively look for all dominating points, by reducing the search space at

each iteration via taking away the regions covered by found dominating points. The set 𝐴 in the

procedure serves to store the dominating points we have located throughout the procedure. At the

end of the procedure, we obtain a set 𝐴 that contains all the dominating points 𝑎1, ..., 𝑎𝑟 . Note

that when 𝑔(𝑥) ≥ 𝛾 is convex, the algorithm solves a series of convex quadratic programming

problems, and it is well known that such problems could be solved efficiently in polynomial time

(see [104] for more details on the complexity). In this chapter, we focus on the problems with

piecewise linear 𝑔(𝑥), which leads to mixed integer convex quadratic optimization problems as

shown in later discussion. Although a mixed integer quadratic optimization is NP-hard, we can

solve it much more efficiently using specialized algorithms than general nonlinear MIPs [105].

Algorithm 2.1: Procedure to find all dominating points for the set {𝑥 : 𝑔(𝑥) ≥ 𝛾}.
Input: Prediction model 𝑔(𝑥), threshold 𝛾, input distribution 𝑁 (`, Σ).
Output: dominating point set 𝐴.

1 Start with 𝐴 = ∅;
2 While {𝑥 : 𝑔(𝑥) ≥ 𝛾, (𝑎𝑖 − `)𝑇Σ−1(𝑥 − 𝑎𝑖) < 0, ∀𝑎𝑖 ∈ 𝐴} ≠ ∅ do
3 Find a dominating point 𝑎 by solving the optimization problem

𝑎 = arg min
𝑥
(𝑥 − `)𝑇Σ−1(𝑥 − `) (2.4)

𝑠.𝑡. 𝑔(𝑥) ≥ 𝛾
(𝑎𝑖 − `)𝑇Σ−1(𝑥 − 𝑎𝑖) < 0, ∀𝑎𝑖 ∈ 𝐴

and update 𝐴← 𝐴 ∪ {𝑎};
4 End

Algorithm 2.1 gives 𝐴 = {𝑎1, . . . , 𝑎𝑟}. With this, we split {𝑥 : 𝑔(𝑥) ≥ 𝛾} into R1, . . . ,R𝑟

where R𝑖 = {𝑥 : 𝑔(𝑥) ≥ 𝛾, (𝑎𝑖 − `)𝑇Σ−1(𝑥 − 𝑎𝑖) ≥ 0, (𝑎 𝑗 − `)𝑇Σ−1(𝑥 − 𝑎 𝑗 ) ≤ 0,∀ 𝑗 < 𝑖}. Clearly

𝑎𝑖 = arg min{(𝑥−`)𝑇Σ−1(𝑥−`) : 𝑥 ∈ R𝑖} and (𝑎1−`)𝑇Σ−1(𝑎1−`) ≤ · · · ≤ (𝑎𝑟−`)𝑇Σ−1(𝑎𝑟−`).

Moreover, we note that (𝑎1 − `)𝑇Σ−1(𝑎1 − `) = min𝑖=1,...,𝑟{(𝑎𝑖 − `)𝑇Σ−1(𝑎𝑖 − `)}.
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Given the dominating point set 𝐴, we use a mixture distribution with density

𝑓 (𝑥) = 1
𝑟

𝑟∑︁
𝑖=1

𝜙(𝑥; 𝑎𝑖, Σ)

as the IS distribution. That is, the IS estimator is

𝑍 = 𝐼 (𝑔( �̃�) ≥ 𝛾)𝐿 ( �̃�) (2.5)

where �̃� ∼ 𝑓 and 𝐿, the likelihood ratio, is defined as

𝐿 (𝑥) = 𝑓 (𝑥)
𝑓 (𝑥)

=
𝑟𝑒−

1
2 (𝑥−`)

𝑇Σ−1 (𝑥−`)

𝑒−
1
2 (𝑥−𝑎1)𝑇Σ−1 (𝑥−𝑎1) + · · · + 𝑒− 1

2 (𝑥−𝑎𝑟 )𝑇Σ−1 (𝑥−𝑎𝑟 )
.

Note that we have used uniform mixture weights in our IS distribution depicted above. These

weights could potentially be tuned more carefully rather than simply equally assigned to further

improve the efficiency, especially when an asymptotic zero-variance distribution is available (as in,

e.g., [106, 107]), though here we are contented with uniform weights and do not refine further. To

sum up, after computing the dominating points 𝐴 = {𝑎1, . . . , 𝑎𝑟} using Algorithm 2.1, we estimate

the probability of interest via Algorithm 2.2.

Algorithm 2.2: Construct the IS estimator with all the dominating points.
Input: Prediction model 𝑔(𝑥), threshold 𝛾, dominating points 𝐴 = {𝑎1, . . . , 𝑎𝑟},

simulation size 𝑁 .
Output: Estimated rare-event probability 𝑝.

1 Generate �̃�1, . . . , �̃�𝑁 ∼ 𝑓 (𝑥) = 1
𝑟

∑𝑟
𝑖=1 𝜙(𝑥; 𝑎𝑖, Σ);

2 Compute 𝑝 = 1
𝑁

∑𝑁
𝑖=1 𝐼 (𝑔( �̃�𝑖) ≥ 𝛾)𝐿 ( �̃�𝑖) where

𝐿 (𝑥) = 𝑟𝑒−
1
2 (𝑥−`)

𝑇Σ−1 (𝑥−`)

𝑒−
1
2 (𝑥−𝑎1)𝑇Σ−1 (𝑥−𝑎1) + · · · + 𝑒− 1

2 (𝑥−𝑎𝑟 )𝑇Σ−1 (𝑥−𝑎𝑟 )
;

3 End

19



2.4.3 Efficiency Guarantees

The efficiency guarantee of the proposed IS estimator (2.5) is given by:

Theorem 2.1. Suppose that the input 𝑋 ∼ 𝑁 (`, Σ) and the prediction model 𝑔(·) is a piecewise

linear function (with finite pieces) such that 𝑃(𝑔(𝑋) ≥ 𝛾) > 0 for any 𝛾 ∈ R. The IS estimator 𝑍 is

defined in (2.5). Then we have that �̃� [𝑍2]/�̃� [𝑍]2 is at most polynomially growing in 𝛾. Moreover,

𝑍 is asymptotically optimal.

Theorem 2.1 is proved by constructing an upper bound for the relative error, which in turn

depends on the asymptotic approximation of probability on polytope sets using dominating points.

Our proof leverages the results in [62] on the tail exceedance asymptotic of 𝑃(𝑁 (0, Σ𝑛) ≥ 𝑡𝑛)

where ∥𝑡𝑛∥ → ∞ as 𝑛 → ∞, but requires substantial generalization. Note that Theorem 2.1 only

makes the very general assumptions that 𝑔 is piecewise linear and the probability 𝑃(𝑔(𝑋) ≥ 𝛾) is

nondegenerate (i.e., non-zero) for any 𝛾 ∈ R. Our result applies to, for example, the probability

𝑃(𝐴𝑋 ≥ 𝑡) where 𝐴 is a constant matrix and 𝑡−𝛾𝑒1 is a constant vector (here, 𝑒1 = (1, 0, . . . , 0)𝑇 ).

If 𝐴𝐴𝑇 is not invertible, then it is not easily reducible to the setting studied in [62]. To achieve a

general result, we carefully construct a superset and a subset of the rare-event set to derive tight

enough upper and lower bounds for the probability of interest, in which we analyze the involved

asymptotic integrals instead of using the conditional probability representation in [62] that is not

directly applicable in our setting. For the detailed proof, please refer to Section 2.7.

A by-product in proving Theorem 2.1 is the large deviations probability asymptotic for 𝑃(𝑔(𝑋) ≥

𝛾):

Corollary 2.1. Suppose that the input 𝑋 ∼ 𝑁 (`, Σ) and the prediction model 𝑔(·) is a piecewise

linear function (with finite pieces) such that 𝑃(𝑔(𝑋) ≥ 𝛾) > 0 for any 𝛾 ∈ R. Denote 𝑎 =

arg min{(𝑥−`)𝑇Σ−1(𝑥−`) : 𝑔(𝑥) ≥ 𝛾}. Then − log 𝑃(𝑔(𝑋) ≥ 𝛾) = (1+𝑜(1)) (𝑎−`)𝑇Σ−1(𝑎−`)/2

as 𝛾 →∞. In particular, 𝑃(𝑔(𝑋) ≥ 𝛾) is exponentially small in 𝛾.

The theoretical guarantee given by Theorem 2.1 justifies the sequential MIP algorithm for

searching dominating points. The resulting mixture IS distribution is asymptotically optimal. We

20



point out some related works that use mixture distributions that are related to our proposed method.

In [65], mixture IS distributions are constructed based on separating rare-event set with half-spaces.

However, in this work, the rare-event set is restricted to be a union of half-spaces, and these half-

spaces are assumed to be known. The use of Algorithm 2.1 allows us to deal with more general

rare-event sets. Moreover, in relation to Corollary 2.1, we also mention the work [60] that derives

an asymptotic result for Gaussian probabilities using dominating points. However, they focus on

convex hitting sets where the entire set is scaled with a rarity parameter, which is different from

our settings. First, our rare-event set is not necessarily convex. Second, even if we separate our

rare-event set into the union of convex sets, their results still cannot be applied, since in our settings

some linear constraints are allowed to be fixed instead of scaling with 𝛾.

Finally, we close this section by noting that the proposed IS scheme can be extended to prob-

lems with Gaussian mixture inputs. Suppose the Gaussian mixture has 𝑚 components, so that

𝑋 ∼ ∑𝑚
𝑗=1 𝜋 𝑗𝜙(𝑥; ` 𝑗 , Σ 𝑗 ). For each component 𝑗 , we implement Algorithm 2.1 with input distribu-

tion 𝑁 (` 𝑗 , Σ 𝑗 ) to obtain dominating point set 𝐴 𝑗 (with cardinality 𝑟 𝑗 ). The proposed IS distribution

is given by 𝑓 (𝑥) = ∑𝑚
𝑗=1

∑𝑟 𝑗

𝑖=1 𝜋 𝑗/𝑟 𝑗𝜙(𝑥; 𝑎 𝑗𝑖, Σ 𝑗 ). We summarize the procedure as Algorithm 2.3.

Algorithm 2.3: Procedure for Gaussian mixture distributed input.
Input: Prediction model 𝑔(𝑥), threshold 𝛾, input distribution

∑𝑚
𝑗=1 𝜋 𝑗𝜙(𝑥; ` 𝑗 , Σ 𝑗 ),

simulation size 𝑁 .
Output: Estimated rare-event probability 𝑝.

1 Implement Algorithm 2.1 with input distribution 𝑁 (` 𝑗 , Σ 𝑗 ) to get 𝐴 𝑗 = {𝑎 𝑗1, . . . , 𝑎 𝑗𝑟 𝑗 };
2 Generate �̃�1, . . . , �̃�𝑁 ∼ 𝑓 (𝑥) =

∑𝑚
𝑗=1

∑𝑟 𝑗

𝑖=1 𝜋 𝑗/𝑟 𝑗𝜙(𝑥; 𝑎 𝑗𝑖, Σ 𝑗 );
3 Compute 𝑝 = 1

𝑁

∑𝑁
𝑖=1 𝐼 (𝑔( �̃�𝑖) ≥ 𝛾)𝐿 ( �̃�𝑖) where

𝐿 (𝑥) =
∑𝑚
𝑗=1 𝜋 𝑗 |Σ 𝑗 |−

1
2 𝑒
− 1

2 (𝑥−` 𝑗 )
𝑇Σ−1

𝑗
(𝑥−` 𝑗 )∑𝑚

𝑗=1
∑𝑟 𝑗

𝑖=1 𝜋 𝑗/𝑟 𝑗 |Σ 𝑗 |
− 1

2 𝑒
− 1

2 (𝑥−𝑎 𝑗𝑖)𝑇Σ−1
𝑗
(𝑥−𝑎 𝑗𝑖)

; (2.6)

4 End

Similar to Algorithm 2.2, we have the efficiency guarantee for Algorithm 2.3:

Corollary 2.2. Suppose that the input 𝑋 ∼ ∑𝑚
𝑗=1 𝜋 𝑗𝜙(𝑥; ` 𝑗 , Σ 𝑗 ) and the prediction model 𝑔(·) is

a piecewise linear function (with finite pieces) such that 𝑃(𝑔(𝑋) ≥ 𝛾) > 0 for any 𝛾 ∈ R. The
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IS estimator 𝑍 is defined as 𝐼 (𝑔( �̃�) ≥ 𝛾)𝐿 ( �̃�) where �̃� ∼ ∑𝑚
𝑗=1

∑𝑟 𝑗

𝑖=1 𝜋 𝑗/𝑟 𝑗𝜙(𝑥; 𝑎 𝑗𝑖, Σ 𝑗 ) and 𝐿 (𝑥)

is as defined in (2.6). Then we have that �̃� [𝑍2]/�̃� [𝑍]2 is at most polynomially growing in 𝛾.

Moreovers, 𝑍 is asymptotically optimal.

When we apply Algorithm 2.1 to find all dominating points, the key is to be able to solve the

optimization problems in (2.4). We will investigate this in the next section.

2.5 Tractable Optimization Formulation for Prediction Models

We discuss how to formulate optimization problems in Algorithm 2.1 as an MIP with quadratic

objective function and linear constraints, for random forest (Section 2.5.1) and neural network

(2.5.2) structures.

2.5.1 Tractable Formulation for Random Forest

A random forest [55, 108] can be specified as follows. Given a set of 𝑇 decision trees 𝑔1, ..., 𝑔𝑇

with 𝑑 dimensional input 𝑥, a random forest 𝑔 ensembles these trees by weightedly averaging their

outputs, namely 𝑔 =
∑𝑇
𝑡=1 _𝑡𝑔𝑡 , where _𝑡 denotes the weight of tree 𝑡 (

∑𝑇
𝑡=1 _𝑡 = 1).

Figure 2.2: An example of a decision tree.

As illustrated in Figure 2.2, a decision tree consists of nodes and a branch structure. The nodes

are categorized into splits (triangle node), the nodes with two child nodes, and leaves (circle node),

the nodes with no child node. At each split, we execute a binary query defined by a dimension

index and a split point, i.e., in the form of 𝑥𝑖 ≤ 𝑎, where 𝑥𝑖 denotes the 𝑖th dimension of the input

𝑥 and 𝑎 ∈ R is the split point. Starting from the root node, a sequence of queries leads the input

down to a leaf node which corresponds to an output value.
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To look for dominating points in a random forest, we follow the route in [59] that studies

optimization over these models. Following the notations therein, we use 𝑎𝑖, 𝑗 to summarize the split

point information from all trees in 𝑔, which denotes the 𝑗 th unique split point for the 𝑖th dimension

of the input 𝑥. Note that 𝑎𝑖,1 < 𝑎𝑖,2 < ... < 𝑎𝑖,𝐾𝑖 , where 𝐾𝑖 is the number of unique split points for

the 𝑖th dimension of 𝑥.

To represent the branch structure, we define leaves(𝑡) as the set of leaves (terminal nodes)

of tree 𝑡 and splits(𝑡) as the set of splits (non-terminal nodes) of tree 𝑡. In each split 𝑠, we let

left(𝑠) be the set of leaves that are accessible from the left branch (the query at 𝑠 is true), and

right(𝑠) be the set of leaves that are accessible from the right branch (the query at 𝑠 is false). For

each node 𝑠, we use V(𝑠) ∈ {1, ..., 𝑑} to denote the dimension that participates in the node and

C(𝑠) ∈ {1, ..., 𝐾V(𝑠)} to denote the index of the split point on dimension 𝑖 that participates in the

query of 𝑠 (V(𝑠) = 𝑖 and C(𝑠) = 𝑗 indicate the query 𝑥𝑖 ≤ 𝑎𝑖, 𝑗 ). For each 𝑙 ∈ leaves(𝑡), 𝑝𝑡,𝑙 denotes

the output for the 𝑙th leaf in tree 𝑡.

To formulate the random forest optimization as an MIP, we introduce decision variables 𝑧𝑖, 𝑗

and 𝑦𝑡,𝑙 . Firstly, we use 𝑧𝑖, 𝑗 to locate the input 𝑥 by linking its value to the split points 𝑎𝑖, 𝑗 ’s, where

we have

𝑧𝑖, 𝑗 = 𝐼 (𝑥𝑖 ≤ 𝑎𝑖, 𝑗 ), 𝑖 = 1, ..., 𝑑, 𝑗 = 1, ..., 𝐾𝑖 . (2.7)

In order to convert (2.7) into mixed integer constraints, we introduce an arbitrary large number

𝐵 ∈ R+ which serves as the big-𝑀 coefficient [109] in our formulation. For any given problem,

all dominating points must have finite coordinates. This implies that for large enough 𝐵 we have

[−𝐵, 𝐵]𝑑 contain all dominating points. Thus, assuming we use a large enough 𝐵, we can let

𝑥 ∈ [−𝐵, 𝐵]𝑑 and |𝑎𝑖, 𝑗 | ≤ 𝐵. Then (2.7) is represented by the following constraints:

𝑥𝑖 ≤ 𝑎𝑖, 𝑗 + 2(1 − 𝑧𝑖, 𝑗 )𝐵

𝑥𝑖 > 𝑎𝑖, 𝑗 − 2𝑧𝑖, 𝑗𝐵

𝑧𝑖, 𝑗 = {0, 1}.
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Next we use 𝑦𝑡,𝑙 = 1 to denote that tree 𝑡 outputs the prediction value 𝑝𝑡,𝑙 on leaf 𝑙, and 𝑦𝑡,𝑙 = 0

otherwise. This allows us to represent the output of the random forest as

𝑇∑︁
𝑡=1

∑︁
𝑙∈leaves(𝑡)

_𝑡 𝑝𝑡,𝑙𝑦𝑡,𝑙

with
∑
𝑙∈leaves(𝑡) 𝑦𝑡,𝑙 = 1. We use z, y to represent the vectors of 𝑧𝑖, 𝑗 and 𝑦𝑡,𝑙 respectively.

Lastly, we formulate the binary queries in a decision tree with these intermediate variables.

This is achieved by forcing 𝑦𝑡,𝑙 in the “unselected” branches to be 0. At each split 𝑠, we have

𝑥V(𝑠) > 𝑎V(𝑠),C(𝑠) ⇒
∑︁

𝑙∈left(𝑠)
𝑦𝑡,𝑙 = 0

𝑥V(𝑠) ≤ 𝑎V(𝑠),C(𝑠) ⇒
∑︁

𝑙∈right(𝑠)
𝑦𝑡,𝑙 = 0,

which we reformulate with z into

∑︁
𝑙∈left(𝑠)

𝑦𝑡,𝑙 ≤ 𝑧V(𝑠),C(𝑠) , ∀𝑡 ∈ {1, ..., 𝑇}, 𝑠 ∈ splits(𝑡)∑︁
𝑙∈right(𝑠)

𝑦𝑡,𝑙 ≤ 1 − 𝑧V(𝑠),C(𝑠) , ∀𝑡 ∈ {1, ..., 𝑇}, 𝑠 ∈ splits(𝑡).
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Now we formulate (2.4) with 𝐴 = ∅ as the following MIP

min
𝑥,y,z
(𝑥 − `)𝑇Σ−1(𝑥 − `) (2.8)

𝑠.𝑡.

𝑇∑︁
𝑡=1

∑︁
𝑙∈leaves(𝑡)

_𝑡 𝑝𝑡,𝑙𝑦𝑡,𝑙 ≥ 𝛾∑︁
𝑙∈leaves(𝑡)

𝑦𝑡,𝑙 = 1, ∀𝑡 ∈ {1, ..., 𝑇}∑︁
𝑙∈left(𝑠)

𝑦𝑡,𝑙 ≤ 𝑧V(𝑠),C(𝑠) , ∀𝑡 ∈ {1, ..., 𝑇}, 𝑠 ∈ splits(𝑡)∑︁
𝑙∈right(𝑠)

𝑦𝑡,𝑙 ≤ 1 − 𝑧V(𝑠),C(𝑠) , ∀𝑡 ∈ {1, ..., 𝑇}, 𝑠 ∈ splits(𝑡)

𝑧𝑖, 𝑗 ≤ 𝑧𝑖, 𝑗+1, ∀𝑖 ∈ {1, ..., 𝑑}, 𝑗 ∈ {1, ..., 𝐾𝑖 − 1}

𝑧𝑖, 𝑗 ∈ {0, 1}, ∀𝑖 ∈ {1, ..., 𝑑}, 𝑗 ∈ {1, ..., 𝐾𝑖}

𝑦𝑡,𝑙 ≥ 0, ∀𝑡 ∈ {1, ..., 𝑇}, 𝑙 ∈ leaves(𝑡)

𝑥𝑖 ≤ 𝑎𝑖, 𝑗 + 2(1 − 𝑧𝑖, 𝑗 )𝐵, ∀𝑖 ∈ {1, ..., 𝑑}, 𝑗 ∈ {1, ..., 𝐾𝑖}

𝑥𝑖 > 𝑎𝑖, 𝑗 − 2𝑧𝑖, 𝑗𝐵, ∀𝑖 ∈ {1, ..., 𝑑}, 𝑗 ∈ {1, ..., 𝐾𝑖}.

This formulation has a quadratic objective function and linear constraints. Similarly, we can formu-

late (2.4) with 𝐴 ≠ ∅ by adding linear constraints (𝑎𝑖 − `)𝑇Σ−1(𝑥− 𝑎𝑖) < 0, ∀𝑎𝑖 ∈ 𝐴 to (2.8). Note

that both the number of decision variables and the number of constraints are linearly dependent on

the total number of nodes in the random forest.

2.5.2 Tractable Formulation for Neural Network

A neural network 𝑔(·) is a network that connects a large number of computational units known

as neurons [56, 110]. Depending on the task, this network bears a specific architecture that usually

involves multiple layers of neurons and different operations over the neurons. For simplification,

here we consider layers with consecutive architecture and each layer of the neural network only

contains one specific structure.
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The key part of the reformulation is to deal with the non-linearity brought by the maximum

function. Our treatment of the maximum function follows from [58], which rewrites neural net-

work structures into linear equations with binary variables.

In order to obtain tractable formulation for the constraint 𝑔(𝑥) ≥ 𝛾, we independently handle

each single layer in 𝑔(·). Assume we have 𝑙 layers in 𝑔(·), where 𝑔𝑖 (·) denotes the 𝑖th layer. Given

input 𝑥, the output of the neural network can be represented as 𝑔(𝑥) = 𝑔𝑙 (𝑔𝑙−1(...𝑔1(𝑥))). For

convenience, we introduce 𝑥𝑖 to denote the output of the 𝑖th layer (note that it is also the input for

the 𝑖 + 1th layer). In other words, for the 𝑖th layer we have 𝑥𝑖 = 𝑔𝑖 (𝑥𝑘−1). Using these notations,

we can transform the constraint 𝑔(𝑥) ≥ 𝛾 into a sequence of constraints:

𝑥𝑙 ≥ 𝛾,

𝑥𝑙 = 𝑔𝑙 (𝑥𝑙−1),

𝑥𝑙−1 = 𝑔𝑙−1(𝑥𝑙−2),

...,

𝑥1 = 𝑔1(𝑥).

This transformation makes clear that the constraints altogether are tractable if the constraint for

each layer (i.e. 𝑥𝑖 = 𝑔𝑖 (𝑥𝑖−1)) is tractable . Note that both the number of decision variables and

the number of constraints are linearly dependent on the total number of neurons in the neural net-

work. In the rest of this section, we discuss the reformulation of neural network layers concerning

different structures.

Fully Connected Layer

In a fully connected layer, each neuron performs a linear transformation on the input. We

consider a layer with 𝑛 neurons and the input for this layer is a vector 𝑥 ∈ R𝑚. We use 𝑤𝑖 ∈ R𝑚 and

𝑏𝑖 ∈ R to denote the weight and bias respectively for the linear transformation in the 𝑖th neuron.

Then the output of the 𝑖th neuron can be represented by 𝑦𝑖 = 𝑤𝑇𝑖 𝑥 + 𝑏𝑖. To summarize, the output
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of the layer, 𝑦 = [𝑦1, 𝑦2, ..., 𝑦𝑛] ∈ R𝑛, is given by

𝑦 = 𝑊𝑇𝑥 + 𝑏,

where𝑊 = [𝑤1, 𝑤2, ..., 𝑤𝑛] and 𝑏 = [𝑏1, 𝑏2, ..., 𝑏𝑛].

ReLU Layer

In a rectified linear unit (ReLU) layer, negative elements in the input are replaced by 0’s. For

the 𝑖th input, the output is given by 𝑦𝑖 = 𝑚𝑎𝑥{𝑥𝑖, 0}. This can be represented by

𝑦𝑖 ≤ 𝑥𝑖 − 𝑙 (1 − 𝑧𝑖),

𝑦𝑖 ≥ 𝑥𝑖,

𝑦𝑖 ≤ 𝑢𝑧𝑖,

𝑦𝑖 ≥ 0,

𝑧𝑖 ∈ {0, 1} ,

where 𝑧𝑖 ∈ {0, 1} is a binary variable, 𝑢 and 𝑙 are the upper and lower bounds of the input respec-

tively.

Normalization Layer

In a normalization layer, the input is normalized and linearly transformed to make the gradient

descent algorithm more efficient. Again we assume the input is 𝑥 ∈ R𝑚 with a given normalization

parameter ` ∈ R𝑚 and Σ ∈ R𝑚×𝑚. Moreover, we have the transformation matrix 𝛾 ∈ R𝑚×𝑚 and

bias vector 𝛽 ∈ R𝑚. The output is given by

𝑦 = 𝛾

(
Σ−1/2(𝑥 − `)

)
+ 𝛽.
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Pooling Layer

In a pooling layer, a “filter” that can be applied to adjacent elements in a vector or matrix

goes through the input with a certain stride. Such type of layer is used to summarize “local”

information and reduce the dimension of the input. Max pooling and average pooling are two

types of commonly used filters.

Suppose the input is represented by matrix 𝑥 ∈ R𝑚1×𝑚2 , where 𝑥𝑖 𝑗 denotes the element in the 𝑖th

row 𝑗 th column. The size of the filter is 𝑠1 × 𝑠2 with stride (𝑠1, 𝑠2). The output has size 𝑦 ∈ R𝑛1,𝑛2 ,

where 𝑛1 = 𝑚1/𝑠1 and 𝑛2 = 𝑚2/𝑠2. We assume that the value of 𝑠1, 𝑠2 are carefully chosen so that

𝑛1 and 𝑛2 are integers.

For average pooling layer, we have

𝑦𝑖 𝑗 =

∑𝑖𝑠1
𝑟=(𝑖−1)𝑠1+1

∑ 𝑗 𝑠2
𝑐=( 𝑗−1)𝑠2+1 𝑥𝑟𝑐

𝑠1𝑠2

for 𝑖 = 1, ..., 𝑛1, 𝑗 = 1, ..., 𝑛2.

For max pooling layer, we have 𝑦𝑖 𝑗 = max(𝑟,𝑐)∈𝑆𝑖 𝑗 𝑥𝑟𝑐 for 𝑖 = 1, ..., 𝑛1, 𝑗 = 1, ..., 𝑛2, where

𝑆𝑖 𝑗 = {(𝑟, 𝑐) |𝑟 = (𝑖 − 1)𝑠1 + 1, ..., 𝑖𝑠1, 𝑐 = ( 𝑗 − 1)𝑠2 + 1, ..., 𝑗 𝑠2}. The tractable formulation is given

by

𝑦𝑖 𝑗 ≤ 𝑥𝑟𝑐 − (𝑢 − 𝑙) (1 − 𝑧𝑟𝑐), (𝑟, 𝑐) ∈ 𝑆𝑖 𝑗

𝑦𝑖 𝑗 ≥ 𝑥𝑟𝑐, (𝑟, 𝑐) ∈ 𝑆𝑖 𝑗∑︁
(𝑟,𝑐)∈𝑆𝑖 𝑗

𝑧𝑟𝑐 = 1

𝑧𝑟𝑐 ∈ {0, 1}, (𝑟, 𝑐) ∈ 𝑆𝑖 𝑗 .

Convolutional Layer

In a convolutional layer, several filters are used to extract features from the input. The input of

the layer is 𝑥 ∈ R𝑚1𝑚2 . Suppose we have 𝑟 filters and assume the filters have size 𝑠1× 𝑠2 with stride
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(𝑡1, 𝑡2). We use 𝑤𝑖 ∈ R𝑡1𝑡2 and 𝑏𝑖 ∈ R𝑡1𝑡2 to denote the weight and bias for the 𝑖th filter. The output

is 𝑦 ∈ R𝑛1×𝑛2×𝑟 , where 𝑛1 = (𝑚1 − 𝑠1)/𝑡1 and 𝑛2 = (𝑚2 − 𝑠2)/𝑡2. Again we assume the numbers

are carefully chosen so that 𝑛1, 𝑛2 are integers.

Then we have

𝑦𝑖 𝑗 𝑘 = 𝑤
𝑇
𝑘 (𝑥𝑖 𝑗 ) + 𝑏𝑘 ,

𝑥𝑖 𝑗 = [𝑥(𝑖−1)𝑡1+1,( 𝑗−1)𝑡2+1, 𝑥(𝑖−1)𝑡1+2,( 𝑗−1)𝑡2+1, ..., 𝑥(𝑖−1)𝑡1+1,( 𝑗−1)𝑡2+2, ..., 𝑥(𝑖−1)𝑡1+𝑠1,( 𝑗−1)𝑡2+𝑠2] .

for integers 1 ≤ 𝑖 ≤ 𝑛1, 1 ≤ 𝑗 ≤ 𝑛2 and 1 ≤ 𝑘 ≤ 𝑟.

Reformulation in the Output Layer

Here we discuss the reformulation of the output layer, which also provides us clues on how

other more general problems in classification tasks are potentially transformable into the constraint

𝑔(𝑥) ≥ 𝛾. Although the output layer is usually highly nonlinear, we show how to formulate it as

linear mixed-integer constraints.

In classification tasks, the neural network usually uses a softmax layer as the output layer for

training purposes. Suppose the classification problem has 𝑛 categories in total, the last layer inputs

𝑥 ∈ R𝑛 and outputs 𝑦 ∈ R𝑛 with 𝑦𝑖 = 𝑒𝑥𝑖∑𝑛
𝑗=1 𝑒

𝑥 𝑗 . The prediction for classification is determined by

the maximum value of 𝑦𝑖. Indeed, the result is equivalent if we determine the categories by the

maximum value of 𝑥𝑖.

When the constraint is 𝑔(𝑋) = 𝑖 or 𝑔(𝑋) ≠ 𝑖, we can use this equivalence to reformulate the

last layer (and therefore complete the formulation for the whole network). Specifically, 𝑔(𝑋) = 𝑖

can be formulated as 𝑥𝑖 ≥ 𝑥 𝑗 , 𝑓 𝑜𝑟 𝑗 ≠ 𝑖 and 𝑔(𝑋) ≠ 𝑖 can be formulated as 𝑥𝑖 ≤ max 𝑗≠𝑖 𝑥 𝑗 , where

𝑗 ≠ 𝑖 denotes 𝑗 is an element for the set that contains all possible indexes except 𝑖. For tractable
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form, the latter formula can be further rewritten as:

𝑥𝑖 ≤ 𝑥 𝑗 + (1 − 𝑧 𝑗 ) (𝑢 − 𝑙), 𝑗 ≠ 𝑖.∑︁
𝑗≠𝑖

𝑧 𝑗 ≥ 1,

𝑧 𝑗 ∈ {0, 1}, 𝑗 ≠ 𝑖.

2.6 Experiments

This section presents several experimental results using our Algorithm 2.1 for neural network

and random forest predictors. In Section 2.6.1, we consider two simple toy examples. The first

problem has one dominating point and the second problem has multiple dominating points. To

illustrate the efficiency of the proposed IS scheme, we compare it with a naive IS scheme using

uniform distribution. In Section 2.6.2, we consider a realistic problem generated from a classifica-

tion data set with a high-dimensional feature space.

2.6.1 Toy Problems

We consider the rare-event set {𝑥 : 𝑔(𝑥) ≥ 𝛾} and the input 𝑋 follows a Gaussian distribution

𝑁 (0, 𝐼𝜎2), where 𝐼 denotes the identity matrix and 𝜎2 ∈ R+. The prediction model 𝑔 is trained

with a data set with uniformly designed inputs, and labeled using a deterministic function denoted

by 𝑦. In order to build a prediction model with reasonable quality, the inputs of the training data

are generated from a bounded region [𝑙, 𝑢]𝑑 , where the region is chosen sufficiently large in terms

of 𝛾 that setting 𝑔(𝑥) to −∞ outside the region barely affects the target probability. As a result,

whether we impose this bound or not does not affect the probability materially, and we choose to

impose it since this setting provides a good and simple IS scheme (i.e., uniform distribution) for

comparison.

Given the above setting, we consider a uniform IS scheme as a baseline method in our ex-

periments. Consider a problem where 𝑋 follows a distribution 𝑓 (𝑥), and the set {𝑥 : 𝑔(𝑥) ≥ 𝛾}
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is known to lie inside [𝑙, 𝑢]𝑑 where 𝑑 is the dimension of the input variable 𝑋 . The uniform IS

estimator of 𝑃(𝑔(𝑥) ≥ 𝛾) is given by

𝑍𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 = 𝐼 (𝑔(𝑋) ≥ 𝛾) 𝑓 (𝑋) (𝑢 − 𝑙)𝑑 ,

where 𝑋 is generated from a uniform distribution on [𝑙, 𝑢]𝑑 . This estimator has a polynomially

growing relative efficiency as the magnitude of the dominating points grows [111], but the effi-

ciency also depends significantly on the size of the bounded set, i.e., 𝑙, 𝑢, 𝑑.

In the first example, we use the deterministic function

𝑦(𝑥) = (𝑥1 − 5)3 + (𝑥2 − 4.5)3 + (𝑥1 − 1)2 + 𝑥2
2 + 500 (2.9)

to label the training samples. We generate 2,601 samples with input 𝑥 = [𝑥1, 𝑥2] using a uniform

grid over the space with a mesh of 0.1 on each coordinate over the bounded space [0, 5]2. The

dataset we obtained is denoted as 𝐷 = {(𝑋𝑛, 𝑌𝑛)}. 𝑔(𝑥) is trained using 𝐷. We note that the

region [0, 5]2 is large enough in our experiments, so that 𝑔(𝑥) can be thought of as being set to −∞

outside this box. For instance, when 𝜎2 = 1, the ratio of the probability of falling outside [−5, 5]𝑑

(as [0, 5]𝑑 is almost equivalent to [−5, 5]𝑑 here) to the probability of interest (for the first example

with 𝛾 = 500 or the second example with 𝛾 = 8) is smaller than 0.05, the largest ratio among all

considered settings.

We first train a neural network predictor as 𝑔(𝑥). The neural network has 3 layers with 100

neurons in each of the 2 hidden layers, and all neurons are ReLU. To illustrate the rare-event set in

the problem, we use 𝛾 = 500 in this example. The defined rare-event set is presented in Figure 2.3.

We observe that the set is roughly convex and should have a single dominating point. We obtain

the dominating point for the set at (3.3676, 2.6051).

In our experiments, we first vary the value of 𝛾 to verify the asymptotic performance of the

proposed IS estimator as 𝛾 increases. We then vary the value of 𝜎2 to create problems with different

distribution setups, where a smaller 𝜎2 gives a rarer probability.

31



Figure 2.3: Rare-event set and dominating
points for the neural network (case 1).

Figure 2.4: Rare-event set and dominating
points for the random forest (case 1).

Figures 2.5 and 2.6 present the experimental results with fixed 𝜎2 = 0.3 and a varing 𝛾 based

on 50,000 samples. Figure 2.5 shows that the proposed IS estimator provides similar estimates as

the baseline estimator, while Figure 2.6 shows our estimator provides a better confidence interval

width and the advantage grows slightly as 𝛾 increases.

In Figures 2.7 and 2.8, we present the experimental results for different variance values with

𝛾 = 500. Again we observe the proposed IS scheme provides smaller relative errors in all cases

and the advantage increases with smaller variance (the relative error increases from 2.5 to 10 for

the proposed IS and 5 to 55 for the uniform IS in the considered range of 𝜎).

Next, we investigate how the size of the predictor would affect the efficiency of our proposed

estimator. We note that a neural network with a larger size results in a larger number of linear

pieces in the rare-event set formulation. To obtain rare-event sets with different numbers of linear

pieces, we use neural networks with different number of neurons for training and subsequently

building the rare-event sets. In particular, we vary the number of neurons in the second layer and

keep other parameters fixed.

Table 2.1 presents the computation time for solving the mixed integer optimization under dif-

ferent cases. Although the numbers of constraints and variables increase by roughly 30% (from

150 total neurons to 200) as we increase the number of second layer neurons, there is no signif-
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icant increase in the computation time. In Figures 2.9 and 2.10, we present the performances of

our IS estimator. We observe that our IS estimator consistently outperforms the naive estimator as

evidenced by the similar estimates in Figure 2.9 and the smaller relative errors in Figure 2.10.

Figure 2.5: Probability estimation with differ-
ent 𝛾. Neural network, case 1.

Figure 2.6: 95% confidence interval half-width
with different 𝛾. Neural network, case 1.

Figure 2.7: Probability estimation with differ-
ent distribution setups. Neural network, case 1.

Figure 2.8: Relative error with different distri-
bution setups. Neural network, case 1.

Table 2.1: The computation time for solving the mixed integer optimization to obtain the first
dominating point in the neural network defined rare-event set in case 1.

Number of Layer 2 Neurons 50 55 60 65 70 75 80 85 90 95 100
Number of Total Neurons 150 155 160 165 170 175 180 185 190 195 200
Computation Time (sec) 0.323 0.390 0.217 0.218 0.205 0.379 0.384 0.436 0.357 0.235 0.425
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Figure 2.9: Probability estimation with differ-
ent different neural network sizes, case 1.

Figure 2.10: Relative error with different neu-
ral network sizes, case 1.

Figure 2.11: Probability estimation with differ-
ent distribution setups. Random forest, case 1.

Figure 2.12: Relative error with different dis-
tribution setups. Random forest, case 1.

Next, we train a random forest 𝑔(𝑥), which ensembles three regression trees (see further train-

ing details in Section 2.9). The three regression trees are averaged and each of them has around

600 nodes. Again we illustrate the rare-event set with 𝛾 = 500, which is presented in Figure 2.4.

The dominating point is obtained by implementing Algorithm 2.1, which is located at (3.05, 2.65).

Figures 2.11 and 2.12 show our results with random forest. In Figure 2.11, we observe that

the estimates for the two IS schemes are similar in all considered cases. On the other hand, Figure

2.12 shows the relative error for the proposed IS is smaller in all considered 𝜎. Moreover, as the

rarity increases, the relative error of the proposed IS increases from roughly 2.5 to 5, whereas the
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relative error of the uniform IS increases from 5 to 40. The slower increasing rate indicates that

the proposed IS scheme is more efficient and the outperformance is stronger for rarer problems.

We now consider true output values generated according to the function

𝑦(𝑥) = 10 × 𝑒−
(
𝑥1−5

3

)2
−
(
𝑥2−5

4

)2

+ 10 × 𝑒−𝑥1
2−(𝑥2−4.5)2 . (2.10)

Again we use a uniform grid over [0, 5]2 with a mesh of 0.1 on each coordinate to train the pre-

dictors. The random forest ensembles three regression trees with around 600 nodes and the neural

network with 2 hidden layers, 100 neurons in the first hidden layer and 50 neurons in the second

hidden layer. All neurons in the neural network are ReLU.

For 𝛾 = 8, the shapes of the rare-event sets are shown in Figures 2.13 and 2.14. We observe

that the set now consists of two disjoint regions and therefore we expect to obtain multiple domi-

nating points. Using Algorithm 2.1, we obtain two dominating points in each case: (0, 4.15) and

(3.75, 3.55) for the random forest model; (0.113, 4.162) and (4.187, 3.587) for the neural network

model. Again we vary 𝛾 and 𝜎2 to obtain problems with different rarities and use 50,000 samples

for each case.

Figure 2.13: Rare-event set and dominating
point for the random forest (case 2).

Figure 2.14: Rare-event set and dominating
point for the neural network (case 2).

Figures 2.15 and 2.16 shows the experiment results with fixed 𝜎2 = 0.3 and a varying 𝛾. As in

the first example, we observe that the IS estimator provides correct estimates with better confidence
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Figure 2.15: Probability estimation with differ-
ent 𝛾. Neural network, case 2.

Figure 2.16: 95% confidence interval half-
width with different 𝛾. Neural network, case
2.

intervals through all considered cases. The experimental results with fixed 𝛾 = 8 varying 𝜎2 for the

random forest predictor are shown in Figures 2.17 and 2.18, and the results for the neural network

predictor are shown in Figures 2.19 and 2.20. Similar to the previous problem, both IS schemes

give similar estimates in all the cases, as observed in Figures 2.17 and 2.19. The relative errors

shown in Figures 2.18 and 2.20 illustrate that, as the probability of interest decreases, the relative

error ratio between the uniform IS and the proposed IS increases from 2 to around 5-6. We can

conclude that the proposed IS scheme again outperforms the uniform IS and is more preferable as

the rarity increases.

Figure 2.17: Probability estimation with differ-
ent distribution setups. Random forest, case 2.

Figure 2.18: Relative error with different dis-
tribution setups. Random forest, case 2.
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Figure 2.19: Probability estimation with differ-
ent distribution setups. Neural network, case 2.

Figure 2.20: Relative error with different dis-
tribution setups. Neural network, case 2.

2.6.2 MAGIC Gamma Telescope Data Set

We study a rare-event probability estimation problem from a realistic classification task. The

classification problem uses the MAGIC Gamma Telescope data set in the UCI Machine Learn-

ing Repository [112]. The problem is to classify images of electromagnetic showers collected

by a ground-based atmospheric Cherenkov gamma telescope. The features of the data are 10-

dimensional characteristic parameters of the images and the data set contains 19020 data points in

total. We provide some descriptive statistics of the data set in Table 2.2. Studies [113, 114, 115]

use machine learning predictors to discriminate images caused by a “signal” (primary gammas)

from those initiated by the “background” (cosmic rays in the upper atmosphere).

Table 2.2: Descriptive statistics of the MAGIC Gamma Telescope Data Set. “Std” denotes the
standard deviation and “CoV” denotes the coefficient of variation (ratio of the standard deviation
to the mean).

Coefficient Index 1 2 3 4 5 6 7 8 9 10
Mean 53.250 22.181 2.825 0.380 0.215 -4.332 10.546 0.250 27.646 193.818
Std 42.365 18.346 0.473 0.183 0.111 59.206 51.000 20.827 26.104 74.732
CoV 0.796 0.827 0.167 0.481 0.515 -13.668 4.836 83.401 0.944 0.386
Min 4.284 0.000 1.941 0.013 0.000 -457.916 -331.780 -205.895 0.000 1.283
Max 334.177 256.382 5.323 0.893 0.675 575.241 238.321 179.851 90.000 495.561
Median 37.148 17.140 2.740 0.354 0.197 4.013 15.314 0.666 17.680 191.851

To train the predictors, we allocate 15,000 data points as the training set and use the remaining
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4,020 data points as the testing set. All data were normalized to avoid scaling issues in training.

We train a random forest that ensembles 10 random trees to achieve 85.6% testing set accuracy.

For neural network, we use 2 hidden layers with 20 neurons and achieved 87% testing set accuracy.

The rare-event probability of interest is the statistical robustness metric (Example 2.1) of the

two trained predictors. Specifically, we consider a testing data point, say with input 𝑥 and true

label 𝑦, that is correctly predicted in both predictors (the predicted value 𝑔(𝑥) is consistent with

𝑦). Then we perturb the input 𝑥 with a Gaussian noise 𝜖 ∼ 𝑁 (0, 𝐼𝜎2) and estimate the probability

of 𝑃(𝑔(𝑥 + 𝜖) ≠ 𝑦), where we use uniform variance for each dimension because the input space

was normalized. In our experiment, we vary the value of 𝜎2 to construct rare-event with different

rarities. Note that, as discussed in Example 2.1, 𝑃(𝑔(𝑥+𝜖) ≠ 𝑦) can be transformed into the format

considered in this chapter, i.e. 𝑃(𝑔(𝑋) > 𝛾).

First, we implement Algorithm 2.1 to obtain dominating points for the rare-event sets {𝑔(𝑥 +

𝜖) ≠ 𝑦} with random forest and neural network as 𝑔(·) respectively. We obtain 53 dominating

points for the rare-event sets associated with the random forest predictor and 217 dominating points

in the neural network case. The IS distributions are constructed using these dominating points. In

both problems, 𝜎2 ranges from 0.03 to 0.1 and we use 50,000 samples to estimate each target

rare-event probabilities.

The experimental results for the random forest and neural network are presented in Figures

2.21 and 2.22 respectively. We observe that the estimates are very accurate in all experiments

(with different rarities), which are indicated by the tight 95% confidence intervals. These results

show that our proposed IS scheme performs well with large numbers of dominating points and in

relatively high-dimensional problems.

2.7 Proofs of Theorems

Throughout this section, we write 𝑓1(𝛾) ∼ 𝑓2(𝛾) if lim𝛾→∞ 𝑓1(𝛾)/ 𝑓2(𝛾) = 1 and 𝑓1(𝛾)
𝑝𝑜𝑙𝑦∼

𝑓2(𝛾) if 𝑓1(𝛾)/ 𝑓2(𝛾) changes at most polynomially in 𝛾. Unless otherwise defined, we use 𝑥𝑖 to

denote the 𝑖-th component of a vector 𝑥. For any vectors 𝑥, 𝑦 ∈ R𝑑 , we write 𝑥 ≥ 𝑦 if 𝑥𝑖 ≥ 𝑦𝑖 for

38



Figure 2.21: Probability estimation with dif-
ferent distribution setups. Random forest,
MAGIC.

Figure 2.22: Probability estimation with dif-
ferent distribution setups. Neural network,
MAGIC.

any 𝑖 = 1, . . . , 𝑑. For any index sets 𝐼, 𝐽 ⊂ {1, . . . , 𝑑} and any 𝑥 ∈ R𝑑 , 𝐴 ∈ R𝑑×𝑑 , we use 𝑥𝐼 to

denote the subvector (𝑥𝑖)𝑖∈𝐼 and use 𝐴𝐼𝐽 to denote the submatrix (𝐴𝑖 𝑗 )𝑖∈𝐼, 𝑗∈𝐽 .

First of all, we adapt Theorem 4.1 in [62] to obtain the following lemma.

Lemma 2.1. Let 𝑌 be a 𝑑-dimensional Gaussian random vector with zero mean and positive

definite covariance matrix Σ̃. Suppose that 𝑠 = 𝑠(𝛾) ∉ [−∞, 0]𝑑 is a vector in [−∞,∞)𝑑 such that

as 𝛾 → ∞, at least one of its components goes to ∞. Use 𝑦∗ to denote arg min𝑦≥𝑠 𝑦𝑇 Σ̃−1𝑦. Then

by Proposition 2.1 in [62], we know that there exists a unique set 𝐼 ⊂ {1, · · · , 𝑑} such that

1 ≤ |𝐼 | ≤ 𝑑; (2.11a)

𝑦∗𝐼 = 𝑠𝐼 ≠ 0𝐼 ; (2.11b)

If 𝐽 := {1, . . . , 𝑑} \ 𝐼 ≠ ∅, then 𝑦∗𝐽 = −(Σ̃−1)−1
𝐽𝐽 (Σ̃−1)𝐽𝐼 𝑠𝐼 ≥ 𝑠𝐽 ; (2.11c)

∀𝑖 ∈ 𝐼, 𝑒𝑇𝑖 (Σ̃𝐼 𝐼)−1𝑠𝐼 > 0; (2.11d)

min
𝑦≥𝑠

𝑦𝑇 Σ̃−1𝑦 = (𝑦∗)𝑇 Σ̃−1𝑦∗ > 0. (2.11e)

We suppose that for sufficiently large 𝛾, the set 𝐼 does not change with 𝛾 and if 𝐽 ≠ ∅, lim𝛾→∞(𝑠−

𝑦∗)𝐽 = 𝑠∗
𝐽

where 𝑠∗ is a constant vector in [−∞,∞) |𝐽 |. Suppose further that ∀𝑖 ∈ 𝐼, 𝑒𝑇
𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼
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either goes to∞ or is a positive constant. Then as 𝛾 →∞, we have that

𝑃(𝑌 ≥ 𝑠) ∼ 𝐶 exp{−(𝑦∗)𝑇 Σ̃−1𝑦∗/2}∏
𝑖∈𝐼 𝑒

𝑇
𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼

where 𝐶 is a positive constant in 𝛾.

Before showing the proof, we provide a brief and intuitive explanation on the index set 𝐼 as

defined in the lemma. We minimize 𝑦𝑇 Σ̃−1𝑦 subject to 𝑦 ≥ 𝑠. Among the constraints, 𝑦𝐼 ≥ 𝑠𝐼

is crucial while 𝑦𝐽 ≥ 𝑠𝐽 could be removed without affecting the optimal solution. Thus, the

original optimization problem is equivalent to minimizing 𝑦𝑇 Σ̃−1𝑦 subject to 𝑦𝐼 = 𝑠𝐼 , 𝑦𝐽 ∈ R|𝐽 |.

For example, if 𝑑 = 2, 𝑠 = (1, 0)𝑇 and Σ̃ is the identity matrix, then 𝐼 = {1} and 𝐽 = {2} since

𝑦1 ≥ 1 could not be removed while 𝑦2 ≥ 0 could. Now we prove the lemma:

Proof of Lemma 2.1. Given 𝑥 ∈ R𝑑 , we define the transformation 𝑥 in the following way: 𝑥𝑖 =

(𝑒𝑇
𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼)−1𝑥𝑖,∀𝑖 ∈ 𝐼; 𝑥𝐽 = 𝑥𝐽 . Using (3.4) in [62], we know that

(𝑥 + 𝑦∗)𝑇 Σ̃−1(𝑥 + 𝑦∗) = 𝑥𝑇 Σ̃−1𝑥 + 2𝑥𝑇𝐼 (Σ̃𝐼 𝐼)−1𝑠𝐼 + (𝑦∗)𝑇 Σ̃−1𝑦∗,

and thus

𝜙(𝑥 + 𝑦∗; 0, Σ̃) = (2𝜋)− 𝑑2 |Σ̃ |− 1
2 exp

{
−1

2
[
𝑥𝑇 Σ̃−1𝑥 + 2𝑥𝑇𝐼 (Σ̃𝐼 𝐼)−1𝑠𝐼 + (𝑦∗)𝑇 Σ̃−1𝑦∗

]}
= (2𝜋)− 𝑑2 |Σ̃ |− 1

2 exp
{
−1

2
[
𝑥𝑇 Σ̃−1𝑥 + 2𝑥𝑇𝐼 1𝐼 + (𝑦∗)𝑇 Σ̃−1𝑦∗

]}
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Then we get that

𝑃(𝑌 ≥ 𝑠)

=

∫
𝑦≥𝑠

𝜙(𝑦; 0, Σ̃)d𝑦

=

∫
𝑥≥𝑠−𝑦∗

𝜙(𝑥 + 𝑦∗; 0, Σ̃)d𝑥

=

(∏
𝑖∈𝐼

𝑒𝑇𝑖 (Σ̃𝐼 𝐼)−1𝑠𝐼

)−1 ∫
𝑥≥𝑠−𝑦∗

𝜙(𝑥 + 𝑦∗; 0, Σ̃)d𝑥 (Here 𝑥 can be viewed as a function of 𝑥.)

=(2𝜋)− 𝑑2 |Σ̃ |− 1
2

(∏
𝑖∈𝐼

𝑒𝑇𝑖 (Σ̃𝐼 𝐼)−1𝑠𝐼

)−1

exp{−(𝑦∗)𝑇 Σ̃−1𝑦∗/2}
∫
𝑥≥𝑠−𝑦∗

exp{−𝑥𝑇 Σ̃−1𝑥/2 − 𝑥𝑇𝐼 1𝐼}d𝑥.

Apparent from the above, it suffices to show that
∫
𝑥≥𝑠−𝑦∗ exp{−𝑥𝑇 Σ̃−1𝑥/2 − 𝑥𝑇

𝐼
1𝐼}d𝑥 converges

to a positive constant as 𝛾 →∞. We will prove this result via applying the dominated convergence

theorem. We first need to derive an integrable upper bound for the integrand. Indeed, using (3.6)

in [62] we know that

𝑥𝑇 Σ̃−1𝑥 + 2𝑥𝑇𝐼 (Σ̃𝐼 𝐼)−1𝑠𝐼 + (𝑦∗)𝑇 Σ̃−1𝑦∗ ≥ 𝑥𝑇𝐽 (Σ̃𝐽𝐽)−1𝑥𝐽 + 2𝑥𝑇𝐼 (Σ̃𝐼 𝐼)−1𝑠𝐼 + (𝑦∗)𝑇 Σ̃−1𝑦∗

and hence 𝑥𝑇 Σ̃−1𝑥 ≥ 𝑥𝑇
𝐽
(Σ̃𝐽𝐽)−1𝑥𝐽 = 𝑥

𝑇
𝐽
(Σ̃𝐽𝐽)−1𝑥𝐽 . Thus

exp{−𝑥𝑇 Σ̃−1𝑥/2 − 𝑥𝑇𝐼 1𝐼} ≤ exp{−𝑥𝑇𝐽 (Σ̃𝐽𝐽)−1𝑥𝐽/2 − 𝑥𝑇𝐼 1𝐼}.

Moreover, we have that∫
𝑥≥𝑠−𝑦∗

exp{−𝑥𝑇𝐽 (Σ̃𝐽𝐽)−1𝑥𝐽/2 − 𝑥𝑇𝐼 1𝐼}d𝑥 ≤
∫
𝑥𝐼≥0𝐼 ,𝑥𝐽∈R |𝐽 |

exp{−𝑥𝑇𝐽 (Σ̃𝐽𝐽)−1𝑥𝐽/2 − 𝑥𝑇𝐼 1𝐼}d𝑥

=

∫
R |𝐽 |

exp{−𝑥𝑇𝐽 (Σ̃𝐽𝐽)−1𝑥𝐽/2}d𝑥𝐽 < ∞.

To investigate the limit of exp{−𝑥𝑇 Σ̃−1𝑥/2 − 𝑥𝑇
𝐼
1𝐼}, we further partition 𝐼 into 𝐼1 = {𝑖 ∈ 𝐼 :

𝑒𝑇
𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼 → ∞} and 𝐼2 = {𝑖 ∈ 𝐼 : 𝑒𝑇

𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼 is a positive constant}. By the definition, we
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know that for any given 𝑥 ∈ R𝑑 , 𝑥𝑖 → 0 for 𝑖 ∈ 𝐼1 and 𝑥𝑖 is a constant for 𝑖 ∈ 𝐼2 or 𝐽. Then we get

that for any 𝑥,

lim
𝛾→∞

exp{−𝑥𝑇 Σ̃−1𝑥/2 − 𝑥𝑇𝐼 1𝐼}

= exp
{
−1

2
[
𝑥𝑇𝐼2 (Σ̃

−1)𝐼2𝐼2𝑥𝐼2 + 2𝑥𝑇𝐼2 (Σ̃
−1)𝐼2𝐽𝑥𝐽 + 𝑥𝑇𝐽 (Σ̃−1)𝐽𝐽𝑥𝐽

]
− 𝑥𝑇𝐼 1𝐼

}
= exp

{
−1

2
[
𝑥𝑇𝐼2 (Σ̃

−1)𝐼2𝐼2𝑥𝐼2 + 2𝑥𝑇𝐼2 (Σ̃
−1)𝐼2𝐽𝑥𝐽 + 𝑥𝑇𝐽 (Σ̃−1)𝐽𝐽𝑥𝐽

]
− 𝑥𝑇𝐼 1𝐼

}
.

By applying the dominated convergence theorem, we get that

lim
𝛾→∞

∫
𝑥≥𝑠−𝑦∗

exp{−𝑥𝑇 Σ̃−1𝑥/2 − 𝑥𝑇𝐼 1𝐼}d𝑥

=

∫ ∫
𝑥𝐼≥0𝐼 ,𝑥𝐽≥𝑠∗𝐽

exp
{
−1

2
[
𝑥𝑇𝐼2 (Σ̃

−1)𝐼2𝐼2𝑥𝐼2 + 2𝑥𝑇𝐼2 (Σ̃
−1)𝐼2𝐽𝑥𝐽 + 𝑥𝑇𝐽 (Σ̃−1)𝐽𝐽𝑥𝐽

]
− 𝑥𝑇𝐼 1𝐼

}
d𝑥𝐼d𝑥𝐽

=

∫ ∫
𝑥𝐼2≥0𝐼2 ,𝑥𝐽≥𝑠

∗
𝐽

exp
{
−1

2
[
𝑥𝑇𝐼2 (Σ̃

−1)𝐼2𝐼2𝑥𝐼2 + 2𝑥𝑇𝐼2 (Σ̃
−1)𝐼2𝐽𝑥𝐽 + 𝑥𝑇𝐽 (Σ̃−1)𝐽𝐽𝑥𝐽

]
− 𝑥𝑇𝐼21𝐼2

}
d𝑥𝐼2d𝑥𝐽 .

This shows that
∫
𝑥≥𝑠−𝑦∗ exp{−𝑥𝑇 Σ̃−1𝑥/2− 𝑥𝑇

𝐼
1𝐼}d𝑥 converges to a positive constant as 𝛾 →∞, and

hence we have proved the theorem. □

Now we apply Lemma 2.1 and the techniques in its proof to derive the following result:

Lemma 2.2. Suppose that 𝑋 ∼ 𝑁 (`, Σ) where ` ∈ R𝑑 and Σ ∈ R𝑑×𝑑 is positive definite. Let

𝐴 ∼ R𝑚×𝑑 be a constant matrix and 𝑡 ∈ R𝑚 be a vector. In particular, 𝑡1 = 𝛾 + 𝑐 for some constant

𝑐 ∈ R and 𝑡2, . . . , 𝑡𝑚 are all constants in R. Assume that 𝑃(𝐴𝑋 ≥ 𝑡) > 0 for any 𝛾 ∈ R. Define

𝑥∗ = arg min{(𝑥 − `)𝑇Σ−1(𝑥 − `) : 𝐴𝑥 ≥ 𝑡}. Then

(i) Use 𝐴𝑖 to denote the 𝑖-th row vector of 𝐴 and define A(𝑥) = {1 ≤ 𝑖 ≤ 𝑚 : 𝐴𝑇
𝑖
𝑥 = 𝑡𝑖} for

𝑥 ∈ R𝑑 . For sufficiently large 𝛾, A(𝑥∗) does not change with 𝛾.

(ii) For sufficiently large 𝛾, each component of 𝑥∗ is affine in 𝛾.

(iii) As 𝛾 →∞,

𝑃(𝐴𝑋 ≥ 𝑡) 𝑝𝑜𝑙𝑦∼ exp{−(𝑥∗ − `)𝑇Σ−1(𝑥∗ − `)/2}.
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Proof of Lemma 2.2. For simplicity, we denote the polyhedron {𝑥 ∈ R𝑑 : 𝐴𝑥 ≥ 𝑡} as 𝑃1.

(i&ii) Note that 𝑥∗ is the optimal solution to a quadratic programming problem. It is known that

𝑥∗ = arg min{(𝑥 − `)𝑇Σ−1(𝑥 − `) : 𝐴𝑇𝑖 𝑥 = 𝑡𝑖,∀𝑖 ∈ A(𝑥∗)}. (2.12)

Moreover, as 𝛾 grows, actually only the first constraint 𝐴𝑇1 𝑥 ≥ 𝑡1 = 𝛾 + 𝑐 shifts with 𝛾 while the

other 𝑚 − 1 constraints keep unchanged. Thus we must have 1 ∈ A(𝑥∗) for sufficiently large 𝛾.

Indeed, if 1 ∉ A(𝑥∗), then from (2.12), 𝑥∗ must belong to {arg min{(𝑥 − `)𝑇Σ−1(𝑥 − `) : 𝐴𝑇
𝑖
𝑥 =

𝑡𝑖,∀𝑖 ∈ 𝐼} : 𝐼 ⊂ {2, . . . , 𝑚}}, which is a finite set of constant vectors. However, we have that

𝐴𝑇1 𝑥
∗ ≥ 𝑡1 = 𝛾+𝑐, so when 𝛾 is large enough, 𝑥∗ cannot be one of these constant vectors and hence

1 ∈ A(𝑥∗).

We consider the “candidate points” defined as follows. For any fixed index set 𝐼 ⊂ {1, . . . , 𝑚}

such that 1 ∈ 𝐼, {𝑥 ∈ R𝑑 : 𝐴𝑇
𝑖
𝑥 = 𝑡𝑖, 𝑖 ∈ 𝐼} ≠ ∅ and the constraints 𝐴𝑇

𝑖
𝑥 = 𝑡𝑖, 𝑖 ∈ 𝐼 are linearly

independent for sufficiently large 𝛾 (we call such 𝐼 as valid), we solve 𝑥∗(𝐼) = arg min{(𝑥 −

`)𝑇Σ−1(𝑥 − `) : 𝐴𝑇
𝑖
𝑥 = 𝑡𝑖,∀𝑖 ∈ 𝐼}. If 𝑥∗(𝐼) is feasible for the original problem, i.e. 𝑥∗(𝐼) ∈ 𝑃1,

then we call 𝑥∗(𝐼) a candidate point.

We note that the total number of valid 𝐼 is finite since 𝐼 is always a subset of {1, . . . , 𝑚}.

Without loss of generality, from now on we assume that 𝛾 is large enough such that 1 ∈ A(𝑥∗) and

for any valid 𝐼, {𝑥 ∈ R𝑑 : 𝐴𝑇
𝑖
𝑥 = 𝑡𝑖, 𝑖 ∈ 𝐼} ≠ ∅ and 𝐴𝑇

𝑖
𝑥 = 𝑡𝑖, 𝑖 ∈ 𝐼 are linearly independent. In this

case, 𝑥∗ is the candidate point which attains the minimum objective value.

First, we show that for any valid 𝐼, each component of 𝑥∗(𝐼) is affine in 𝛾. Suppose that

𝐼 = {𝑖1, . . . , 𝑖 |𝐼 |} with 𝑖1 < · · · < 𝑖 |𝐼 |. We have that 𝐴𝑖 𝑗 , 𝑗 = 1, . . . , |𝐼 | are linearly independent.

Let 𝐴(𝐼) ∈ R𝑑×𝑑 be a constant invertible matrix whose 𝑗-th row vector is 𝐴𝑖 𝑗 for 𝑗 = 1, . . . , |𝐼 |.

Consider the transformation 𝑦 = 𝐴(𝐼) (𝑥−`) and solve 𝑦∗(𝐼) = arg min{𝑦𝑇 (𝐴(𝐼)−1)𝑇Σ−1𝐴(𝐼)−1𝑦 :

𝑦 𝑗 = 𝑡𝑖 𝑗 − 𝐴𝑇𝑖 𝑗 `, 𝑗 = 1, . . . , |𝐼 |}. We have that 𝑥∗(𝐼) = 𝐴(𝐼)−1𝑦∗(𝐼) + `. To ease the notation, we
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denote Σ′ = 𝐴(𝐼)𝑇Σ𝐴(𝐼), 𝑡′ = 𝑡𝐼 − (𝐴`)𝐼 , 𝐼′ = {1, . . . , |𝐼 |} and 𝐽′ = {1, . . . , 𝑑} \ 𝐼′. Then

𝑦∗(𝐼) = arg min{𝑦𝑇Σ′−1𝑦 : 𝑦𝐼′ = 𝑡′}

= arg min{𝑦𝑇𝐼′ (Σ′−1)𝐼′ 𝐼′𝑦𝐼′ + 2𝑦𝑇𝐼′ (Σ′−1)𝐼′𝐽′𝑦𝐽′ + 𝑦𝑇𝐽′ (Σ′−1)𝐽′𝐽′𝑦𝐽′ : 𝑦𝐼′ = 𝑡′}.

By solving the above problem, we get that 𝑦∗(𝐼)𝐼′ = 𝑡′ and 𝑦∗(𝐼)𝐽′ = −(Σ′−1)−1
𝐽′𝐽′ (Σ′−1)𝐽′ 𝐼′𝑡′. By

the definition, for fixed index set 𝐼, Σ′ is a constant matrix. Besides, 𝑡′1 = 𝑡1 − (𝐴`)1 is an affine

function in 𝛾 while other components of 𝑡′ are all constants. Hence, each component of 𝑦∗(𝐼) is

affine in 𝛾. As a result, each component of 𝑥∗(𝐼) is also affine in 𝛾.

To check whether 𝑥∗(𝐼) is feasible, it is equivalent to check whether 𝐴𝑇
𝑖
𝑥∗(𝐼) ≥ 𝑡𝑖 for any 𝑖 ∉ 𝐼.

We know that for 𝑖 ∉ 𝐼 (which implies that 𝑖 ≠ 1), 𝐴𝑇
𝑖
𝑥∗(𝐼) is affine in 𝛾 while 𝑡𝑖 is a constant.

Hence, for sufficiently large 𝛾, it is determined whether 𝑥∗(𝐼) is a candidate point or not. Again,

the total number of valid 𝐼 is finite. Therefore, {𝐼 : 𝑥∗(𝐼) is a candidate point} does not change for

large 𝛾.

Finally, for each 𝐼 such that 𝑥∗(𝐼) is a candidate point for sufficiently large 𝛾, we have that

the objective value (𝑥∗(𝐼) − `)𝑇Σ−1(𝑥∗(𝐼) − `) is a quadratic function of 𝛾. Recall that 𝑥∗ is the

candidate point with minimum objective value. Thus, when 𝛾 is sufficiently large, {𝐼 : 𝑥∗ = 𝑥∗(𝐼)}

must be non-empty and fixed. We pick a specific 𝐼 such that 𝑥∗ = 𝑥∗(𝐼) for sufficiently large 𝛾.

Since we have proved that each component of 𝑥∗(𝐼) is affine in 𝛾, we get statement (ii). Then when

𝛾 is large enough, for each 𝑖, it is determined whether 𝐴𝑇
𝑖
𝑥∗ = 𝑡𝑖, i.e. 𝑖 ∈ A(𝑥∗), which completes

the proof of (i).

(iii) In this proof, we will construct a superset and a subset of 𝑃1, and hence develop an upper

bound and a lower bound for 𝑃(𝑋 ∈ 𝑃1). Then it suffices to show that both bounds are approxi-

mately exp{−(𝑥∗ − `)𝑇Σ−1(𝑥∗ − `)/2} up to polynomial factors.

First, we construct the superset of 𝑃1 by removing constraints. Following the above proof, we

can find a maximal valid index set 𝐼 = {𝑖1, . . . , 𝑖𝑚′} such that 1 = 𝑖1 < · · · < 𝑖𝑚′ and 𝑥∗ = 𝑥∗(𝐼)

for sufficiently large 𝛾. Intuitively, {𝐴𝑇
𝑖 𝑗
𝑥 ≥ 𝑡𝑖 𝑗 , 𝑗 = 1, . . . , 𝑚′} is the maximal linearly independent
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subset of active constraints at 𝑥∗. If 𝑚′ < 𝑑, then we can add redundant constraints in the form

of 𝑥𝑘𝑙 ≥ −∞, 𝑙 = 1, · · · , 𝑑 − 𝑚′ such that we get 𝑑 linearly independent constraints now. More

specifically, let

𝐵 =

©«

𝐴𝑇
𝑖1
...

𝐴𝑇
𝑖𝑚′

𝑒𝑇
𝑘1
...

𝑒𝑇
𝑘𝑑−𝑚′

ª®®®®®®®®®®®®®®®¬

, 𝑠 =

©«

𝑡𝑖1
...

𝑡𝑖𝑚′

−∞
...

−∞

ª®®®®®®®®®®®®®®®¬

.

By the construction, we get that 𝐵 is a 𝑑 × 𝑑 constant invertible matrix. Denote 𝑃2 = {𝑥 ∈ R𝑑 :

𝐵𝑥 ≥ 𝑠}. Since 𝑃2 is obtained by removing constraints from 𝑃1, we have that 𝑃1 ⊂ 𝑃2 and thus

𝑃(𝑋 ∈ 𝑃1) ≤ 𝑃(𝑋 ∈ 𝑃2). Now we develop the asymptotic result of 𝑃(𝑋 ∈ 𝑃2), where we directly

apply Lemma 2.1.

We know that 𝑌 := 𝐵(𝑋 − `) ∼ 𝑁 (0, Σ̃) where Σ̃ = 𝐵Σ𝐵𝑇 is positive definite. We denote

𝑦∗ = arg min{𝑦𝑇 Σ̃−1𝑦 : 𝑦 ≥ 𝑠} where 𝑠 = 𝑠 − 𝐵`. It is easy to verify that 𝑦∗ = 𝐵(𝑥∗ − `) and

(𝑦∗)𝑇 Σ̃−1𝑦∗ = (𝑥∗ − `)𝑇Σ−1(𝑥∗ − `). From (ii), we know that each component of 𝑦∗ is also affine

in 𝛾 for large 𝛾.

Now we verify the assumptions of Lemma 2.1. Recall that under our settings, 𝑠1 = 𝛾 + 𝑐 for

some constant 𝑐 ∈ R so 𝑠1 → ∞ as 𝛾 → ∞. We still use the symbol 𝐼 to denote the set that

satisfies (2.11). By the definition, clearly {𝑚′ + 1, . . . , 𝑑} ⊂ 𝐽 = {1, . . . , 𝑑} \ 𝐼. Basically, 𝐼 is the

minimal subset of {1, . . . , 𝑚′} such that 𝑥∗ = 𝑥∗({𝑖 𝑗 : 𝑗 ∈ 𝐼}). Following the previous proof, we

know that 1 ∈ 𝐼 and 𝐼 does not change for sufficiently large 𝛾. Moreover, we know that 𝑦∗ ≥ 𝑠 and

each component of 𝑦∗ is affine in 𝛾, then the limit lim𝛾→∞(𝑠 − 𝑦∗)𝐽 exists in [−∞, 0] |𝐽 |. Indeed,

for 𝑗 ∈ 𝐽∩{2, . . . , 𝑚′}, 𝑠 𝑗 is a constant and then 𝑠 𝑗 − 𝑦∗𝑗 converges to −∞ or a nonpositive constant

while for 𝑗 ∈ {𝑚′ + 1, . . . , 𝑑}, 𝑠 𝑗 − 𝑦∗𝑗 ≡ −∞. Finally, for any 𝑖 ∈ 𝐼, we know that 𝑒𝑇
𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼 > 0

and it is an affine function of 𝛾, and thus either it goes to∞ or it is a positive constant as 𝛾 →∞.
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In conclusion, all the assumptions of Lemma 2.1 hold in this case. Therefore, we get that

𝑃(𝑋 ∈ 𝑃2) ∼ 𝐶
exp{−(𝑦∗)𝑇 Σ̃−1𝑦∗/2}∏

𝑖∈𝐼 𝑒
𝑇
𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼

= 𝐶
exp{−(𝑥∗ − `)𝑇Σ−1(𝑥∗ − `)/2}∏

𝑖∈𝐼 𝑒
𝑇
𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼

for some positive constant 𝐶, which implies that

𝑃(𝑋 ∈ 𝑃2)
𝑝𝑜𝑙𝑦∼ exp{−(𝑥∗ − `)𝑇Σ−1(𝑥∗ − `)/2}.

Clearly, if 𝑃1 = 𝑃2, then we have proved statement (iii). From now on, we assume that

𝑃1 ≠ 𝑃2. In this case, 𝑃2 is a relaxation of 𝑃1 by removing inactive constraints at 𝑥∗. That is,

for any 𝑥 ∈ 𝑃2 \ 𝑃1, there exists 𝑖 ∈ {1, . . . , 𝑚} such that 𝐴𝑇
𝑖
𝑥 ≤ 𝑡𝑖 while 𝐴𝑇

𝑖
𝑥∗ > 𝑡𝑖. In particular,

𝑥∗ ∉ 𝑃2 \ 𝑃1.

Next, we construct the subset of 𝑃1 by selecting a small neighborhood around 𝑥∗. Denote 𝑥∗∗ =

arg min{(𝑥 − 𝑥∗)𝑇Σ−1(𝑥 − 𝑥∗) : 𝑥 ∈ 𝑃2 \ 𝑃1}. Note that 𝑃2 \ 𝑃1 can be expressed as the union of

finite polyhedrons, each of which is formed by a shifting constraint and some constant constraints

like 𝑃1. Similar to the previous arguments, we could derive that (𝑥∗∗ − 𝑥∗)𝑇Σ−1(𝑥∗∗ − 𝑥∗) ≥ 0 is a

quadratic function of 𝛾 for large 𝛾. Thus we know that (𝑥∗∗−𝑥∗)𝑇Σ−1(𝑥∗∗−𝑥∗) either goes to∞ or

stays a nonnegative constant as 𝛾 → ∞. However, if (𝑥∗∗ − 𝑥∗)𝑇Σ−1(𝑥∗∗ − 𝑥∗) = 0 for sufficiently

large 𝛾, then we have that 𝑥∗∗ = 𝑥∗, which contradicts with 𝑥∗ ∉ 𝑃2 \ 𝑃1. Therefore, there exists

a constant 0 < Y < 1 such that for sufficiently large 𝛾, (𝑥∗∗ − 𝑥∗)𝑇Σ−1(𝑥∗∗ − 𝑥∗) > Y2, and hence

𝑃2 \ 𝑃1 ⊂ {𝑥 ∈ R𝑑 : (𝑥 − 𝑥∗)𝑇Σ−1(𝑥 − 𝑥∗) > Y2}. Thus, {𝑥 ∈ R𝑑 : (𝑥 − 𝑥∗)𝑇Σ−1(𝑥 − 𝑥∗) ≤

Y2} ∩ 𝑃1 = {𝑥 ∈ R𝑑 : (𝑥 − 𝑥∗)𝑇Σ−1(𝑥 − 𝑥∗) ≤ Y2} ∩ 𝑃2 for sufficiently large 𝛾. Correspondingly,

there exists Y′ > 0 such that {𝑥 ∈ R𝑑 : ∥𝑥∥∞ ≤ Y′} ⊆ {𝑥 ∈ R𝑑 : 𝑥𝑇Σ−1𝑥 ≤ Y2}.

Still we define 𝑌 = 𝐵(𝑋 − `) ∼ 𝑁 (0, Σ̃). Then we get that

𝑃(𝑋 ∈ 𝑃1) ≥ 𝑃((𝑋 − 𝑥∗)𝑇Σ−1(𝑋 − 𝑥∗) ≤ Y2, 𝑋 ∈ 𝑃1)

= 𝑃((𝑋 − 𝑥∗)𝑇Σ−1(𝑋 − 𝑥∗) ≤ Y2, 𝑋 ∈ 𝑃2)

= 𝑃((𝑌 + 𝐵` − 𝐵𝑥∗)𝑇 Σ̃−1(𝑌 + 𝐵` − 𝐵𝑥∗) ≤ Y2, 𝑌 ≥ 𝑠).
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Similar to the proof of Lemma 2.1, we have that

𝑃((𝑌 + 𝐵` − 𝐵𝑥∗)𝑇 Σ̃−1(𝑌 + 𝐵` − 𝐵𝑥∗) ≤ Y2, 𝑌 ≥ 𝑠)

=

∫
(𝑦+𝐵`−𝐵𝑥∗)𝑇 Σ̃−1 (𝑦+𝐵`−𝐵𝑥∗)≤Y2,𝑦≥𝑠

𝜙(𝑦; 0, Σ̃)d𝑦

=

∫
𝑥𝑇 Σ̃−1𝑥≤Y2,𝑥≥𝑠−𝑦∗

𝜙(𝑥 + 𝑦∗; 0, Σ̃)d𝑥

=

(∏
𝑖∈𝐼

𝑒𝑇𝑖 (Σ̃𝐼 𝐼)−1𝑠𝐼

)−1 ∫
𝑥𝑇 Σ̃−1𝑥≤Y2,𝑥≥𝑠−𝑦∗

𝜙(𝑥 + 𝑦∗; 0, Σ̃)d𝑥 (𝑥 is viewed as a function of 𝑥.)

=(2𝜋)− 𝑑2 |Σ̃ |− 1
2

(∏
𝑖∈𝐼

𝑒𝑇𝑖 (Σ̃𝐼 𝐼)−1𝑠𝐼

)−1

exp{−(𝑦∗)𝑇 Σ̃−1𝑦∗/2}×∫
𝑥𝑇 Σ̃−1𝑥≤Y2,𝑥≥𝑠−𝑦∗

exp{−𝑥𝑇 Σ̃−1𝑥/2 − 𝑥𝑇𝐼 1𝐼}𝑑𝑥

≥(2𝜋)− 𝑑2 |Σ̃ |− 1
2

(∏
𝑖∈𝐼

𝑒𝑇𝑖 (Σ̃𝐼 𝐼)−1𝑠𝐼

)−1

exp{−(𝑦∗)𝑇 Σ̃−1𝑦∗/2}(1 − Y2/2)×∫
𝑥𝑇 Σ̃−1𝑥≤Y2,𝑥≥𝑠−𝑦∗

exp{−𝑥𝑇𝐼 1𝐼}d𝑥

≥(2𝜋)− 𝑑2 |Σ̃ |− 1
2

(∏
𝑖∈𝐼

𝑒𝑇𝑖 (Σ̃𝐼 𝐼)−1𝑠𝐼

)−1

exp{−(𝑦∗)𝑇 Σ̃−1𝑦∗/2}(1 − Y2/2)
∫

0≤𝑥≤Y′1
exp{−𝑥𝑇𝐼 1𝐼}d𝑥

=(2𝜋)− 𝑑2 |Σ̃ |− 1
2 (1 − Y2/2)Y′|𝐽 |

(∏
𝑖∈𝐼

1 − exp{−𝑒𝑇
𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼Y

′}
𝑒𝑇
𝑖
(Σ̃𝐼 𝐼)−1𝑠𝐼

)
exp{−(𝑦∗)𝑇 Σ̃−1𝑦∗/2}

𝑝𝑜𝑙𝑦∼ exp{−(𝑦∗)𝑇 Σ̃−1𝑦∗/2}

= exp{−(𝑥∗ − `)𝑇Σ−1(𝑥∗ − `)/2}.

Combining the upper and lower bound for 𝑃(𝑋 ∈ 𝑃1), we finally get that

𝑃(𝑋 ∈ 𝑃1)
𝑝𝑜𝑙𝑦∼ exp{−(𝑥∗ − `)𝑇Σ−1(𝑥∗ − `)/2}.

□

Now we use the asymptotic result in Lemma 2.2 to prove Theorem 2.1.

Proof of Theorem 2.1. Suppose that 𝑔(𝑥) = 𝑔𝑖 (𝑥) for ℎ𝑖 𝑗 (𝑥) ≥ 0, 𝑗 = 1, . . . , 𝑚𝑖, 𝑖 = 1, . . . , 𝑟′where
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𝑔𝑖’s and ℎ𝑖 𝑗 ’s are all affine functions. Then we can split {𝑥 ∈ R𝑑 : 𝑔(𝑥) ≥ 𝛾} into R̃1, . . . , R̃𝑟 ′ where

R̃𝑖 = {𝑥 ∈ R𝑑 : 𝑔𝑖 (𝑥) ≥ 𝛾, ℎ𝑖 𝑗 (𝑥) ≥ 0, 𝑗 = 1, . . . , 𝑚𝑖}. Without loss of generality, we assume that

𝑃(𝑋 ∈ R̃𝑖) > 0,∀𝑖 = 1, . . . , 𝑟′ for any 𝛾 ∈ R. We denote �̃�𝑖 = arg min{(𝑥−`)𝑇Σ−1(𝑥−`) : 𝑥 ∈ R̃𝑖}.

Applying Lemma 2.2, we get that for any 𝑖 = 1, . . . , 𝑟′,

𝑃(𝑋 ∈ R̃𝑖)
𝑝𝑜𝑙𝑦∼ exp{−(�̃�𝑖 − `)𝑇Σ−1(�̃�𝑖 − `)/2}.

Then we get that

�̃� [𝑍] = 𝑃(𝑔(𝑋) ≥ 𝛾) =
𝑟 ′∑︁
𝑖=1

𝑃(𝑋 ∈ R̃𝑖) (2.13)

𝑝𝑜𝑙𝑦∼ exp{− min
𝑖=1,...,𝑟 ′

(�̃�𝑖 − `)𝑇Σ−1(�̃�𝑖 − `)/2} = exp{−(𝑎1 − `)𝑇Σ−1(𝑎1 − `)/2}. (2.14)

On the other hand, we have that for any 𝑖 = 1, . . . , 𝑟 and 𝑥 ∈ R𝑖 ⊂ {𝑥 ∈ R𝑑 : (𝑎𝑖 − `)𝑇Σ−1(𝑥 −

𝑎𝑖) ≥ 0},

𝐿 (𝑥) ≤ 𝑟𝑒
−(𝑥−`)𝑇Σ−1 (𝑥−`)/2

𝑒−(𝑥−𝑎𝑖)𝑇Σ−1 (𝑥−𝑎𝑖)/2

= 𝑟 exp{−(𝑎𝑖 − `)𝑇Σ−1(𝑎𝑖 − `)/2 − (𝑎𝑖 − `)𝑇Σ−1(𝑥 − 𝑎𝑖)}

≤ 𝑟 exp{−(𝑎𝑖 − `)𝑇Σ−1(𝑎𝑖 − `)/2}

≤ 𝑟 exp{−(𝑎1 − `)𝑇Σ−1(𝑎1 − `)/2}.

Then we get that

�̃� [𝑍2] = �̃� [𝐼 (𝑔( �̃�) ≥ 𝛾)𝐿2( �̃�)] = 𝐸 [𝐼 (𝑔(𝑋) ≥ 𝛾)𝐿 (𝑋)] (2.15)

≤ 𝑟 exp{−(𝑎1 − `)𝑇Σ−1(𝑎1 − `)/2}𝑃(𝑔(𝑋) ≥ 𝛾). (2.16)

Combining (2.14) and (2.16), we finally get that �̃� [𝑍2]/�̃� [𝑍]2 grows at most polynomially

growing in 𝛾, and hence 𝑍 is asymptotically optimal. □

Proof of Corollary 2.1. See (2.14) in the proof of Theorem 2.1. □
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Proof of Corollary 2.2. Now we suppose that 𝑋 ∼ 𝑓 (𝑥) = ∑𝑚
𝑗=1 𝜋 𝑗𝜙(𝑥; ` 𝑗 , Σ 𝑗 ). We know that

�̃� [𝑍] = 𝑃(𝑔(𝑋) ≥ 𝛾) =
𝑚∑︁
𝑗=1

𝜋 𝑗𝑃(𝑔(𝑋) ≥ 𝛾 |𝑋 ∼ 𝑁 (` 𝑗 , Σ 𝑗 ))

and thus from (2.14),

𝑃(𝑔(𝑋) ≥ 𝛾) 𝑝𝑜𝑙𝑦∼ exp{− min
𝑗=1,...,𝑚

(𝑎 𝑗1 − ` 𝑗 )𝑇Σ−1
𝑗 (𝑎 𝑗1 − ` 𝑗 )/2}.

Moreover, from (2.16),

�̃� [𝑍2] = 𝐸 [𝐼 (𝑔(𝑋) ≥ 𝛾)𝐿 (𝑋)]

=

𝑚∑︁
𝑗=1

𝜋 𝑗𝐸 [𝐼 (𝑔(𝑋) ≥ 𝛾)𝐿 (𝑋) |𝑋 ∼ 𝑁 (` 𝑗 , Σ 𝑗 )]

≤
𝑚∑︁
𝑗=1

𝜋 𝑗𝑟 𝑗 exp{−(𝑎 𝑗1 − ` 𝑗 )𝑇Σ−1
𝑗 (𝑎 𝑗1 − ` 𝑗 )/2}𝑃(𝑔(𝑋) ≥ 𝛾 |𝑋 ∼ 𝑁 (` 𝑗 , Σ 𝑗 ))

≤ max
𝑗=1,...,𝑚

{𝑟 𝑗 } exp{− min
𝑗=1,...,𝑚

(𝑎 𝑗1 − ` 𝑗 )𝑇Σ−1
𝑗 (𝑎 𝑗1 − ` 𝑗 )/2}×

𝑚∑︁
𝑗=1

𝜋 𝑗𝑃(𝑔(𝑋) ≥ 𝛾 |𝑋 ∼ 𝑁 (` 𝑗 , Σ 𝑗 ))

= max
𝑗=1,...,𝑚

{𝑟 𝑗 } exp{− min
𝑗=1,...,𝑚

(𝑎 𝑗1 − ` 𝑗 )𝑇Σ−1
𝑗 (𝑎 𝑗1 − ` 𝑗 )/2}𝑃(𝑔(𝑋) ≥ 𝛾).

Combining the results, we get that �̃� [𝑍2]/�̃� [𝑍]2 at most grows polynomially in 𝛾 and the IS

estimator 𝑍 is asymptotically optimal. □

2.8 Conclusion

In this chapter, we study rare-event simulation problems motivated from robustness certifi-

cation and safety-critical applications of intelligent physical systems, which involve rare-event

boundaries associated with the predictions from machine learning models. We consider especially

two common predictors, random forest and neural network, and the probability of prediction ex-
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ceeding a threshold that relates to or forms a building block for the motivating applications. These

problems amount to rare-event simulation with piecewise linear set boundaries that are implic-

itly defined. Our approach merges IS schemes based on the dominating point machinery with

sequential integer programming to search for these points in a manner that caters to the geometry

of these rare-event sets. We develop asymptotic optimality guarantees, and demonstrate through

numerical examples the efficiency of our proposed schemes. Our study can be viewed as a first

step to bridge rigorous efficiency-guaranteed rare-event simulation with the emerging applications

of AI and intelligent systems. Much warranted further studies include the generalization of our

approach to more sophisticated rare-event sets with intricate interaction behaviors, the handling

of high-dimensional problems, and the investigation on the impacts of model errors in affecting

rare-event probability estimation.

2.9 Supplementary A: Training Details for Random Forests

In our experiments in Section 2.6, the random forests are trained using built-in functions in

MATLAB. For the regression tasks in Section 2.6.1, we use the “fitcensemle" function with de-

fault setting for training random forests. The function uses bagging (also known as bootstrap

aggregating) to train decision trees and ensembles them by averaging their outputs. In particular,

each time we train a decision tree, a subset of the input variables is randomly selected as the inputs

for prediction and a training set is resampled from the empirical distribution of the original dataset.

We use mean squared error as the criterion for branching in training a single decision tree. For

the classification tasks in Section 2.6.2, we use the “fitrensemle" function, which uses boosting

to ensemble decision trees trained using the Gini impurity score as a criterion for branching. The

function starts with training a relatively small decision tree and then sequentially reduces the pre-

diction error by ensembling new trees that are trained to emphasize the misclassified samples. For

more details, please refer to [55, 108].
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Chapter 3: Over-Conservativeness of Variance-Based Efficiency Criteria

and Probabilistic Efficiency in Rare-Event Simulation

3.1 Introduction

We study the problem of estimating the probabilities of rare events with Monte Carlo simu-

lation, which falls in the domain of rare-event simulation [22, 23, 116]. Traditionally, rare-event

simulation is of wide interest to a variety of areas such as queueing systems [117, 31, 118, 26,

27, 25, 30, 24, 29], highly dependable computer systems and communication networks [42, 119,

120, 121, 122], financial risk management [34, 36, 35] and insurance modeling [38, 37]. More

recently, with the rapid development of intelligent physical systems such as autonomous vehicles

and personal assistive robots [123, 21], rare-event simulation is also applied to assess their risks

before deployments in public, where the risks are often quantified by the probabilities of violations

of certain safety metrics such as crash or injury rate [18, 19, 17, 20]. The latter problems typi-

cally involve complex AI-driven underlying algorithms that deem the rare-event structures rough

or difficult. The current work is motivated from the importance of handling such type of rare-event

problems (e.g., the U.S. National Artificial Intelligence Research and Development Strategic Plan

[124] lists “developing effective evaluation methods for AI" as a top priority) and provides a step

towards rigorously grounded procedures in this direction.

The starting challenge in rare-event simulation is that, by its own nature, the target rare events

seldom occur in the simulation experiment when using crude Monte Carlo. In other words, to

achieve an acceptable estimation accuracy relative to the target probability, the required simulation

size could be huge in order to obtain sufficient hits on the target events. Statistically, this issue

is manifested as a large ratio between the standard deviation (per run) to the mean, known as the

relative error, that determines the order of a required sample size. In the large deviations regime
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where the target probability can depend exponentially on the rarity parameter, this in particular

means the required sample size is exponentially large.

To address the inefficiency of crude Monte Carlo, a range of variance reduction techniques have

been developed. Among them, importance sampling (IS) [51] has been broadly applied to improve

the efficiency. IS uses an alternative probability measure to generate the simulation samples, and

then reweighs the outputs via likelihood ratio to guarantee unbiasedness. The goal is that by using

this alternate estimator than simply counting the frequency of hits in crude Monte Carlo, one can

achieve a small relative error with a much smaller sample size.

To this end, it is also widely known that IS is a “delicate" technique, in the sense that the IS

probability measure needs to be carefully chosen in order to achieve a small relative error. In the

typical large deviations setting, the suggestion is to tilt the probability measure to the “important

region". The delicacy appears when there are more than one important regions, in which case all of

them need to be accounted for. More specifically, in the light-tailed regime, these important regions

are guided precisely by the so-called dominating points, which capture the most likely scenario in

a local region of the rare event. That is, each of these points (and their small neighborhoods)

contributes dominantly to the probability of a certain component of the rare-event set according to

a well-defined decomposition. Despite the tempting approach to simply shift the distribution center

to the globally most likely scenario or the most significant dominating point, it is well established

that if not all the dominating points are included in the IS mixture distribution, then the resulting

estimator may no longer be efficient in terms of the relative error (see, for instance, the seminal

work [103]).

Our main goal in this chapter is to argue that, in potentially many light-tailed problems, the

inclusion of all the dominating points in an IS could be unnecessary. Our study is motivated from

high-dimensional settings where finding all dominating points could be computationally expensive

or even prohibitive, yet these problems may arise in recent safety-critical applications (e.g., [21,

14, 125]).

To intuitively explain the unnecessity, let us first drill into why all the dominating points are
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arguably needed in the literature in the first place. Imagine that a rare event set E comprises

two disjoint “important" regions, say E1 and E2, and the dominating points are correspondingly

𝑎1 and 𝑎2, which are sufficiently “far away” from each other, and 𝑎1 has say a higher density

than 𝑎2. Roughly speaking, if an IS scheme only focuses on E1 and tilts the distribution center

towards 𝑎1, then there is a small chance that the sample from this IS distribution hits E2, so that the

contribution from this sample in the ultimate estimator is non-zero and, moreover, may constitute a

large likelihood ratio and consequently elicit a large variance. This unfortunate event of falling into

a secondary important region is a source of inefficiency according to the relative error criterion.

Now let’s take a step back and think about the following: How likely does the “unfortunate"

event above occur? In a typical Monte Carlo experiment, we argue – and we will see clearly in

experiments – that this could be very unlikely, to the extent that we shouldn’t be worried at all with

a reasonable simulation size. Yet, according to the relative error criterion, it seems necessary to

worry about this, because it contributes to the variance of the estimator in each single run. This

points to that using variance to measure efficiency in rare-event simulation could be too loose to

begin with. This variance measure, in turn, comes from the Chebyshev inequality that converts

relative error into a sufficient relative closeness between the estimate and target probability with

high confidence. In other words, this Chebyshev inequality itself could be the source of looseness.

This motivates us to propose what we call probabilistic efficiency. Different from all the ef-

ficiency criteria in the literature, including asymptotic efficiency (also known as asymptotic opti-

mality or logarithmic efficiency) and bounded relative error [23, 102], probabilistic efficiency does

not use relative error. Instead, it is a criterion on achieving relative closeness directly. A distinctive

element in probabilistic efficiency is the control on the simulation size itself, that we only allow it

to grow moderately with the underlying rarity parameter. This moderate simulation size, which is

often the only feasible option in experiments, suppresses the occurrence of the unfortunate event

of falling into a secondary important region. This way, while the variance could blow up, the

high-confidence closeness between the estimate and target probability could still be retained.

With this new framework, we show that under standard assumptions in the widely used Gartner-
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Ellis large deviations regime, an IS that uses only the most significant dominating points is suf-

ficient to ensure probabilistic efficiency. The Gartner-Ellis regime has been used across different

applications such as queueing [30, 29, 27], communication systems [126, 127] and finance [128,

129, 36, 35]. Our results thus stipulate that in all these problems, in order to obtain a good estimate

relative to the ground-truth rare-event probability, we only need to exponentially tilt to the most

significant dominating point when there is only one such point, without the use of any mixture.

This is a sharp contrast to the established IS recipe. Moreover, this makes the construction of IS

in closer line with the large deviations theory that governs the rare-event probability asymptotic.

More specifically, in large deviations, the most significant dominating point coincides with the

minimizer of the so-called rate function that controls the exponential decay rate of the probability.

Our theory thus postulates that to attain probabilistic efficiency, it suffices to consider only this rate

function minimizer when constructing the IS.

We close this introduction with further discussions of our study in relation to existing works.

First, we contrast our probabilistic efficiency with the notion of “well estimated" in [42]. The latter

asserts that all the paths which contribute most significantly to the target quantity need to occur

sufficiently likely under the IS distribution. While [42] focuses on highly reliable systems, his

notion of well-estimated can be properly generalized so that, in the Gartner-Ellis regime that we

consider, it is conceptually similar to having an IS exponentially tilting only to the most significant

dominating points. Despite this similarity, our proposed notion bears important differences with

well-estimatedness. To start, the main result in [42] is an elegant one-way chain relation that

links variance-based criteria, including bounded relative error and bounded normal approximation,

to the well-estimatedness of the target probability and the estimation variance. This shows the

sufficiency of these variance-based criteria to guarantee the natural well-estimated property of IS,

and also that, due to the provable one-way nature of the chain relation, being well-estimated alone

does not guarantee the attainment of these variance-based criteria. In particular, as bounded normal

approximation guarantees good confidence interval performance, [42] argues the importance of

looking at this criterion and cautions the use of well-estimatedness alone. In contrast, our main
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message in this chapter asserts that one can achieve good probability estimation, and even construct

good confidence intervals, without satisfying variance-based criteria. In particular, tilting only to

the most significant dominating points, or similarly well-estimatedness in a properly generalized

sense, is a sufficient condition to attain our more general notion of probabilistic efficiency which

in turn guarantees these good estimation performances. Notably, arguing this stipulation requires

the key idea and analysis on the small likelihood of the IS hitting the secondary rare-event regions

controlled by other less significant dominating points, which turns out to be true under the Gartner-

Ellis regime and a subexponential sample size.

Second, we caution that probabilistic efficiency is not meant to replace existing variance-based

efficiency criteria, but rather to complement them especially in situations where identifying all

dominating points is infeasible due to problem complexity. In problems where the latter is not

an issue, it remains “safer" to use existing criteria, as probabilistic efficiency relies on a more

subtle sample size requirement, namely that it is not exponentially large. While this condition

is reasonable for realistic problems, it would warrant future experimental diagnostics to detect

violations of such a condition.

Third, we note that our variance-free approach can potentially be adapted to rare-event esti-

mation problems to streamline IS construction beyond the considered light-tailed large deviations

regime. However, for some of these problems (e.g., heavy-tailed problems; [78, 83, 81, 33]), the

efficiency gain appears less dramatic than ours which possesses an exponential speed-up. More-

over, the Gartner-Ellis paradigm that we consider in this chapter is arguably the most widely used

and forms the basis of analysis for many rare-event problems.

In the following, we first introduce in more detail the background of rare-event simulation and

the established efficiency criteria in the literature, all of which involve estimation variance or rel-

ative error (Section 3.2). Then we show several motivating numerical examples to illustrate how

excluding some dominating points in IS appears to give similar and sometimes even better perfor-

mances than including all these points, the latter suggested predominantly in the literature (Section

3.3). This motivates our new notion of probabilistic efficiency to explain the observed numerical
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phenomena (Section 3.4) and the analysis of efficiency guarantees using this new notion (Section

3.5). We then show further numerical results to validate our theory and performances of our esti-

mators (Section 3.6). Finally, we give some cautionary notes about probabilistic efficiency which

involve the risk of under-estimation, and suggest some future directions (Section 3.7). Proofs of

all theorems and propositions, if not directly following them, are in Section 3.11.

3.2 Problem Setting and Existing Framework

We consider an indexed family of rare events {A𝛾}𝛾, where 𝛾 denotes a “rarity parameter"

such that as 𝛾 → ∞, the event A𝛾 becomes rarer so that 𝑃(A𝛾) → 0. Our goal is to estimate

𝑝 = 𝑝(𝛾) := 𝑃(A𝛾) using Monte Carlo simulation. Here, the index 𝛾 is introduced for modeling

purpose so that we can speak of asymptotic rate, which is customary in the rare-event simulation

literature.

3.2.1 Crude Monte Carlo and Relative Error

To motivate the various notions that we would discuss momentarily, let us consider using crude

Monte Carlo to estimate 𝑝. This means we utilize the unbiased estimator 𝑍 = 𝐼A𝛾 for 𝑝, where 𝐼A𝛾

denotes the indicator variable on the event A𝛾. Suppose we generate the output 𝑍 independently

𝑛 times, and construct 𝑝 as their sample mean. Intuitively, when 𝑝 is tiny, this estimator 𝑝 is most

likely zero unless 𝑛 is a huge number, since a long trial length is needed to land at the rare event

A𝛾.

To describe the above challenge mathematically, we consider the following criterion. For a

given tolerance level Y > 0 (e.g., 5%), we would like an estimator 𝑝 to satisfy

𝑃( |𝑝 − 𝑝 | > 𝛿𝑝) ≤ Y (3.1)

for a certain 0 < 𝛿 < 1 when using a simulation size 𝑛. In (3.1), the closeness between 𝑝 and 𝑝,

which represents the error of 𝑝 in estimating 𝑝, is measured relative to the magnitude of 𝑝 itself.
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This is because for tiny 𝑝, the estimation is only meaningful if the error is small enough relative

to this tiny quantity. Linking to crude Monte Carlo, outputting merely 𝑝 = 0, as likely to happen

thereby, would be viewed as incurring a substantial error, i.e., lying in the event |𝑝 − 𝑝 | > 𝛿𝑝 in

(3.1). Put in another way, we argue that a huge sample size 𝑛 is needed for crude Monte Carlo to

attain (3.1). Note that by Chebyshev’s inequality, we get that for any 0 < 𝛿 < 1,

𝑃( |𝑝 − 𝑝 | > 𝛿𝑝) ≤ 𝑉𝑎𝑟 (𝑍)
𝑛𝛿2𝑝2 . (3.2)

Hence, 𝑛 ≥ 𝑉𝑎𝑟 (𝑍)
Y𝛿2𝑝2 implies that 𝑃( |𝑝 − 𝑝 | > 𝛿𝑝) ≤ Y for Y > 0. This means that 𝑉𝑎𝑟 (𝑍)

Y𝛿2𝑝2 is

a sufficient size for 𝑛 to achieve (3.1). This quantity depends on the ratio between the standard

deviation
√︁
𝑉𝑎𝑟 (𝑍) and the mean 𝑝, which is known as the relative error. Here, for crude Monte

Carlo the relative error is
√
𝑉𝑎𝑟 (𝑍)
𝑝

=

√
𝑝(1−𝑝)
𝑝

=

√︃
1−𝑝
𝑝

which blows up as 𝑝 → 0. Consequently,

the sufficient size for 𝑛 also blows up as 𝑝 → 0. In particular, if 𝑝 decays exponentially in 𝛾 – a

typical scaling in large deviations, then the required 𝑛 to achieve (3.1) also scales exponentially.

3.2.2 Importance Sampling and Asymptotic Efficiency

The above challenge motivates variance reduction techniques to reduce the sample size re-

quirement. Among the most popular is IS. In this approach, we generate samples from an alternate

measure �̃� where �̃� satisfies 𝑃𝐼A𝛾 ≪ �̃� (i.e., 𝑃𝐼A𝛾 is absolutely continuous with respect to �̃�),

and use 𝑍 = 𝐼A𝛾
𝑑𝑃

𝑑�̃�
as an unbiased output for 𝑝, where 𝑑𝑃

𝑑�̃�
is the Radon-Nikodym derivative, or

the so-called likelihood ratio, between 𝑃 and �̃�. Though this output is always unbiased thanks to

the likelihood ratio adjustment, the performance of the IS estimator in terms of variability heavily

depends on the choice of the IS probability measure �̃�. In the literature, several efficiency criteria

for IS estimators have been developed. A common criterion is asymptotic efficiency [54, 40, 23]:

Definition 3.1 (Asymptotic efficiency). The IS estimator 𝑍 = 𝐼A𝛾
𝑑𝑃

𝑑�̃�
under �̃� is said to achieve

asymptotic efficiency if lim𝛾→∞
log(�̃� (𝑍2))

log 𝑝 = 2 where �̃� (·) denotes the expectation under �̃�.

For functions 𝑓 , 𝑔 : R→ R, we say 𝑔(𝛾) is subexponential in 𝑓 (𝛾) as 𝛾 →∞ if lim𝛾→∞
log 𝑔(𝛾)
𝑓 (𝛾) =
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0, i.e. 𝑔(𝛾) = exp( 𝑓 (𝛾)𝑜(1)). For functions 𝑓 , 𝑔, ℎ, clearly if lim𝛾→∞
log 𝑔(𝛾)
𝑓 (𝛾) = lim𝛾→∞

log ℎ(𝛾)
𝑓 (𝛾) ,

then lim𝛾→∞
log(𝑔(𝛾)/ℎ(𝛾))

𝑓 (𝛾) = 0 and hence 𝑔(𝛾)/ℎ(𝛾) is subexponential in 𝑓 (𝛾) as 𝛾 → ∞. By

taking 𝑔(𝛾) = �̃� (𝑍2), ℎ(𝛾) = 𝑝2 and 𝑓 (𝛾) = log 𝑝, we see that the condition in Definition 3.1 is

equivalent to the condition that �̃� (𝑍2)/𝑝2 (or 𝑉𝑎𝑟 (𝑍)/𝑝2) is subexponential in − log 𝑝 as 𝛾 →∞.

From (3.2) and its subsequent discussion, asymptotic efficiency implies that the required simu-

lation size 𝑛 to attain a prefixed relative error grows only subexponentially in − log 𝑝. As a stronger

requirement, 𝑍 is said to have a bounded relative error if lim sup𝛾→∞
𝑉𝑎𝑟 (𝑍)
𝑝2 < ∞, which implies

that the required simulation size remains bounded no matter how small 𝑝 is. The criterion of

bounded relative error is sometimes too strict to achieve, so we focus on asymptotic efficiency in

this chapter. More efficiency criteria could be found in [23, 102, 64].

3.2.3 Large Deviations and Dominating Points

In the large deviations setting, the classical notion of dominating points is used to guarantee

asymptotic efficiency of IS [53]. To explain, let us first recall the so-called rate function in the large

deviations theory which, intuitively speaking, measures the likelihood of hitting each point on an

exponential scale. More specifically, we consider the standard Gartner-Ellis regime as follows

[130, 22]. Without loss of generality consider 𝛾 > 0. Suppose thatA𝛾 = { 1
𝛾
𝑋𝛾 ∈ E} where {𝑋𝛾}𝛾

are R𝑑-valued random variables and E is a fixed Borel set in R𝑑 . Throughout this chapter, we use

𝐴⊤ to denote the transpose of any matrix 𝐴, and use E◦, E, 𝜕E to denote the interior, closure and

boundary of any set E.

We define `𝛾 (𝑥) = 1
𝛾

log 𝐸 (𝑒𝑥⊤𝑋𝛾 ), 𝑥 ∈ R𝑑 as the scaled logarithmic moment generating func-

tion. We denote D( 𝑓 ) = {𝑥 : 𝑓 (𝑥) < ∞} as the domain of a function 𝑓 . With these, we assume

the following:

Assumption 3.1. `𝛾 (𝑥) satisfies the following conditions:

1. `(𝑥) = lim𝛾→∞ `𝛾 (𝑥) exists for any 𝑥 ∈ R𝑑 , where we allow ∞ both as a limit value and as

an element of the sequence {`𝛾 (𝑥)};
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2. 0 ∈ D(`)◦;

3. ` is essentially smooth, i.e., D(`)◦ is non-empty, ` is differentiable everywhere in D(`)◦

and ` is steep.

Then we define the rate function 𝐼 (𝑦) = sup𝑥∈R𝑑 {𝑥⊤𝑦−`(𝑥)}, 𝑦 ∈ R𝑑 as the Legendre transform

of `. For any set E ⊂ R𝑑 , we denote 𝐼 (E) = inf𝑦∈E 𝐼 (𝑦). We make the following assumptions for

the set E:

Assumption 3.2. E ⊂ R𝑑 is a Borel set such that E = E◦, E◦ ∩ D(𝐼)◦ ≠ ∅ and 𝐼 (E) > 0.

Under these assumptions, we have the following result (e.g., adapted from [130] Theorem 3.3.3.6):

Theorem 3.1 (Gartner-Ellis Theorem). Suppose that Assumption 3.1 holds. For any Borel set

E ⊂ R𝑑 , we have that

−𝐼 (E◦) ≤ lim inf
𝛾→∞

1
𝛾

log 𝑃
(

1
𝛾
𝑋𝛾 ∈ E

)
≤ lim sup

𝛾→∞

1
𝛾

log 𝑃
(

1
𝛾
𝑋𝛾 ∈ E

)
≤ −𝐼 (E).

If additionally Assumption 3.2 holds, then

lim
𝛾→∞

1
𝛾

log 𝑃
(

1
𝛾
𝑋𝛾 ∈ E

)
= −𝐼 (E).

Assumptions 3.1 and 3.2 are standard light-tailed conditions on A𝛾, which guarantee the con-

sidered probability 𝑃(A𝛾) to decay exponentially in 𝛾 with decay rate 𝐼 (E). The rate function 𝐼 (𝑦)

can be viewed as a measurement on the likelihood of hitting 𝑦 in the exponential scale. The most

likely point to hit among E is hence given by the minimizer of 𝐼 (𝑦) over E, resulting in the overall

exponential decay rate 𝐼 (E). Note that, by Theorem 3.1, we have − log 𝑝 = Θ(𝛾) as 𝛾 → ∞, and

hence subexponential (or exponential) in − log 𝑝 is equivalent to subexponential (or exponential)

in 𝛾.

Now we present the concept of dominating points and sets:
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Definition 3.2 (Dominating Set). Suppose that Assumptions 3.1 and 3.2 hold. We call 𝐴 =

{𝑎1, . . . , 𝑎𝑟} ⊂ 𝜕E a dominating set for E if

1. For each 𝑖, 𝑎𝑖 ∈ D(𝐼)◦ and there exists a unique 𝑠𝑎𝑖 ∈ R𝑑 such that ∇`(𝑠𝑎𝑖 ) = 𝑎𝑖;

2. E ⊂ ⋃𝑟
𝑖=1{𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0};

3. For any 𝑖, 𝐴 \ {𝑎𝑖} does not satisfy Condition 2.

We call any point in 𝐴 a dominating point. For two dominating points 𝑎 and 𝑎′, we say 𝑎 is more

significant than 𝑎′ if 𝐼 (𝑎) < 𝐼 (𝑎′).

Figure 3.1: Illustration of rare-event set E = E1 ∪ E2 and dominating points.

Dominating points can be understood as the “local minimizers” of the rate function 𝐼 in the

sense that 𝑎𝑖 is the minimizer of 𝐼 in E ∩ {𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0}. To understand this, first,

Condition 1 in Definition 3.2 stipulates that 𝑠𝑎𝑖 is the gradient of 𝐼 (𝑥) at the point 𝑎𝑖. Then, in

Condition 2, 𝑎𝑖 can be seen as the minimizer of 𝐼 (𝑥) over the set {𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0}, a

fact that follows from the first-order optimality condition in convex function minimization. Thus,

Condition 2 stipulates that any point in the rare-event set E has an 𝐼 value not less than one of the

𝑎𝑖’s. Geometrically, any points in the set E must lie in the half-space tangentially cut by one of the

𝑎𝑖’s (i.e., the “backyard" of the 𝑎𝑖). Figure 3.1 is an illustration of a rare-event set E = E1 ∪ E2

and the dominating set {𝑎1, 𝑎2}. Here, 𝑎1 is the global minimum rate point in E, but E2 is not

covered by {𝑥 : 𝑠⊤𝑎1 (𝑥 − 𝑎1) ≥ 0}, so 𝑎2 is included in the dominating set. Finally, we note that

Condition 3 in Definition 3.2 enforces the dominating set to be the minimal set of points such that

the geometric properties in Conditions 1 and 2 are satisfied.

60



Note that dominating points may not be local minimizers of the rate function 𝐼 in E (even

though they are minimizers in E ∩ {𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0} as discussed above). Nonetheless,

the most significant dominating points are indeed global minimizers of 𝐼 in E. This is presented in

the following theorem.

Theorem 3.2. Suppose that Assumptions 3.1 and 3.2 hold, and 𝐴 = {𝑎1, . . . , 𝑎𝑟} is a dominating

set for E. Then 𝐼 (E) = min𝑖=1,...,𝑟 𝐼 (𝑎𝑖). That is to say, the most significant dominating points are

global minimizers of 𝐼 in E.

We should also point out that dominating set defined according to Definition 3.2 may not be

unique. Advantageously, the theory and estimators we present will flexibly apply to any such

dominating set.

3.2.4 Asymptotically (In)efficient Importance Samplers

We are now ready to describe the main message of this section, which is the established recipe

in constructing efficient IS. The standard proposal is to use a mixture of exponentially tilted dis-

tributions, where each exponential tilting is with respect to each dominating point. In particular,

suppose that 𝐴 = {𝑎1, . . . , 𝑎𝑟} is a dominating set. Then the IS distribution is �̃� such that

𝑑�̃�

𝑑𝑃
=

𝑟∑︁
𝑖=1

𝛼𝑖𝑒
𝑠⊤𝑎𝑖 𝑋𝛾−𝛾`𝛾 (𝑠𝑎𝑖 ) (3.3)

with
∑𝑟
𝑖=1 𝛼𝑖 = 1, 𝛼𝑖 > 0,∀𝑖. Here, 𝑒𝑠

⊤
𝑎𝑖
𝑋𝛾−𝛾`𝛾 (𝑠𝑎𝑖 )𝑑𝑃 is the exponential tilting towards the domi-

nating point 𝑎𝑖 and 𝛼𝑖’s are the mixing weights. The IS (3.3) is well known to be asymptotically

efficient:

Proposition 3.1 (Mixture IS is asymptotically efficient). Suppose Assumptions 3.1 and 3.2 hold,

and the dominating set has finite cardinality, i.e., 𝑟 < ∞. Then the IS distribution (3.3) with any

fixed 𝛼𝑖’s is asymptotically efficient.

While the proof of Proposition 3.1 is standard, we include it in Section 3.11 for self-containedness.

Here, we describe the key intuition in justifying the necessity of mixture. First, the likelihood ratio
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in the considered mixture IS is

𝐿 =
𝑑𝑃

𝑑�̃�
=

1∑𝑟
𝑖=1 𝛼𝑖𝑒

𝑠⊤𝑎𝑖 𝑋𝛾−𝛾`𝛾 (𝑠𝑎𝑖 )

and it satisfies that for any 𝑖,

𝐿 ≤ 1
𝛼𝑖𝑒

𝑠⊤𝑎𝑖 𝑋𝛾−𝛾`𝛾 (𝑠𝑎𝑖 )
=

1
𝛼𝑖
𝑒
−𝑠⊤𝑎𝑖 (𝑋𝛾−𝛾𝑎𝑖)−𝛾(𝑠

⊤
𝑎𝑖
𝑎𝑖−`𝛾 (𝑠𝑎𝑖 )) . (3.4)

In the exponent in the rightmost expression of (3.4), the second term 𝛾(𝑠⊤𝑎𝑖𝑎𝑖 − `𝛾 (𝑠𝑎𝑖 )) is approxi-

mately 𝛾𝐼 (𝑎𝑖), and the first term is the “overshoot" of the sampled 𝑋𝛾 compared to the dominating

point 𝑎𝑖. That is, if 𝑋𝛾 is in the “backyard" of 𝑎𝑖, then this term 𝑠⊤𝑎𝑖 (𝑋𝛾−𝛾𝑎𝑖) ≥ 0. The definition of

dominating set, especially Condition 2 in Definition 3.2, guarantees any (1/𝛾)𝑋𝛾 in E must have

𝑠⊤𝑎𝑖 (𝑋𝛾−𝛾𝑎𝑖) ≥ 0 for at least one of the 𝑖’s. Thus, by decomposing the second moment of 𝑍 = 𝐼A𝛾𝐿

according to the backyards of 𝑎𝑖’s, we can ensure that the magnitude of the likelihood ratio, when

𝑋𝛾 lies inside the rare event set, is properly controlled. More precisely, write E =
⋃𝑟
𝑖=1 E𝑖 where

each E𝑖 ⊂ {𝑥 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0}. Then the second moment of the IS satisfies

�̃�

[
𝐼

(
1
𝛾
𝑋𝛾 ∈ E

)
𝐿2

]
≤

𝑟∑︁
𝑖=1

�̃�

[
𝐼

(
1
𝛾
𝑋𝛾 ∈ E𝑖

)
𝐿2

]
≤

𝑟∑︁
𝑖=1

�̃�

[
𝐼

(
1
𝛾
𝑋𝛾 ∈ E𝑖

)
1
𝛼2
𝑖

𝑒
−2𝛾(𝑠⊤𝑎𝑖 𝑎𝑖−`𝛾 (𝑠𝑎𝑖 ))

]

which is approximately bounded by
∑𝑟
𝑖=1 𝑒

−2𝛾𝐼 (𝑎𝑖)/𝛼2
𝑖

and hence 𝑒−2𝛾𝐼 (E) in the exponential scale,

thus verifying asymptotic efficiency.

On the other hand, if we miss some dominating points in the construction of the mixture IS,

then asymptotic efficiency may fail to be attained. Below we give a simple example to demonstrate

this.

Proposition 3.2 (Missed dominating point leads to violation of asymptotic efficiency). Suppose

that we want to estimate 𝑝 = 𝑃( 1
𝛾
𝑋𝛾 ∈ (−∞,−2] ∪ [1,∞)) where 𝑋𝛾 ∼ 𝑁 (0, 𝛾) under 𝑃. If the

IS distribution is chosen as 𝑋𝛾 ∼ 𝑁 (𝛾, 𝛾), then �̃� (𝑍2)/𝑝2 = Θ(√𝛾𝑒3𝛾/2) grows exponentially in

− log 𝑝 = Θ(𝛾), and hence 𝑍 is not asymptotically efficient by definition.
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In this example, the dominating points are 1 and −2, and 𝑁 (𝛾, 𝛾) is the exponential tilt to-

wards the first dominating point 1 (for Gaussian distribution, exponential tilting amounts to a

mean shift). Here, by considering only this point, it is possible that a generated 𝑋𝛾 satisfies

(1/𝛾)𝑋𝛾 ∈ (−∞,−2] while the overshoot 𝑠⊤1 (𝑋𝛾 − 𝛾1), as explained for (3.4), takes a very neg-

ative value. This scenario contributes significantly to the overall variance and ultimately violates

asymptotic efficiency.

Our main insight in this chapter is a rebuke of the above viewpoint. More specifically, we

argue that missing inferior dominating point, such as the example in Proposition 3.2, can still

result in a good IS according to our beginning criterion (3.1). The reason why we are interested in

studying such an assertion is that for some problems, especially those involving modern large-scale

models, it is computationally challenging to locate all the dominating points. A core ingredient of

our assertion is to question the use of asymptotic efficiency, or more generally variance-based

efficiency criteria. Before delving into the theory, let us first present some numerical results to

shed light on how much difference it makes to use different numbers of dominating points in the

IS mixture. This is the focus of our next section.

3.3 Motivating Experimental Results

We run three numerical examples to demonstrate that missing dominating points in IS con-

struction, while provably leads to asymptotic inefficiency, could perform well empirically. This

thus suggests an inadequacy in using asymptotic efficiency, or more generally variance-based cri-

teria, to measure the performances of rare-event estimators. Besides, the computationally demand-

ing example in Section 3.3.3 justifies the motivation why we seek to reduce the number of used

dominating points in the IS mixture.
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3.3.1 Large Deviations of an I.I.D. Sum

We consider the problem of estimating the tail probability involving a sum of random variables,

where 𝑌1, 𝑌2, . . . are i.i.d and we are interested in

𝑃( |𝑆𝑚 | ≥ 𝑎𝑚),

where 𝑆𝑚 =
∑𝑚
𝑖=1𝑌𝑖. We consider 𝑚 as the rarity parameter 𝛾 presented in Section 3.2. Using

the notation in the Gartner-Ellis regime, we have 𝑋𝛾 = 𝑆𝑚 and E = (−∞,−𝑎] ∪ [𝑎,∞). Then

`(𝑥) = log 𝐸 (𝑒𝑥𝑌1) and we suppose Assumption 3.1 is satisfied. By Theorem 3.1, when |𝐸𝑌1 | < 𝑎,

if 𝑠𝑎 and 𝑠−𝑎 satisfy ∇`(𝑠𝑎) = 𝑎 and ∇`(𝑠−𝑎) = −𝑎, then we have

− lim
𝑚→∞

1
𝑚

log 𝑃(𝑆𝑚 ≥ 𝑎𝑚) = 𝑠𝑎𝑎 − `(𝑠𝑎) = 𝐼 (𝑎) (3.5)

and

− lim
𝑚→∞

1
𝑚

log 𝑃(𝑆𝑚 ≤ −𝑎𝑚) = −𝑠−𝑎𝑎 − `(𝑠−𝑎) = 𝐼 (−𝑎). (3.6)

For this problem, [103] Section 3 provides two estimators, �̂�(𝑚) and 𝛽(𝑚). Specifically, we

have �̂�(𝑚) = exp(−𝑠𝑎𝑆𝑚 + 𝑚`(𝑠𝑎))𝐼{|𝑆𝑚 |≥𝑎𝑚} with samples of 𝑌𝑖 generated from exponentially

tilted distribution using 𝑠𝑎. The estimator 𝛽(𝑚) = exp(−𝑠𝑎𝑆𝑚 +𝑚`(𝑠𝑎))𝐼{𝑆𝑚≥𝑎𝑚} + exp(−𝑠−𝑎𝑆′𝑚 +

𝑚`(𝑠−𝑎))𝐼{𝑆′𝑚≤−𝑎𝑚} with 𝑆𝑚 and 𝑆′𝑚 constructed from independent sequences of i.i.d. 𝑌𝑖’s and 𝑌 ′
𝑖
’s

generated from exponentially tilted distributions using 𝑠𝑎 and and 𝑠−𝑎 respectively. That is, 𝛽(𝑚)

attempts to estimate 𝑃(𝑆𝑚 ≥ 𝑎𝑚) and 𝑃(𝑆𝑚 ≤ −𝑎𝑚) separately using different IS samples and

sum up these estimates. Here, �̂�(𝑚) only uses one dominating point whereas 𝛽(𝑚) uses both points

(note that even though 𝛽(𝑚) does not use the mixture IS scheme in (3.3), the idea is similar in that

it accounts for both dominating points). In our experiment, we follow [103] to set 𝑌1 = 𝐴 − 𝐵 with

𝐴 ∼ 𝑁 (1.5, 1), 𝐵 ∼ 𝐸𝑥𝑝(1) and 𝐴, 𝐵 independent, and 𝑎 = 1.5 (in this case, 𝑠𝑎 = (
√

5 − 1)/2,

𝑠−𝑎 = −2 +
√

2, and 𝐼 (𝑎) ≈ 0.2902, 𝐼 (−𝑎) ≈ 0.7044).

We run numerical experiments with 𝑚 = 10, 30, 50 and 100. The results using 104 samples
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are shown in Table 3.1. By comparing the numbers in the second and third rows, we observe that

�̂�(𝑚) and 𝛽(𝑚) have very similar empirical performances. However, note that:

Proposition 3.3. Under the problem specification above, 𝛽(𝑚) is asymptotically efficient while

�̂�(𝑚) is not. In fact, �̃� (�̂�2(𝑚)) → ∞ as 𝑚 → ∞ where �̃� denotes the expectation under the

exponential tilting towards 𝑎.

In view of Proposition 3.3, �̂�(𝑚) is arguably a very poor estimator as it bears an exploding

variance. We therefore see an apparent discrepancy between empirical performances and theo-

retical guidance – The theoretically bad variance does not result in poor empirical performances.

Proposition 3.3 is proved in [103], where the asymptotic efficiency of 𝛽(𝑚) follows from their

Proposition 1, while the variance behavior of �̂�(𝑚) appears in their Theorem 1.

Table 3.1: Point estimates (and 95% CI) using IS estimators for the tail probability with different
𝑚.

𝑚 10 30 50 100
�̂�(𝑚) 8.22(±0.26) ×10−3 1.60(±0.07) ×10−5 3.77(±0.18) ×10−8 1.34(±0.08) ×10−14

𝛽(𝑚) 8.29(±0.26) ×10−3 1.60(±0.07) ×10−5 3.77(±0.18) ×10−8 1.34(±0.08) ×10−14

Finally, we note that the confidence intervals presented in Table 3.1 are constructed based

on standard normality intervals which utilize sample variances. As we demonstrate later in The-

orem 3.8 along with practical validations in Section 3.6.2, even though the estimation variance

explodes in this example, such confidence intervals are in fact asymptotically valid.

3.3.2 Overshoot Probability of Random Walk

We consider the problem of estimating the overshoot probability of the finite-horizon maximum

of a random walk. We define the probability of interest as

𝑝 = 𝑃

(
max

𝑚=1,...,𝑑
𝑆𝑚 ≥ 𝑎

)
,

where 𝑆𝑚 =
∑𝑚
𝑖=1𝑌𝑖 and 𝑌𝑖’s are Gaussian distributed with mean 0, standard deviation 𝜎, and

pairwise correlation −0.02, i.e., 𝑐𝑜𝑟𝑟 (𝑌𝑖, 𝑌 𝑗 ) = −0.02 for any 𝑖, 𝑗 ∈ {1, . . . , 𝑑} with 𝑖 ≠ 𝑗 . We
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use Σ to denote the covariance matrix of (𝑌1, . . . , 𝑌𝑚). Suppose that the rarity parameter is 𝛾 =

1/𝜎2 → ∞. We note that we can reformulate this target rare event as
{

1
𝛾
𝑋𝛾 ∈

⋃𝑑
𝑚=1H𝑚

}
where

𝑋𝛾 = 𝛾(𝑌1, . . . , 𝑌𝑑)⊤ andH𝑚 = {𝑥 ∈ R𝑑 :
∑𝑚
𝑖=1 𝑥𝑖 ≥ 𝑎} with 𝑥𝑖 denoting the 𝑖th element in 𝑥. This

decomposition allows us to construct an IS estimator using the 𝑑 dominating points corresponding

to each half-space H𝑚. More specifically, in this example, 𝐼 (𝑦) = 1
2 𝑦
⊤Σ−1𝑦, and the dominating

points, ranking from the most to the least significant (i.e., increasing rate function value), are

𝑎1 =
𝑎Σ𝑒𝑑
𝑒⊤
𝑑
Σ𝑒𝑑

, 𝑎2 =
𝑎Σ𝑒𝑑−1

𝑒⊤
𝑑−1Σ𝑒𝑑−1

, . . . , 𝑎𝑑 =
𝑎Σ𝑒1
𝑒⊤1 Σ𝑒1

, where 𝑒𝑖 denotes the vector with 1 in the first 𝑖

elements and 0 for the rest.

In our experiments, we fix 𝑎 and vary 𝜎 for different rarity levels. In addition, we set 𝑑 = 10.

We generate 104 samples from IS distributions using a varying, partial list of dominating points.

That is, we choose the IS distributions for 𝑋𝛾 as 1
𝑘

∑𝑘
𝑖=1 𝜙(𝑥; 𝛾𝑎𝑖, 𝛾Σ), where 𝜙(𝑥; 𝑎, 𝑏) denotes

the Gaussian density with mean 𝑎 and variance 𝑏, for 𝑘 = 1, . . . , 𝑑. The performances of these

IS estimators are shown in Table 3.2. We observe that these estimators with different numbers

of dominating points all perform similarly. In particular, we present the cases with 𝜎 = 0.2 and

𝜎 = 0.3 respectively in Figure 3.2. We observe that in both cases the performances of the IS

estimators are almost independent of the number of used dominating points, with the probability

estimates all comparable while using more dominating points slightly increases the CI width.

On the other hand, Proposition 3.1 implies that the IS using all dominating points is asymptot-

ically efficient while we have:

Proposition 3.4. Under the problem specification above, the IS estimator that exponentially tilts

towards the most significant dominating point 𝑎1, i.e., 𝑋𝛾 distributed as 𝑁 (𝛾𝑎1, 𝛾Σ), is not asymp-

totically efficient.

Thus, like in Section 3.3.1, there appears a mismatch between theoretical guidance and empir-

ical observation. The asymptotic inefficiency of simple exponential tilting towards only the most

significant dominating point does not result in a poor experimental performance.
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(a) 𝜎 = 0.3. (b) 𝜎 = 0.2.

Figure 3.2: Simulation results for the random walk experiment. Point estimates and CI widths for
IS estimators using different numbers of dominating points.

Table 3.2: Point estimates (and 95% CIs) from IS estimators using different numbers of dominating
points for the overshoot probability. # denotes the number of dominating points, starting from the
most significant one, used in the IS estimator.

𝜎 0.2 0.22 0.24 0.26 0.28 0.3
# prob (with CI) prob (with CI) prob (with CI) prob (with CI) prob (with CI) prob (with CI)
1 9.15(±0.52) ×10−8 1.24(±0.19) ×10−6 7.96(±0.85) ×10−6 3.52(±0.29) ×10−5 1.15(±0.08) ×10−4 3.11(±0.20) ×10−4

2 9.63(±0.52) ×10−8 1.24(±0.08) ×10−6 8.38(±0.52) ×10−6 3.71(±0.20) ×10−5 1.23(±0.06) ×10−4 3.31(±0.16) ×10−4

3 9.36(±0.60) ×10−8 1.15(±0.07) ×10−6 7.87(±0.43) ×10−6 3.61(±0.19) ×10−5 1.21(±0.06) ×10−4 3.21(±0.15) ×10−4

4 9.69(±0.72) ×10−8 1.18(±0.08) ×10−6 7.98(±0.49) ×10−6 3.64(±0.20) ×10−5 1.21(±0.06) ×10−4 3.25(±0.16) ×10−4

5 9.68(±0.80) ×10−8 1.17(±0.09) ×10−6 7.92(±0.54) ×10−6 3.59(±0.22) ×10−5 1.20(±0.07) ×10−4 3.20(±0.17) ×10−4

6 9.50(±0.89) ×10−8 1.15(±0.10) ×10−6 7.79(±0.60) ×10−6 3.55(±0.25) ×10−5 1.19(±0.08) ×10−4 3.17(±0.19) ×10−4

7 9.89(±0.97) ×10−8 1.20(±0.11) ×10−6 8.13(±0.66) ×10−6 3.69(±0.27) ×10−5 1.22(±0.08) ×10−4 3.26(±0.21) ×10−4

8 9.44(±1.02) ×10−8 1.16(±0.11) ×10−6 7.93(±0.70) ×10−6 3.62(±0.29) ×10−5 1.20(±0.09) ×10−4 3.21(±0.22) ×10−4

9 8.97(±1.03) ×10−8 1.11(±0.12) ×10−6 7.63(±0.72) ×10−6 3.48(±0.30) ×10−5 1.16(±0.09) ×10−4 3.11(±0.23) ×10−4

10 9.23(±1.12) ×10−8 1.15(±0.13) ×10−6 7.87(±0.77) ×10−6 3.55(±0.32) ×10−5 1.19(±0.10) ×10−4 3.20(±0.25) ×10−4

3.3.3 Robustness Assessment for an MNIST Classification Model

We consider a rare-event probability estimation problem from an image classification task.

Our goal is to estimate the probability of misclassification when the input of a prediction model

is perturbed by tiny noise. This probability estimate is of interest as a robustness measure of the

prediction model [14]. More specifically, suppose that the prediction model 𝑔 is able to predict the

label of input 𝑥0, i.e. 𝑔(𝑥0) = 𝑐 where 𝑐 is the true label of 𝑥0. Then 𝑃(𝑔(𝑥0 + Y) ≠ 𝑐) where Y is a

random perturbation can be used to measure the robustness of 𝑔.

In particular, we consider the classification problem on MNIST dataset which contains 70,000
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images of handwritten digits and each image consists of 28 × 28 pixels. We train a 2-ReLU-

layer neural network with 20 neurons in each layer using 60,000 training data, which achieves

approximately 95% of testing data accuracy in predicting the digits. We perturb a fixed input (that

is correctly predicted) with a Gaussian noise with mean 0 and standard deviation 𝜎 on each of the

784 dimensions to assess the robustness of the prediction. Note that the rarity of this problem is

determined by the value of 𝜎, and we let the rarity parameter 𝛾 = 1/𝜎2 → ∞. The target rare

event can be reformulated as
{

1
𝛾
𝑋𝛾 ∈ {𝑥 : 𝑔(𝑥0 + 𝑥) ≠ 𝑐)}

}
where 𝑋𝛾 = 𝛾Y.

We apply mixtures of exponential tiltings as IS estimators for this problem, namely by consid-

ering the IS distribution 1
𝑘

∑𝑘
𝑖=1 𝜙(𝑥; 𝛾𝑎𝑖, 𝛾𝐼), where 𝜙(𝑥; 𝑎, 𝑏) denotes the Gaussian density with

mean 𝑎 and variance 𝑏 as in Section 3.3.2, for 𝑘 = 1, 2, . . .. Here 𝑎𝑖, 𝑖 = 1, 2, . . . denote the

dominating points. In order to compute these points, we apply the scheme introduced in [131]

and [125], which sequentially searches for dominating points by minimizing the rate function on

the rare-event set that excludes the half-spaces cut from previous more significant dominating

points. In the Gaussian case with piecewise linear rare-event set boundary as in our current ex-

ample, each iteration amounts to finding the highest-density point on a piecewise-linear-boundary

set, which can be conducted using mixed integer programming (see Algorithm 3.1 in Section 3.8).

Due to the high dimensionality of the input space and the complexity of the neural network pre-

dictor, the number of dominating points in this problem is huge. We implemented this sequential

searching algorithm and it took a week to find the first 100 dominating points. Since we stopped

the algorithm prematurely, the actual number of dominating points can be much larger. We run IS

distributions with different numbers of dominating points (ranging from 1 to 41) and magnitudes

of 𝜎 (ranging from 0.1 to 0.2) and report the estimated probabilities and CIs. We use 105 samples

for IS estimators and 107 samples for crude Monte Carlo estimators.

Figures 3.3a and 3.3b show the results. Missing less significant dominating points does not

seem to make noticeable differences in this problem. As shown in Figure 3.3a, when we fix the

rarity of the problem, the estimate is not sensitive to the number of dominating points. The CI width

has an increasing trend as the number of dominating points gets larger, indicating that additional

68



(a) (b)

Figure 3.3: Simulation results for the MNIST experiment. (a) Point estimates and CI widths
from IS estimators using different numbers of dominating points. (b) Point estimates from IS
estimators using different numbers of dominating points (IS with 1, 20, and 40) and crude Monte
Carlo (CMC), with vertical error bars representing their 95% CIs (the CIs for the IS estimates are
extremely narrow).

dominating points can in fact even hurt performances.

In Figure 3.3b, we vary the rarity of the problem and compare the performances of different IS

estimators and crude Monte Carlo. Note that estimates using crude Monte Carlo are unavailable

for rarer configurations due to its inefficiency. We observe that the estimates from different IS

estimators overlap visually in all considered cases, which indicates that the differences among

these estimates are negligible. We also note that these estimates are consistent with the crude

Monte Carlo estimates (when available), which shows their correctness.

Nonetheless, once again we have an apparent mismatch between theoretical inefficiency and

good empirical performances:

Proposition 3.5. Under the problem specification above, the IS estimator that exponentially tilts

towards the most significant dominating point, i.e., 𝑋𝛾 distributed as 𝑁 (𝛾𝑎1, 𝛾𝐼), is not asymptot-

ically efficient.

We note that in this example, locating all the dominating points for mixture IS construction

is computationally very challenging which, connecting to our discussions in Sections 3.1 and 3.2,

motivates us to study the validity of IS schemes without using all dominating points. More pre-
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cisely, in this example, the total number of dominating points is unknown, finding all of them

requires substantial computation time, and finding the less significant dominating points requires

more computation efforts than finding the more significant ones. In particular, the computation

time is 20 seconds for the most significant dominating point, and increases to several hours for

the 90-th dominating point. This is because obtaining each consecutive dominating point requires

iteratively adding new constraints to the large integer program. We should also note that these

runtimes are for the considered particular problem instance, and for larger problems the runtimes

would be even longer.

3.4 Probabilistic Efficiency

Section 3.3 shows that IS estimators that miss some dominating points could perform compet-

itively compared to estimators that consider all of them, thus suggesting a gap between the notion

of asymptotic efficiency and empirical performances. In light of this, we propose the concept of

probabilistic efficiency as a relaxation of asymptotic efficiency. The key of probabilistic efficiency

is to consider the high-probability relative discrepancy of the estimator from the ground truth di-

rectly, instead of using the relative error or equivalently the estimation variance. The latter, as

can be seen in the arguments in Section 3.2, provides a sufficient, but not necessary, condition on

the required sample size. In particular, there is an intrinsic looseness brought by the Markov or

Chebyshev inequality (3.2) that converts relative error into the required sample size.

To proceed, we first define the following:

Definition 3.3 (Minimal relative discrepancy). For any estimator 𝑝 of 𝑝 and any Y > 0, the

minimal relative discrepancy of 𝑝, at tolerance level Y, is given by

𝛿Y (𝑝, 𝑝) := inf{𝛿 > 0 : �̃�( |𝑝 − 𝑝 | > 𝛿𝑝) ≤ Y}. (3.7)

The minimal relative discrepancy 𝛿Y (𝑝, 𝑝) measures the relative accuracy of the estimator 𝑝,

in that it gives the smallest relative discrepancy of 𝑝 from 𝑝 that can be achieved with probability
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1 − Y. Thus the smaller is 𝛿Y (𝑝, 𝑝), the more accurate is 𝑝. Note that in (3.7), the probability �̃� is

the one generating the estimator 𝑝.

We say that 𝑝 is probabilistically efficient if 𝛿Y (𝑝, 𝑝) can be made small in some sense, with-

out needing to use a gigantic amount of computation. More precisely, we propose the following

notions:

Definition 3.4 (Probabilistic Efficiency). Suppose that {A𝛾}𝛾 is an indexed family of rare events

and 𝑝 = 𝑃(A𝛾) → 0 as 𝛾 → ∞. Consider an estimator 𝑝 obtained from 𝑛 = 𝑛(𝛾) independent

replications of 𝑍 . For any Y > 0, we define 𝛿Y (𝑝, 𝑝) as in (3.7). Then

1. We call 𝑍 strongly probabilistically efficient if we can choose 𝑛 subexponential in − log 𝑝

such that, for any Y > 0, lim𝛾→∞ 𝛿Y (𝑝, 𝑝) = 0;

2. We call 𝑍 weakly probabilistically efficient if we can choose 𝑛 subexponential in − log 𝑝

such that, for any Y > 0, lim sup𝛾→∞ 𝛿Y (𝑝, 𝑝) < 1.

Note that strong probabilistic efficiency matches the usual notion in statistical estimation. That

is, the estimator approaches the target parameter as 𝛾 → ∞. In contrast, weak probabilistic effi-

ciency only cares about a correct magnitude. While this may appear less desirable, in rare-event

estimation a correct magnitude can be viewed as sufficient as the target quantity is very small, and

this weaker notion allows more flexibility in constructing estimators. We also contrast our pro-

posed probabilistic efficiency with a notion named probabilistic bounded relative error proposed

in [132], where the IS measure is randomly chosen and efficiency is achieved if the resulting ran-

dom relative error of the IS estimator is bounded by some constant with high probability, which is

conceptually different from our notion.

The following shows that probabilistic efficiency is a relaxation of asymptotic efficiency:

Proposition 3.6. If 𝑍 is asymptotically efficient, then 𝑍 is strongly probabilistically efficient.
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Proof of Proposition 3.6. For any unbiased estimator 𝑍 , we have that for any Y > 0,

�̃�
©«|𝑝 − 𝑝 | >

√︄
𝑉𝑎𝑟 (𝑍)
Y𝑛𝑝2 𝑝

ª®¬ ≤ Y
and hence by definition,

𝛿Y (𝑝, 𝑝) ≤

√︄
𝑉𝑎𝑟 (𝑍)
Y𝑛𝑝2 .

If 𝑍 is asymptotically efficient, 𝑉𝑎𝑟 (𝑍)
𝑝2 grows at most subexponentially in − log 𝑝, so we could

choose 𝑛 subexponentially growing in − log 𝑝 such that lim𝛾→∞ 𝛿Y (𝑝, 𝑝) = 0 for any Y > 0. By

definition, 𝑍 is strongly probabilistically efficient. □

While asymptotic efficiency implies strong probabilistic efficiency, we note that these two no-

tions are not equivalent. In Section 3.3, Propositions 3.3–3.5 show that asymptotic efficiency does

not hold for the considered IS estimators in all the presented examples, but Theorem 3.10 in Section

3.6.1 will show that strong probabilistic efficiency actually holds for all of them.

Now we explain how probabilistic efficiency helps us understand the influence of missing some

dominating points. Recall the example where A𝛾 = { 1
𝛾
𝑋𝛾 ∈ E} and E comprises two disjoint and

faraway pieces E1 and E2. The dominating points are respectively 𝑎1 and 𝑎2 (recall Figure 3.1).

Denote 𝑝 𝑗 = 𝑃( 1
𝛾
𝑋𝛾 ∈ E 𝑗 ), 𝑗 = 1, 2, and we assume that 𝑝2 is exponentially smaller than 𝑝1 (i.e.,

𝑝2/𝑝1 decays exponentially). If we focus on E1 and simply use the exponential tilting towards 𝑎1

as the IS distribution, then we face the risk of having a sample falling into E2 while the associated

likelihood ratio is very high, which leads to asymptotic inefficiency. However, experimentally if

we run the simulation with a moderate sample size, then most likely none of the samples fall into

E2. Conditional on not hitting E2, we actually get an estimate close to 𝑝1, which is in turn close

to 𝑝. In other words, even if the resulting IS estimator is not asymptotically efficient, it could still

give a good estimate in terms of its distance to 𝑝, as long as the sample size is not overly big. The

latter is precisely the paradigm of probabilistic efficiency.

More concretely, we have the following theorem:
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Theorem 3.3 (Achieving strong probabilistic efficiency). Suppose that {A𝛾}𝛾 is an indexed family

of rare events and 𝑝 = 𝑃(A𝛾) → 0 as 𝛾 → ∞. We write A𝛾 = A1
𝛾 ∪ A2

𝛾 where A1
𝛾 and A2

𝛾 are

two disjoint events. Denote 𝑝 𝑗 = 𝑃(A 𝑗
𝛾), 𝑗 = 1, 2. Assume that

1. 𝑝1
𝑝
→ 1 as 𝛾 →∞;

2. We have an asymptotically efficient IS estimator for 𝑝1 obtained from 𝑍1 = 𝐼A1
𝛾

𝑑𝑃

𝑑�̃�
under

�̃�. This implies that there exists 𝑛 = 𝑛(𝛾) growing subexponentially in − log 𝑝 such that

𝑉𝑎𝑟 (𝑍1)
𝑛𝑝2

1
→ 0 as 𝛾 →∞;

3. 𝑝2 := �̃�(A2
𝛾) satisfies that 𝑛𝑝2 → 0 as 𝛾 →∞.

Let 𝑝 be the sample mean of 𝑛 independent replications of 𝑍 = 𝐼A𝛾
𝑑𝑃

𝑑�̃�
under �̃�. For any Y > 0,

define 𝛿Y (𝑝, 𝑝) as in (3.7). Then we have

𝛿Y (𝑝, 𝑝) ≤

√︄
𝑉𝑎𝑟 (𝑍1)

𝑛𝑝2
1(Y − 𝑛𝑝2)

+ 𝑝2
𝑝
→ 0 as 𝛾 →∞.

Hence 𝑍 is strongly probabilistically efficient.

Proof of Theorem 3.3. Suppose that we sample 𝜔1, . . . , 𝜔𝑛 under �̃�. Let

𝑝 =
1
𝑛

𝑛∑︁
𝑖=1

𝐼A𝛾 (𝜔𝑖)
𝑑𝑃

𝑑�̃�
(𝜔𝑖)

and

𝑝 𝑗 =
1
𝑛

𝑛∑︁
𝑖=1

𝐼A 𝑗
𝛾
(𝜔𝑖)

𝑑𝑃

𝑑�̃�
(𝜔𝑖), 𝑗 = 1, 2.

Clearly 𝑝 = 𝑝1 + 𝑝2. For simplicity, denote

𝛿 :=

√︄
𝑉𝑎𝑟 (𝑍1)

𝑛𝑝2
1(Y − 𝑛𝑝2)

+ 𝑝2
𝑝
, (3.8)

𝛿 :=
𝑝2
𝑝
. (3.9)
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Then we have that

�̃�( |𝑝 − 𝑝 | > 𝛿𝑝) ≤ �̃�( |𝑝1 − 𝑝1 | > (𝛿 − 𝛿)𝑝 or |𝑝2 − 𝑝2 | > 𝛿𝑝)

≤ �̃�( |𝑝1 − 𝑝1 | > (𝛿 − 𝛿)𝑝) + �̃�( |𝑝2 − 𝑝2 | > 𝛿𝑝)

≤ �̃�( |𝑝1 − 𝑝1 | > (𝛿 − 𝛿)𝑝1) + �̃�(𝑝2 > 0)

≤ 𝑉𝑎𝑟 (𝑍1)
𝑛(𝛿 − 𝛿)2𝑝2

1
+ 𝑛𝑝2

= Y

where the second inequality follows from a union bound, the third inequality follows from 𝑝1 ≤ 𝑝

and that |𝑝2 − 𝑝2 | > 𝛿𝑝 implies 𝑝2 > 0, the fourth inequality follows from Chebyshev’s inequality

in the first term and a union bound in the second term, and the last equality follows from the

definitions in (3.8) and (3.9). Thus 𝛿Y (𝑝, 𝑝) ≤ 𝛿. Finally, 𝛿→ 0 by a direct use of the assumptions.

□

Similarly, if we relax the assumption that 𝑝1/𝑝 → 1 as 𝛾 → ∞, we get sufficient conditions

for weak probabilistic efficiency:

Theorem 3.4 (Achieving weak probabilistic efficiency). Suppose that {A𝛾}𝛾 is an indexed family

of rare events and 𝑝 = 𝑃(A𝛾) → 0 as 𝛾 → ∞. We write A𝛾 = A1
𝛾 ∪ A2

𝛾 where A1
𝛾 and A2

𝛾 are

two disjoint events. Denote 𝑝 𝑗 = 𝑃(A 𝑗
𝛾), 𝑗 = 1, 2. Assume that

1. lim inf𝛾→∞ 𝑝1
𝑝
= 𝑐 where 0 < 𝑐 ≤ 1;

2. We have an asymptotically efficient IS estimator for 𝑝1 obtained from 𝑍1 = 𝐼A1
𝛾

𝑑𝑃

𝑑�̃�
under

�̃�. This implies that there exists 𝑛 = 𝑛(𝛾) growing subexponentially in − log 𝑝 such that

𝑉𝑎𝑟 (𝑍1)
𝑛𝑝2

1
→ 0 as 𝛾 →∞;

3. 𝑝2 := �̃�(A2
𝛾) satisfies that 𝑛𝑝2 → 0 as 𝛾 →∞.

Let 𝑝 be the sample mean of 𝑛 independent replications of 𝑍 = 𝐼A𝛾
𝑑𝑃

𝑑�̃�
under �̃�. For any Y > 0,

74



define 𝛿Y (𝑝, 𝑝) as in (3.7). Then we have

lim sup
𝛾→∞

𝛿Y (𝑝, 𝑝) ≤ lim sup
𝛾→∞

(√︄
𝑉𝑎𝑟 (𝑍1)

𝑛𝑝2
1(Y − 𝑛𝑝2)

+ 𝑝2
𝑝

)
= 1 − 𝑐 < 1.

Hence 𝑍 is weakly probabilistically efficient.

Proof of Theorem 3.4. Following the proof of Theorem 3.3, we still get

𝛿Y (𝑝, 𝑝) ≤ 𝛿 :=

√︄
𝑉𝑎𝑟 (𝑍1)

𝑛𝑝2
1(Y − 𝑛𝑝2)

+ 𝑝2
𝑝
.

Under the conditions of Theorem 3.4, now lim sup𝛾→∞ 𝛿 = 1 − 𝑐 < 1. By the definition, 𝑍 is

weakly probabilistically efficient. □

We note that in Theorems 3.3 and 3.4, A1
𝛾 and A2

𝛾 could be very general events. In particular,

when we use dominating points to decompose the rare-event set, A1
𝛾 and A2

𝛾 are not necessarily

each governed by only one dominating point but could be more as long as the assumptions hold.

Moreover, there can be multiple ways to split A𝛾 into A1
𝛾 and A2

𝛾, and as long as one of these

ways validates the assumptions in Theorem 3.3 or 3.4 then probabilistic efficiency is guaranteed.

This provides flexibility in using Theorems 3.3 and 3.4; Sections 3.9.1 and 3.6.1 will demonstrate

this in some specific examples.

According to the theorems, supposing that we have found some dominating points while the

remaining ones are known to be less significant and “far from” the current ones, we could sim-

ply use the current mixture IS distribution instead of keep searching. The remaining question is

how we could detect that the remaining dominating points are negligible, i.e. the assumptions of

the theorem are satisfied. Besides, probabilistic efficiency only implies that the point estimate is

reliable in some sense. This raises questions on inference such as the construction of valid CIs.

In the next section, we will make these discussions precise and show our answers under minimal

assumptions in the standard Gartner-Ellis regime.
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3.5 Probabilistically Efficient Estimation in the Gartner-Ellis Regime

We study probabilistically efficient IS in the widely used Gartner-Ellis regime introduced in

Section 3.2. Our key result is that probabilistic efficiency can be readily achieved by using only

the most significant dominating points, under essentially no more assumptions than what is needed

to derive the Gartner-Ellis large deviations asymptotic.

We first consider the case where there is only one most significant dominating point, which is

a common scenario (e.g., in all the examples in Section 3.3):

Theorem 3.5 (Using the most significant dominating point is probabilistically efficient). Consider

the problem of estimating 𝑝 = 𝑃( 1
𝛾
𝑋𝛾 ∈ E). Suppose that Assumptions 3.1 and 3.2 hold. Suppose

also that the dominating set 𝐴 has finite cardinality with a unique most significant dominating

point 𝑎, i.e., 𝐼 (𝑎) < 𝐼 (�̃�) for all other �̃� ∈ 𝐴. Then the IS distribution �̃� given by the exponential

tilting towards 𝑎, i.e.,
𝑑�̃�

𝑑𝑃
= 𝑒𝑠

⊤
𝑎 𝑋𝛾−𝛾`𝛾 (𝑠𝑎) (3.10)

is strongly probabilistically efficient.

Theorem 3.5 stipulates that we only need the most significant dominating point in constructing

an efficient IS. This result, which is in sharp contrast to the established IS recipe that suggests

using all dominating points, explains the good empirical performance of the “poor" estimators in

Section 3.3. Moreover, the proposal in Theorem 3.5 is in closer line with the Gartner-Ellis asymp-

totic theory, in that the use of the most significant dominating point, which is also the minimizer of

the rate function (recall Theorem 3.2), governs both the large deviations asymptotic and the con-

struction of efficient IS. Lastly, regarding the assumptions needed, the only additional condition

beyond the standard Gartner-Ellis assumptions (i.e., Assumptions 3.1 and 3.2) is the finite cardi-

nality of the dominating set. In fact, if we have multiple most significant points, we have a natural

generalization:

Theorem 3.6 (Mixing most significant dominating points). Consider the problem of estimating
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𝑝 = 𝑃( 1
𝛾
𝑋𝛾 ∈ E). Suppose that Assumptions 3.1 and 3.2 hold. Suppose also that the dominating

set 𝐴 has finite cardinality with 𝑘 most significant dominating points 𝑎1, . . . , 𝑎𝑘 , i.e., 𝐼 (𝑎1) = · · · =

𝐼 (𝑎𝑘 ) < 𝐼 (𝑎′) for all 𝑎′ ∈ 𝐴 \ {𝑎1, . . . , 𝑎𝑘 }. Then the IS distribution �̃� given by the mixture of

exponential tiltings towards 𝑎1, . . . , 𝑎𝑘 , i.e.,

𝑑�̃�

𝑑𝑃
=

𝑘∑︁
𝑖=1

𝛼𝑖𝑒
𝑠⊤𝑎𝑖 𝑋𝛾−𝛾`𝛾 (𝑠𝑎𝑖 ) (3.11)

is strongly probabilistically efficient for any fixed 𝛼𝑖’s such that
∑𝑘
𝑖=1 𝛼𝑖 = 1, 𝛼𝑖 > 0,∀𝑖.

That is, we use mixture to account for all the most significant dominating points when there

are multiple of them. The proofs of Theorems 3.5 and 3.6 amount to verifying the assumptions in

Theorem 3.3 using the Gartner-Ellis conditions. In particular, Conditions 1 and 2 in Theorem 3.3

can be routinely verified, while Condition 3 is checked by showing that 𝑝2 is in fact exponentially

decaying in 𝛾, which requires an application of the Gartner-Ellis theorem under the IS distribution.

The verification of Condition 3 especially reveals a key phenomenon that, under the exponential

tilting to the most significant dominating point(s), the probability of an IS sample hitting onto the

“backyards" of other dominating points is exponentially small, which in turn fulfills the notion of

probabilistic efficiency.

Proofs of Theorems 3.5 and 3.6. We focus on Theorem 3.6 since Theorem 3.5 is a special case

therein. It suffices to verify all the assumptions in Theorem 3.3. For A𝛾 = { 1
𝛾
𝑋𝛾 ∈ E}, by

Theorem 3.1, 𝑝 = 𝑃(A𝛾) satisfies that lim𝛾→∞
1
𝛾

log 𝑝 = −𝐼 (E) < 0, so 𝑝 → 0 as 𝛾 → ∞.

If 𝑘 = |𝐴|, then the IS estimator from (3.11) already uses all the dominating points and thus is

asymptotically efficient by Proposition 3.1. Hence, from now on, we assume that 𝑘 < |𝐴|. For

convenience, we denote 𝑎𝑘+1 as a next most significant point other than 𝑎1, . . . , 𝑎𝑘 , i.e., 𝐼 (𝑎𝑘+1) >

𝐼 (𝑎1) = · · · = 𝐼 (𝑎𝑘 ) and 𝐼 (𝑎𝑘+1) ≤ 𝐼 (𝑎′) for all 𝑎′ ∈ 𝐴 \ {𝑎1, . . . , 𝑎𝑘 }. We split E into E1 =

E ∩⋃𝑘
𝑖=1{𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0} and E2 = E \ E1, and define A 𝑗 = { 1

𝛾
𝑋𝛾 ∈ E 𝑗 }, 𝑝 𝑗 = 𝑃(A 𝑗 )

for 𝑗 = 1, 2.

First, by Theorem 3.1, we have that lim sup𝛾→∞ 1
𝛾

log 𝑝2 ≤ −𝐼 (E2). Since E2 ⊂
⋃|𝐴|
𝑗=𝑘+1{𝑥 :

77



𝑠⊤𝑎 𝑗 (𝑥 − 𝑎 𝑗 ) ≥ 0}, we know that 𝐼 (E2) ≥ 𝐼 (
⋃|𝐴|
𝑗=𝑘+1{𝑥 : 𝑠⊤𝑎 𝑗 (𝑥 − 𝑎 𝑗 ) ≥ 0}) = 𝐼 (𝑎𝑘+1), and hence

lim sup𝛾→∞ 1
𝛾

log 𝑝2 ≤ −𝐼 (𝑎𝑘+1) < −𝐼 (E). As a result, 𝑝2/𝑝 → 0 as 𝛾 → ∞. This verifies

Assumption 1 in Theorem 3.3.

Second, by the definition, {𝑎1, . . . , 𝑎𝑘 } is a dominating set for E1, so the IS estimator 𝑍1 =

𝐼 ( 1
𝛾
𝑋𝛾 ∈ E1) 𝑑𝑃𝑑�̃� (𝜔) is asymptotically efficient by Proposition 3.1. This verifies Assumption 2 in

Theorem 3.3.

Third, we would prove that 𝑝2 decays exponentially in 𝛾 (hence also exponentially in − log 𝑝),

and hence 𝑛𝑝2 → 0 for subexponentially growing 𝑛 which verifies Assumption 3 in Theorem 3.3.

Indeed, we have

𝑝2 =

𝑘∑︁
𝑖=1

𝛼𝑖 �̃�𝑖

(
1
𝛾
𝑋𝛾 ∈ E2

)
where 𝑑�̃�𝑖

𝑑𝑃
(𝜔) = 𝑒

𝑠⊤𝑎𝑖 𝑋𝛾−𝛾`𝛾 (𝑠𝑎𝑖 ) . Denote �̃�𝑖, ˜̀𝛾,𝑖 and 𝐼𝑖 as the corresponding expectation, scaled

logarithmic moment generating function and rate function under �̃�𝑖. Then, under �̃�𝑖, we have

˜̀𝛾,𝑖 (𝑥) =
1
𝛾

log �̃�𝑖
(
𝑒𝑥
⊤𝑋𝛾

)
=

1
𝛾

log 𝐸
(
𝑒
𝑥⊤𝑋𝛾+𝑠⊤𝑎𝑖 𝑋𝛾−𝛾`𝛾 (𝑠𝑎𝑖 )

)
= `𝛾 (𝑥 + 𝑠𝑎𝑖 ) − `𝛾 (𝑠𝑎𝑖 )

and thus ˜̀𝑖 (𝑥) = lim𝛾→∞ ˜̀𝛾,𝑖 (𝑥) = `(𝑥 + 𝑠𝑎𝑖 ) − `(𝑠𝑎𝑖 ). Then the rate function is

𝐼𝑖 (𝑦) = sup
𝑥∈R𝑑
{𝑥⊤𝑦 − ˜̀𝑖 (𝑥)}

= sup
𝑥∈R𝑑
{𝑥⊤𝑦 − `(𝑥 + 𝑠𝑎𝑖 ) + `(𝑠𝑎𝑖 )}

= sup
𝑥∈R𝑑
{(𝑥 + 𝑠𝑎𝑖 )⊤𝑦 − `(𝑥 + 𝑠𝑎𝑖 )} − 𝑠⊤𝑎𝑖 𝑦 + `(𝑠𝑎𝑖 )

= 𝐼 (𝑦) − 𝑠⊤𝑎𝑖 𝑦 + `(𝑠𝑎𝑖 ).

For any 𝑦 ∈ E2, we have that 𝐼 (𝑦) ≥ 𝐼 (𝑎𝑘+1) and that 𝑠⊤𝑎𝑖 (𝑦 − 𝑎𝑖) ≤ 0 for 𝑖 = 1, . . . , 𝑘 , and

thus 𝐼𝑖 (𝑦) = 𝐼 (𝑦) − 𝑠⊤𝑎𝑖 𝑦 + `(𝑠𝑎𝑖 ) ≥ 𝐼 (𝑎𝑘+1) − 𝑠⊤𝑎𝑖𝑎𝑖 + `(𝑠𝑎𝑖 ) = 𝐼 (𝑎𝑘+1) − 𝐼 (𝑎𝑖). Therefore,

𝐼𝑖 (E2) ≥ 𝐼 (𝑎𝑘+1) − 𝐼 (𝑎𝑖) = 𝐼 (𝑎𝑘+1) − 𝐼 (𝑎1) > 0. From the above derivations, Assumption 3.1 still
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holds for �̃�𝑖. By Theorem 3.1,

lim sup
𝛾→∞

1
𝛾

log �̃�𝑖
(

1
𝛾
𝑋𝛾 ∈ E2

)
≤ −𝐼𝑖 (E2) ≤ −(𝐼 (𝑎𝑘+1) − 𝐼 (𝑎1)) < 0.

Overall, we have 𝑝2 decays exponentially in 𝛾.

Now we have verified all the assumptions in Theorem 3.3.

□

We comment that if we know any one of the most significant points, say 𝑎, among several such

points, satisfies 𝑝1/𝑝 → 𝑐 for some 0 < 𝑐 ≤ 1, where 𝑝1 = 𝑃(A𝛾 ∩ {𝑠⊤𝑎 ( 1
𝛾
𝑋𝛾 − 𝑎) ≥ 0}) is the

rare-event probability “contributed" from 𝑎, then using the IS that exponentially tilts only to 𝑎, i.e.,

(3.10), is weakly probabilistically efficient. This can be shown by a similar argument to the proofs

of Theorems 3.5 and 3.6 above. Such an approach is in contrast to using the IS mixture in (3.11)

suggested by Theorem 3.6 that achieves strong, instead of only weak, probabilistic efficiency.

Nonetheless, knowing 𝑝1/𝑝 → 𝑐 typically requires information on the multiplicative factor in

front of the exponential decay dictated by the large deviations rate function, which in turn requires

derivation of exact asymptotic that is only known for a relatively small number of problems.

Next, besides point estimates, we investigate inference using probabilistically efficient IS esti-

mators, in particular how to construct (asymptotically) valid CIs. First, we consider the interval

I1 =

𝑝 − ©«
√︄

2�̂� log(4/𝛼)
𝑛

+
7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1)
ª®¬ , 𝑝 + ©«

√︄
2�̂� log(4/𝛼)

𝑛
+

7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1)
ª®¬
 (3.12)

where �̂� is the sample variance and 𝑀𝛾 = max𝑖=1,...,𝑘

{
1
𝛼𝑖
𝑒
−𝛾(𝑠⊤𝑎𝑖 𝑎𝑖−`𝛾 (𝑠𝑎𝑖 ))

}
is deterministic. The

following theorem provides an asymptotic coverage guarantee for this CI.

Theorem 3.7 (Constructing confidence intervals with probabilistically efficient estimators). Under

the same setting as Theorem 3.6, suppose we sample 𝑋 (1) , . . . , 𝑋 (𝑛) i.i.d. from �̃� and let 𝑍 (𝑖) =

𝐼 ( 1
𝛾
𝑋 (𝑖) ∈ E) 𝑑𝑃

𝑑�̃�
, 𝑖 = 1, . . . , 𝑛. Use 𝑝 and �̂� to respectively denote the sample mean and sample

variance of 𝑍 (𝑖)’s. If 𝑛 is subexponentially growing in − log 𝑝 (or 𝛾) as 𝛾 → ∞, then, for any
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0 < 𝛼 < 1,

lim inf
𝛾→∞

�̃� (𝑝 ∈ I1) ≥ 1 − 𝛼

where 𝑀𝛾 = max𝑖=1,...,𝑘

{
1
𝛼𝑖
𝑒
−𝛾(𝑠⊤𝑎𝑖 𝑎𝑖−`𝛾 (𝑠𝑎𝑖 ))

}
.

We provide some intuition in constructing interval (3.12). Roughly speaking, our assumptions

in Theorem 3.7 guarantee that under our IS, the rare-event region controlled by the less significant

dominating points, namely E2 in Theorem 3.3, is not hit with high probability. In this case, 𝑝 and

�̂� can also be seen as the sample mean and sample variance of the IS estimator for 𝑝1 instead of

𝑝, and thus properly utilizing them could result in a CI that covers 𝑝1 with high confidence. As

𝑝1 is close to 𝑝, such a CI also covers 𝑝 with high confidence. In other words, constructing a CI

for 𝑝 reduces to constructing a CI for 𝑝1, where the latter is more tangible to attain as the involved

variance does not blow up. The execution of this intuition requires a concentration inequality for

the sample mean that is an empirical adaption of Bennett’s inequality [133]. This concentration

inequality leverages the boundedness property of the random variables (where 𝑀𝛾 is the upper

bound) instead of the normal approximation property, which leads to the additional term of order

1/𝑛 in (3.12) in addition to the 1/
√
𝑛 term that appears in a typical normality interval.

In Theorem 3.7, note that even if we neglect the higher-order term (in terms of 𝑛) 7 log(4/𝛼)𝑀𝛾
3(𝑛−1) ,

the CI half-width is
√︁

2 log(4/𝛼) times
√︃
�̂�
𝑛

, which is more conservative than the Central Limit

Theorem (CLT) based interval

I2 =

𝑝 − 𝑧1−𝛼/2

√︄
�̂�

𝑛
, 𝑝 + 𝑧1−𝛼/2

√︄
�̂�

𝑛

 (3.13)

where 𝑧1−𝛼/2 is the (1 − 𝛼/2)-quantile of the standard normal distribution. For instance, when

𝛼 = 0.05, we have
√︁

2 log(4/𝛼) ≈ 2.96, while 𝑧1−𝛼/2 ≈ 1.96. Our next theorem shows that, under

stronger conditions, the CLT-based CI (3.13) is also asymptotically valid.

Theorem 3.8 (Constructing tight confidence intervals with probabilistically efficient estimators).

Under the same setting as Theorem 3.6, suppose we sample 𝑋 (1) , . . . , 𝑋 (𝑛) i.i.d. from �̃�. Let 𝑍 (𝑖) =
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𝐼 ( 1
𝛾
𝑋 (𝑖) ∈ E) 𝑑𝑃

𝑑�̃�
and 𝑍 (𝑖)1 = 𝐼 ( 1

𝛾
𝑋 (𝑖) ∈ E1) 𝑑𝑃𝑑�̃� , 𝑖 = 1, . . . , 𝑛. Use 𝑝 and �̂� to respectively denote

the sample mean and sample variance of 𝑍 (𝑖)’s. In this case, we could choose 𝑛 subexponentially

growing in − log 𝑝 (or 𝛾) such that
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍 (1)1 )
→ 0 and

�̃�2 |𝑍 (1)1 −𝑝1 |3

𝑛𝑉𝑎𝑟
3 (𝑍 (1)1 )

→ 0 as 𝛾 → ∞ where 𝑀𝛾 is as

defined in Theorem 3.7. Then, for any 0 < 𝛼 < 1,

lim inf
𝛾→∞

�̃� (𝑝 ∈ I2) ≥ 1 − 𝛼.

Theorem 3.8 tightens the interval in Theorem 3.7 to using the CLT-based critical value 𝑧1−𝛼/2

with a more careful choice of sample size 𝑛.

Finally, we prove that if we use all the dominating points in the mixture, so that the estimator

satisfies the classical notion of asymptotic efficiency, then, under conditions similar to Theorem

3.8, the CLT-based interval possesses an even stronger guarantee that the asymptotic coverage

probability is exactly 1 − 𝛼.

Theorem 3.9 (Asymptotically exact confidence intervals with asymptotically efficient estimators).

Consider the problem of estimating 𝑝 = 𝑃( 1
𝛾
𝑋𝛾 ∈ E). Suppose that Assumptions 3.1 and 3.2 hold,

and the dominating set is finite. The IS estimator is 𝑍 = 𝐼 ( 1
𝛾
𝑋𝛾 ∈ E) 𝑑𝑃𝑑�̃� under �̃� given by (3.3). We

sample 𝑋 (1) , . . . , 𝑋 (𝑛) i.i.d. from �̃� and let 𝑍 (𝑖) = 𝐼 ( 1
𝛾
𝑋 (𝑖) ∈ E) 𝑑𝑃

𝑑�̃�
, 𝑖 = 1, . . . , 𝑛. Use 𝑝 and �̂� to

respectively denote the sample mean and sample variance of 𝑍 (𝑖)’s. In this case, we could choose

𝑛 at least subexponentially growing in − log 𝑝 (or 𝛾) such that
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍 (1) ) → 0 and �̃�2 |𝑍 (1)−𝑝 |3

𝑛𝑉𝑎𝑟
3 (𝑍 (1) )

→ 0

as 𝛾 →∞ where 𝑀𝛾 = max𝑖=1,...,𝑟

{
1
𝛼𝑖
𝑒
−𝛾(𝑠⊤𝑎𝑖 𝑎𝑖−`𝛾 (𝑠𝑎𝑖 ))

}
. Then, for any 0 < 𝛼 < 1,

lim
𝛾→∞

�̃� (𝑝 ∈ I2) = 1 − 𝛼.

We make several remarks regarding the properties of the CLT-based CI I2 in Theorems 3.8 and

3.9. First, it appears that probabilistically efficient samples sacrifice some looseness in terms of
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CI coverage compared to asymptotically efficient samples, as the guarantee is valid in Theorem

3.8 but exact in Theorem 3.9. Second, in Theorem 3.8, like Theorem 3.7, the sample size 𝑛

is required to be not overly big, manifested by the subexponential growth requirement. This is

in contrast to Theorem 3.9 that does not impose any upper bound on 𝑛, where it suffices that 𝑛

is at least subexponentially growing, i.e., 𝑛 could grow exponentially or even faster. This ties

to the key idea of probabilistic efficiency that, when the sample size is not overly big, there is

a negligible chance of any sample hitting the rare-event region not corresponding to the most

significant points. Thus the CI constructed from a probabilistically efficient estimator, much like

the point estimate, is valid only when the sample size is not overly big, while asymptotically

efficient estimators do not impose such a restriction. Lastly, we see the requirements on 𝑛 given

by
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍 (1)1 )
→ 0 and

�̃�2 |𝑍 (1)1 −𝑝1 |3

𝑛𝑉𝑎𝑟
3 (𝑍 (1)1 )

→ 0 in Theorem 3.8 and similar ones in Theorem 3.9. While

these conditions can be difficult to verify in practice, we should note that they are lower bound

requirements, and imposed not only for CIs constructed from probabilistically efficient estimators,

but also for classical asymptotically efficient estimators as well (to our best knowledge, conditions

on the adequacy of sample size to attain CI coverage guarantees for these classical estimators is

not known in the literature). In the next section, we will investigate the performances of all these

CIs with reasonable sample sizes.

Lastly, to close this section, we briefly note that Algorithm 3.1 in Section 3.8 shows generally

how to identify and compute dominating points, sequentially starting from the most significant one.

Moreover, Section 3.10 studies parallel results to this section for an alternative asymptotic regime

to Gartner-Ellis that could be suitable for some situations involving highly complex systems.

3.6 Further Numerical Experiments and Discussions

We have shown several examples in Section 3.3 where IS estimators using only one or a small

number of dominating points perform competitively compared with asymptotically efficient IS

estimators that use all dominating points. In fact, we have shown in each example in Sections

3.3.1, 3.3.2 and 3.3.3 that the simple estimator using the most significant dominating point is not
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asymptotically efficient. In this section, we argue that they are all probabilistically efficient, which

is a direct consequence of Theorem 3.5. We then numerically assess the validity of the conditions

in Theorem 3.3, which forms the underlying basis in justifying probabilistic efficiency. Finally, we

test the confidence intervals constructed using our probabilistically efficient estimators discussed

in Section 3.5 and compare with intervals constructed from asymptotically efficient estimators.

3.6.1 Verifying Conditions for Probabilistic Efficiency

We first state the strong probabilistic efficiency of all the proposed estimators that use only the

most significant dominating points in Section 3.3:

Theorem 3.10. Under the problem specifications in Sections 3.3.1, 3.3.2 and 3.3.3, the IS esti-

mators that use only the most significant dominating points, namely �̂�(𝑚) in Section 3.3.1, 𝑋𝛾

distributed as 𝑁 (𝛾𝑎1, 𝛾Σ) in Section 3.3.2 and 𝑁 (𝛾𝑎1, 𝛾𝐼) in Section 3.3.3, are all strongly prob-

abilistically efficient.

Next, we validate the underpinning mechanism of how probabilistic efficiency arises in these

examples. Note that the main basis of the strong probabilistic efficiency of these estimators,

which follows from Theorem 3.5, is Theorem 3.3. In particular, Theorem 3.3 states three con-

ditions that allow one to conclude strong probabilistic efficiency. Among them, the second con-

dition is a property about asymptotic efficiency for an estimator that applies to a more restrictive

rare-event set, which has been well-established in the asymptotic efficiency literature (basically,

by mixing the exponential tiltings towards all the dominating points associated with the more

restrictive rare-event set). Conditions 1 and 3 are more delicate. In the setting with a unique

most significant dominating point, say 𝑎, the former requires a small proportion of the “contribu-

tion" from the less significant dominating points other than 𝑎 over the total rare-event probability,

i.e., 𝑝2/𝑝 → 0 where 𝑝2 = 𝑃(A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}). The latter requires a small probabil-

ity of sampling any points in the rare-event set that does not belong to the backyard of 𝑎, i.e.,

�̃�(some of the 𝑛 samples hits A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}) → 0 or, as a sufficient condition, 𝑛𝑝2 → 0

where 𝑝2 = �̃�(A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}). Our next goal is to assess the smallness and decreasing
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trends (as rarity grows) of 𝑝2/𝑝 and �̃�(some of the 𝑛 samples hits A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}) that

drive Theorem 3.3. In the following, we present the aforementioned investigation for the i.i.d. sum

large deviations example in Section 3.3.1 and the MNIST example in Section 3.3.3, and leave the

random walk example in Section 3.3.2 to Section 3.9.1. We also illustrate a variation of this latter

example that uses the weak probabilistic efficiency in Section 3.9.2.

Large Deviations of an I.I.D. Sum.

For the experiment in Section 3.3.1, we use the probabilistically efficient estimator �̂�(𝑚). Cor-

respondingly, we have 𝑝1 = 𝑃(𝑆𝑚 ≥ 𝑎𝑚) and 𝑝2 = 𝑃(𝑆𝑚 ≤ −𝑎𝑚). Table 3.3 shows these

values as 𝑚 varies, which we approximate respectively by using estimators 𝛽1(𝑚) = exp(−𝑠𝑎𝑆𝑚 +

𝑚`(𝑠𝑎))𝐼{𝑆𝑚≥𝑎𝑚} and 𝛽2(𝑚) = exp(−𝑠−𝑎𝑆′𝑚 + 𝑚`(𝑠−𝑎))𝐼{𝑆′𝑚≤−𝑎𝑚}, with 𝑠𝑎, 𝑠−𝑎 defined in Sec-

tion 3.3.1, generated by the same IS samples used in 𝛽(𝑚). From Table 3.3, we observe that the

estimate of 𝑝2/𝑝 is 0.008 with 𝑚 = 10 and decreases to 5.00 × 10−19 as 𝑚 = 100. This shows that

𝑝2/𝑝 is small and approaches 0 as 𝑚 increases, which matches Condition 1 in Theorem 3.3 (𝑚 is

the rarity parameter here).

Next, we examine 𝑝2 = �̃�(𝑆𝑚 ≤ −𝑎𝑚). We generate 107 samples from the strongly probabilis-

tically efficient IS distribution. We observe that none of the samples fall into {𝑆𝑚 ≤ −𝑎𝑚}, which

indicates that 𝑝2 is extremely small so that �̃�(some of the 𝑛 samples hits A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}),

with 𝑛 = 104 in our experiment here, is close to zero. This matches Condition 3 of Theorem 3.3.

Table 3.3: Estimates of 𝑝1 and 𝑝2 for the i.i.d sum example in Section 3.3.1 with 104 samples.

𝑚 10 30 50 100
𝑝1 8.33 × 10−3 1.59 × 10−5 3.59 × 10−8 1.33 × 10−14

𝑝1/𝑝 0.992 ≈ 1 ≈ 1 ≈ 1
𝑝2 6.56 × 10−5 3.15 × 10−11 1.85 × 10−17 6.68 × 10−33

𝑝2/𝑝 0.008 1.98 × 10−6 5.16 × 10−10 5.00 × 10−19

𝑝 8.40 × 10−3 1.59 × 10−5 3.59 × 10−8 1.33 × 10−14
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MNIST Example.

The experiment in Section 3.3.3 uses a probabilistically efficient estimator based on the expo-

nential tilting towards the most significant dominating point only, i.e., 𝑋𝛾 distributed as 𝑁 (𝛾𝑎, 𝛾𝐼)

with 𝑎 = 𝑎1. We defineA1
𝛾 = A𝛾 ∩ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0} andA2

𝛾 = A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}, and the cor-

responding probabilities 𝑝1 = 𝑃(A𝛾 ∩ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}) and 𝑝2 = 𝑃(A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}) which

are shown in Table 3.4. Note that in this MNIST example, the total number of dominating points

is large and unknown. Thus we only present the contribution of the first 10 dominating points, i.e.

𝑎1, 𝑎2, . . . , 𝑎10 in Table 3.4, denoted by 𝑝𝑎2 = 𝑃(A𝛾 ∩ {𝑠⊤𝑎2 (𝑥 − 𝑎2) ≥ 0} \ {𝑠⊤𝑎1 (𝑥 − 𝑎1) ≥ 0}),. . . ,

𝑝𝑎10 = 𝑃

(
A𝛾 ∩ {𝑠⊤𝑎10 (𝑥 − 𝑎10) ≥ 0} \

(
∪9
𝑗=1{𝑠

⊤
𝑎 𝑗
(𝑥 − 𝑎 𝑗 ) ≥ 0}

))
. We estimate each of the proba-

bilities 𝑝1, 𝑝𝑎2 , . . . , 𝑝𝑎10 using the IS estimator with the corresponding dominating point, i.e. the

IS distribution is exponentially tilted using dominating points 𝑎1, . . . , 𝑎10 respectively. We borrow

the values of 𝑝 from Table 3.9 where each estimate is computed using crude Monte Carlo, and

we estimate 𝑝2 through 𝑝2 = 𝑝 − 𝑝1. We observe that the ratio 𝑝2/𝑝 decreases from 0.2154 to

0.1931 as we decrease the value of 𝜎 from 0.2 to 0.17, i.e., the problem becomes rarer. We also

observe that some individual relative contribution slightly increases in this experiment. However,

these increases do not affect the decreasing trend of the total relative contribution of the less sig-

nificant dominating points. For example, 𝑝𝑎2/𝑝 and 𝑝𝑎3/𝑝 both increase slightly as 𝜎 decreases

(from 0.1074 and 0.0035 with 𝜎 = 0.2 to 0.1313 and 0.0042 with 𝜎 = 0.17 respectively), but the

relative contribution of the rest of the less significant dominating points (excluding the first 10) is

0.0812, 0.0658, 0.0633, and 0.0362 for 𝜎 = 0.2, 0.19, 0.18, 0.17 respectively, which vanishes fast

as 𝜎 decreases.

Table 3.5 presents the estimates of probabilities 𝑝1 = �̃�(A𝛾 ∩ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}) and 𝑝2 =

�̃�(A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}) under the probabilistically efficient IS distribution. The probabilities

𝑝𝑎2 , . . . , 𝑝𝑎10 , defined by 𝑝𝑎𝑖 = �̃�

(
A𝛾 ∩ {𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0} \

(
∪𝑖−1
𝑗=1{𝑠

⊤
𝑎 𝑗
(𝑥 − 𝑎 𝑗 ) ≥ 0}

))
, for 𝑖 =

2, . . . , 10, are also shown to illustrate the contributions of the dominating points 𝑎2, . . . , 𝑎10 for

𝑝2. We find that 𝑝2 decreases from 0.0090 to 0.0085 as 𝜎 decreases from 0.2 to 0.17, i.e., the

problem becomes rarer. From the individual contribution, we observe that all the probabilities
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Table 3.4: Estimates of 𝑝1, 𝑝2 and the contributions of the less significant dominating points for
the MNIST example in Section 3.3.3 with 104 samples, where we useA1

𝛾 = A𝛾 ∩ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}
and A2

𝛾 = A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}.

𝜎 0.2 0.19 0.18 0.17
𝑝1 9.18 × 10−6 3.34 × 10−6 1.02 × 10−6 2.54 × 10−7

𝑝1/𝑝 0.7846 0.7920 0.7892 0.8069
𝑝2 2.52 × 10−6 8.77 × 10−7 2.72 × 10−7 6.09 × 10−8

𝑝2/𝑝 0.2154 0.2080 0.2108 0.1931
𝑝 1.17 × 10−5 4.22 × 10−6 1.29 × 10−6 3.15 × 10−7

𝑝𝑎2 1.26 × 10−6 4.95 × 10−7 1.61 × 10−7 4.14 × 10−8

𝑝𝑎2/𝑝 0.1074 0.1173 0.1245 0.1313
𝑝𝑎3 4.12 × 10−8 1.22 × 10−8 2.93 × 10−9 1.32 × 10−9

𝑝𝑎3/𝑝 0.0035 0.0029 0.0023 0.0042
𝑝𝑎4 1.24 × 10−7 4.45 × 10−8 1.26 × 10−8 3.22 × 10−9

𝑝𝑎4/𝑝 0.0106 0.0105 0.0098 0.0102
𝑝𝑎5 2.48 × 10−8 9.09 × 10−9 2.81 × 10−9 7.01 × 10−10

𝑝𝑎5/𝑝 0.0021 0.0022 0.0022 0.0022
𝑝𝑎6 3.60 × 10−8 1.31 × 10−8 3.28 × 10−9 8.11 × 10−10

𝑝𝑎6/𝑝 0.0031 0.0031 0.0025 0.0026
𝑝𝑎7 0 0 0 0
𝑝𝑎8 8.80 × 10−8 2.62 × 10−8 8.03 × 10−9 2.02 × 10−9

𝑝𝑎8/𝑝 0.0075 0.0062 0.0062 0.0064
𝑝𝑎9 0 0 0 0
𝑝𝑎10 0 0 0 0

𝑝𝑎3 , . . . , 𝑝𝑎10 decrease rapidly, except 𝑝𝑎2 that slightly increases as 𝜎 decreases. We use the value

of 𝑝2 to estimate probability 𝑝ℎ𝑖𝑡 = �̃�(some of the 𝑛 samples hits A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}) through

1 − (1 − 𝑝2)𝑛. The last row in Table 3.5 presents the results with 𝑛 = 104 (the sample size we

use in Section 3.3). We observe that there are samples falling into A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0} with

approximately probability 1 and hence this result cannot explain the good performance of our

probabilistically efficient estimator.

To this end, we verify the conditions in Theorem 3.3 using an alternative construction of A1
𝛾

and A2
𝛾 = A𝛾 \ A1

𝛾. Here, in our previous construction, we have chosen the A1
𝛾 to be the half-

space cut by a dominating point and it turns out that the corresponding 𝑝2 is not small and thus

the condition of Theorem 3.3 appears to fail. However, as discussed right after Theorem 3.4, our

main theorems allow more flexibility in choosing ourA1
𝛾, and as long as we find a suitable way to
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Table 3.5: Estimates of 𝑝1, 𝑝2 and the contributions of the less significant dominating points for
the MNIST example under the probabilistically efficient IS in Section 3.3.3 with 104 samples.

𝜎 0.2 0.19 0.18 0.17
𝑝1 0.4728 0.4745 0.4760 0.4775
𝑝2 0.0090 0.0087 0.0086 0.0085
𝑝𝑎2 0.0069 0.007 0.0072 0.0072
𝑝𝑎3 0.0003 0.0003 0.0003 0.0002
𝑝𝑎4 0.0006 0.0006 0.0006 0.0006
𝑝𝑎5 0 0 0 0
𝑝𝑎6 0.0003 0.0003 0.0001 0.0001
𝑝𝑎7 0 0 0 0
𝑝𝑎8 0.0006 0.0003 0.0003 0.0003
𝑝𝑎9 0 0 0 0
𝑝𝑎10 0 0 0 0
𝑝ℎ𝑖𝑡 ≈ 1 ≈ 1 ≈ 1 ≈ 1

construct A1
𝛾 to satisfy the needed conditions, Theorem 3.3 can be used to explain our estimator’s

good performance.

Here is how we can construct a suitable alternative A1
𝛾 for Theorem 3.3. From the proofs

of Propositions 3.4 and 3.5, we know that our probabilistically efficient estimator is not asymp-

totically efficient if and only if min𝑥∈A𝛾 (𝑥 + 𝑎1)⊤(𝑥 + 𝑎1) < 4𝑎⊤1 𝑎1. We split the rare-event

set A𝛾 into two parts, namely A1
𝛾 = A𝛾 ∩ {(𝑥 + 𝑎1)⊤(𝑥 + 𝑎1) ≥ 4𝑎⊤1 𝑎1} and A2

𝛾 = A𝛾 \

{(𝑥 + 𝑎1)⊤(𝑥 + 𝑎1) ≥ 4𝑎⊤1 𝑎1}, and our probabilistically efficient estimator is asymptotically ef-

ficient for estimating the probabilities of A1
𝛾 and A𝛾 ∩ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0} ⊆ A1

𝛾. We define

𝑝1 = 𝑃(A1
𝛾), 𝑝2 = 𝑃(A2

𝛾), 𝑝1 = �̃�(A1
𝛾), and 𝑝2 = �̃�(A2

𝛾) for our newly constructed A1
𝛾 and

A2
𝛾. We first show 𝑝2/𝑝 → 0 and 𝑛𝑝2 → 0. We note that A𝛾 ∩ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0} ⊆ A1

𝛾 because

{𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0} ⊆ {(𝑥 + 𝑎1)⊤(𝑥 + 𝑎1) ≥ 4𝑎⊤1 𝑎1}. Hence we also haveA2
𝛾 ⊆ 𝐴𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0},

which leads to 𝑝2 ≤ 𝑝𝑜𝑙𝑑2 and 𝑝2 ≤ 𝑝𝑜𝑙𝑑2 where 𝑝𝑜𝑙𝑑2 and 𝑝𝑜𝑙𝑑2 refer to the 𝑝2 and 𝑝2 evaluated

using our old construction of A2,𝑜𝑙𝑑
𝛾 = A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}. By 𝑝𝑜𝑙𝑑2 /𝑝 → 0 and 𝑛𝑝𝑜𝑙𝑑2 → 0 as

𝛾 →∞ from Theorem 3.5 we have 𝑝2/𝑝 → 0 and 𝑛𝑝2 → 0. That is, our current new construction

A1
𝛾 for Theorem 3.3 would satisfy the conditions therein, and we would like to numerically verify

especially Conditions 1 and 3.

We now check the numerical values of 𝑝2 and 𝑝2 to verify these conditions. We use the mixture
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of all 100 dominating points as the IS distribution for estimating 𝑝2. We generate 106 samples for

𝜎 varying from 0.17 to 0.2 and find no samples falling intoA2
𝛾, which indicates that 𝑝2 (and hence

𝑝2/𝑝) is extremely small in all cases. We generate 106 samples from the probabilistically efficient

IS distribution to estimate 𝑝2 and observe no samples hitting A2
𝛾 for the same range of 𝜎. In this

case, 𝑝ℎ𝑖𝑡 = �̃�(some of the 𝑛 samples hits A2
𝛾) with 𝑛 = 104 would be close to zero due to the

extremely small values of 𝑝2. These results match Conditions 1 and 3 of Theorem 3.3 and hence

explain the good performance of our probabilistically efficient estimator in the experiment.

3.6.2 Illustration of Confidence Intervals

We investigate the performances of the CIs proposed in Section 3.5. In particular, we construct

CIs (3.12) and (3.13) from probabilistically efficient estimators, namely the IS schemes using

only the most significant point in Sections 3.3.1 and 3.3.3 (see Section 3.9.1 for the example in

Section 3.3.2). For convenience, we call interval (3.12) the “loose CI" and interval (3.13) the “tight

CI", since the latter has a shorter length and matches the CLT-based interval. For comparison, we

also construct CI (3.13) from asymptotically efficient estimators. In particular, for the settings in

Sections 3.3.1 and 3.3.2, these estimators are built from mixtures of exponential tiltings towards all

the dominating points. For the setting in Section 3.3.3, computing all dominating points requires

insurmountable resources (as discussed therein), and so we use the mixture of 100 dominating

points as a proxy of an asymptotically efficient estimator (100 is the total number of dominating

points we discover using one-week’s computation).

In the experiments, we compare the coverage rates of all three intervals described above. These

coverage rates are obtained from a large number of experimental repetitions. Since the ground

truths of these problems are unknown, we run a gigantic amount of simulation runs using either

asymptotically efficient estimators or crude Monte Carlo to obtain highly accurate estimates, which

serve as the “truths” when estimating the coverage of the CIs. The accuracy of these estimates is

indicated by the very small widths of the associated CIs relative to the estimated ground-truth val-

ues in all examples. The exact number of simulation runs used in our ISs, number of experimental
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repetitions, and number of runs to approximate the ground truths are specified in the discussion of

each example below.

Large Deviations of an I.I.D. Sum.

For the experiment in Section 3.3.1, we use the asymptotically efficient estimator 𝛽(𝑚) to ob-

tain highly accurate estimates for all values of𝑚 as the ground truths. These estimates are presented

in Table 3.6. Our probabilistically efficient estimator �̂�(𝑚) is computed using 104 independently

generated samples. From this, we apply CIs (3.12) and (3.13). We also construct CIs (3.13) using

asymptotically efficient estimator 𝛽(𝑚) (which is used to approximate the ground truth) with 104

independently generated samples. We approximate the coverage rates using 105 experimental iter-

ations. Moreover, we compute the average CI width for each type of CIs. The experiment results

are shown in Table 3.7.

From Table 3.7, we observe that the coverage rates of tight CIs by our probabilistically efficient

estimator are close to 95% in three out of the four cases, but is 3% below 95% in one case (𝑚 =

10). On the other hand, the loose CIs are valid but perform conservatively with more than 99%

coverage rates and wider average widths in all cases. The tight CIs by asymptotically efficient

estimators provide valid coverage in all four cases. In the problems with rarer probabilities (i.e.

𝑚 = 30, 50, 100), the tight CIs by probabilistically efficient estimators perform similarly as the

CIs by asymptotically efficient estimators in terms of both CI width and coverage. This shows the

competitiveness of CIs using probabilistically efficient estimators for rarer problems.

Finally, we empirically verify the conditions in Theorem 3.8 needed to ensure the correctness

of the tight confidence interval. In particular, the conditions require the sample size 𝑛 to grow

subexponentially with a growth rate such that
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍1)
→ 0 and �̃�2 |𝑍1−𝑝1 |3

𝑛𝑉𝑎𝑟
3 (𝑍 (1)1 )

→ 0. Here, we focus

on checking the smallness of
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍1)
and �̃�2 |𝑍1−𝑝1 |3

𝑛𝑉𝑎𝑟
3 (𝑍 (1)1 )

as an empirical validation. Table 3.8 presents

the estimates of these quantities based on 104 samples. We observe that all estimates are close to

0, which explains the good performance of the tight confidence interval.

We note that our above empirical validation of the growth rate type conditions in Theorem 3.8
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by using the smallness of the depicted quantities could be viewed as subjective (after all, there

is a question of how small is regarded as small enough). However, we point out that even in the

classical asymptotically optimal estimators, these conditions are still needed to ensure the validity

of the corresponding CIs (see Theorem 3.9). From our best understanding, these conditions are

usually ignored in the literature which focuses on asymptotic validity for large enough 𝑛 rather

than studying the required growth rate as we have made more precise in our theorems.

Table 3.6: Highly accurate point estimates (and 95% CI) using asymptotically efficient estimators
for the problem in Section 3.3.1. The estimates are computed with 107 samples for 𝑚 = 10, 30, 50
and 5 × 106 samples for 𝑚 = 100.

𝑚 10 30 50 100
𝑝 8.85(±0.0084) × 10−3 1.58(±0.0021) × 10−5 3.76(±0.0056) × 10−8 1.34(±0.0034) × 10−14

Table 3.7: Coverage rates and average CI widths of the loose confidence intervals (“Loose CI by
PE”), the tight confidence intervals (“Tight CI by PE”) for probabilistically efficient estimators,
and the tight confidence intervals for asymptotically efficient estimators (”Tight CI by AE”) in the
experiments of Section 3.3.1. These measures are estimated using 105 macro replications.

𝑚 10 30 50 100

Loose CI by PE
Coverage Rate 0.998 0.999 0.9994 0.999
Average Width 9.12 × 10−4 2.31 × 10−6 6.37 × 10−9 2.81 × 10−15

Tight CI by PE
Coverage Rate 0.921 0.951 0.950 0.950
Average Width 5.30 × 10−4 1.31 × 10−6 3.54 × 10−9 1.52 × 10−15

Tight CI by AE
Coverage Rate 0.950 0.960 0.949 0.950
Average Width 5.30 × 10−4 1.30 × 10−6 3.55 × 10−9 1.52 × 10−15

Table 3.8: Verification of the conditions needed to ensure the correctness of the tight confidence
intervals for the probabilistically efficient estimators in the example in Section 3.3.1. The estimates
are computed with 104 samples.

𝑚 10 30 50 100
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍1)
0.00171 0.00243 0.00296 0.00412

�̃�2 |𝑍1−𝑝1 |3

𝑛𝑉𝑎𝑟
3 (𝑍 (1)1 )

0.00040 0.00073 0.00094 0.00149
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MNIST Example.

For the experiment in Section 3.3.3, we use 1010 runs of crude Monte Carlo to approximate

the ground truths, which are shown in Table 3.9. Note that the estimate for 𝜎 = 0.17 is relatively

less accurate than other estimates, revealed by the CI width in the magnitude of around 0.1 of

the probability estimate. We obtain our probabilistically efficient estimator by generating 104

independent samples and construct CIs (3.12) and (3.13) based on this estimator. Since locating

all dominating points to construct asymptotically efficient estimator is computationally infeasible

in this example, we use IS estimators that mix the most significant 100 dominating points (the

number of dominating points obtained from our sequential mixed integer programming procedure

in Algorithm 3.2) as a proxy. We construct CI (3.13) from this estimator using 104 samples. We

use 105 experimental repetitions to estimate the coverage rates and average widths of the CIs from

probabilistically efficient estimators and 103 repetitions for the CIs from IS estimators using 100

dominating points (we use repetition size 103 instead of 105 because of the long computational

time caused by a large number of mixtures in the IS distribution). The results are presented in

Table 3.10.

From Table 3.10, we observe that in three out of the four cases, the tight CIs constructed from

probabilistically efficient estimators provide coverage rates that are slightly below 95%. Similar

to the previous random walk overshoot problem, the coverage rates are closer to 95% for rarer

problems (e.g., the coverage is 94.9% for 𝜎 = 0.17). The under-coverage is alleviated when we

use more than one dominating point, as shown in the row of “Tight CI by AE” (where we use 100

dominating points). On the other hand, the loose CIs have higher than nominal coverage rates in

all cases, but are conservative since the rates are around 97.5% − 99.5%. Again, we observe the

validity of the CIs with probabilistically efficient estimators as the rare-event probability decreases,

which validates our analysis.

To validate the tight confidence interval’s correctness, we again empirically verify the con-

ditions outlined in Theorem 3.8. Based on 104 samples, we estimate the values of
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍1)
and
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�̃�2 |𝑍1−𝑝1 |3

𝑛𝑉𝑎𝑟
3 (𝑍 (1)1 )

which are shown in Table 3.11. We observe that all the estimates are close to 0, which

supports a good performance of the tight confidence interval in the rarer setting.

Table 3.9: Highly accurate point estimates (and 95% CI) using crude Monte Carlo simulation with
1010 samples

for the problem in Section 3.3.3.
𝜎 0.17 0.18 0.19 0.2
𝑝 3.15(±0.15) × 10−7 1.29(±0.031) × 10−6 4.22(±0.056) × 10−6 1.17(±0.0094) × 10−5

Table 3.10: Coverage rates and average CI widths of the loose confidence intervals (“Loose CI by
PE”), the tight confidence intervals (“Tight CI by PE”) for probabilistically efficient estimators,
and the tight confidence intervals for asymptotically efficient estimators (”Tight CI by AE”) in the
experiments of Section 3.3.3. These measures for PE estimators are estimated using 105 macro
replications, while those for AE estimators are estimated using 103 macro replications.

𝜎 0.17 0.18 0.19 0.2

Loose CI by PE
Coverage Rate 0.996 0.978 0.980 0.977
Average Width 6.32 × 10−8 2.61 × 10−7 1.13 × 10−6 3.20 × 10−6

Tight CI by PE
Coverage Rate 0.949 0.874 0.885 0.877
Average Width 4.19 × 10−8 1.73 × 10−7 7.50 × 10−7 2.12 × 10−6

Tight CI by AE
Coverage Rate 0.958 0.933 0.945 0.951
Average Width 4.77 × 10−8 1.96 × 10−7 6.13 × 10−7 1.90 × 10−6

Table 3.11: Verification of the conditions needed to ensure the correctness of the tight confidence
intervals for the probabilistically efficient estimators in the example in Section 3.3.3. The estimates
are computed with 104 samples.

𝜎 0.17 0.18 0.19 0.2
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍1)
0.00231 0.00203 0.00187 0.00151

�̃�2 |𝑍1−𝑝1 |3

𝑛𝑉𝑎𝑟
3 (𝑍 (1)1 )

0.00252 0.00255 0.00322 0.00735

Summary of Experimental Observations on Confidence Interval Construction.

From the CI construction for the two examples in Section 3.3 investigated above, we draw sev-

eral conclusions: 1) Tight CIs by probabilistically efficient estimators appear to have close to the

nominal coverage rate when the problem is rare enough; 2) Loose CIs by probabilistically efficient

estimators tend to over-cover, and also have correspondingly larger widths than other methods;
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3) Tight CIs by asymptotically efficient estimators appear to give more accurate coverage rates

for a larger range of rarity levels than the tight CIs by probabilistically efficient estimators, even

though they could still under-cover in some cases; 4) When tight CIs by probabilistically efficient

and asymptotically efficient estimators both have accurate coverage rates, their widths appear to be

comparable. Overall, it appears that tight CIs by asymptotically efficient estimators are more robust

with respect to the rarity level of the problem, which is also in line with the comparison between

Theorems 3.8 and 3.9 (recall the discussion right after Theorem 3.9). Nonetheless, recall that one

motivation of us proposing the notion of probabilistic efficiency is that asymptotically efficient es-

timators, which require using more dominating points in their mixtures, could be computationally

challenging to construct.

3.7 Future Work

We conclude the chapter with further discussions on the potential risk of the current framework

and some future directions.

3.7.1 Developing Diagnosis for Finite-Sample Under-Estimation

Similar to the established notion of asymptotic efficiency in the rare-event simulation literature,

our probabilistic efficiency framework is asymptotic. For a fixed rarity parameter 𝛾 and given

simulation size 𝑛 in practice, more work needs to be investigated to judge whether the obtained

estimate is reliable or not. In particular, a risk of missing dominating points is finite-sample under-

estimation. To be more specific, we look at the following example.

Example 3.1. Suppose that our goal is to estimate 𝑝 = 𝑃( 1
𝛾
𝑋𝛾 ∈ (−∞,−𝑘] ∪ [1,∞)) where

𝑋𝛾 ∼ 𝑁 (0, 𝛾) and 𝑘 > 1. In this case, the most significant dominating point is 1, so we consider

choosing 𝑋𝛾 ∼ 𝑁 (𝛾, 𝛾) as the IS distribution. That is, the IS estimator is 𝑍 = 𝐼 ( 1
𝛾
𝑋𝛾 ∈ (−∞,−𝑘] ∪

[1,∞))𝑒−𝑋𝛾+𝛾/2 with 𝑋𝛾 ∼ 𝑁 (𝛾, 𝛾). We generate independent samples 𝑍 (1) , . . . , 𝑍 (𝑛) and use

𝑝 = 1
𝑛

∑𝑛
𝑖=1 𝑍𝑖 to estimate 𝑝. When 1 < 𝑘 < 3, the relative error of 𝑍 grows exponentially in 𝛾

(or − log 𝑝), so 𝑍 is not asymptotically efficient (see the proof of Proposition 3.2). On the other
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hand, from our previous derivations, 𝑍 is strongly probabilistically efficient, so we can still get a

reliable estimate when 𝛾 is sufficiently large. However, in the finite-sample case where 𝑘 is close

to 1 and 𝛾 is not large, if 𝑛 is chosen as a moderate size, then it could happen that {𝑋 ≤ −𝑘𝛾} is

not hit and hence we would get an estimate close to 𝑝1 = 𝑃( 1
𝛾
𝑋𝛾 ≥ 1), but 𝑝2 = 𝑃( 1

𝛾
𝑋𝛾 ≤ −𝑘)

is not negligible compared to 𝑝1. In other words, we under-estimate 𝑝. As a specific example, let

𝑘 = 1.01 and 𝛾 = 16. Then 𝑝2 = �̃�( 1
16𝑋16 ≤ −1.01) = Φ̄(8.04) ≈ 4.44 × 10−16. In this case, for

a moderate 𝑛 like 1000, with probability almost 1 the set { 1
16𝑋16 ≤ −1.01} is never hit. However,

𝑝2/𝑝1 = Φ̄(4.04)/Φ̄(4) ≈ 0.84. This means with probability almost 1, we under-estimate 𝑝 by

about 0.84/(1 + 0.84) ≈ 46%.

Example 3.1 shows that under finite parameter value and finite sample, it could be hard to tell

whether we can safely drop less significant dominating points. A good aspect about the conclu-

sion in this example, however, is that the under-estimation is arguably acceptable in relative term

(i.e., the estimate is still in the same magnitude as the ground truth), pointing to an estimation

resembling weak probabilistic efficiency. We should emphasize that a similar concern applies to

asymptotically efficient estimators as well. That is, it is difficult to guarantee whether the sample

size 𝑛 is large enough to give a reliable estimate for a given setup and rarity parameter value. Nev-

ertheless, increasing 𝑛 would improve the performance of asymptotically efficient estimators, but

for probabilistic efficiency, we do not have the luxury of increasing 𝑛 since our framework requires

𝑛 to be moderate in size. This points to more need of developing diagnostic methods to detect

under-estimation due to finite-sample effects in the future.

3.7.2 Further Developing Theory of IS with Missed Dominating Points

Despite the presence of under-estimation risks described above, we maintain our motivation of

probabilistic efficiency as a theory to allow one to use few dominating points in problems where

finding all of them is infeasible. In fact, what we have focused on in this chapter is only one theory

where dropping dominating points is valid, among other possibilities. To support this, we revisit

Example 3.1:
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Example 3.2 (Example 3.1 continued). Consider the problem setting in Example 3.1. When 𝑘 ≥ 3,

the relative error of 𝑍 grows only polynomially in 𝛾 (or − log 𝑝), and hence 𝑍 is asymptotically

efficient (see the proof of Proposition 3.2). The intuitive explanation is that 𝑝2 = �̃�( 1
𝛾
𝑋𝛾 ≤ −𝑘)

is extremely small which mitigates the blow-up of the likelihood ratio. More rigorously, when

1
𝛾
𝑋𝛾 ≤ −𝑘 we have 𝑍 ≥ 𝑒(𝑘+ 1

2 )𝛾, but �̃�( 1
𝛾
𝑋𝛾 ≤ −𝑘) = Φ̄((𝑘 + 1)√𝛾) = Θ( 1√

𝛾
𝑒−
(𝑘+1)2

2 𝛾). Overall

�̃� (𝑍2) = Θ( 1√
𝛾
𝑒−𝛾), and hence �̃� (𝑍2)/𝑝2 = Θ(√𝛾) which grows polynomially in − log 𝑝 = Θ(𝛾).

Example 3.2 shows that sometimes the missed dominating points are so rare that missing them

does not even harm the asymptotic efficiency. Here, explaining the validity of IS with missed

dominating points does not require probabilistic efficiency, but instead an alternate analysis of

asymptotic efficiency that is tighter than the standard approach in the literature. Nonetheless,

this phenomenon does not apply to our proposed estimators in Sections 3.3 and 3.6, as we have

mathematically verified the asymptotic inefficiency in our considered estimator in each example.

More generally, we conclude our chapter with Figure 3.4, which shows the relations among

different efficiency criteria and IS with missed dominating points. In this chapter, we have built

sufficient conditions to achieve strong probabilistic efficiency with missed dominating points. Ex-

ample 3.2, on the other hand, gives an example in achieving asymptotic efficiency with missed

dominating points. Our immediate future endeavor is to fill in the regions in Figure 3.4 that are not

covered by the current work, including the scenario depicted by Example 3.2, relaxing the current

sufficient conditions of probabilistic efficiency to allow 𝑝2 to be less tiny, achieving weak instead

of strong probabilistic efficiency with missed dominating points, and moreover, to understand the

“complementary" regions where missing dominating points would be guaranteed to violate the ef-

ficiency notions. Our longer-term goals include the creation of a unified theory that encompasses

both the classical variance-based criteria and our probabilistic efficiency, using potentially new

variability measures of suitably defined limiting quantities, and revisiting the interpretation of the

variance reduction notion in IS and other competing techniques. In summary, this work serves as

a first step in a new line of analysis aiming to relax existing variance-based efficiency criteria in
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Figure 3.4: Relationships among different efficiency criteria and IS estimators missing dominating
points.

rare-event simulation to be applicable to larger-scale and more complex problems.

3.8 Supplementary A: Algorithms

Algorithm 3.1 shows a procedure to obtain dominating sets. We briefly explain the idea here.

First we minimize 𝐼 (𝑥) over 𝑥 ∈ E and get the first dominating point 𝑎1. If E ⊂ {𝑥 ∈ R𝑑 :

𝑠⊤𝑎1 (𝑥 − 𝑎1) ≥ 0}, then we know that {𝑎1} is a dominating set and hence we could stop. Otherwise,

we minimize 𝐼 (𝑥) over 𝑥 ∈ E \ {𝑥 ∈ R𝑑 : 𝑠⊤𝑎1 (𝑥 − 𝑎1) ≥ 0} to get the second dominating point 𝑎2.

Then we check whether E ∈ ⋃2
𝑖=1{𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0}. By repeating this process, we would

finally get a dominating set 𝐴 = {𝑎1, . . . , 𝑎𝑟} with 𝐼 (𝑎1) ≤ · · · ≤ 𝐼 (𝑎𝑟).

3.9 Supplementary B: Additional Numerical Experiments

3.9.1 Overshoot Probability of a Random Walk.

We verify the conditions for probabilistic efficiency for the experiment in Section 3.3.2. Then

we illustrate the proposed confidence intervals using the example.

In Section 3.3.2, we consider the most significant dominating point 𝑎 = 𝑎1 and our proba-

bilistically efficient estimator is the exponential tilting towards the most significant dominating

point only, i.e., 𝑋𝛾 distributed as 𝑁 (𝛾𝑎1, 𝛾Σ). We define A1
𝛾 = A𝛾 ∩ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0} and
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Algorithm 3.1: Sequentially find all the dominating points.
Input: Rarity parameter 𝛾, rare-event set E ⊂ R𝑑 , rate function 𝐼 (𝑦), function 𝑎 ↦→ 𝑠𝑎.
Output: Dominating set 𝐴.

1 Start with 𝐴 = ∅, 𝑟 = 0;
2 While {𝑥 ∈ R𝑑 : 𝑥 ∈ E, 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) < 0, ∀𝑖 = 1, . . . , 𝑟} ≠ ∅ do
3 Find a dominating point 𝑎𝑟+1 by solving the optimization problem

𝑎𝑟+1 = arg min
𝑥

𝐼 (𝑥)

s.t. 𝑥 ∈ E,
𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) < 0, ∀𝑖 = 1, . . . , 𝑟

and update 𝐴← 𝐴 ∪ {𝑎𝑟+1}, 𝑟 ← 𝑟 + 1.
4 End

A2
𝛾 = A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}, and the corresponding probabilities 𝑝1 = 𝑃(A𝛾 ∩ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0})

and 𝑝2 = 𝑃(A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}). We compute 𝑝1, 𝑝2, and also the contribution of each of the

nine less significant dominating points in 𝑝2. More precisely, we define B2
𝛾 = A𝛾 ∩ {𝑠⊤𝑎2 (𝑥 − 𝑎2) ≥

0} \ {𝑠⊤𝑎1 (𝑥− 𝑎1) ≥ 0}, B3
𝛾 = A𝛾 ∩ {𝑠⊤𝑎3 (𝑥− 𝑎3) ≥ 0} \ ({𝑠⊤𝑎1 (𝑥− 𝑎1) ≥ 0} ∪ {𝑠⊤𝑎2 (𝑥− 𝑎2) ≥ 0}),. . . ,

B10
𝛾 = A𝛾∩{𝑠⊤𝑎10 (𝑥−𝑎10) ≥ 0}\

(
∪9
𝑗=1{𝑠

⊤
𝑎 𝑗
(𝑥 − 𝑎 𝑗 ) ≥ 0}

)
, and use 𝑝𝑎2 = 𝑃(B2

𝛾), .., 𝑝𝑎10 = 𝑃(B10
𝛾 )

to denote the contribution of dominating points 𝑎2, . . . , 𝑎10 (with decreasing significance). For

each probability 𝑝1, 𝑝𝑎2 , . . . , 𝑝𝑎10 , we construct an IS estimator using the “corresponding” domi-

nating points 𝑎1, . . . , 𝑎10, e.g., for 𝑝𝑎2 the IS distribution is mean shifted to 𝑎2. Then we estimate

𝑝2 through 𝑝2 = 𝑝𝑎2 + · · · + 𝑝𝑎10 and 𝑝 through 𝑝 = 𝑝1 + 𝑝2. Table 3.12 presents the results

estimated using independently generated 104 samples from the corresponding IS distributions. We

observe that 𝑝2/𝑝 has larger values than those in the previous experiment, in that 𝑝2/𝑝 ≈ 0.25 at

𝜎 = 0.3 and 𝑝2/𝑝 ≈ 0.15 at 𝜎 = 0.2. Nonetheless, 𝑝2/𝑝’s value decreases rapidly as 𝜎 decreases,

i.e., the problem becomes rarer, which suggests the trend 𝑝2/𝑝 → 0 in Condition 1 of Theorem

3.3. Additionally, we observe from the values of 𝑝𝑎2/𝑝, . . . , 𝑝𝑎10/𝑝 that the contribution of each

less significant dominating point vanishes rapidly with decreasing 𝜎.

Next, we present the probabilities 𝑝1 = �̃�(A𝛾∩{𝑠⊤𝑎 (𝑥−𝑎) ≥ 0}) and 𝑝2 = �̃�(A𝛾\{𝑠⊤𝑎 (𝑥−𝑎) ≥

0}) under the probabilistically efficient IS distribution. For 𝑝2, we also present the contributions
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Table 3.12: Estimates of 𝑝1, 𝑝2 and the contributions of the less significant dominating points for
the random walk example in Section 3.3.2 with 104 samples, where we useA1

𝛾 = A𝛾∩{𝑠⊤𝑎 (𝑥−𝑎) ≥
0} and A2

𝛾 = A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}.

𝜎 0.3 0.28 0.26 0.24 0.22 0.2
𝑝1 2.42 × 10−4 9.07 × 10−5 2.82 × 10−5 6.12 × 10−6 9.79 × 10−7 7.92 × 10−8

𝑝1/𝑝 0.7434 0.7512 0.7776 0.7960 0.8311 0.8549
𝑝2 8.36 × 10−5 3.00 × 10−5 8.05 × 10−6 1.57 × 10−6 1.99 × 10−7 1.34 × 10−8

𝑝2/𝑝 0.2566 0.2488 0.2224 0.2040 0.1689 0.1451
𝑝 3.26 × 10−4 1.21 × 10−4 3.62 × 10−5 7.66 × 10−6 1.18 × 10−6 9.26 × 10−8

𝑝𝑎2 5.29 × 10−5 1.95 × 10−5 5.50 × 10−6 1.14 × 10−6 1.56 × 10−7 1.11 × 10−8

𝑝𝑎2/𝑝 0.1625 0.1611 0.1519 0.1489 0.1323 0.1194
𝑝𝑎3 2.06 × 10−5 7.46 × 10−6 1.88 × 10−6 3.32 × 10−7 3.57 × 10−8 2.06 × 10−9

𝑝𝑎3/𝑝 0.0632 0.0618 0.0519 0.0432 0.0303 0.0223
𝑝𝑎4 7.35 × 10−6 2.48 × 10−6 5.59 × 10−7 7.85 × 10−8 6.69 × 10−9 2.96 × 10−10

𝑝𝑎4/𝑝 0.0226 0.0205 0.0154 0.0102 0.0057 0.0032
𝑝𝑎5 2.23 × 10−6 5.67 × 10−7 1.02 × 10−7 1.19 × 10−8 6.86 × 10−10 1.95 × 10−11

𝑝𝑎5/𝑝 0.0069 0.0047 0.0028 0.0015 5.82 × 10−4 2.11 × 10−4

𝑝𝑎6 4.18 × 10−7 8.07 × 10−8 1.13 × 10−8 1.00 × 10−9 3.53 × 10−11 4.58 × 10−13

𝑝𝑎6/𝑝 0.0013 6.68 × 10−4 3.11 × 10−4 1.30 × 10−4 3.00 × 10−5 4.94 × 10−6

𝑝𝑎7 3.51 × 10−8 5.00 × 10−9 4.07 × 10−10 1.84 × 10−11 3.32 × 10−13 1.75 × 10−15

𝑝𝑎7/𝑝 1.08 × 10−4 4.14 × 10−5 1.12 × 10−5 2.39 × 10−6 2.82 × 10−7 1.89 × 10−8

𝑝𝑎8 5.43 × 10−10 3.95 × 10−11 1.43 × 10−12 2.81 × 10−14 1.58 × 10−16 1.98 × 10−19

𝑝𝑎8/𝑝 1.67 × 10−6 3.28 × 10−7 3.94 × 10−8 3.66 × 10−9 1.34 × 10−10 2.14 × 10−12

𝑝𝑎9 1.32 × 10−13 2.93 × 10−15 2.50 × 10−17 7.30 × 10−20 3.43 × 10−23 1.46 × 10−27

𝑝𝑎9/𝑝 4.05 × 10−10 2.43 × 10−11 6.91 × 10−13 9.50 × 10−15 2.91 × 10−17 1.57 × 10−20

𝑝𝑎10 2.35 × 10−24 1.37 × 10−27 1.36 × 10−31 1.25 × 10−36 3.95 × 10−43 1.37 × 10−51

𝑝𝑎10/𝑝 7.21 × 10−21 1.13 × 10−23 3.75 × 10−27 1.63 × 10−31 3.36 × 10−37 1.48 × 10−44

from the dominating points 𝑎2, . . . , 𝑎10, denoted as 𝑝𝑎2 , . . . , 𝑝𝑎10 with

𝑝𝑎𝑖 = �̃�

(
A𝛾 ∩ {𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0} \

(
∪𝑖−1
𝑗=1{𝑠

⊤
𝑎 𝑗
(𝑥 − 𝑎 𝑗 ) ≥ 0}

))
for 𝑖 = 2, . . . , 10. The probabilities are estimated using the proportion of samples falling into the

corresponding sets based on 104 samples drawn from the probabilistically efficient IS distribution.

The results are presented in Table 3.13. We observe that 𝑝2 generally decreases from 0.0129

at 𝜎 = 0.3 to 0.0039 with 𝜎 = 0.2. Furthermore, the decreasing trends also appear in each

individual contribution from the less significant dominating points, where most of the probabilities

(e.g., 𝑝𝑎4 , . . . , 𝑝𝑎10) already vanish when 𝜎 = 0.2. Based on the value of 𝑝2, we estimate the
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probability �̃�(some of the 𝑛 samples hits A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}) through 1− (1− 𝑝2)𝑛. We denote

this probability as 𝑝ℎ𝑖𝑡 and present the results with 𝑛 = 104 (the sample size we use in Section 3.3)

in the last row of Table 3.13. We observe that there are samples falling into A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}

with approximately probability 1 when we use 𝑛 = 104 samples. This close-to-1 probability,

unfortunately, is quite different from what our Condition 3 in Theorem 3.3 would entail and cannot

explain the good performance of our probabilistically efficient estimator.

Table 3.13: Estimates of 𝑝1, 𝑝2 and the contributions of the less significant dominating points under
probabilistically efficient IS for the random walk example in Section 3.3.2 with 104 samples, where
we use A1

𝛾 = A𝛾 ∩ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0} and A2
𝛾 = A𝛾 \ {𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0}.

𝜎 0.3 0.28 0.26 0.24 0.22 0.2
𝑝1 0.5057 0.4916 0.496 0.5053 0.4969 0.4985
𝑝2 0.0129 0.0141 0.0086 0.0076 0.0057 0.0039
𝑝𝑎2 0.0111 0.0111 0.007 0.0062 0.0048 0.0034
𝑝𝑎3 0.0011 0.0024 0.0013 0.0013 0.0008 0.0005
𝑝𝑎4 0.0006 0.0006 0.0002 0.0001 0.0001 0
𝑝𝑎5 0.0001 0 0.0001 0 0 0
𝑝𝑎6 0 0 0 0 0 0
𝑝𝑎7 0 0 0 0 0 0
𝑝𝑎8 0 0 0 0 0 0
𝑝𝑎9 0 0 0 0 0 0
𝑝𝑎10 0 0 0 0 0 0
𝑝ℎ𝑖𝑡 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1 ≈ 1

To explain the good performance of our approach, we consider an alternative construction

of A1
𝛾 and A2

𝛾 = A𝛾 \ A1
𝛾 to explain our performance. From the proofs of Propositions 3.4

and 3.5, we know that our probabilistically efficient estimator is not asymptotically efficient if

and only if min𝑥∈A𝛾 (𝑥 + 𝑎1)⊤Σ−1(𝑥 + 𝑎1) < 4𝑎⊤1 Σ
−1𝑎1. In other words, if we split the rare-

event set A𝛾 into two parts, say A1
𝛾 = {A𝛾 ∩ {(𝑥 + 𝑎1)⊤Σ−1(𝑥 + 𝑎1) ≥ 4𝑎⊤1 Σ

−1𝑎1}} and A2
𝛾 =

{A𝛾 \ {(𝑥 + 𝑎1)⊤Σ−1(𝑥 + 𝑎1) ≥ 4𝑎⊤1 Σ
−1𝑎1}}, then our probabilistically efficient estimator is

asymptotically efficient for estimating 𝑃(A1
𝛾) because (𝑥 + 𝑎1)⊤Σ−1(𝑥 + 𝑎1) ≥ 4𝑎⊤1 Σ

−1𝑎1 for all

𝑥 ∈ A1
𝛾. This implies that, with these choices ofA1

𝛾 andA2
𝛾, we satisfy Condition 2 in Theorem 3.3

(since the IS estimator using the most significant dominating point is asymptotically efficient for

estimating 𝑃(A1
𝛾)).
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Next we check Conditions 1 and 3 in Theorem 3.3. We define 𝑝1 = 𝑃(A1
𝛾), 𝑝2 = 𝑃(A2

𝛾),

𝑝1 = �̃�(A1
𝛾), and 𝑝2 = �̃�(A2

𝛾) for our newly constructed A1
𝛾 and A2

𝛾. The use of our newly

constructed A1
𝛾 for Theorem 3.3 can be theoretically shown to satisfy Conditions 1 and 3 therein

like in Section 3.6.1. To estimate 𝑝2, we construct an IS estimator that mixes the exponential

tiltings towards the dominating points for H𝑖 ∩ {(𝑥 + 𝑎1)⊤Σ−1(𝑥 + 𝑎1) ≤ 4𝑎⊤1 Σ
−1𝑎1} with 𝑖 =

1, . . . , 10. To estimate 𝑝1 and 𝑝2, we directly generate samples from the probabilistically efficient

IS distribution. We define 𝑝ℎ𝑖𝑡 = �̃�(some of the 𝑛 samples hits A2
𝛾) and estimate 𝑝ℎ𝑖𝑡 through

1 − (1 − 𝑝2)𝑛 with 𝑛 = 104. The results are presented in Table 3.14. We observe that the values

of 𝑝2/𝑝 are now extremely small (smaller than 10−8 in all cases). Furthermore, the values of

𝑝2 are also small, which lead to 𝑝ℎ𝑖𝑡 < 0.01 in all cases when 𝜎 varies from 0.2 to 0.3. These

results now justify Conditions 1 and 3 of Theorem 3.3 and explain the good performance of our

probabilistically efficient estimator in the experiment.

Table 3.14: Estimates of 𝑝2 with 104 samples, 𝑝1 and 𝑝2 with 107 samples, and 𝑝ℎ𝑖𝑡 with 𝑛 = 104

for random walk example in Section 3.3.2, where we use A1
𝛾 = {A𝛾 ∩ {(𝑥 + 𝑎1)⊤Σ−1(𝑥 + 𝑎1) ≥

4𝑎⊤1 Σ
−1𝑎1}} and A2

𝛾 = {A𝛾 \ {(𝑥 + 𝑎1)⊤Σ−1(𝑥 + 𝑎1) ≥ 4𝑎⊤1 Σ
−1𝑎1}}.

𝜎 0.3 0.28 0.26 0.24 0.22 0.2
𝑝2 3.85 × 10−13 2.58 × 10−12 9.77 × 10−15 8.58 × 10−18 2.32 × 10−22 1.90 × 10−30

𝑝2/𝑝 1.19 × 10−9 2.15 × 10−8 2.72 × 10−10 1.08 × 10−12 2.00 × 10−16 1.89 × 10−23

𝑝1 0.5149 0.5121 0.5098 0.5078 0.5059 0.5038
𝑝2 3 × 10−7 5 × 10−7 7 × 10−7 1 × 10−7 1 × 10−7 4 × 10−7

𝑝ℎ𝑖𝑡 0.003 0.005 0.007 0.001 0.001 0.004

To estimate the coverage of the constructed CIs, we use the asymptotically efficient estimator

that mixes all dominating points to approximate the ground truths presented in Table 3.15. Our

probabilistically efficient estimator is computed using 104 independently generated samples. We

construct CIs (3.12) and (3.13) based on this estimator. For comparison we also construct CI (3.13)

from asymptotically efficient estimator using 104 samples independently generated from the ones

used to approximate the ground truth. We use 105 experimental repetitions to estimate the coverage

rates of all CIs. The coverage rates and average widths are presented in Table 3.16.

From Table 3.16, the loose CIs perform conservatively with near to 99% coverage rates in all
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cases. On the other hand, the tight CIs constructed from our probabilistically efficient estimators

have coverage rates below 95% in most of the cases. Moreover, as 𝜎 decreases (the probability

become rarer), the coverage rates first drop from around 0.93 (with 𝜎 = 0.3) to around 0.89 (with

𝜎 = 0.2), then they improve as 𝜎 further decreases and reaches around 95% when 𝜎 = 0.1.

The tight CIs by asymptotically efficient estimators have more stable coverage rates than the CIs

by probabilistically efficient estimators, but also suffer under-coverage in several cases (e.g., 0.86

with 𝜎 = 0.28). We also observe that the tight CIs by the probabilistically efficient estimators have

better average widths than the CIs by the asymptotically efficient estimators with smaller 𝜎 (e.g.,

𝜎 = 0.1, 0.12). The results show the validity of the CIs with probabilistically efficient estimators

as 𝜎 → 0, but also that the coverage rate may not always monotonically improve as the problem

becomes rarer.

Table 3.15: Higly accurate point estimates (and 95% CI) using asymptotically efficient estimators
for the problem in Section 3.3.2. The estimates are computed with 107 samples.

𝜎 𝑝

0.1 (5.57 ± 0.039) × 10−26

0.12 (1.30 ± 0.008) × 10−18

0.14 (3.82 ± 0.020) × 10−14

0.16 (3.18 ± 0.015) × 10−11

0.18 (3.32 ± 0.014) × 10−9

0.2 9.51(±0.035) × 10−8

0.22 7.93(±0.004) × 10−6

0.24 1.55(±0.010) × 10−5

0.26 3.59(±0.024) × 10−6

0.28 1.20(±0.003) × 10−4

0.3 3.22(±0.009) × 10−4

3.9.2 Two-sided Overshoot Probability of a Random Walk.

So far we have considered examples on strongly probabilistically efficient estimators. Here,

we consider an additional example where we use a weakly probabilistically efficient estimator. We

follow the problem setting in Section 3.3.2, where we consider the overshoot probability of the
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Table 3.16: Coverage rates and average CI widths of the loose confidence intervals (“Loose CI by
PE”), the tight confidence intervals (“Tight CI by PE”) for probabilistically efficient estimators,
and the tight confidence intervals for asymptotically efficient estimators (”Tight CI by AE”) in the
experiments of Section 3.3.2.

Loose CI by PE Tight CI by PE Tight CI by AE
𝜎 Coverage Width Coverage Width Coverage Width
0.1 0.9997 1.49 × 10−26 0.949 7.88 × 10−27 0.926 2.41 × 10−26

0.12 0.999 3.58 × 10−19 0.938 1.99 × 10−19 0.917 5.08 × 10−19

0.14 0.997 1.07 × 10−14 0.914 6.15 × 10−15 0.951 1.32 × 10−14

0.16 0.994 9.37 × 10−12 0.897 5.54 × 10−12 0.908 9.67 × 10−12

0.18 0.990 9.89 × 10−10 0.892 5.95 × 10−10 0.951 8.72 × 10−10

0.2 0.988 2.86 × 10−8 0.895 1.75 × 10−8 0.964 2.24 × 10−8

0.22 0.988 3.15 × 10−7 0.901 1.93 × 10−7 0.936 2.45 × 10−7

0.24 0.990 2.20 × 10−6 0.913 1.35 × 10−6 0.959 1.55 × 10−6

0.26 0.991 9.67 × 10−6 0.918 6.00 × 10−6 0.932 6.49 × 10−6

0.28 0.992 2.99 × 10−5 0.924 1.86 × 10−5 0.861 2.01 × 10−5

0.3 0.993 7.71 × 10−5 0.927 4.80 × 10−5 0.956 4.90 × 10−5

finite-horizon maximum of a random walk. However, we modify the probability of interest as

𝑝 = 𝑃

(
max

𝑚=1,...,𝑑
|𝑆𝑚 | ≥ 𝑎

)
, (3.14)

where we replace 𝑆𝑚 =
∑𝑚
𝑖=1𝑌𝑖 by its absolute value. The rest of the settings are the same

as in Section 3.3.2, i.e., we have 𝑌𝑖’s are Gaussian distributed with mean 0, standard deviation

𝜎, pairwise correlation −0.02, and rarity parameter 𝛾 = 1/𝜎2 → ∞. The target rare event is{
1
𝛾
𝑋𝛾 ∈

(⋃𝑑
𝑚=1H+𝑚

) ⋃ (⋃𝑑
𝑚=1H−𝑚

)}
where 𝑋𝛾 = 𝛾(𝑌1, . . . , 𝑌𝑑)⊤, H+𝑚 = {𝑥 ∈ R𝑑 :

∑𝑚
𝑖=1 𝑥𝑖 ≥ 𝑎},

and H−𝑚 = {𝑥 ∈ R𝑑 :
∑𝑚
𝑖=1 𝑥𝑖 ≤ −𝑎} with 𝑥𝑖 denoting the 𝑖th element in 𝑥. In this case, the rate

function is still 𝐼 (𝑦) = 1
2 𝑦
⊤Σ−1𝑦 and there are two most significant dominating points 𝑎1 =

𝑎Σ𝑒𝑑
𝑒⊤
𝑑
Σ𝑒𝑑

and −𝑎1 = − 𝑎Σ𝑒𝑑
𝑒⊤
𝑑
Σ𝑒𝑑

where 𝑒𝑑 ∈ R𝑑 denotes the vector with 1 in all 𝑑 elements.

For this experiment, we first introduce an asymptotically efficient estimator. From Proposi-

tion 3.1, we know that the IS estimator using dominating points 𝑎1, . . . , 𝑎𝑑 ,−𝑎1, . . . ,−𝑎𝑑 with

𝑎1, . . . , 𝑎𝑑 defined in Section 3.3.2 is asymptotically efficient. Next, we show the IS estimator

using the dominating point 𝑎1 is a weakly probabilistically efficient estimator and is not asymptot-

ically efficient:
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Theorem 3.11. Under the problem specifications in Section 3.3.2 and rare-event probability de-

fined in (3.14), the IS estimator that use only one of the most significant dominating points, namely

𝑎1 in Section 3.3.2, and 𝑋𝛾 distributed as 𝑁 (𝛾𝑎1, 𝛾Σ) in Section 3.3.2, is weakly probabilistically

efficient but not asymptotically efficient.

Compared to the one-sided overshoot example in Section 3.3.2, here the rare-event set has two

most significant dominating points 𝑎1 and −𝑎1. Because we only use the first one instead of mixing

both of the most significant dominating points in our IS, we only have 𝑝1/𝑝 → 1/2 instead of 0

and thus weak probabilistic efficiency instead of strong probabilistic efficiency holds as guided by

Theorem 3.4.

To empirically verify Theorem 3.4, let us consider a partition of the rare event set

A𝛾 =

{(
𝑑⋃
𝑚=1
H+𝑚

) ⋃ (
𝑑⋃
𝑚=1
H−𝑚

)}
,

where we haveA1
𝛾 = A𝛾 ∩{(𝑥 +𝑎1)⊤Σ−1(𝑥 +𝑎1) ≥ 4𝑎⊤1 Σ

−1𝑎1} andA2
𝛾 = A𝛾 \ {(𝑥 +𝑎1)⊤Σ−1(𝑥 +

𝑎1) ≥ 4𝑎⊤1 Σ
−1𝑎1}. We define 𝑝1 = 𝑃(A1

𝛾), 𝑝2 = 𝑃(A2
𝛾), 𝑝1 = �̃�(A1

𝛾), and 𝑝2 = �̃�(A2
𝛾), where

�̃� is the IS distribution exponentially tilted using the dominating point 𝑎1. In our experiments,

we set 𝑑 = 10, fix 𝑎1,−𝑎1 and vary 𝜎 for different rarity levels. For each case, we generate

104 samples from IS distributions using the above asymptotically efficient estimator and weakly

probabilistically efficient estimator. The results are presented in Table 3.17. We observe that

although our weakly probabilistically efficient estimator underestimates the rare-event probability

in all considered cases, the estimates have relatively tight CIs and provide a good estimation on the

magnitude of the rare-event probability, i.e., the estimates are around 0.5 of the estimates given by

the asymptotically efficient estimator.

In Table 3.18, we investigate the numerical values of 𝑝1, 𝑝2, 𝑝1 and 𝑝2 and check the values of

𝑝1/𝑝 and 𝑝ℎ𝑖𝑡 = �̃�(some of the 𝑛 samples hits A2
𝛾) with 𝑛 = 104. We estimate 𝑝1 and 𝑝2 using the

asymptotically efficient estimator with 107 independently generated samples. For the estimation

of 𝑝1 and 𝑝2, we generate 107 samples using the weakly probabilistically efficient IS distribution.
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Table 3.17: Point estimates (and 95% CIs) from the asymptotically efficient estimator and the
weakly probabilistically efficient estimator for the two-sided overshoot probability. “AE” denotes
the asymptotically efficient estimator and “PE” denotes the weakly probabilistically efficient esti-
mator.

𝜎 0.3 0.28 0.26 0.24 0.22 0.2
AE 6.15(±0.47) × 10−4 2.52(±0.20) × 10−4 7.53(±0.68) × 10−5 1.56(±0.15) × 10−5 2.26(±0.24) × 10−6 1.93(±0.24) × 10−7

PE 3.18(±0.18) × 10−4 1.19(±0.08) × 10−4 3.57(±0.29) × 10−5 8.00(±0.64) × 10−6 1.17(±0.11) × 10−6 9.43(±0.63) × 10−8

PE/AE 0.516 0.470 0.474 0.512 0.517 0.488

We observe that in all cases the values of 𝑝1/𝑝 are very close to 1/2. On the other hand, the

probabilities of falling into A2
𝛾 are all below 10−6, which lead to 𝑝ℎ𝑖𝑡 valued smaller than 0.01.

These results verify the conditions in Theorem 3.4 that explain the weak probabilistic efficiency of

the IS estimator.

Table 3.18: Estimates of 𝑝1, 𝑝2, 𝑝1 and 𝑝2 with 107 samples, and 𝑝ℎ𝑖𝑡 with 𝑛 = 104 for two-sided
overshoot probability.

𝜎 0.3 0.28 0.26 0.24 0.22 0.2
𝑝1 3.23 × 10−4 1.20 × 10−4 3.58 × 10−5 7.91 × 10−6 1.17 × 10−6 9.48 × 10−8

𝑝1/𝑝 0.501 0.500 0.500 0.499 0.501 0.499
𝑝2 3.22 × 10−4 1.20 × 10−4 3.59 × 10−5 7.94 × 10−6 1.16 × 10−6 9.51 × 10−8

𝑝 6.45 × 10−4 2.40 × 10−4 7.17 × 10−5 1.59 × 10−5 2.33 × 10−6 1.90 × 10−7

𝑝1 0.515 0.512 0.510 0.507 0.506 0.504
𝑝2 2 × 10−7 6 × 10−7 5 × 10−7 6 × 10−7 4 × 10−7 6 × 10−7

𝑝ℎ𝑖𝑡 0.002 0.006 0.005 0.006 0.004 0.006

3.10 Supplementary C: A New Alternative Asymptotic Regime and Theoretical Guarantees

In this section, we investigate a new regime that A𝛾 = {𝑋 ∈ E} and E = {𝑥 ∈ R𝑑 : 𝑔(𝑥) ≥ 𝛾}

where 𝑋 ∈ R𝑑 and 𝑔 : R𝑑 → R is a function. We propose this setting as it arises as a generic

representation of recent problems in intelligent system safety testing [125]. There, 𝑔 could be

highly complicated and leads to a gigantic number of dominating points, which in turn motivates

the consideration of dropping most of them and our notion of probabilistic efficiency. We note that

technically this setting is slightly different from the classical Gartner-Ellis regime in terms of the

position of the scaling parameter 𝛾 (see, e.g., [53]), but conceptually similar.

In Section 3.10.1, we adapt the notions of rate function and dominating points to this new
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regime. Then we state the assumptions under which we could build on Theorem 3.3 to obtain

reliable point estimates and CIs as in Section 3.5. We note that this new regime is harder to

analyze as the rare-event set E can change in a complicated way with 𝛾. For instance, unlike in the

Gartner-Ellis regime, now the number of dominating points can change with 𝛾. Thus, inevitably

our assumptions are relatively restrictive and need to be verified case by case. In Section 3.10.2,

we consider the special (but important) case where 𝑋 follows a Gaussian distribution and 𝑔 is

piecewise linear, in particular propose a simple stopping strategy to determine whether it is safe

to stop searching for the remaining dominating points. Throughout this section, we write 𝛼(𝛾) ∼

𝛽(𝛾) if 𝛼(𝛾)/𝛽(𝛾) is subexponential in − log 𝑝(𝛾).

3.10.1 Guarantees for General Input Distribution

We define `(𝑥) = log 𝐸𝑒𝑥⊤𝑋 , 𝑥 ∈ R𝑑 as the cumulant generating function of 𝑋 and 𝐼 (𝑦) =

sup𝑥∈R𝑑 {𝑥⊤𝑦 − `(𝑥)}, 𝑦 ∈ R𝑑 as its Legendre transform. For any set E ⊂ R𝑑 , we denote 𝐼 (E) =

inf𝑦∈E 𝐼 (𝑦). Parallel to Assumptions 3.1 and 3.2, we make the following two assumptions.

Assumption 3.3. `(𝑥) satisfies the following conditions:

1. 0 ∈ D(`)◦;

2. ` is essentially smooth, i.e., D(`)◦ is non-empty, ` is differentiable everywhere in D(`)◦

and ` is steep.

Assumption 3.4. For any 𝛾, E = E(𝛾) ⊂ R𝑑 is a Borel set such that E = E◦, E◦ ∩D(𝐼)◦ ≠ ∅ and

𝐼 (E) > 0.

The concepts of dominating set and dominating points are also similar, but now they change

with 𝛾:

Definition 3.5 (Dominating Set (New Regime)). Suppose that Assumptions 3.3 and 3.4 hold. We

call 𝐴 = 𝐴(𝛾) ⊂ 𝜕E a dominating set for E if
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1. For each 𝑎 ∈ 𝐴, there exists a unique 𝑠𝑎 ∈ R𝑑 such that ∇`(𝑠𝑎) = 𝑎;

2. E ⊂ ⋃
𝑎∈𝐴{𝑥 ∈ R𝑑 : 𝑠⊤𝑎 (𝑥 − 𝑎) ≥ 0};

3. 𝐴 \ {𝑎} does not satisfy the first two conditions for any 𝑎 ∈ 𝐴.

We call any point in 𝐴 a dominating point. For two dominating points 𝑎 and 𝑎′, we say 𝑎 is more

significant than 𝑎′ if 𝐼 (𝑎) < 𝐼 (𝑎′).

Suppose that 𝐴 = {𝑎1, . . . , 𝑎𝑟} is a dominating set. Then the corresponding mixture IS distri-

bution is given by 𝑑�̃�
𝑑𝑃
(𝜔) = ∑𝑟

𝑖=1 𝛼𝑖𝑒
𝑠⊤𝑎𝑖 𝑋−`(𝑠𝑎𝑖 ) with

∑𝑟
𝑖=1 𝛼𝑖 = 1, 𝛼𝑖 > 0,∀𝑖. Like the discussion in

Section 3.2, it is routine to derive that such an IS estimator is asymptotically efficient.

Now we consider using a partial list of dominating points. In particular, we can still sequentially

fill in the dominating set 𝐴 = {𝑎1, . . . , 𝑎𝑟} where 𝑎𝑖 = arg min{𝐼 (𝑦) : 𝑦 ∈ E, 𝑠⊤𝑎 𝑗 (𝑦 − 𝑎 𝑗 ) < 0, 𝑗 =

1, . . . , 𝑖−1} and hence 𝐼 (𝑎1) ≤ · · · ≤ 𝐼 (𝑎𝑟), and suppose that we have a stopping strategy 𝑘 = 𝑘 (𝛾)

with 1 ≤ 𝑘 ≤ 𝑟 before locating all the dominating points. We choose the mixture IS distribution

given by
𝑑�̃�

𝑑𝑃
(𝜔) =

𝑘∑︁
𝑖=1

1
𝑘
𝑒
𝑠⊤𝑎𝑖 𝑋−`(𝑠𝑎𝑖 ) . (3.15)

Unlike in (3.11), we no longer assign an individual weight 𝛼𝑖 to each dominating point 𝑎𝑖. Instead,

we only consider the uniform mixture for simplicity, since now the number of dominating points 𝑟

and 𝑘 can both potentially change with 𝛾.

First of all, we summarize the basic assumptions on the problem setting to ensure that there

exists a dominating set with moderate size:

Assumption 3.5. Consider the problem of estimating 𝑝 = 𝑃(𝑋 ∈ E) with E = {𝑥 ∈ R𝑑 : 𝑔(𝑥) ≥

𝛾} where 𝑋 ∈ R𝑑 is a random vector and 𝑔 is a function. Assume that

1. 𝑝 → 0 as 𝛾 →∞;

2. Assumption 3.3 holds for the cumulant generating function of 𝑋 under 𝑃;

3. Assumption 3.4 holds for E;
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4. For any 𝛾, there exists a dominating set for E, denoted as 𝐴 = {𝑎1, . . . , 𝑎𝑟} where 𝑎𝑖 =

arg min{𝐼 (𝑦) : 𝑦 ∈ E, 𝑠⊤𝑎 𝑗 (𝑦 − 𝑎 𝑗 ) < 0, 𝑗 = 1, . . . , 𝑖 − 1} and hence 𝐼 (𝑎1) ≤ · · · ≤ 𝐼 (𝑎𝑟).

Besides, 𝑟 = 𝑟 (𝛾) grows at most subexponentially in − log 𝑝.

Now consider a stopping strategy 𝑘 = 𝑘 (𝛾) and the corresponding IS distribution (3.15). Under

Assumption 3.5, for 𝑘 = 𝑘 (𝛾) with 1 ≤ 𝑘 ≤ 𝑟, denote E1 = E ∩⋃𝑘
𝑖=1{𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0}

and E2 = E \ E1. Corresponding to the settings in Theorem 3.3, we let A 𝑗
𝛾 = {𝑋 ∈ E 𝑗 }, 𝑗 = 1, 2.

We introduce Assumptions 3.6 and 3.7.

Assumption 3.6. If 𝑘 = 𝑟, then let 𝑎𝑘+1 = ∞1𝑑 . Assume that 𝑝1 := 𝑃(A1
𝛾) = 𝑃(𝑋 ∈ E1) ∼ 𝑒−𝐼 (𝑎1)

and that 𝑝2 := 𝑃(A2
𝛾) = 𝑃(𝑋 ∈ E2) is upper bounded by 𝑒−𝐼 (𝑎𝑘+1) up to subexponential factor in

− log 𝑝. Besides, 𝑒𝐼 (𝑎1)−𝐼 (𝑎𝑘+1) exponentially decays in − log 𝑝.

Assumption 3.7. Assume that 𝑝2 := �̃�(A2
𝛾) = �̃�(𝑋 ∈ E2) exponentially decays in − log 𝑝.

Roughly, Assumption 3.6 implies that 𝑝2 is exponentially smaller than 𝑝1 and Assumption 3.7

implies that E2 is hardly hit even under �̃�. Applying Theorem 3.3, we have that

Theorem 3.12 (Attaining probabilistic efficiency with a partial list of dominating points (new

regime)). Under Assumptions 3.5, 3.6 and 3.7, the IS estimator 𝑍 = 𝐼 (𝑋 ∈ E) 𝑑𝑃
𝑑�̃�
(𝜔) under �̃�

given by (3.15) is strongly probabilistically efficient.

Similar to Section 3.5, we can also construct asymptotically valid CIs with the sample mean

and sample variance.

Theorem 3.13 (Constructing confidence intervals with probabilistically efficient estimators (new

regime)). Assume that Assumptions 3.5, 3.6 and 3.7 hold. The IS estimator is 𝑍 = 𝐼 (𝑋 ∈

E) 𝑑𝑃
𝑑�̃�
(𝜔) under �̃� given by (3.15). We sample 𝑋 (1) , . . . , 𝑋 (𝑛) i.i.d. from �̃� and let 𝑍 (𝑖) = 𝐼 (𝑋 (𝑖) ∈

E) 𝑑𝑃
𝑑�̃�
, 𝑍
(𝑖)
1 = 𝐼 (𝑋 (𝑖) ∈ E1) 𝑑𝑃𝑑�̃� , 𝑖 = 1, . . . , 𝑛. Use 𝑝 and �̂� to respectively denote the sample mean

and sample variance of 𝑍 (𝑖)’s. In this case, If 𝑛 is subexponentially growing in − log 𝑝 as 𝛾 → ∞.
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Then, for any 0 < 𝛼 < 1,

lim inf
𝛾→∞

�̃�
©«|𝑝 − 𝑝 | ≤

√︄
2�̂� log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬ ≥ 1 − 𝛼.

That is,

𝑝 ± ©«
√︄

2�̂� log(4/𝛼)
𝑛

+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬

is an asymptotically valid (1 − 𝛼)-level CI for 𝑝.

Similar to Section 3.5, the CI in Theorem 3.13 is more conservative than the CLT-based interval

𝑝 ± 𝑧1−𝛼/2

√︃
�̂�
𝑛

. If additionally the following assumption holds, then the CLT-based CI is also

asymptotically valid:

Assumption 3.8. Denote 𝑍1 = 𝐼 (𝑋 ∈ E1) 𝑓 (𝑋)𝑓 (𝑋) under �̃�. Assume that 𝑉𝑎𝑟 (𝑍1) ∼ 𝑒−2𝐼 (𝑎1) .

Similar to Lemma 3.2, Assumption 3.8 serves to control the Berry-Esseen error bound. To be

more concrete, with this additional assumption, we have:

Theorem 3.14 (Constructing tight confidence intervals (new regime)). Assume that Assumptions

3.5, 3.6, 3.7 and 3.8 hold. The IS estimator is 𝑍 = 𝐼 (𝑋 ∈ E) 𝑑𝑃
𝑑�̃�
(𝜔) under �̃� given by (3.15).

We sample 𝑋 (1) , . . . , 𝑋 (𝑛) i.i.d. from �̃� and let 𝑍 (𝑖) = 𝐼 (𝑋 (𝑖) ∈ E) 𝑑𝑃
𝑑�̃�
, 𝑍
(𝑖)
1 = 𝐼 (𝑋 (𝑖) ∈ E1) 𝑑𝑃𝑑�̃� , 𝑖 =

1, . . . , 𝑛. Use 𝑝 and �̂� to respectively denote the sample mean and sample variance of 𝑍 (𝑖)’s. In

this case, we could choose 𝑛 subexponentially growing in − log 𝑝 such that 𝑘2𝑒−2𝐼 (𝑎1 )

𝑛𝑉𝑎𝑟 (𝑍 (1)1 )
→ 0 and

�̃�2 |𝑍 (1)1 −𝑝1 |3

𝑛𝑉𝑎𝑟
3 (𝑍 (1)1 )

→ 0 as 𝛾 →∞. Then, for any 0 < 𝛼 < 1,

lim inf
𝛾→∞

�̃�
©«|𝑝 − 𝑝 | ≤ 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≥ 1 − 𝛼.

That is,

𝑝 ± 𝑧1−𝛼/2

√︄
�̂�

𝑛
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is an asymptotically valid (1 − 𝛼)-level CI for 𝑝.

In the above, Assumptions 3.5, 3.6, 3.7 and 3.8 are technical conditions that need to be analyzed

case by case. The next Section 3.10.2 focuses on a specific but important problem setting where

we show how to verify all these conditions.

3.10.2 Guarantees for Gaussian Input Distribution

Suppose 𝑋 ∼ 𝑁 (_,Σ) under 𝑃 where _ ∈ R𝑑 and Σ ∈ R𝑑×𝑑 is positive definite. In this case

`(𝑥) = _⊤𝑥 + 1
2𝑥
⊤Σ𝑥, 𝑠𝑎 = Σ−1(𝑎 − _) and 𝐼 (𝑥) = 1

2 (𝑥 − _)
⊤Σ−1(𝑥 − _). Moreover, we suppose

that 𝑔 is a piecewise linear function. Related theoretical guarantees for piecewise linear function

of Gaussian input can be found in [125].

We use the following natural stopping strategy. First, fix a constant 𝐶 > 1. Then, we se-

quentially find the dominating points where we stop as long as (𝑎𝑘+1 − _)⊤Σ−1(𝑎𝑘+1 − _) >

𝐶 (𝑎𝑘 − _)⊤Σ−1(𝑎𝑘 − _). If there is no such 𝑘 , then we let 𝑘 = 𝑟, the number of all dominating

points. The IS distribution is chosen as 𝑋 ∼ 1
𝑘

∑𝑘
𝑖=1 𝜙(𝑥; 𝑎𝑖, Σ). We summarize these in Algorithm

3.2.

We have the following theorem suggesting that under the above setting, all the assumptions

listed in Section 3.10.1 are satisfied.

Theorem 3.15 (Verification of assumptions for Gaussian inputs). Suppose that 𝑋 ∼ 𝑁 (_, Σ) under

𝑃 where _ ∈ R𝑑 and Σ ∈ R𝑑×𝑑 is positive definite. E = {𝑥 ∈ R𝑑 : 𝑔(𝑥) ≥ 𝛾} where 𝑔 is a

piecewise linear function. 𝐶 > 1 is a constant. Assume that for any 𝛾, 𝑃(𝑋 ∈ E) > 0 and

_ ∉ E. For any 𝛾, we use the stopping strategy described above (more precisely Algorithm 3.2)

to sequentially find dominating points 𝑎1, 𝑎2, . . . , 𝑎𝑘 in decreasing significance and set up the IS

distribution 𝑋 ∼ 1
𝑘

∑𝑘
𝑖=1 𝜙(𝑥; 𝑎𝑖, Σ). Denote E1 = E ∩⋃𝑘

𝑖=1{𝑥 ∈ R𝑑 : (𝑎𝑖 − _)⊤Σ−1(𝑥 − 𝑎𝑖) ≥ 0}

and E2 = E \ E1. Then Assumptions 3.5, 3.6, 3.7 and 3.8 hold.

Note that in Theorem 3.15, all assumptions including Gaussianity and piecewise linear 𝑔 are all

straightforward to verify. With Theorem 3.15, we thus get the following corollaries from Theorems

3.12, 3.13 and 3.14:
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Algorithm 3.2: Estimate 𝑃(𝑔(𝑋) ≥ 𝛾) with Gaussian input 𝑋 and piecewise linear func-
tion 𝑔.

Input: Piecewise linear function 𝑔, rarity parameter 𝛾, input distribution 𝑁 (_, Σ),
threshold 𝐶 > 1, sample size 𝑛.

Output: IS estimate 𝑝.
1 Start with 𝑘 = 0;
2 While {𝑥 : 𝑔(𝑥) ≥ 𝛾, (𝑎𝑖 − _)⊤Σ−1(𝑥 − 𝑎𝑖) < 0, ∀𝑖 = 1, . . . , 𝑘} ≠ ∅ do
3 Find a dominating point 𝑎𝑘+1 by solving the optimization problem

𝑎𝑘+1 = arg min
𝑥
(𝑥 − _)⊤Σ−1(𝑥 − _)

s.t. 𝑔(𝑥) ≥ 𝛾,
(𝑎𝑖 − _)⊤Σ−1(𝑥 − 𝑎𝑖) < 0, ∀𝑖 = 1, . . . , 𝑘 .

4 If 𝑘 > 0 and (𝑎𝑘+1 − _)⊤Σ−1(𝑎𝑘+1 − _) > 𝐶 (𝑎𝑘 − _)⊤Σ−1(𝑎𝑘 − _) do
5 Break
6 Else do
7 Update 𝑘 ← 𝑘 + 1;
8 End
9 Sample 𝑋1, . . . , 𝑋𝑛 from the mixture distribution 1

𝑘

∑𝑘
𝑖=1 𝜙(𝑥; 𝑎𝑖, Σ).

10 Compute the IS estimate 𝑝 = 1
𝑛

∑𝑛
𝑖=1 𝐼 (𝑔(𝑋𝑖) ≥ 𝛾)𝐿 (𝑋𝑖) where the likelihood ratio

function is

𝐿 (𝑥) = 𝑒−
1
2 (𝑥−_)

⊤Σ−1 (𝑥−_)

1
𝑘

∑𝑘
𝑖=1 𝑒

− 1
2 (𝑥−𝑎𝑖)⊤Σ−1 (𝑥−𝑎𝑖)

.

Corollary 3.1 (Probabilistic efficiency for Gaussian inputs). Under the settings in Theorem 3.15,

the IS estimator 𝑍 = 𝐼 (𝑋 ∈ E) 𝑑𝑃
𝑑�̃�

is strongly probabilistically efficient.

Corollary 3.2 (Confidence intervals for Gaussian inputs). Under the settings in Theorem 3.15, we

sample 𝑋 (1) , . . . , 𝑋 (𝑛) i.i.d. from �̃� and let 𝑍 (𝑖) = 𝐼 (𝑋 (𝑖) ∈ E) 𝑑𝑃
𝑑�̃�

. Use 𝑝 and �̂� to denote the sample

mean and sample variance of 𝑍 (𝑖)’s. We could choose 𝑛 subexponentially growing in − log 𝑝 such

that for any 0 < 𝛼 < 1,

lim inf
𝛾→∞

�̃�
©«|𝑝 − 𝑝 | ≤

√︄
2�̂� log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒− 1

2 (𝑎1−_)⊤Σ−1 (𝑎1−_)

3(𝑛 − 1)
ª®¬ ≥ 1 − 𝛼.

Corollary 3.3 (Tight confidence intervals for Gaussian inputs). Under the settings in Theorem
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3.15, we sample 𝑋 (1) , . . . , 𝑋 (𝑛) i.i.d. from �̃� and let 𝑍 (𝑖) = 𝐼 (𝑋 (𝑖) ∈ E) 𝑑𝑃
𝑑�̃�

. Use 𝑝 and �̂� to denote

the sample mean and sample variance of 𝑍 (𝑖)’s. We could choose 𝑛 subexponentially growing in

− log 𝑝 such that for any 0 < 𝛼 < 1,

lim inf
𝛾→∞

�̃�
©«|𝑝 − 𝑝 | ≤ 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≥ 1 − 𝛼.

While the choice of 𝐶 (as long as it is > 1) does not affect the guarantee on strong probabilistic

efficiency or the asymptotic validity of the CIs, it does affect the accuracy of the estimates for a

given, finite 𝛾. In particular, it is often the case that in practice we only need to solve one problem

for a fixed 𝛾 instead of solving a series of problems with varying 𝛾. In this scenario, as long as

(𝑎2 − _)⊤Σ−1(𝑎2 − _) > (𝑎1 − _)⊤Σ−1(𝑎1 − _), we can pick a 𝐶 > 1 such that we would stop our

dominating point search at 𝑘 = 1, i.e., use only the first point. Note that this does not imply that

for this choice of 𝐶 we have 𝑘 = 1 for any 𝛾. Thus, the finiteness of the rarity parameter comes

into play in a subtle way.

3.11 Supplementary D: Proofs

Proof of Theorem 3.2. First, we know that 𝐼 (𝑎𝑖) = 𝑠⊤𝑎𝑖𝑎𝑖 − `(𝑠𝑎𝑖 ) for 𝑖 = 1, . . . , 𝑟 . For any 𝑥 ∈ R𝑑

such that 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0, we have 𝐼 (𝑥) ≥ 𝑠⊤𝑎𝑖𝑥 − `(𝑠𝑎𝑖 ) ≥ 𝑠
⊤
𝑎𝑖
𝑎𝑖 − `(𝑠𝑎𝑖 ) = 𝐼 (𝑎𝑖). By Definition

3.2, we have E ⊂ ⋃𝑟
𝑖=1{𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0}. Thus, for any 𝑥 ∈ E, there exists 𝑖 such that

𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0, and hence 𝐼 (𝑥) ≥ 𝐼 (𝑎𝑖). Therefore, 𝐼 (E) = inf𝑥∈E 𝐼 (𝑥) ≥ min𝑖=1,...,𝑟 𝐼 (𝑎𝑖). On the

other hand, 𝑎1, . . . , 𝑎𝑟 ∈ 𝜕E ∩ D(𝐼)◦ and 𝐼 is differentiable in D(𝐼)◦, so 𝐼 (E) ≤ min𝑖=1,...,𝑟 𝐼 (𝑎𝑖).

Overall we have 𝐼 (E) = min𝑖=1,...,𝑟 𝐼 (𝑎𝑖). □

Proof of Proposition 3.1. We could split the rare-event set as E =
⋃𝑟
𝑖=1 E𝑖 where E𝑖’s are disjoint

and 𝑎𝑖 ∈ E𝑖 ⊂ {𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0}. Note that the hyperplane {𝑥 ∈ R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) = 0} is

tangent to the rate function level set {𝑥 ∈ R𝑑 : 𝐼 (𝑥) = 𝐼 (𝑎𝑖)} at 𝑎𝑖, so 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0 implies that

𝐼 (𝑥) ≥ 𝐼 (𝑎𝑖). Now, the likelihood ratio is given by
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𝐿 (𝑋𝛾) :=
𝑑𝑃

𝑑�̃�
(𝑋𝛾) =

1∑𝑟
𝑖=1 𝛼𝑖𝑒

𝑠⊤𝑎𝑖 𝑋𝛾−𝛾`𝛾 (𝑠𝑎𝑖 )

and it satisfies that for any 𝑖,

𝐿 (𝑋𝛾) ≤
1

𝛼𝑖𝑒
𝑠⊤𝑎𝑖 𝑋𝛾−𝛾`𝛾 (𝑠𝑎𝑖 )

=
1
𝛼𝑖
𝑒
−𝑠⊤𝑎𝑖 (𝑋𝛾−𝛾𝑎𝑖)−𝛾(𝑠

⊤
𝑎𝑖
𝑎𝑖−`𝛾 (𝑠𝑎𝑖 )) .

Hence we have that

𝐼

(
1
𝛾
𝑋𝛾 ∈ E𝑖

)
𝐿 (𝑋𝛾) ≤

1
𝛼𝑖
𝑒
−𝛾(𝑠⊤𝑎𝑖 𝑎𝑖−`𝛾 (𝑠𝑎𝑖 )) (3.16)

and

𝐼

(
1
𝛾
𝑋𝛾 ∈ E

)
𝐿 (𝑋𝛾) ≤ max

𝑖=1,...,𝑟

{
1
𝛼𝑖
𝑒
−𝛾(𝑠⊤𝑎𝑖 𝑎𝑖−`𝛾 (𝑠𝑎𝑖 ))

}
.

Thus, using Theorem 3.1, we have that

lim inf
𝛾→∞

log �̃�
(
𝐼

(
1
𝛾
𝑋𝛾 ∈ E

)
𝐿2(𝑋𝛾)

)
log �̃�

(
𝐼

(
1
𝛾
𝑋𝛾 ∈ E

)
𝐿 (𝑋𝛾)

) ≥ lim inf
𝛾→∞

2 log
(
max𝑖=1,...,𝑟

{
1
𝛼𝑖
𝑒
−𝛾(𝑠⊤𝑎𝑖 𝑎𝑖−`𝛾 (𝑠𝑎𝑖 ))

})
log 𝑃

(
1
𝛾
𝑋𝛾 ∈ E

)
= lim inf

𝛾→∞

2 max𝑖=1,...,𝑟

{
1
𝛾

log
(

1
𝛼𝑖
𝑒
−𝛾(𝑠⊤𝑎𝑖 𝑎𝑖−`𝛾 (𝑠𝑎𝑖 ))

)}
1
𝛾

log 𝑃
(

1
𝛾
𝑋𝛾 ∈ E

)
=
−2 min𝑖=1,...,𝑟 𝐼 (𝑎𝑖)

−𝐼 (E) = 2,

which verifies that the IS estimator is asymptotically efficient. □

Proof of Proposition 3.2. We derive the growth rate of the relative error for a more general case.

Suppose that we estimate 𝑝 = 𝑃( 1
𝛾
𝑋𝛾 ∈ (−∞,−𝑘] ∪ [1,∞)) where 𝑘 > 1, 𝑋𝛾 ∼ 𝑁 (0, 𝛾) under

𝑃 and the IS distribution is chosen as 𝑋𝛾 ∼ 𝑁 (𝛾, 𝛾) under �̃�. This is the setup of Examples 3.1

and 3.2. There are two dominating points, 1 and −𝑘 , and 1 is the more significant one. Under

the IS distribution, the likelihood ratio is 𝐿 = 𝑒−𝑋𝛾+𝛾/2 and the IS estimator is 𝑍 = 𝐼 ( 1
𝛾
𝑋𝛾 ∈
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(−∞,−𝑘] ∪ [1,∞))𝑒−𝑋𝛾+𝛾/2. Then we have that

�̃� (𝑍2) = �̃�
(
𝐼

(
1
𝛾
𝑋𝛾 ∈ (−∞,−𝑘] ∪ [1,∞)

)
𝑒−2𝑋𝛾+𝛾

)
=

∫
𝑥≤−𝑘𝛾 or 𝑥≥𝛾

𝑒−2𝑥+𝛾 1√︁
2𝜋𝛾

𝑒
− (𝑥−𝛾)

2
2𝛾 𝑑𝑥

=

∫
𝑥≤−𝑘𝛾 or 𝑥≥𝛾

𝑒𝛾
1√︁
2𝜋𝛾

𝑒
− (𝑥+𝛾)

2
2𝛾 𝑑𝑥

=

∫
𝑦≤(1−𝑘)√𝛾 or 𝑦≥2√𝛾

𝑒𝛾
1
√

2𝜋
𝑒−

𝑦2
2 𝑑𝑦 (𝑦 = (𝑥 + 𝛾)/√𝛾)

= 𝑒𝛾
(
Φ̄((𝑘 − 1)√𝛾) + Φ̄(2√𝛾)

)
where Φ̄ denotes the tail distribution function of standard normal distribution. It is known that

Φ̄(𝑥) = Θ( 1
𝑥
𝑒−𝑥

2/2) as 𝑥 → ∞, and hence �̃� (𝑍2) = Θ( 1√
𝛾
𝑒(1−

(𝑘−1)2
2 )𝛾) if 1 < 𝑘 < 3 and �̃� (𝑍2) =

Θ( 1√
𝛾
𝑒−𝛾) if 𝑘 ≥ 3. Besides, 𝑝 = Φ̄(√𝛾) + Φ̄(𝑘√𝛾) = Θ( 1√

𝛾
𝑒−𝛾/2). Therefore, �̃� (𝑍2)/𝑝2 =

Θ(√𝛾𝑒(2−
(𝑘−1)2

2 )𝛾) which grows exponentially in 𝛾 if 1 < 𝑘 < 3 and �̃� (𝑍2)/𝑝2 = Θ(√𝛾) which

grows polynomially in 𝛾 if 𝑘 ≥ 3.

□

Proofs of Propositions 3.4 and 3.5. We first show a general result on IS estimator that exponen-

tially tilts to the most significant dominating point. Consider a rare-event set E with 𝑎1 as the most

significant dominating point. We estimate the target rare event { 1
𝛾
𝑋𝛾 ∈ E} using the IS estimator

with likelihood ratio

𝐿 =
1

𝑒𝑠
⊤
𝑎1𝑋𝛾−𝛾`𝛾 (𝑠𝑎1 )

.

That is, we use exponential tilting with respect to 𝑎1 only. Specifically, we consider 𝑋𝛾 ∼ 𝑁 (𝛾_, 𝛾Σ).

In this case we have `(𝑥) = `𝛾 (𝑥) = 𝑥⊤_ + 1
2𝑥
⊤Σ𝑥, 𝑠𝑎 = Σ−1(𝑎 − _), 𝐼 (𝑦) = 1

2 (𝑦 − _)
⊤Σ−1(𝑦 − _).
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The second moment of this IS estimator is

�̃�

(
𝐼

(
1
𝛾
𝑋𝛾 ∈ E

)
𝐿2(𝜔)

)
=𝐸

(
𝐼

(
1
𝛾
𝑋𝛾 ∈ E

)
𝐿 (𝜔)

)
=

∫
𝑥
𝛾
∈E
𝑒
−𝑠⊤𝑎1𝑥+𝛾`𝛾 (𝑠𝑎1 ) (2𝜋)− 𝑑2 |𝛾Σ |−1/2𝑒−

1
2𝛾 (𝑥−𝛾_)

⊤Σ−1 (𝑥−𝛾_)
𝑑𝑥

=

∫
𝑥
𝛾
∈E
𝑒−(𝑎1−_)⊤Σ−1𝑥+𝛾(𝑎1−_)⊤Σ−1_+ 𝛾2 (𝑎1−_)⊤Σ−1 (𝑎1−_) (2𝜋)− 𝑑2 |𝛾Σ |−1/2𝑒−

1
2𝛾 (𝑥−𝛾_)

⊤Σ−1 (𝑥−𝛾_)
𝑑𝑥

=

∫
𝑥
𝛾
∈E
(2𝜋)− 𝑑2 |𝛾Σ |−1/2𝑒𝛾 [−(𝑎1−_)⊤Σ−1 ( 𝑥

𝛾
−_)+ 1

2 (𝑎1−_)⊤Σ−1 (𝑎1−_)− 1
2 (
𝑥
𝛾
−_)⊤Σ−1 ( 𝑥

𝛾
−_)]

𝑑𝑥

=𝑒𝛾(𝑎1−_)⊤Σ−1 (𝑎1−_)
∫
𝑥
𝛾
∈E
(2𝜋)− 𝑑2 |𝛾Σ |−1/2𝑒−

𝛾

2 (
𝑥
𝛾
+𝑎1−2_)⊤Σ−1 ( 𝑥

𝛾
+𝑎1−2_)

𝑑𝑥

=𝑒𝛾(𝑎1−_)⊤Σ−1 (𝑎1−_) �̄�

(
1
𝛾
𝑋𝛾 ∈ E

)
where �̄� is the probability measure given by the exponential tilting with respect to 2_ − 𝑎1 and

hence 𝑋𝛾 ∼ 𝑁 (𝛾(2_ − 𝑎1), 𝛾Σ) under �̄�. We correspondingly denote 𝐼 as the rate function under

�̄�. Now, since 𝑋𝛾 is Gaussian Assumption 3.1 holds. Suppose also that Assumption 3.2 holds.

Then by Theorem 3.1 we know that

lim
𝛾→∞

1
𝛾

log �̄�
(

1
𝛾
𝑋𝛾 ∈ E

)
= −𝐼 (E) = −1

2
min
𝑦∈E
(𝑦 + 𝑎1 − 2_)⊤Σ−1(𝑦 + 𝑎1 − 2_).
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We also know that lim𝛾→∞
1
𝛾

log 𝑃
(

1
𝛾
𝑋𝛾 ∈ E

)
= −𝐼 (𝑎1) = −1

2 (𝑎1−_)⊤Σ−1(𝑎1−_). Therefore,

lim
𝛾→∞

log �̃�
(
𝐼

(
1
𝛾
𝑋𝛾 ∈ E

)
𝐿2(𝜔)

)
log 𝑃

(
1
𝛾
𝑋𝛾 ∈ E

)
= lim
𝛾→∞

1
𝛾

log �̃�
(
𝐼

(
1
𝛾
𝑋𝛾 ∈ E

)
𝐿2(𝜔)

)
1
𝛾

log 𝑃
(

1
𝛾
𝑋𝛾 ∈ E

)
= lim
𝛾→∞

(𝑎1 − _)⊤Σ−1(𝑎1 − _) + 1
𝛾

log �̄�
(

1
𝛾
𝑋𝛾 ∈ E

)
1
𝛾

log 𝑃
(

1
𝛾
𝑋𝛾 ∈ E

)
=
(𝑎1 − _)⊤Σ−1(𝑎1 − _) − 1

2 min𝑦∈E (𝑦 + 𝑎1 − 2_)⊤Σ−1(𝑦 + 𝑎1 − 2_)
−1

2 (𝑎1 − _)⊤Σ−1(𝑎1 − _)
.

By definition, the IS estimator is not asymptotically efficient if and only if min𝑦∈E (𝑦 + 𝑎1 −

2_)⊤Σ−1(𝑦 + 𝑎1 − 2_) < 4(𝑎1 − _)⊤Σ−1(𝑎1 − _).

In order to check the existence of �̃� such that ( �̃� + 𝑎1 − 2_)⊤Σ−1( �̃� + 𝑎1 − 2_) < 4(𝑎1 −

_)⊤Σ−1(𝑎1 − _), we can formulate the following optimization

min
𝑦∈E

(𝑦 + 𝑎1 − 2_)⊤Σ−1(𝑦 + 𝑎1 − 2_) − 4(𝑎1 − _)⊤Σ−1(𝑎1 − _), (3.17)

and check whether the objective is negative for the optimal (or any feasible) solution. Since the

objective function is quadratic on the decision vector 𝑦, the tractability of the optimization prob-

lem (3.17) is determined by the feasible region E. In the example in Section 3.3.2, we have⋃𝑑
𝑚=1H𝑚 =

⋃𝑑
𝑚=1{𝑥 ∈ R𝑑 :

∑𝑚
𝑖=1 𝑥𝑖 ≥ 𝑎}. Since each H𝑚 is a half-space and hence convex, we

can independently solve

min
𝑦∈H𝑚

(𝑦 + 𝑎1 − 2_)⊤Σ−1(𝑦 + 𝑎1 − 2_) − 4(𝑎1 − _)⊤Σ−1(𝑎1 − _),

for 𝑚 = 1, . . . , 𝑑. Since the feasible region of the above optimization associated with any H𝑚 is

a subset of the original problem (3.17), any solution with negative objective indicates that the IS
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estimator with dominating points 𝑎1 is not asymptotically efficient. In the example in Section 3.3.3,

we formulate the problem (3.17) as a mixed integer programming problem following the treatment

of the rare-event set formed by machine learning predictors in [125]. Using this approach, we can

show that the IS estimators with the most dominating points are not asymptotically efficient for

both examples considered in Sections 3.3.2 and 3.3.3. □

To prove Theorem 3.7, we need the following lemma:

Lemma 3.1 (Theorem 4 in [133]). Let𝑌,𝑌1, . . . , 𝑌𝑛 be i.i.d. random variables with values in [0, 1]

and let 𝛿 > 0. Then with probability at least 1 − 𝛿

𝐸𝑌 − 1
𝑛

𝑛∑︁
𝑖=1
𝑌𝑖 ≤

√︂
2𝑉𝑛 (Y) log(2/𝛿)

𝑛
+ 7 log(2/𝛿)

3(𝑛 − 1)

where Y = (𝑌1, . . . , 𝑌𝑛) and 𝑉𝑛 (Y) is the sample variance of 𝑌𝑖’s.

Now we prove Theorem 3.7:

Proof of Theorem 3.7. Following the notation in Section 3.4, we split E into E1 = E ∩⋃𝑘
𝑖=1{𝑥 ∈

R𝑑 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0} and E2 = E \ E1, and then we correspondingly defineA1
𝛾 = { 1

𝛾
𝑋𝛾 ∈ E1} and

A2
𝛾 = { 1

𝛾
𝑋𝛾 ∈ E2}. We denote 𝑍 (𝑖)1 = 𝐼 ( 1

𝛾
𝑋 (𝑖) ∈ E1) 𝑑𝑃𝑑�̃� . 𝑝1 and �̂�1 respectively denote the sample

mean and sample variance of 𝑍 (𝑖)1 ’s. We also define 𝑁 =
∑𝑛
𝑖=1 𝐼 ( 1

𝛾
𝑋 (𝑖) ∈ E2). Note that conditional
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on 𝑁 = 0, we have 𝑍 (𝑖) = 𝑍 (𝑖)1 . Then

�̃�
©«|𝑝 − 𝑝 | >

√︄
2�̂� log(4/𝛼)

𝑛
+

7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1)
ª®¬

=�̃�
©«|𝑝 − 𝑝 | >

√︄
2�̂� log(4/𝛼)

𝑛
+

7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1) , 𝑁 = 0ª®¬
+ �̃� ©«|𝑝 − 𝑝 | >

√︄
2�̂� log(4/𝛼)

𝑛
+

7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1) , 𝑁 > 0ª®¬
≤�̃� ©«|𝑝1 − 𝑝 | >

√︄
2�̂�1 log(4/𝛼)

𝑛
+

7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1) , 𝑁 = 0ª®¬ + �̃�(𝑁 > 0)

≤�̃� ©«|𝑝1 − 𝑝 | >

√︄
2�̂�1 log(4/𝛼)

𝑛
+

7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1)
ª®¬ + �̃�(𝑁 > 0)

≤�̃� ©«|𝑝1 − 𝑝1 | + 𝑝2 >

√︄
2�̂�1 log(4/𝛼)

𝑛
+

7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1)
ª®¬ + 𝑛𝑝2.

Similar to the derivation of (3.16), we know that 0 ≤ 𝑍 (𝑖)1 ≤ 𝑀𝛾,∀𝑖. By applying Lemma 3.1 with

𝑌𝑖 = 𝑍
(𝑖)
1 /𝑀𝛾 and 𝑌𝑖 = 1 − 𝑍 (𝑖)1 /𝑀𝛾 respectively, we get that

�̃�
©«𝑝1 > 𝑝1 +

√︄
2�̂�1 log(4/𝛿)

𝑛
+

7 log(4/𝛿)𝑀𝛾

3(𝑛 − 1)
ª®¬ ≤ 𝛿/2

and

�̃�
©«𝑝1 < 𝑝1 −

√︄
2�̂�1 log(4/𝛿)

𝑛
−

7 log(4/𝛿)𝑀𝛾

3(𝑛 − 1)
ª®¬ ≤ 𝛿/2

for any 𝛿 > 0. Thus,

�̃�
©«|𝑝1 − 𝑝1 | >

√︄
2�̂�1 log(4/𝛿)

𝑛
+

7 log(4/𝛿)𝑀𝛾

3(𝑛 − 1)
ª®¬ ≤ 𝛿. (3.18)
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Find 𝛼′ = 𝛼′(𝛾) such that

7 log(4/𝛼′)𝑀𝛾

3(𝑛 − 1) =
7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1) − 𝑝2.

That is,

𝛼′ = 𝛼 exp
(
3(𝑛 − 1)𝑝2

7𝑀𝛾

)
.

Clearly 𝛼′ > 𝛼 and log(4/𝛼′) < log(4/𝛼). From the proof of Theorem 3.6, we have that either (i)

𝑘 = 𝑟 and 𝑝2 = 0 or (ii) 𝑘 < 𝑟 and lim sup𝛾→∞ 1
𝛾

log 𝑝2 ≤ −𝐼 (𝑎𝑘+1) < −𝐼 (𝑎1). Moreover, we have

1
𝛾

log𝑀𝛾 = max
𝑖=1,...,𝑘

{
−1
𝛾

log𝛼𝑖 − (𝑠⊤𝑎𝑖𝑎𝑖 − `𝛾 (𝑠𝑎𝑖 ))
}
→ −𝐼 (𝑎1).

Thus, for subexponentially growing 𝑛, we have 3(𝑛−1)𝑝2
7𝑀𝛾 → 0 and hence 𝛼′ → 𝛼 as 𝛾 → ∞. We

replace 𝛿 with 𝛼′ in (3.18), and then we get

�̃�
©«|𝑝1 − 𝑝1 | >

√︄
2�̂�1 log(4/𝛼′)

𝑛
+

7 log(4/𝛼′)𝑀𝛾

3(𝑛 − 1)
ª®¬ ≤ 𝛼′.

Hence

�̃�
©«|𝑝1 − 𝑝1 | >

√︄
2�̂�1 log(4/𝛼)

𝑛
+

7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1) − 𝑝2
ª®¬ ≤ 𝛼′.

Therefore,

�̃�
©«|𝑝 − 𝑝 | >

√︄
2�̂� log(4/𝛼)

𝑛
+

7 log(4/𝛼)𝑀𝛾

3(𝑛 − 1)
ª®¬ ≤ 𝛼′ + 𝑛𝑝2 → 𝛼 as 𝛾 →∞.

□

To prove Theorem 3.8, we first prove a lemma regarding the variance 𝑉𝑎𝑟 (𝑍1). In particular,

we have assumed that 𝑉𝑎𝑟 (𝑍1) cannot be “too large”, while this lemma implies that it cannot

be “too small” as well. As we will see, this lemma is used to control the error of the normal

approximation in analog to the Berry-Esseen theorem in order to argue the validity of I2.
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Lemma 3.2. Under the same setting as Theorem 3.6, split E into E1 = E ∩ ⋃𝑘
𝑖=1{𝑥 ∈ R𝑑 :

𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) ≥ 0} and E2 = E \ E1. Denote 𝑍1 = 𝐼 ( 1
𝛾
𝑋𝛾 ∈ E1) 𝑑𝑃𝑑�̃� (𝜔) with 𝑋𝛾 ∼ �̃�. Then

lim𝛾→∞
1
𝛾

log𝑉𝑎𝑟 (𝑍1) = −2𝐼 (E) = −2𝐼 (𝑎1).

Proof of Lemma 3.2. From Proposition 3.1, we know that lim sup𝛾→∞ 1
𝛾

log𝑉𝑎𝑟 (𝑍1) ≤ −2𝐼 (E).

Thus we only need to show that lim inf𝛾→∞ 1
𝛾

log𝑉𝑎𝑟 (𝑍1) ≥ −2𝐼 (E). Indeed, we have that

𝑉𝑎𝑟 (𝑍1) = �̃� ((𝑍1− 𝑝1)2) ≥ �̃� ((𝑍1− 𝑝1)2𝐼 ( 1
𝛾
𝑋𝛾 ∉ E1)) = 𝑝2

1�̃�(
1
𝛾
𝑋𝛾 ∈ E𝑐1) ≥ 𝑝

2
1𝛼1�̃�1( 1

𝛾
𝑋𝛾 ∈ E𝑐1)

where �̃�1 is as defined in the proof of Theorem 3.6, and hence

lim inf
𝛾→∞

1
𝛾

log𝑉𝑎𝑟 (𝑍1) ≥ lim inf
𝛾→∞

(
2
𝛾

log 𝑝1 +
1
𝛾

log𝛼1 +
1
𝛾

log �̃�1(
1
𝛾
𝑋𝛾 ∈ E𝑐1)

)
.

First, we know that lim𝛾→∞
1
𝛾

log 𝑝1 = −𝐼 (E). Second, we know that 1
𝛾

log𝛼1 → 0. Third,

by Theorem 3.1, we know that lim inf𝛾→∞ 1
𝛾

log �̃�1( 1
𝛾
𝑋𝛾 ∈ E𝑐1) ≥ −𝐼1((E

𝑐
1)
◦) where 𝐼1(𝑦) =

𝐼 (𝑦) − 𝑠⊤𝑎1𝑦 + `(𝑠𝑎1) as in the proof of Theorem 3.6. As 𝑎1 is a dominating point, we have required

that 𝑎1 ∈ D(𝐼)◦, and thus 𝑎1 ∈ D(𝐼1)◦. We note that (E𝑐1)
◦ ⊃ ⋂𝑘

𝑖=1{𝑥 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) < 0}. Then

𝐼1((E𝑐1)
◦) ≤ 𝐼1(

⋂𝑘
𝑖=1{𝑥 : 𝑠⊤𝑎𝑖 (𝑥−𝑎𝑖) < 0}). We note that since 𝑎1 is the most significant dominating

point, we have 𝑠⊤𝑎𝑖 (𝑎1 − 𝑎𝑖) ≤ 0 (otherwise we get 𝐼 (𝑎𝑖) < 𝐼 (𝑎1), which is a contradiction). Thus

𝑎1 is on the boundary of
⋂𝑘
𝑖=1{𝑥 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) < 0}, and there exists a sequence of points {𝑦𝑛}∞𝑛=1 ⊂

D(𝐼1)◦ ∩
⋂𝑘
𝑖=1{𝑥 : 𝑠⊤𝑎𝑖 (𝑥 − 𝑎𝑖) < 0} such that 𝑦𝑛 → 𝑎1 as 𝑛 → ∞. Therefore, we get 𝐼1(

⋂𝑘
𝑖=1{𝑥 :

𝑠⊤𝑎𝑖 (𝑥−𝑎𝑖) < 0}) ≤ 𝐼1(𝑎1) = 0. Overall, we have proved that lim inf𝛾→∞ 1
𝛾

log𝑉𝑎𝑟 (𝑍1) ≥ −2𝐼 (E).

□

We also need a concentration result for the sample variance:

Lemma 3.3 (Theorem 10 in [133]). Let 𝑛 ≥ 2 and Y = (𝑌1, . . . , 𝑌𝑛) be a vector of independent

random variables with values in [0, 1]. Then for 𝛿 > 0 we have

𝑃

(√︁
𝐸𝑉𝑛 (Y) >

√︁
𝑉𝑛 (Y) +

√︂
2 log(1/𝛿)
𝑛 − 1

)
≤ 𝛿;

𝑃

(√︁
𝑉𝑛 (Y) >

√︁
𝐸𝑉𝑛 (Y) +

√︂
2 log(1/𝛿)
𝑛 − 1

)
≤ 𝛿.
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With Lemmas 3.2 and 3.3, now we prove Theorem 3.8:

Proof of Theorem 3.8. We denote 𝑍 (𝑖)1 = 𝐼 ( 1
𝛾
𝑋 (𝑖) ∈ E1) 𝑑𝑃𝑑�̃� . 𝑝1 and �̂�1 respectively denote the

sample mean and sample variance of 𝑍 (𝑖)1 ’s. We also define 𝑁 =
∑𝑛
𝑖=1 𝐼 ( 1

𝛾
𝑋 (𝑖) ∈ E2). Similar to

the proof of Theorem 3.7, we have

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬
=�̃�

©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛
, 𝑁 = 0ª®¬ + �̃� ©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛
, 𝑁 > 0ª®¬

≤�̃� ©«|𝑝1 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�1
𝑛

ª®¬ + �̃�(𝑁 > 0)

≤�̃� ©«|𝑝1 − 𝑝1 | > 𝑧1−𝛼/2

√︄
�̂�1
𝑛
− 𝑝2

ª®¬ + 𝑛𝑝2

≤�̃� ©«|𝑝1 − 𝑝1 | > 𝑧1−𝛼/2
©«
√︄
�̃��̂�1
𝑛
−

√︄
2 log(1/𝛿)
𝑛(𝑛 − 1) 𝑀𝛾

ª®¬ − 𝑝2
ª®¬+

�̃�

(√︃
�̃��̂�1 >

√︃
�̂�1 +

√︂
2 log(1/𝛿)
𝑛 − 1

𝑀𝛾

)
+ 𝑛𝑝2

for any 𝛿 = 𝛿(𝛾) > 0, where 𝑀𝛾 is as defined in Theorem 3.7. We know that 0 ≤ 𝑍 (𝑖)1 ≤ 𝑀𝛾,∀𝑖.

By Lemma 3.3 with 𝑌𝑖 = 𝑍
(𝑖)
1 /𝑀𝛾, we get that

�̃�

(√︃
�̃��̂�1 >

√︃
�̂�1 +

√︂
2 log(1/𝛿)
𝑛 − 1

𝑀𝛾

)
≤ 𝛿.

By Berry-Esseen theorem, we know that for any 𝑥 ∈ R��������̃� ©«
√
𝑛(𝑝1 − 𝑝1)√︃
𝑉𝑎𝑟 (𝑍 (1)1 )

≤ 𝑥
ª®®¬ −Φ(𝑥)

������� ≤ 𝐶�̃� |𝑍 (1)1 − 𝑝1 |3

𝑉𝑎𝑟
3/2(𝑍 (1)1 )

√
𝑛
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where Φ is the CDF of standard normal distribution and 𝐶 is a universal constant. Let

𝑥 = 𝑧1−𝛼/2

(√√
�̃��̂�1

𝑉𝑎𝑟 (𝑍 (1)1 )
−

√︄
2 log(1/𝛿)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1)1 )
𝑀𝛾

)
− 𝑝2

√︄
𝑛

𝑉𝑎𝑟 (𝑍 (1)1 )
.

Then we get that

�̃�
©«
√
𝑛|𝑝1 − 𝑝1 |√︃
𝑉𝑎𝑟 (𝑍 (1)1 )

> 𝑥
ª®®¬ ≤ 2Φ(−𝑥) +

2𝐶�̃� |𝑍 (1)1 − 𝑝1 |3

𝑉𝑎𝑟
3/2(𝑍 (1)1 )

√
𝑛

.

Hence,

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≤ 2Φ(−𝑥) +
2𝐶�̃� |𝑍 (1)1 − 𝑝1 |3

𝑉𝑎𝑟
3/2(𝑍 (1)1 )

√
𝑛

+ 𝛿 + 𝑛𝑝2.

First, we have that �̃� |𝑍 (1)1 − 𝑝1 |3 ≤ max(𝑝3
1, (𝑀𝛾 − 𝑝1)3). From the proof of Theorems 3.6 and 3.7,

we know that − 1
𝛾

log 𝑝1 → −𝐼 (𝑎1) and − 1
𝛾

log𝑀𝛾 → −𝐼 (𝑎1). Thus lim sup𝛾→∞ 1
𝛾

log �̃� |𝑍 (1)1 −

𝑝1 |3 ≤ −3𝐼 (𝑎1). By Lemma 3.2, we get that
�̃� |𝑍 (1)1 −𝑝1 |3

𝑉𝑎𝑟
3/2 (𝑍 (1)1 )

grows at most subexponentially in 𝛾.

Hence under the assumptions we could choose 𝑛 as required in the theorem. In particular, we have

that
2𝐶�̃� |𝑍 (1)1 − 𝑝1 |3

𝑉𝑎𝑟
3/2(𝑍 (1)1 )

√
𝑛

→ 0.

Now we analyze 𝑥. We know that
√︂

𝐸�̂�1

𝑉𝑎𝑟 (𝑍 (1)1 )
= 1 and

𝑝2

√︄
𝑛

𝑉𝑎𝑟 (𝑍 (1)1 )
=

𝑝2

𝑒−𝛾𝐼 (𝑎1)

√√
𝑛𝑒−2𝛾𝐼 (𝑎1)

𝑉𝑎𝑟 (𝑍 (1)1 )
→ 0

since 𝑝2
𝑒−𝛾𝐼 (𝑎1 )

decays exponentially (proof of Theorem 3.6) while 𝑛 and 𝑒−2𝛾𝐼 (𝑎1 )

𝑉𝑎𝑟 (𝑍 (1)1 )
grow subexponen-

tially (Lemma 3.2) in 𝛾. Now we consider

√︄
2 log(1/𝛿)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1)1 )
𝑀𝛾 =

√︂
2 log(1/𝛿)𝑛
𝑛 − 1

√√
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍 (1)1 )
.
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Since we assume that
𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍 (1)1 )
→ 0, we could set 𝛿 such that 𝛿→ 0 and

√︄
2 log(1/𝛿)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1)1 )
𝑀𝛾 → 0.

In this case, 𝑥 → 𝑧1−𝛼/2 and hence Φ(−𝑥) → 𝛼/2. Combining all the results, we get that

lim sup
𝛾→∞

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≤ 𝛼.
□

Proof of Theorem 3.9. First, following the proof of Lemma 3.2, it is easy to get that

lim
𝛾→∞

1
𝛾

log𝑉𝑎𝑟 (𝑍) = −2𝐼 (E) = −2𝐼 (𝑎1).

Moreover, we have that

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≤�̃� ©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2
©«
√︄
�̃��̂�

𝑛
−

√︄
2 log(1/𝛿)
𝑛(𝑛 − 1) 𝑀𝛾

ª®¬ª®¬
+ �̃�

(√︁
�̃��̂� >

√︁
�̂� +

√︂
2 log(1/𝛿)
𝑛 − 1

𝑀𝛾

)
and

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≥�̃� ©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2
©«
√︄
�̃��̂�

𝑛
+

√︄
2 log(1/𝛿)
𝑛(𝑛 − 1) 𝑀𝛾

ª®¬ª®¬
− �̃�

(√︁
�̂� >

√︁
�̃��̂� +

√︂
2 log(1/𝛿)
𝑛 − 1

𝑀𝛾

)

122



for any 𝛿 = 𝛿(𝛾) > 0. We know that 0 ≤ 𝑍 (𝑖) ≤ 𝑀𝛾,∀𝑖. By Lemma 3.3, we get that

�̃�

(√︁
�̃��̂� >

√︁
�̂� +

√︂
2 log(1/𝛿)
𝑛 − 1

𝑀𝛾

)
≤ 𝛿

and

�̃�

(√︁
�̂� >

√︁
�̃��̂� +

√︂
2 log(1/𝛿)
𝑛 − 1

𝑀𝛾

)
≤ 𝛿.

By Berry-Esseen theorem, we know that

�̃�
©«
√
𝑛|𝑝 − 𝑝 |√︃
𝑉𝑎𝑟 (𝑍 (1))

> 𝑥1
ª®®¬ ≤ 2Φ(−𝑥1) +

2𝐶�̃� |𝑍 (1) − 𝑝 |3

𝑉𝑎𝑟
3/2(𝑍 (1))

√
𝑛

and

�̃�
©«
√
𝑛|𝑝 − 𝑝 |√︃
𝑉𝑎𝑟 (𝑍 (1))

> 𝑥2
ª®®¬ ≥ 2Φ(−𝑥2) −

2𝐶�̃� |𝑍 (1) − 𝑝 |3

𝑉𝑎𝑟
3/2(𝑍 (1))

√
𝑛

where Φ is the CDF of standard normal distribution, 𝐶 is a universal constant, and

𝑥1 = 𝑧1−𝛼/2

(√︄
�̃��̂�

𝑉𝑎𝑟 (𝑍 (1))
−

√︄
2 log(1/𝛿)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1))
𝑀𝛾

)
,

𝑥2 = 𝑧1−𝛼/2

(√︄
�̃��̂�

𝑉𝑎𝑟 (𝑍 (1))
+

√︄
2 log(1/𝛿)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1))
𝑀𝛾

)
.

Combining the above derivations, we get that

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≤ 2Φ(−𝑥1) +
2𝐶�̃� |𝑍 (1) − 𝑝 |3

𝑉𝑎𝑟
3/2(𝑍 (1))

√
𝑛

+ 𝛿,

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≥ 2Φ(−𝑥2) −
2𝐶�̃� |𝑍 (1) − 𝑝 |3

𝑉𝑎𝑟
3/2(𝑍 (1))

√
𝑛

− 𝛿.

First, we have that �̃� |𝑍 (1) − 𝑝 |3 ≤ max(𝑝3, (𝑀𝛾 − 𝑝)3). From the proof of the previous theorems,

we know that − 1
𝛾

log 𝑝 → −𝐼 (𝑎1) and − 1
𝛾

log𝑀𝛾 → −𝐼 (𝑎1). Thus, �̃� |𝑍 (1)−𝑝 |3

𝑉𝑎𝑟
3/2 (𝑍 (1) )

grows at most

123



subexponentially in 𝛾, and hence we could choose 𝑛 as required in the theorem. In particular, we

have 2𝐶�̃� |𝑍 (1)−𝑝 |3

𝑉𝑎𝑟
3/2 (𝑍 (1) )

√
𝑛
→ 0. Next, since we assume that

𝑀2
𝛾

𝑛𝑉𝑎𝑟 (𝑍 (1) ) → 0, we could set 𝛿 such that 𝛿→ 0

and √︄
2 log(1/𝛿)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1))
𝑀𝛾 → 0.

Hence, 𝑥1, 𝑥2 → 𝑧1−𝛼/2 as 𝛾 →∞. Overall, we get that

lim sup
𝛾→∞

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≤ 𝛼,
lim inf
𝛾→∞

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≥ 𝛼.
Therefore, the theorem is proved.

□

Proof of Theorem 3.10. The conclusion follows from Theorem 3.5, by checking, for each setting in

Sections 3.3.1, 3.3.2 and 3.3.3, Assumptions 3.1 and 3.2 hold and the most significant dominating

point is unique. Since we have `(𝑥) = 1.5𝑥 + 0.5𝑥2 − log(1 + 𝑥) for the case in Section 3.3.1

and `(𝑥) = _⊤𝑥 + 1
2𝑥
⊤Σ𝑥 for the cases in Sections 3.3.2 and 3.3.3, we verify the conditions in

Assumption 3.1. On the other hand, since all rare-event sets in these examples are closed and

contain unique optimal solutions for minimizing the corresponding rate function 𝐼 (𝑥), we can

verify Assumption 3.2 and the uniqueness of most significant dominating point. □

Proof of Theorem 3.11. We check the three conditions in Theorem 3.4 to show the probabilistic

efficiency of the IS estimator using the dominating point 𝑎1. By symmetry we have 𝑝1/𝑝 → 1/2

as 𝛾 → ∞. Then, following the argument in Section 3.9.1, the IS estimator using the dominating

point 𝑎1 is asymptotically efficient for A1
𝛾. Lastly we have 𝑝2 → 0 exponentially fast and hence

we have 𝑛𝑝2 → 0 with subexponentially growing sample size 𝑛. We conclude that the IS estimator

using the dominating point 𝑎1 is weakly probabilistically efficient.

On the other hand, based on Proposition 3.4, the IS estimator using the dominating point 𝑎1 is
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not asymptotically efficient for
⋃𝑑
𝑚=1H+𝑚 and hence is not asymptotically efficient for(

𝑑⋃
𝑚=1
H+𝑚

) ⋃ (
𝑑⋃
𝑚=1
H−𝑚

)
.

□

Proof of Theorem 3.12. We only need to verify the conditions in Theorem 3.3. First, from As-

sumption 3.6, we get that 𝑝2 is exponentially smaller than 𝑝1, and hence 𝑝1
𝑝
→ 1 as 𝛾 → ∞.

Second, Let 𝑍1 = 𝐼 (𝑋 ∈ E1) 𝑑𝑃𝑑�̃� under �̃�. Clearly {𝑎1, . . . , 𝑎𝑘 } is a dominating set for E1. We get

that 𝑉𝑎𝑟 (𝑍1) ≤ 𝑘2𝑒−2𝐼 (𝑎1) ≤ 𝑟2𝑒−2𝐼 (𝑎1) . Assumption 3.6 gives that 𝑝1 ∼ 𝑒−𝐼 (𝑎1) , and hence 𝑍1 is

an asymptotically efficient estimator for 𝑝1. Third, Assumption 3.7 implies that 𝑛𝑝2 → 0 for any

𝑛 subexponentially growing in − log 𝑝. Therefore, all the conditions in Theorem 3.3 hold. □

Proof of Theorem 3.13. We denote 𝑝1 = 1
𝑛

∑𝑛
𝑖=1 𝑍

(𝑖)
1 and Z1 = (𝑍 (1)1 , . . . , 𝑍

(𝑛)
1 ). We also define

𝑁 =
∑𝑛
𝑖=1 𝐼 (𝑋 (𝑖) ∈ E2). Note that conditional on 𝑁 = 0, we have Z = Z1. Then

�̃�
©«|𝑝 − 𝑝 | >

√︄
2�̂� log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬

=�̃�
©«|𝑝 − 𝑝 | >

√︄
2�̂� log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1) , 𝑁 = 0ª®¬
+ �̃� ©«|𝑝 − 𝑝 | >

√︄
2�̂� log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1) , 𝑁 > 0ª®¬
≤�̃� ©«|𝑝1 − 𝑝 | >

√︄
2�̂�1 log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1) , 𝑁 = 0ª®¬ + 𝑃(𝑁 > 0)

≤�̃� ©«|𝑝1 − 𝑝 | >

√︄
2�̂�1 log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬ + 𝑃(𝑁 > 0)

≤�̃� ©«|𝑝1 − 𝑝1 | + 𝑝2 >

√︄
2�̂�1 log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬ + 𝑛𝑝2.

We know that 0 ≤ 𝑍
(𝑖)
1 ≤ 𝑘𝑒−𝐼 (𝑎1) ,∀𝑖. By applying Lemma 3.1 with 𝑌𝑖 = 𝑍

(𝑖)
1 /(𝑘𝑒

−𝐼 (𝑎1)) and
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𝑌𝑖 = 1 − 𝑍 (𝑖)1 /(𝑘𝑒
−𝐼 (𝑎1)) respectively, we get that

�̃�
©«𝑝1 > 𝑝1 +

√︄
2�̂�1 log(4/𝛿)

𝑛
+ 7 log(4/𝛿)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬ ≤ 𝛿/2

and

�̃�
©«𝑝1 < 𝑝1 −

√︄
2�̂�1 log(4/𝛿)

𝑛
− 7 log(4/𝛿)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬ ≤ 𝛿/2

for any 𝛿 > 0. Thus,

�̃�
©«|𝑝1 − 𝑝1 | >

√︄
2�̂�1 log(4/𝛿)

𝑛
+ 7 log(4/𝛿)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬ ≤ 𝛿. (3.19)

Find 𝛼′ = 𝛼′(𝛾) such that

7 log(4/𝛼′)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1) =
7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1) − 𝑝2.

That is,

𝛼′ = 𝛼 exp
(
3(𝑛 − 1)𝑝2

7𝑘𝑒−𝐼 (𝑎1)

)
.

Clearly 𝛼′ > 𝛼 and log(4/𝛼′) < log(4/𝛼). Moreover, we know that 𝑝2
𝑒−𝐼 (𝑎1 )

decays exponentially in

− log 𝑝 since Assumption 3.6 holds and that 𝑛 grows subexponentially in − log 𝑝, and thus 𝛼′→ 𝛼

as 𝛾 →∞. We replace 𝛿 with 𝛼′ in (3.19), and then we get

�̃�
©«|𝑝1 − 𝑝1 | >

√︄
2�̂�1 log(4/𝛼′)

𝑛
+ 7 log(4/𝛼′)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬ ≤ 𝛼′.

Hence

�̃�
©«|𝑝1 − 𝑝1 | >

√︄
2�̂�1 log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1) − 𝑝2
ª®¬ ≤ 𝛼′.
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Therefore,

�̃�
©«|𝑝 − 𝑝 | >

√︄
2�̂� log(4/𝛼)

𝑛
+ 7 log(4/𝛼)𝑘𝑒−𝐼 (𝑎1)

3(𝑛 − 1)
ª®¬ ≤ 𝛼′ + 𝑛𝑝2 → 𝛼 as 𝛾 →∞.

□

Proof of Theorem 3.14. We denote 𝑝1 = 1
𝑛

∑𝑛
𝑖=1 𝑍

(𝑖)
1 and Z1 = (𝑍 (1)1 , . . . , 𝑍

(𝑛)
1 ). We also define

𝑁 =
∑𝑛
𝑖=1 𝐼 (𝑋 (𝑖) ∈ E2). We have

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬
=�̃�

©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛
, 𝑁 = 0ª®¬ + �̃� ©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛
, 𝑁 > 0ª®¬

≤�̃� ©«|𝑝1 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�1
𝑛

ª®¬ + 𝑃(𝑁 > 0)

≤�̃� ©«|𝑝1 − 𝑝1 | > 𝑧1−𝛼/2

√︄
�̂�1
𝑛
− 𝑝2

ª®¬ + 𝑛𝑝2

≤�̃� ©«|𝑝1 − 𝑝1 | > 𝑧1−𝛼/2
©«
√︄
�̃��̂�1
𝑛
−

√︄
2 log(1/𝛿)
𝑛(𝑛 − 1) 𝑘𝑒

−𝐼 (𝑎1)ª®¬ − 𝑝2
ª®¬

+ �̃�
(√︃
�̃��̂�1 >

√︃
�̂�1 +

√︂
2 log(1/𝛿)
𝑛 − 1

𝑘𝑒−𝐼 (𝑎1)
)
+ 𝑛𝑝2

for any 𝛿 = 𝛿(𝛾) > 0. We know that 0 ≤ 𝑍
(𝑖)
1 ≤ 𝑘𝑒−𝐼 (𝑎1) ,∀𝑖. By Lemma 3.3 with 𝑌𝑖 =

𝑍
(𝑖)
1 /(𝑘𝑒

−𝐼 (𝑎1)), we get that

�̃�

(√︃
�̃��̂�1 >

√︃
�̂�1 +

√︂
2 log(1/𝛿)
𝑛 − 1

𝑘𝑒−𝐼 (𝑎1)
)
≤ 𝛿.

127



By Berry-Esseen theorem, we know that for any 𝑥 ∈ R��������̃� ©«
√
𝑛(𝑝1 − 𝑝1)√︃
𝑉𝑎𝑟 (𝑍 (1)1 )

≤ 𝑥
ª®®¬ −Φ(𝑥)

������� ≤ 𝐶�̃� |𝑍 (1)1 − 𝑝1 |3

𝑉𝑎𝑟
3/2(𝑍 (1)1 )

√
𝑛

where Φ is the CDF of standard normal distribution and 𝐶 is a universal constant. Let

𝑥 = 𝑧1−𝛼/2

(√√
�̃��̂�1

𝑉𝑎𝑟 (𝑍 (1)1 )
−

√︄
2 log(1/𝛿)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1)1 )
𝑘𝑒−𝐼 (𝑎1)

)
− 𝑝2

√︄
𝑛

𝑉𝑎𝑟 (𝑍 (1)1 )
.

Then we get that

�̃�
©«
√
𝑛|𝑝1 − 𝑝1 |√︃
𝑉𝑎𝑟 (𝑍 (1)1 )

> 𝑥
ª®®¬ ≤ 2Φ(−𝑥) +

2𝐶�̃� |𝑍 (1)1 − 𝑝1 |3

𝑉𝑎𝑟
3/2(𝑍 (1)1 )

√
𝑛

.

Hence,

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≤ 2Φ(−𝑥) +
2𝐶�̃� |𝑍 (1)1 − 𝑝1 |3

𝑉𝑎𝑟
3/2(𝑍 (1)1 )

√
𝑛

+ 𝛿 + 𝑛𝑝2.

First, we have that �̃� |𝑍 (1)1 − 𝑝1 |3 ≤ max(𝑝3
1, (𝑘𝑒

−𝐼 (𝑎1) − 𝑝1)3) ∼ 𝑒−3𝐼 (𝑎1) . Since Assumption

3.8 holds, we get that
�̃� |𝑍 (1)1 −𝑝1 |3

𝑉𝑎𝑟
3/2 (𝑍 (1)1 )

grows at most subexponentially in − log 𝑝. Hence under the

assumptions we could choose 𝑛 as required in the theorem. In particular, we have that

2𝐶�̃� |𝑍 (1)1 − 𝑝1 |3

𝑉𝑎𝑟
3/2(𝑍 (1)1 )

√
𝑛

→ 0.

Now we analyze 𝑥. We know that
√︂

𝐸�̂�1

𝑉𝑎𝑟 (𝑍 (1)1 )
= 1 and

𝑝2

√︄
𝑛

𝑉𝑎𝑟 (𝑍 (1)1 )
=

𝑝2

𝑒−𝐼 (𝑎1)

√√
𝑛𝑒−2𝐼 (𝑎1)

𝑉𝑎𝑟 (𝑍 (1)1 )
→ 0

since 𝑝2
𝑒−𝐼 (𝑎1 )

decays exponentially (Assumption 3.6) while 𝑛 and 𝑒−2𝐼 (𝑎1 )

𝑉𝑎𝑟 (𝑍 (1)1 )
grow subexponentially
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(Assumption 3.8) in − log 𝑝. Now we consider

√︄
2 log(1/𝛿)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1)1 )
𝑘𝑒−𝐼 (𝑎1) =

√√
2𝑘2 log(1/𝛿)𝑒−2𝐼 (𝑎1)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1)1 )
.

Since we assume that 𝑘2𝑒−2𝐼 (𝑎1 )

𝑛𝑉𝑎𝑟 (𝑍 (1)1 )
→ 0, we could set 𝛿 such that 𝛿→ 0 and

√︄
2 log(1/𝛿)

(𝑛 − 1)𝑉𝑎𝑟 (𝑍 (1)1 )
𝑘𝑒−𝐼 (𝑎1) → 0.

In this case, 𝑥 → 𝑧1−𝛼/2 and hence Φ(−𝑥) → 𝛼/2. Combining all the results, we get that

lim sup
𝛾→∞

�̃�
©«|𝑝 − 𝑝 | > 𝑧1−𝛼/2

√︄
�̂�

𝑛

ª®¬ ≤ 𝛼.
□

Proof of Theorem 3.15. First of all, it is easy to verify that the cumulant generating function `(𝑥) =

_⊤𝑥 + 1
2𝑥
⊤Σ𝑥 satisfies Assumption 3.3. Moreover, since 𝑔 is a piecewise linear function, we can

express E as the union of finite closed polyhedrons. If 𝑃(𝑋 ∈ E) > 0 and _ ∉ E, then 0 <

inf𝑥∈E 1
2 (𝑥 − _)

⊤Σ−1(𝑥 − _) < ∞. From [125], we know that

𝑝 = 𝑃(𝑔(𝑋) ≥ 𝛾) ∼ 𝑒− 1
2 (𝑎1−_)⊤Σ−1 (𝑎1−_)

and for sufficient large 𝛾, (𝑎1 − _)⊤Σ−1(𝑎1 − _) is a quadratic function of 𝛾 which goes to ∞ as

𝛾 → ∞. Finally, it is clear that the number of dominating points will not grow exponentially in

− log 𝑝 = Θ((𝑎1−_)⊤Σ−1(𝑎1−_)). Therefore, Assumption 3.5 is satisfied in this problem setting.

Next, we check Assumptions 3.6 and 3.7. Without loss of generality, we may assume that 𝑘 <

𝑟, since otherwise E2 = ∅ and 𝑝2 = 𝑝2 = 0. We know that 𝑎𝑘+1 = arg min𝑥∈E2 (𝑥 − _)⊤Σ−1(𝑥 − _),

and hence

E2 ⊂ {𝑥 ∈ R𝑑 : (𝑥 − _)⊤Σ−1(𝑥 − _) ≥ (𝑎𝑘+1 − _)⊤Σ−1(𝑎𝑘+1 − _)}.
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Denote 𝑋′ = Σ−1/2(𝑋 − _) and then 𝑋′ ∼ 𝑁 (0, 𝐼𝑑) under 𝑃. We have that

𝑝2 ≤ 𝑃((𝑋 − _)⊤Σ−1(𝑋 − _) ≥ (𝑎𝑘+1 − _)⊤Σ−1(𝑎𝑘+1 − _))

= 𝑃(𝑋 ′𝑇𝑋′ ≥ (𝑎𝑘+1 − _)⊤Σ−1(𝑎𝑘+1 − _))

∼ 𝑒− 1
2 (𝑎𝑘+1−_)

⊤Σ−1 (𝑎𝑘+1−_) .

We know that (𝑎𝑘+1 − _)⊤Σ−1(𝑎𝑘+1 − _) > 𝐶 (𝑎𝑘 − _)⊤Σ−1(𝑎𝑘 − _) ≥ 𝐶 (𝑎1 − _)⊤Σ−1(𝑎1 − _).

Thus, Assumption 3.6 holds. Moreover,

𝑝2 =
1
𝑘

𝑘∑︁
𝑖=1

𝑃𝑋∼𝑁 (𝑎𝑖 ,Σ) (𝑋 ∈ E2)

≤ 1
𝑘

𝑘∑︁
𝑖=1

𝑃𝑋∼𝑁 (𝑎𝑖 ,Σ) ((𝑋 − _)⊤Σ−1(𝑋 − _) ≥ (𝑎𝑘+1 − _)⊤Σ−1(𝑎𝑘+1 − _)).

We have that

(𝑋 − 𝑎𝑖)⊤Σ−1(𝑋 − 𝑎𝑖)

=(𝑋 − _)⊤Σ−1(𝑋 − _) + (𝑎𝑖 − _)⊤Σ−1(𝑎𝑖 − _) − 2(𝑎𝑖 − _)⊤Σ−1(𝑋 − _)

≥(𝑋 − _)⊤Σ−1(𝑋 − _) + (𝑎𝑖 − _)⊤Σ−1(𝑎𝑖 − _) − 2
√︁
(𝑋 − _)⊤Σ−1(𝑋 − _)

√︁
(𝑎𝑖 − _)⊤Σ−1(𝑎𝑖 − _)

=

(√︁
(𝑋 − _)⊤Σ−1(𝑋 − _) −

√︁
(𝑎𝑖 − _)⊤Σ−1(𝑎𝑖 − _)

)2
.

Hence, if (𝑋 − _)⊤Σ−1(𝑋 − _) ≥ (𝑎𝑘+1 − _)⊤Σ−1(𝑎𝑘+1 − _) > 𝐶 (𝑎𝑘 − _)⊤Σ−1(𝑎𝑘 − _) ≥ 𝐶 (𝑎𝑖 −
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_)⊤Σ−1(𝑎𝑖 − _), then (𝑋 − 𝑎𝑖)⊤Σ−1(𝑋 − 𝑎𝑖) ≥ (
√
𝐶 − 1)2(𝑎𝑖 − _)⊤Σ−1(𝑎𝑖 − _). Thus we get that

𝑝2 ≤
1
𝑘

𝑘∑︁
𝑖=1

𝑃𝑋∼𝑁 (𝑎𝑖 ,Σ) ((𝑋 − 𝑎𝑖)⊤Σ−1(𝑋 − 𝑎𝑖) ≥ (
√
𝐶 − 1)2(𝑎𝑖 − _)⊤Σ−1(𝑎𝑖 − _))

≤ 1
𝑘

𝑘∑︁
𝑖=1

𝑃𝑋∼𝑁 (𝑎𝑖 ,Σ) ((𝑋 − 𝑎𝑖)⊤Σ−1(𝑋 − 𝑎𝑖) ≥ (
√
𝐶 − 1)2(𝑎1 − _)⊤Σ−1(𝑎1 − _))

= 𝑃(𝑋 ′𝑇𝑋′ ≥ (
√
𝐶 − 1)2(𝑎1 − _)⊤Σ−1(𝑎1 − _))

∼ 𝑒− 1
2 (
√
𝐶−1)2 (𝑎1−_)⊤Σ−1 (𝑎1−_) .

Hence, 𝑝2 exponentially decays in − log 𝑝. That is, Assumption 3.7 holds.

Finally, we verify Assumption 3.8. We have𝑉𝑎𝑟 (𝑍1) = �̃� (𝑍1− 𝑝1)2 ≥ �̃� ((𝑍1− 𝑝1)2𝐼E𝑐1 (𝑋)) =

𝑝2
1�̃�(𝑋 ∉ E1). Since 𝑝1 ∼ 𝑒−

1
2 (𝑎1−_)⊤Σ−1 (𝑎1−_) , it suffices to justify that �̃�(𝑋 ∉ E1) does not

decay exponentially in − log 𝑝. Indeed, we have that E1 ⊂ {𝑥 ∈ R𝑑 : (𝑥 − _)⊤Σ−1(𝑥 − _) ≥

(𝑎1 − _)⊤Σ−1(𝑎1 − _)} and thus

�̃�(𝑋 ∈ E1) =
1
𝑘

𝑘∑︁
𝑖=1

𝑃𝑋∼𝑁 (𝑎𝑖 ,Σ) (𝑋 ∈ E1)

≤ 𝑘 − 1
𝑘
+ 1
𝑘
𝑃𝑋∼𝑁 (𝑎1,Σ) (𝑋 ∈ E1)

≤ 𝑘 − 1
𝑘
+ 1
𝑘
𝑃𝑋∼𝑁 (𝑎1,Σ) ((𝑋 − _)⊤Σ−1(𝑋 − _) ≥ (𝑎1 − _)⊤Σ−1(𝑎1 − _))

=
𝑘 − 1
𝑘
+ 1
𝑘
𝑃((𝑋′ + Σ−1/2(𝑎1 − _))⊤(𝑋′ + Σ−1/2(𝑎1 − _)) ≥ (𝑎1 − _)⊤Σ−1(𝑎1 − _)).

Then we have that

�̃�(𝑋 ∉ E1) ≥
1
𝑘
𝑃((𝑋′ + Σ−1/2(𝑎1 − _))⊤(𝑋′ + Σ−1/2(𝑎1 − _)) < (𝑎1 − _)⊤Σ−1(𝑎1 − _))

≥ 1
𝑟
𝑃

(
𝑋′ ∈ 𝐵

(
−Σ−1/2(𝑎1 − _),

√︁
(𝑎1 − _)⊤Σ−1(𝑎1 − _)

))
where 𝐵(𝑥, 𝑅) := {𝑦 ∈ R𝑑 : ∥𝑦 − 𝑥∥ < 𝑅}. For sufficiently large 𝛾, (𝑎1 − _)⊤Σ−1(𝑎1 − _)

monotonely grows to ∞, and hence �̃�(𝑋 ∉ E1) ≥ 𝑐
𝑟

for some constant 𝑐 > 0. As a result,

Assumption 3.8 holds. □
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Chapter 4: On the Error of Naive Rare-Event Monte Carlo Estimator

4.1 Introduction

We consider the problem of estimating a minuscule probability, denoted 𝑝 = 𝑃(𝐴), for some

rare event 𝐴, using data or Monte Carlo samples. This problem, known as rare-event estimation, is

of wide interest to communities such as system reliability [43, 40, 42, 44], queueing systems [24,

25, 26, 27, 29, 30, 31], finance and insurance [34, 36, 35, 134, 37, 38, 39], where it is crucial to

estimate the likelihood of events which, though unlikely, can cause catastrophic impacts.

There are multiple prominent lines of work addressing this estimation problem, depending on

how information is collected. In settings where real-world data are collected, methods based on

extreme value theory [135, 136, 134, 137] are often used to extrapolate distributional tails to assist

such estimation. Despite the theoretical guarantees and wide applications of these methods, the

performance still depends on subjective choices such as the hyperparameters and the approach to

fit the tail distribution.

In settings where 𝐴 is an event described by a simulatable model, Monte Carlo methods can be

used, and to speed up computation one often harnesses variance reduction tools such as importance

sampling [51, 53, 23], conditional Monte Carlo [54, 63] and multi-level splitting [87, 138, 139].

While variance reduction is greatly beneficial in reducing the number of Monte Carlo samples

needed to estimate rare events [22, 54, 63], it is also widely known that they rely heavily on model

assumptions [23, 64]. That is, to guarantee the successful performances of these techniques, one

typically needs to analyze the underlying model dynamics carefully to design the Monte Carlo

scheme. However, recent applications, such as autonomous vehicle safety evaluation [17, 20, 18,

19, 21] and robustness evaluation of machine learning predictors [14, 140, 125], lead to rare-event

estimation problems with extremely sophisticated structures that hinder the design of efficiency-
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guaranteed variance reduction schemes. On the other hand, with the remarkable recent surge

of computational infrastructure, in some situations one could afford to run gigantic amount of

simulation trials.

Motivated by the limitations of the above techniques and the potential to generate numerous

samples, in this chapter we focus on a more basic setting than some of the above literature, but in

a sense fundamental. More precisely, we focus on the situation where all we have to estimate 𝑝 is

a set of i.i.d. Bernoulli observations 𝐼 (𝐴). A natural point estimate of 𝑝 is the sample proportion

𝑝, i.e., given a set of Bernoulli data 𝐼1, . . . , 𝐼𝑛 of size 𝑛, we output 𝑝 = (1/𝑛)∑𝑛
𝑖=1 𝐼𝑖. We are

interested in understanding the statistical error in using 𝑝, in the situation where 𝑝 could be very

small, importantly with no lower bound on how small it could be. Unlike the estimates given

by efficiency-guaranteed variance reduction techniques, it is open, at least to our best knowledge,

whether using simple sample proportion can give meaningful guarantee to estimating rare-event

probabilities, in relation to the sample size 𝑛 and the (unknown) magnitude of 𝑝.

In Section 4.2, we will describe the problem setting and the challenges more concretely, and

also summarize our main results. In Section 4.3 and 4.4, we construct and analyze various confi-

dence intervals (CI) under two different settings respectively. In Section 4.5, we conduct numerical

experiments to visualize the comparison. In Section 4.6, we conclude this chapter with our findings

and recommendations. All the proofs can be found in Section 4.7.

4.2 Problem Setting and Main Results

In this chapter we would focus on the construction of CI. That is, using information from the

Bernoulli data, or equivalently 𝑝, we would like to construct a simple CI for 𝑝 that has justifi-

able statistical guarantees. In answering this, we would also quantify the error between the point

estimate 𝑝 and 𝑝.

First of all, we explain what a good CI is supposed to be. In order to measure the goodness

of a CI, we mainly consider the validity and the tightness. Throughout this chapter, we say that

[𝑝𝑙 (𝛼), 𝑝𝑢 (𝛼)] is a valid (1−𝛼)-level CI if 𝑃(𝑝𝑙 (𝛼) ≤ 𝑝 ≤ 𝑝𝑢 (𝛼)) ≥ 1−𝛼, i.e., the nominal con-
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fidence level is achieved. The validity can be defined similarly for one-sided confidence bounds.

A good CI should be valid or approximately valid such that it covers the true probability 𝑝 with

a high confidence. On the other hand, a good CI should not be too wide. In an extreme case, the

trivial CI [0, 1] always covers 𝑝, but it does not provide any useful information. The tightness

could be quantified by the “half-width”, i.e., 𝑝𝑢 (𝛼) − 𝑝 or 𝑝 − 𝑝𝑙 (𝛼). Considering that 𝑝 is tiny in

the rare-event settings, the CI is meaningful only if the half-width is small relative to 𝑝 and 𝑝.

To understand the challenges, we first examine the use of a standard “textbook" CI, and we

focus on the upper confidence bound for now since the lower confidence bound can be argued

analogously. More specifically, we use the following as the (1 − 𝛼)-level upper confidence bound

𝑝𝐶𝐿𝑇 = 𝑝 + 𝑧1−𝛼

√︂
𝑝(1 − 𝑝)

𝑛
(4.1)

where 𝑧1−𝛼 is the (1 − 𝛼)-quantile of a standard normal variable. The typical way to justify (4.1)

is a Gaussian approximation using the central limit theorem (CLT), which entails that

𝑃(𝑝 ≤ 𝑝𝐶𝐿𝑇 ) ≈ Φ̄(−𝑧1−𝛼) = 1 − 𝛼 (4.2)

where we denote Φ̄ (and Φ) as the tail (and cumulative) distribution function of standard normal.

To delve a little further, note that the approximation error in (4.2) is controlled by the Berry-

Essen (B-E) Theorem. To simplify the discussion, suppose we are in a more idealized (but unreal-

istic) case that we know the precise value of the variance of the Bernoulli trial, i.e., 𝜎2 = 𝑝(1− 𝑝),

so that we use 𝑝 + 𝑧1−𝛼𝜎/
√
𝑛. Then the Berry-Essen theorem stipulates that

|𝑃(𝑝 ≤ 𝑝𝐶𝐿𝑇 ) −Φ(𝑧1−𝛼) | ≤
𝐶𝜌

𝜎3√𝑛
(4.3)

where 𝜌 = 𝐸 |𝐼𝑖 − 𝑝 |3 = 𝑝(1 − 𝑝) (1 − 2𝑝 + 2𝑝2), and 𝐶 is a universal constant (≈ 0.4748). Thus,
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the error in (4.3) is bounded by

𝐶𝑝(1 − 𝑝) (1 − 2𝑝 + 2𝑝2)
𝑝3/2(1 − 𝑝)3/2

√
𝑛

≤ 𝐶√︁
𝑛𝑝(1 − 𝑝)

. (4.4)

The issue is that when 𝑝 is tiny, 𝑛𝑝 can also be tiny unless 𝑛 is sufficiently big, but a priori we

would not know what 𝑛 is “sufficient". If we have used the confidence bound given by (4.1)

where the variance 𝜎2 is unknown and estimated by 𝑝(1 − 𝑝), a similar Berry-Esseen bound

would ultimately conclude the same issue as revealed by (4.4) [141]. These lead to the following

exemplified questions:

Q1. Suppose we have, say, 30 “success" outcomes among 𝑛 trials, then we may think that 𝑛𝑝 ≈ 30,

so that from the bound (4.4) the error of 𝑝𝐶𝐿𝑇 appears controlled. As another more extreme

case, suppose we only have only 1 success, then we may be led to believe 𝑛𝑝 ≈ 1, so that

𝑝𝐶𝐿𝑇 is not trivial but its coverage is likely way off from 1 − 𝛼. Are these conclusions on

𝑝𝐶𝐿𝑇 correct? Note that the guess that 𝑛𝑝 ≈ 30 or 𝑛𝑝 ≈ 1 is itself based on some central limit

or concentration argument, which apparently leads to a circular reasoning.

Q2. If we have 1 success among 𝑛 trials, how do we construct a confidence upper bound that

is guaranteed the correct coverage? Correspondingly, would constructing such a confidence

bound be easier if we have 30 successes?

Q3. For the valid confidence bounds constructed in Question 2, what is the typical “half-width"

(i.e., the difference between the confidence bound and 𝑝), relative to the point estimate 𝑝?

If the relative half-width is too big, then the provided upper bound may not be meaningful.

For instance, if 𝑛 is 0, then (4.1) is clearly meaningless. What about if 𝑛 is 1 when we

use a valid confidence bound? Note that the use of relative half-width is important since 𝑝

(and correspondingly 𝑝) could be tiny, and a meaningful upper bound should have a similar

magnitude as 𝑝 (and 𝑝).

Q4. Following up Question 3, we would also like to understand the relative error of the point
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estimate, i.e., (𝑝 − 𝑝)/𝑝, and the relative error of the confidence bound, e.g., (𝑝𝐶𝐿𝑇 − 𝑝)/𝑝,

the latter related to Question 3.

Q5. Do all the above answers hold if we stop whenever we observe enough successes (e.g., when

the number of successes is 30, or 1) in our simulation experiment?

Note that a quick and implementable approach to Question 2 is to utilize the fact that 𝑛𝑝 follows

a binomial distribution and extract a finite-sample confidence region using this exact distribution.

This is often called the Clopper-Pearson CI or the exact method. Though this is computationally

easy, we are interested in simpler mathematical forms that allow us to answer Questions 3 and

4 above. In this regard, Wilson’s interval [142] has been studied and shown to give superior

empirical performances, even in the case that 𝑝 is tiny, but we are not aware of any rigorous proof

on its validity. In the following sections, we will offer two different ways of constructing CIs for

𝑝, one using a concentration inequality called Chernoff’s inequality, while another one using the

Berry-Esseen bound. They both offer answers to Question 2 on top of the exact CI and Wilson’s

interval. Compared to the exact CI, these two intervals are in a similar form as the CLT interval,

which allows us to answer Question 1. They also have the explicit forms that allow us to investigate

their half-widths, thereby answering Question 3 and 4. Finally, they could be adapted to the setting

in Question 5.

Before going into details, now we provide a roadmap for our main results. We will focus on

two settings. The first one is called the “standard” setting, where the sample size 𝑛 is fixed. The

other setting is as described in Question 5 where we fix the number of successes, and we call it as

the “targeted stopping” setting. Under each setting, we will review the CLT CI, the Wilson’s CI and

the exact CI. We will also introduce how to construct the Chernoff CI and the B-E CI respectively

via inverting the Chernoff’s inequality and the B-E theorem.

From (4.1), we clearly see that the half-width of the CLT CI scales in the same magnitude as√︁
𝑝/𝑛 = 𝑝/

√
�̂� where �̂� = 𝑛𝑝 is the number of positive outcomes. With this transformation, it is

easier to see how the half-width scales relative to 𝑝 as asked in Question 3. That is, the relative

half-width is of magnitude 1/
√
�̂�. Figure 4.1 illustrates the comparisons of these available CIs
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in terms of upper and lower bound (the exact CI is not included since it is hard to analyze its

magnitude). More concretely, Table 4.1 summarizes the formula, scale, pros and cons of each CI

under both settings. For the confidence upper bounds under the standard setting, we have that the

B-E bound is valid yet the difference between it and the CLT bound is of magnitude 𝑝/�̂�, so the

relative difference with respect to 𝑝 is of magnitude 1/�̂�, which is of higher order in �̂�. This can be

viewed as a price of validity paid to make 𝑝𝐶𝐿𝑇 correct. We will also show that similar arguments

hold for the Wilson’s bound. The same conclusions could be achieved for both upper and lower

bounds under the targeted stopping setting. However, B-E fails to give a non-trivial confidence

lower bound under the standard setting, and thus it remains to be an open problem how close is the

CLT (or the Wilson’s) lower bound to a valid one.

(a) Standard Setting - Up-
per

(b) Standard Setting -
Lower

(c) Targeted Stopping -
Upper

(d) Targeted Stopping -
Lower

Figure 4.1: Comparisons of confidence upper and lower bounds under the standard and the targeted
stopping setting.

4.3 Confidence Intervals under the Standard Setting

Under the standard setting, we fix the sample size 𝑛 and let 𝑝 = (1/𝑛)∑𝑛
𝑖=1 𝐼𝑖 where 𝐼𝑖’s are

i.i.d. 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) random variables.
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Standard Setting (𝐼1, . . . , 𝐼𝑛
𝑖.𝑖.𝑑.∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), 𝑝 = 1

𝑛

∑𝑛
𝑖=1 𝐼𝑖, �̂� = 𝑛𝑝)

CLT 𝑝 ± 𝑧1−𝛼/2

√︃
𝑝(1−𝑝)
𝑛

.

Scale: 𝑝𝐶𝐿𝑇𝑢 − 𝑝 = 𝑝 − 𝑝𝐶𝐿𝑇
𝑙

= 𝑂 (𝑝/
√
�̂�);

Pros: Easy to compute;
Cons: Not reliable when 𝑛𝑝 is not sufficiently large.

Wilson
1+ 2𝑛�̂�

𝑧21−𝛼/2
±
√︂

1+ 4𝑛�̂� (1− �̂�)
𝑧21−𝛼/2

2

(
1+ 𝑛

𝑧21−𝛼/2

) .

Scale: |𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑢 − 𝑝𝐶𝐿𝑇𝑢 | = 𝑂 (𝑝/�̂�), |𝑝𝑊𝑖𝑙𝑠𝑜𝑛
𝑙

− 𝑝𝐶𝐿𝑇
𝑙
| = 𝑂 (𝑝/�̂�);

Pros: Tight, the coverage probability is usually close to 1 − 𝛼;
Cons: Not always valid, lacks theoretical error control.

Exact

Solutions to∑�̂�
𝑘=0

(𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 = 𝛼/2,∑𝑛

𝑘=�̂�

(𝑛
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 = 𝛼/2

except that 𝑝𝐸𝑥𝑎𝑐𝑡𝑢 = 1 if �̂� = 𝑛 and 𝑝𝐸𝑥𝑎𝑐𝑡
𝑙

= 0 if �̂� = 0.

Pros: Always valid, tighter than other valid CI;
Cons: Conservative, hard to analyze.

Chernoff
𝑝 + log(2/𝛼)

𝑛
+

√︃
(log(2/𝛼))2

𝑛2 + 2𝑝 log(2/𝛼)
𝑛

,

𝑝 + log(2/𝛼)
2𝑛 −

√︃
(log(2/𝛼))2

4𝑛2 + 2𝑝 log(2/𝛼)
𝑛

.

Scale: 𝑝𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓𝑢 − 𝑝𝐶𝐿𝑇𝑢 = 𝑂 (𝑝/
√
�̂�), 𝑝𝐶𝐿𝑇

𝑙
− 𝑝𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓

𝑙
= 𝑂 (𝑝/

√
�̂�);

Pros: Always valid, helps us understand the relative error of 𝑝;
Cons: Extremely conservative.

B-E

{
0 < 𝑝 ≤ 𝑝 ∧ 1

2 : Φ
(

𝑝−𝑝√
𝑝(1−𝑝)/𝑛

)
+ 𝐶√

𝑛𝑝(1−𝑝)
≥ 𝛼

2

}
∪

{
𝑝 ≤ 𝑝 < 1

2 : Φ
(

𝑝−𝑝√
𝑝(1−𝑝)/𝑛

)
+ 𝐶√

𝑛𝑝(1−𝑝)
≥ 𝛼

2

}
where 𝐶 is the universal constant in the B-E theorem.

Scale: |𝑝𝐵𝐸𝑢 − 𝑝𝐶𝐿𝑇𝑢 | = 𝑂 (𝑝/�̂�);
Pros: Always valid, helps us understand the error of the CLT upper bound;
Cons: Extremely conservative, trivial lower bound.

Targeted Stopping Setting (𝑁1, . . . , 𝑁𝑛0
𝑖.𝑖.𝑑.∼ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑝), 𝑁 =

∑𝑛0
𝑖=1 𝑁𝑖, 𝑝 = 𝑛0/𝑁)

CLT 𝑛0
𝑁
± 𝑧1−𝛼/2

√︃
𝑛0 (𝑁−𝑛0)

𝑁3 .

Scale: 𝑝𝐶𝐿𝑇𝑢,𝑛0 − 𝑝 = 𝑝 − 𝑝𝐶𝐿𝑇
𝑙,𝑛0

= 𝑂 (√𝑛0/𝑁);
Pros: Easy to compute;
Cons: Not always valid.

Wilson
1+ 2𝑛0

𝑧21−𝛼/2
±
√︄

1+ 4𝑛0 (𝑁−𝑛0 )
𝑧21−𝛼/2𝑁

2

(
1+ 𝑁

𝑧21−𝛼/2

) .

Scale: |𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑢,𝑛0 − 𝑝𝐶𝐿𝑇𝑢,𝑛0 | = 𝑂 (1/𝑁), |𝑝
𝑊𝑖𝑙𝑠𝑜𝑛
𝑙,𝑛0

− 𝑝𝐶𝐿𝑇
𝑙,𝑛0
| = 𝑂 (1/𝑁);

Pros: Tight, the coverage probability is usually close to 1 − 𝛼;
Cons: Not always valid.

Exact

Solutions to∑𝑁−𝑛0−1
𝑘=0

(𝑘+𝑛0−1
𝑛0−1

)
(1 − 𝑝)𝑘 𝑝𝑛0 = 1 − 𝛼/2,∑𝑁−𝑛0

𝑘=0
(𝑘+𝑛0−1
𝑛0−1

)
(1 − 𝑝)𝑘 𝑝𝑛0 = 𝛼/2

except that 𝑝𝐸𝑥𝑎𝑐𝑡𝑢,𝑛0 = 1 if 𝑁 = 𝑛0.

Pros: Always valid, tighter than other valid CI;
Cons: Conservative, hard to analyze.

Chernoff
{
0 < 𝑝 < 1 : 𝑝𝑛0 (1 − 𝑝)𝑁−𝑛0 ≥ 𝛼

2
( 𝑛0
𝑁

)𝑛0 (
1 − 𝑛0

𝑁

)𝑁−𝑛0
}
.

Pros: Always valid;
Cons: Extremely conservative, hard to analyze.

B-E

{
0 < 𝑝 ≤ 𝑛0

𝑁
∧ 1

2 : Φ
(

𝑁𝑝−𝑛0√
𝑛0 (1−𝑝)

)
+ 𝐶′√

𝑛0 (1−𝑝)3
≥ 𝛼

2

}
∪

{
𝑛0
𝑁
≤ 𝑝 < 1

2 : Φ
(

𝑛0−𝑁𝑝√
𝑛0 (1−𝑝)

)
+ 𝐶′√

𝑛0 (1−𝑝)3
≥ 𝛼

2

}
where 𝐶′ = 16𝐶 is a universal constant.

Scale: 𝑝𝐵𝐸𝑢,𝑛0 − 𝑝
𝐶𝐿𝑇
𝑢,𝑛0 = 𝑂 (1/𝑁), 𝑝𝐶𝐿𝑇

𝑙,𝑛0
− 𝑝𝐵𝐸

𝑙,𝑛0
= 𝑂 (1/𝑁);

Pros: Aways valid, helps us understand the error of 𝑝 and the CLT CI;
Cons: Extremely conservative, trivial for small 𝑛0.

Table 4.1: Summary of the CIs.

4.3.1 Confidence Intervals via Normal Approximation

First, we review two existing CIs which are constructed via normal approximation: the CLT

interval and the Wilson’s interval. We know that (𝑝 − 𝑝)/
√︁
𝑝(1 − 𝑝)/𝑛 𝑑.→ 𝑁 (0, 1), and then

normal distribution could serve as an approximation.
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CLT CI

Using 𝑝(1 − 𝑝) to approximate 𝜎2 = 𝑝(1 − 𝑝), we get the CLT CI:

𝑝𝐶𝐿𝑇𝑢 = 𝑝 + 𝑧1−𝛼/2

√︂
𝑝(1 − 𝑝)

𝑛
;

𝑝𝐶𝐿𝑇𝑙 = 𝑝 + 𝑧1−𝛼/2

√︂
𝑝(1 − 𝑝)

𝑛
.

Clearly, 𝑝𝐶𝐿𝑇𝑢 − 𝑝 = 𝑂 (
√︁
𝑝/𝑛) = 𝑂 (𝑝/

√
�̂�) and 𝑝− 𝑝𝐶𝐿𝑇

𝑙
= 𝑂 (𝑝/

√
�̂�). As explained in Section 4.2,

we express the half-width as 𝑂 (𝑝/
√
�̂�) instead of 𝑂 (

√︁
𝑝/𝑛) in order to understand the magnitude

of the relative half-width with respect to 𝑝 more clearly.

Wilson’s CI

Now we do not approximate the variance. Instead, we directly solve

𝛼

2
≤ Φ

(
𝑝 − 𝑝√︁

𝑝(1 − 𝑝)/𝑛

)
≤ 1 − 𝛼

2

and then get the Wilson’s CI:

𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑢 =

1 + 2𝑛𝑝
𝑧2

1−𝛼/2
+

√︂
1 + 4𝑛𝑝(1−𝑝)

𝑧2
1−𝛼/2

2
(
1 + 𝑛

𝑧2
1−𝛼/2

) ;

𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑙 =

1 + 2𝑛𝑝
𝑧2

1−𝛼/2
−

√︂
1 + 4𝑛𝑝(1−𝑝)

𝑧2
1−𝛼/2

2
(
1 + 𝑛

𝑧2
1−𝛼/2

) .

It can be easily derived that
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Theorem 4.1.

|𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑢 − 𝑝𝐶𝐿𝑇𝑢 | ≤
𝑧2

1−𝛼/2
𝑛
+
𝑧3

1−𝛼/2

2𝑛3/2 ;

|𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑙 − 𝑝𝐶𝐿𝑇𝑙 | ≤
𝑧2

1−𝛼/2
𝑛
+
𝑧3

1−𝛼/2

2𝑛3/2 .

Remark 4.1. Note that 1/𝑛 = 𝑝/�̂�, so the difference between the Wilson’s CI and the CLT CI is of

magnitude 𝑂 (𝑝/�̂�), which is of higher order than 𝑝/
√
�̂� in �̂�. Since the half-width of the CLT CI is

of magnitude 𝑝/
√
�̂�, we get that the half-width of the Wilson’s CI has similar scale to the CLT CI.

In practice, the Wilson’s confidence bound has a satisfactory performance, in the sense that it

is relatively tight while the coverage probability is usually close to the nominal confidence level.

4.3.2 Valid Confidence Intervals

To construct valid CIs, we consider the following set:

{0 < 𝑝 < 1 : 𝐹 (𝑝) ≥ 𝛼/2, 𝐹−(𝑝) ≤ 1 − 𝛼/2} (4.5)

where 𝐹 (𝑥) = 𝑃(𝑝 ≤ 𝑥) and 𝐹−(𝑥) = 𝑃(𝑝 < 𝑥). Note that 𝐹 and 𝐹− depend on 𝑝. If 𝐹 were

continuous, then we know that 𝑃(𝐹 (𝑝) ≥ 𝛼/2, 𝐹−(𝑝) ≤ 1−𝛼/2) = 1−𝛼 since in this case 𝐹 (𝑝) =

𝐹−(𝑝)
𝑑
= 𝑈𝑛𝑖 𝑓 [0, 1]. Now we argue that 𝑃(𝐹 (𝑝) ≥ 𝛼/2, 𝐹−(𝑝) ≤ 1−𝛼/2) > 1−𝛼 in this discrete

case. Indeed, for any 𝛼 ∈ (0, 1), there exist 0 ≤ 𝑘, 𝑙 ≤ 𝑛 such that 𝐹 ((𝑘 − 1)/𝑛) < 𝛼/2 ≤ 𝐹 (𝑘/𝑛)

and 𝐹−(𝑙/𝑛) ≤ 1 − 𝛼/2 < 𝐹−((𝑙 + 1)/𝑛). Then

𝑃(𝐹 (𝑝) < 𝛼/2 or 𝐹−(𝑝) > 1 − 𝛼/2) ≤ 𝑃(𝐹 (𝑝) < 𝛼/2) + 𝑃(𝐹−(𝑝) > 1 − 𝛼/2)

= 𝑃(𝑝 ≤ (𝑘 − 1)/𝑛) + 𝑃(𝑝 ≥ (𝑙 + 1)/𝑛)

= 𝐹 ((𝑘 − 1)/𝑛) + 1 − 𝐹−((𝑙 + 1)/𝑛) < 𝛼.
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Therefore, the set (4.5) is a valid (1 − 𝛼)-level confidence region. From this derivation, we find

that due to the discreteness, the probability that this confidence region covers the true value 𝑝 is

strictly larger than the nominal confidence level 1−𝛼, and hence this confidence region is inevitably

conservative.

Exact CI

The exact CI is obtained by directly solving (4.5). More specifically, 𝑝𝐸𝑥𝑎𝑐𝑡𝑢 and 𝑝𝐸𝑥𝑎𝑐𝑡
𝑙

are

respectively the solution to

�̂�∑︁
𝑘=0

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 = 𝛼/2,

𝑛∑︁
𝑘=�̂�

(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘 = 𝛼/2,

except that 𝑝𝐸𝑥𝑎𝑐𝑡𝑢 = 1 if �̂� = 𝑛 and 𝑝𝐸𝑥𝑎𝑐𝑡
𝑙

= 0 if �̂� = 0. When 0 < �̂� < 𝑛, the bounds could

be expressed explicitly via quantiles of 𝐹 distribution or Beta distribution, and hence are easy to

compute numerically [142]. However, it is hard to analyze the scale of this CI, which motivates us

to further relax the confidence region (4.5) to get other valid CIs which are more conservative but

easier to analyze.

Chernoff CI

Now we present our first approach to construct a valid CI for 𝑝 by utilizing a concentration

inequality. By Chernoff’s inequality, we have

𝑃(𝑝 ≤ (1 − 𝛿)𝑝) ≤ exp
(
−𝛿

2

2
𝑛𝑝

)
, 0 < 𝛿 < 1;

𝑃(𝑝 ≥ (1 + 𝛿)𝑝) ≤ exp
(
− 𝛿2

2 + 𝛿𝑛𝑝
)
, 𝛿 > 0.
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Replacing (1 − 𝛿)𝑝 or (1 + 𝛿)𝑝 by 𝑥, we have

𝐹 (𝑥) ≤ exp

{
−

(
1 − 𝑥

𝑝

)2
𝑛𝑝

2

}
, 𝑥 ≤ 𝑝;

𝐹−(𝑥) ≥ 1 − exp

−
(
𝑥
𝑝
− 1

)2

1 + 𝑥
𝑝

𝑛𝑝

 , 𝑥 ≥ 𝑝.
Hence 𝐹 (𝑝) ≥ 𝛼/2, 𝐹−(𝑝) ≤ 1 − 𝛼/2 implies that either

𝑝 ≥ 𝑝 and exp

{
−

(
1 − 𝑝

𝑝

)2
𝑛𝑝

2

}
≥ 𝛼/2

or

𝑝 ≤ 𝑝 and 1 − exp

−
(
𝑝

𝑝
− 1

)2

1 + 𝑝

𝑝

𝑛𝑝

 ≤ 1 − 𝛼/2.

Therefore,

0 < 𝑝 ≤ 𝑝 : exp

−
(
𝑝

𝑝
− 1

)2

1 + 𝑝

𝑝

𝑛𝑝

 ≥ 𝛼/2
 ∪

{
𝑝 ≤ 𝑝 < 1 : exp

{
−

(
1 − 𝑝

𝑝

)2
𝑛𝑝

2

}
≥ 𝛼/2

}

is a confidence region for 𝑝 with confidence level at least 1−𝛼. Simplifying the expression above,

we have that

0 < 𝑝 ≤ 𝑝, exp

−
(
𝑝

𝑝
− 1

)2

1 + 𝑝

𝑝

𝑛𝑝

 ≥ 𝛼/2
⇒𝑝 + log(2/𝛼)

2𝑛
−

√︂
(log(2/𝛼))2

4𝑛2 + 2𝑝 log(2/𝛼)
𝑛

≤ 𝑝 ≤ 𝑝
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and

𝑝 ≤ 𝑝 < 1, exp

{
−

(
1 − 𝑝

𝑝

)2
𝑛𝑝

2

}
≥ 𝛼/2

⇒𝑝 ≤ 𝑝 ≤ 𝑝 + log(2/𝛼)
𝑛

+
√︂
(log(2/𝛼))2

𝑛2 + 2𝑝 log(2/𝛼)
𝑛

.

Hence, by taking the union, we get a valid (1− 𝛼)-level CI for 𝑝, for any finite sample 𝑛. This can

be summarized as:

Theorem 4.2. The interval given by

𝑝
𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓
𝑢 = 𝑝 + log(2/𝛼)

𝑛
+

√︂
(log(2/𝛼))2

𝑛2 + 2𝑝 log(2/𝛼)
𝑛

,

𝑝
𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓

𝑙
= 𝑝 + log(2/𝛼)

2𝑛
−

√︂
(log(2/𝛼))2

4𝑛2 + 2𝑝 log(2/𝛼)
𝑛

is a valid (1 − 𝛼)-level CI for 𝑝, for any finite sample 𝑛. That is,

𝑃(𝑝𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓
𝑙

≤ 𝑝 ≤ 𝑝𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓𝑢 ) ≥ 1 − 𝛼

for any 𝑛.

When 𝑝 = 0, the interval reduces to [0, 2 log(1/𝛼)/𝑛] (and in fact we can construct even tighter

bounds by using the binomial distribution of 𝑛𝑝 directly in this case). On the other hand, when

𝑝 > 0, we can re-express using �̂� = 𝑛𝑝 to get

𝑝
𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓
𝑢 = 𝑝

(
1 + log(2/𝛼)

�̂�
+

√︂
(log(2/𝛼))2

�̂�2 + 2 log(2/𝛼)
�̂�

)
,

𝑝
𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓

𝑙
= 𝑝

(
1 + log(2/𝛼)

2�̂�
−

√︂
(log(2/𝛼))2

4�̂�2 + 2 log(2/𝛼)
�̂�

)
.

We highlight that in this case, the half-width of the Chernoff CI is of order 𝑂 (𝑝/
√
�̂�), which scales

in the same order as the CLT CI.
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If we check the difference between this interval and the CLT interval, then we will find that

it is of the same order as the difference between the CLT interval and 𝑝. The following theorem

presents the details of this claim. We will contrast this result with another one presented in the next

section momentarily.

Theorem 4.3.

𝑝
𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓
𝑢 − 𝑝𝐶𝐿𝑇𝑢 ≥ (

√︁
2 log(2/𝛼) − 𝑧1−𝛼/2)

√︂
𝑝

𝑛
+ log(2/𝛼)

𝑛
,

𝑝𝐶𝐿𝑇𝑙 − 𝑝𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓
𝑙

≥ (
√︁

2 log(2/𝛼) − 𝑧1−𝛼/2)
√︂
𝑝

𝑛
− log(2/𝛼)

2𝑛
.

Note that
√︁

2 log(2/𝛼) − 𝑧1−𝛼/2 > 0 for 0 < 𝛼 < 1.

Remark 4.2. One may note that as long as �̂� ≥ 1, that is, we have at least one positive observation,

then
√︁
𝑝/𝑛 =

√
�̂�/𝑛 ≥ 1/𝑛. Provided that

√︁
2 log(2/𝛼) − 𝑧1−𝛼/2 > 0, 𝑝𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓𝑢 − 𝑝𝐶𝐿𝑇𝑢 (or,

𝑝
𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓

𝑙
− 𝑝𝐶𝐿𝑇

𝑙
) is of no higher order than 𝑝𝐶𝐿𝑇𝑢 − 𝑝 (or, 𝑝𝐶𝐿𝑇

𝑙
− 𝑝).

Finally, we can conclude that 𝑃( |𝑝− 𝑝 | ≤ 𝜖 𝑝 |�̂� ≥ 𝑐) ≥ 1−𝛼 for some small 𝜖 depending on the

constant 𝑐, which is chosen large enough independently. This in turn concludes that 𝑃( |𝑝 − 𝑝 | ≤

(𝜖/(1 − 𝜖))𝑝 |�̂� ≥ 𝑐) ≥ 1 − 𝛼. In other words, given we observe that �̂� is large enough, 𝑝 can be

viewed as a conditionally relatively efficient estimator. The caution, however, is that this is under

the precondition that we can observe enough positive outcomes.

Berry-Esseen CI

We develop another CI for 𝑝 by inverting the Berry-Esseen theorem. Here, we assume that 𝑝

is known to satisfy 𝑝 < 1
2 a priori (which is reasonable if we consider rare event). In this chapter,

we use the standard version of the Berry-Esseen theorem, and a potential future investigation is to

consider a B-E bound for the studentized statistic [143, 144].
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By the Berry-Esseen theorem, we have that����𝑃 (
(𝑝 − 𝑝)

√︂
𝑛

𝑝(1 − 𝑝) ≤ 𝑥
)
−Φ(𝑥)

���� ≤ 𝐶√︁
𝑛𝑝(1 − 𝑝)

,����𝑃 (
(𝑝 − 𝑝)

√︂
𝑛

𝑝(1 − 𝑝) ≤ 𝑥
)
−Φ(𝑥)

���� ≤ 𝐶√︁
𝑛𝑝(1 − 𝑝)

where 𝐶 is a universal constant. We replace 𝑥 by 𝑝−𝑝√
𝑝(1−𝑝)/𝑛

in the first inequality and 𝑝−𝑝√
𝑝(1−𝑝)/𝑛

in

the second one. Then we get that�����𝐹 (𝑝) −Φ
(

𝑝 − 𝑝√︁
𝑝(1 − 𝑝)/𝑛

)����� ≤ 𝐶√︁
𝑛𝑝(1 − 𝑝)

;�����1 − 𝐹−(𝑝) −Φ
(

𝑝 − 𝑝√︁
𝑝(1 − 𝑝)/𝑛

)����� ≤ 𝐶√︁
𝑛𝑝(1 − 𝑝)

.

Hence 𝐹 (𝑝) ≥ 𝛼/2, 𝐹−(𝑝) ≤ 1 − 𝛼/2 implies that either

𝑝 ≥ 𝑝 and Φ

(
𝑝 − 𝑝√︁

𝑝(1 − 𝑝)/𝑛

)
+ 𝐶√︁

𝑛𝑝(1 − 𝑝)
≥ 𝛼/2

or

𝑝 ≤ 𝑝 and Φ

(
𝑝 − 𝑝√︁

𝑝(1 − 𝑝)/𝑛

)
+ 𝐶√︁

𝑛𝑝(1 − 𝑝)
≥ 𝛼/2.

Thus, {
0 < 𝑝 ≤ 𝑝 : Φ

(
𝑝 − 𝑝√︁

𝑝(1 − 𝑝)/𝑛

)
+ 𝐶√︁

𝑛𝑝(1 − 𝑝)
≥ 𝛼

2

}
∪{

𝑝 ≤ 𝑝 < 1 : Φ

(
𝑝 − 𝑝√︁

𝑝(1 − 𝑝)/𝑛

)
+ 𝐶√︁

𝑛𝑝(1 − 𝑝)
≥ 𝛼

2

}
is a valid (1 − 𝛼)-level confidence region for 𝑝. Since we have assumed that 𝑝 < 1/2, the above

confidence region can be further shrunk. To summarize, we have the following theorem:
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Theorem 4.4. Assume that 𝑝 < 1/2. Then the set{
0 < 𝑝 ≤ 𝑝 ∧ 1

2
: Φ

(
𝑝 − 𝑝√︁

𝑝(1 − 𝑝)/𝑛

)
+ 𝐶√︁

𝑛𝑝(1 − 𝑝)
≥ 𝛼

2

}
∪{

𝑝 ≤ 𝑝 < 1
2

: Φ

(
𝑝 − 𝑝√︁

𝑝(1 − 𝑝)/𝑛

)
+ 𝐶√︁

𝑛𝑝(1 − 𝑝)
≥ 𝛼

2

}
(4.6)

is a valid (1 − 𝛼)-level confidence region for 𝑝, for any finite sample 𝑛.

Unfortunately, we cannot derive a non-trivial confidence lower bound from (4.6) since any

0 < 𝑝 < 1/2 such that 𝐶/
√︁
𝑛𝑝(1 − 𝑝) ≥ 𝛼/2 is contained in this confidence region. Now we

further relax (4.6) to develop a more explicit upper bound. In fact, (4.6) could be relaxed to{
0 < 𝑝 < 1/2 : Φ

(
𝑝 − 𝑝√︁

𝑝(1 − 𝑝)/𝑛

)
+ 𝐶√︁

𝑛𝑝(1 − 𝑝)
≥ 𝛼/2

}
.

In fact, for any 0 ≤ _ ≤ 1 − 4𝐶√
𝑛𝛼

, we have that

0 < 𝑝 < 1/2, 𝐶√︁
𝑛𝑝(1 − 𝑝)

≥ (1 − _)𝛼/2⇒ 0 < 𝑝 ≤
1 −

√︃
1 − 16𝐶2

𝑛(1−_)2𝛼2

2

and

0 < 𝑝 < 1/2,Φ
(

𝑝 − 𝑝√︁
𝑝(1 − 𝑝)/𝑛

)
≥ _𝛼/2⇒ 0 < 𝑝 ≤

1 + 2𝑛𝑝
𝑧2
_𝛼/2
+

√︂
1 + 4𝑛𝑝(1−𝑝)

𝑧2
_𝛼/2

2
(
1 + 𝑛

𝑧2
_𝛼/2

) .

Therefore, we get that

0 < 𝑝 ≤
©«

1 −
√︃

1 − 16𝐶2

𝑛(1−_)2𝛼2

2
ª®®¬ ∨

©«
1 + 2𝑛𝑝

𝑧2
_𝛼/2
+

√︂
1 + 4𝑛𝑝(1−𝑝)

𝑧2
_𝛼/2

2
(
1 + 𝑛

𝑧2
_𝛼/2

) ª®®®®¬
is a (1 − 𝛼)-level CI. For simplicity, we denote the two parts as 𝑈1 and 𝑈2 respectively. One may

note that _ is not necessarily deterministic. Instead, it can be dependent on the data as long as it
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stays within the interval [0, 1 − 4𝐶√
𝑛𝛼
]. In fact, we may choose _ carefully such that 𝑈1 ≤ 𝑈2 is

guaranteed for sufficiently large 𝑛. Specifically, the following theorem proposes another valid CI.

Theorem 4.5. Assume that 𝑝 < 1/2. Let

_ = 1 − 2�̃�
√
𝑛𝛼

where

�̃� =

(
𝐶√︁

𝑝(1 − 𝑝)

)
∧

(
𝑢
√
𝑛𝛼

2

)
.

Here, 𝑢 < 1 is any constant such that 4𝐶2

𝑢2𝛼2 < 𝑧
2
(1−𝑢)𝛼/2. In the case that 𝑝 = 0 or 1, naturally we set

�̃� = 𝑢
√
𝑛𝛼/2. Then there exists 𝑁0, which does not depend on 𝑝 and 𝑝, such that for any 𝑛 > 𝑁0,

𝑝𝐵𝐸𝑢 =

1 + 2𝑛𝑝
𝑧2
_𝛼/2
+

√︂
1 + 4𝑛𝑝(1−𝑝)

𝑧2
_𝛼/2

2
(
1 + 𝑛

𝑧2
_𝛼/2

) , 𝑝𝐵𝐸𝑙 = 0

is a valid (1 − 𝛼)-level CI for 𝑝. In particular, 𝑁0 can be chosen as

(
4𝐶
𝑢𝛼

)2
∨

12𝑧2
(1−𝑢)𝛼/2𝐶

2

𝑧2
(1−𝑢)𝛼/2𝑢

2𝛼2 − 4𝐶2
.

Remark 4.3. Actually, 𝑝𝐵𝐸𝑢 itself is a valid (1 − 𝛼/2)-level confidence upper bound for 𝑝. The

series of relaxations makes this CI more and more conservative, but we will show that it still has

similar scale with 𝑝𝐶𝐿𝑇𝑢 and 𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑢 .

Next we will show that 𝑝𝐵𝐸𝑢 − 𝑝𝐶𝐿𝑇𝑢 is bounded by order 1/𝑛. In other words, though 𝑝𝐶𝐿𝑇𝑢

has undesirable coverage probability in the rare-event setting, it is not “too far” from a valid upper

bound. The following theorem states this result.

Theorem 4.6. Assume that 𝑝 < 1/2. 𝑝𝐵𝐸𝑢 is as defined in Theorem 4.5. Then there is a constant
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𝐶0 which does not depend on 𝑝 and 𝑝 such that

|𝑝𝐵𝐸𝑢 − 𝑝𝐶𝐿𝑇𝑢 | ≤ 𝐶0/𝑛.

Note that the bound in Theorem 4.6 can be rephrased as |𝑝𝐵𝐸𝑢 − 𝑝𝐶𝐿𝑇𝑢 | ≤ 𝐶0𝑝/�̂�. In other

words, 𝑝𝐵𝐸𝑢 differ from 𝑝𝐶𝐿𝑇𝑢 by a magnitude that is of higher order than the half-width of 𝑝𝐶𝐿𝑇𝑢

(i.e., 𝑝𝐶𝐿𝑇𝑢 − 𝑝) in terms of �̂�, while all quantities scale with 𝑝 in a similar manner. Compared

to Theorem 4.3, we see in Theorem 4.6 that 𝑝𝐵𝐸𝑢 is substantially tighter than 𝑝
𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓
𝑢 when �̂�

increases, although due to the implicit constant 𝐶0 it may not be the case for small �̂�.

4.4 Confidence Intervals under Targeted Stopping

Now we consider experiments where we keep sampling until we get 𝑛0 (say, 30) successes.

Our goal is to construct (1−𝛼)-level CIs for 𝑝 using similar methods to Section 4.3 and then carry

out the analysis on the difference from the point estimate and the CLT interval. Under this setting,

the sample size 𝑁 is a random variable. More specifically, 𝑁 = 𝑁1 + · · · + 𝑁𝑛0 where 𝑁1, · · · , 𝑁𝑛0

are i.i.d. 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑝) random variables, or equivalently, 𝑁−𝑛0 ∼ 𝑁𝐵(𝑛0, 𝑝). Note that 𝑁 ≥ 𝑛0.

4.4.1 CLT Confidence Interval and Wilson’s Confidence Interval

Under the targeted stopping setting, we could still use the CLT CI and the Wilson’s CI with

𝑝 = 𝑛0/𝑁 . More specifically, the CLT CI is

𝑝𝐶𝐿𝑇𝑢,𝑛0 =
𝑛0
𝑁
+ 𝑧1−𝛼/2

√︂
𝑛0(𝑁 − 𝑛0)

𝑁3 ;

𝑝𝐶𝐿𝑇𝑙,𝑛0
=
𝑛0
𝑁
− 𝑧1−𝛼/2

√︂
𝑛0(𝑁 − 𝑛0)

𝑁3 .
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The Wilson’s CI is

𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑢 =

1 + 2𝑛0
𝑧2

1−𝛼/2
+

√︂
1 + 4𝑛0 (𝑁−𝑛0)

𝑧2
1−𝛼/2𝑁

2
(
1 + 𝑁

𝑧2
1−𝛼/2

) ;

𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑙 =

1 + 2𝑛0
𝑧2

1−𝛼/2
−

√︂
1 + 4𝑛0 (𝑁−𝑛0)

𝑧2
1−𝛼/2𝑁

2
(
1 + 𝑁

𝑧2
1−𝛼/2

) .

Clearly, we still have that 𝑝𝐶𝐿𝑇𝑢,𝑛0 − 𝑝 = 𝑝 − 𝑝𝐶𝐿𝑇
𝑙,𝑛0

= 𝑂 (𝑝/√𝑛0) = 𝑂 (√𝑛0/𝑁) and that |𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑢,𝑛0 −

𝑝𝐶𝐿𝑇𝑢,𝑛0 | = 𝑂 (1/𝑁), |𝑝
𝑊𝑖𝑙𝑠𝑜𝑛
𝑙,𝑛0

− 𝑝𝐶𝐿𝑇
𝑙,𝑛0
| = 𝑂 (1/𝑁).

4.4.2 Valid Confidence Intervals

Now we define 𝐹𝑁 (𝑥) = 𝑃(𝑁 ≤ 𝑥) and 𝐹𝑁−(𝑥) = 𝑃(𝑁 < 𝑥). Similar to Section 4.3, we will

argue that the following set is a valid (1 − 𝛼)-level confidence regon for 𝑝:

{0 < 𝑝 < 1 : 𝐹𝑁 (𝑁) ≥ 𝛼/2, 𝐹𝑁−(𝑁) ≤ 1 − 𝛼/2}. (4.7)

Indeed, for any 𝛼 ∈ (0, 1), there exist 1 ≤ 𝑘, 𝑙 < ∞ such that 𝐹𝑁 (𝑘 − 1) < 𝛼/2 ≤ 𝐹𝑁 (𝑘) and

𝐹𝑁−(𝑙) ≤ 1 − 𝛼/2 < 𝐹𝑁−(𝑙 + 1). Then

𝑃(𝐹𝑁 (𝑁) < 𝛼/2 or 𝐹𝑁−(𝑁) > 1 − 𝛼/2) ≤ 𝑃(𝐹𝑁 (𝑁) < 𝛼/2) + 𝑃(𝐹𝑁−(𝑁) > 1 − 𝛼/2)

= 𝑃(𝑁 ≤ 𝑘 − 1) + 𝑃(𝑁 ≥ 𝑙 + 1)

= 𝐹𝑁 (𝑘 − 1) + 1 − 𝐹𝑁−(𝑙 + 1) < 𝛼.

By definition, the set (4.7) is a valid (1 − 𝛼)-level confidence region.
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Exact CI

Similar to the standard setting, we may directly solve (4.7). That is, we set 𝑝𝐸𝑥𝑎𝑐𝑡𝑢,𝑛0 and 𝑝𝐸𝑥𝑎𝑐𝑡
𝑙,𝑛0

as the solutions of

𝑁−𝑛0−1∑︁
𝑘=0

(
𝑘 + 𝑛0 − 1
𝑛0 − 1

)
(1 − 𝑝)𝑘 𝑝𝑛0 = 1 − 𝛼/2,

𝑁−𝑛0∑︁
𝑘=0

(
𝑘 + 𝑛0 − 1
𝑛0 − 1

)
(1 − 𝑝)𝑘 𝑝𝑛0 = 𝛼/2,

except that 𝑝𝐸𝑥𝑎𝑐𝑡𝑢,𝑛0 = 1 if 𝑁 = 𝑛0. While the interval is easy to compute numerically, it is not easy

to analyze. Similar to the standard setting, we will relax the confidence region (4.7) to construct

valid CIs respectively via inverting a concentration inequality and inverting the B-E theorem.

Chernoff CI

First, we propose the Chernoff CI similar to the one in the standard setting. By Markov’s

inequality, we get that

𝑃(𝑁 ≥ 𝑥) ≤ 𝑒−𝑡𝑥𝐸 (𝑒𝑡𝑁 ) = 𝑒−𝑡𝑥
(

𝑝𝑒𝑡

1 − (1 − 𝑝)𝑒𝑡

)𝑛0

, 0 < 𝑡 < − log(1 − 𝑝).

Then for 𝑥 > 𝑛0/𝑝,

𝑃(𝑁 ≥ 𝑥) ≤ min
0<𝑡<− log(1−𝑝)

𝑒−𝑡𝑥
(

𝑝𝑒𝑡

1 − (1 − 𝑝)𝑒𝑡

)𝑛0

=
(1 − 𝑝)𝑥−𝑛0𝑥𝑥 𝑝𝑛0

(𝑥 − 𝑛0)𝑥−𝑛0𝑛
𝑛0
0
.

Similarly,

𝑃(𝑁 ≤ 𝑥) ≤ 𝑒𝑡𝑥𝐸 (𝑒−𝑡𝑁 ) = 𝑒𝑡𝑥
(

𝑝𝑒−𝑡

1 − (1 − 𝑝)𝑒−𝑡

)𝑛0

, 𝑡 > 0

and thus for 0 < 𝑥 < 𝑛0/𝑝,

𝑃(𝑁 ≤ 𝑥) ≤ min
𝑡>0

𝑒𝑡𝑥
(

𝑝𝑒−𝑡

1 − (1 − 𝑝)𝑒−𝑡

)𝑛0

=
(1 − 𝑝)𝑥−𝑛0𝑥𝑥 𝑝𝑛0

(𝑥 − 𝑛0)𝑥−𝑛0𝑛
𝑛0
0
.
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Therefore, 𝐹𝑁 (𝑁) ≥ 𝛼/2, 𝐹𝑁−(𝑁) ≤ 1 − 𝛼/2 implies that either

𝑁 ≥ 𝑛0/𝑝 and
(1 − 𝑝)𝑁−𝑛0𝑁𝑁 𝑝𝑛0

(𝑁 − 𝑛0)𝑁−𝑛0𝑛
𝑛0
0
≥ 𝛼/2

or

𝑁 ≤ 𝑛0/𝑝 and
(1 − 𝑝)𝑁−𝑛0𝑁𝑁 𝑝𝑛0

(𝑁 − 𝑛0)𝑁−𝑛0𝑛
𝑛0
0
≥ 𝛼/2.

Finally we get that {
0 < 𝑝 < 1 :

(1 − 𝑝)𝑁−𝑛0𝑁𝑁 𝑝𝑛0

(𝑁 − 𝑛0)𝑁−𝑛0𝑛
𝑛0
0
≥ 𝛼/2

}
is a valid (1 − 𝛼)-level confidence region for 𝑝 under the targeted stopping setting. After simplifi-

cation, we summarize our result with the folowing theorem:

Theorem 4.7. Suppose that we keep sampling from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) until we get 𝑛0 successes and

the sample size is denoted by 𝑁 . Then

{
0 < 𝑝 < 1 : 𝑝𝑛0 (1 − 𝑝)𝑁−𝑛0 ≥ 𝛼

2

(𝑛0
𝑁

)𝑛0 (
1 − 𝑛0

𝑁

)𝑁−𝑛0
}

(4.8)

is a valid (1 − 𝛼)-level confidence region for 𝑝.

Remark 4.4. It is easy to verify that 𝑓 (𝑝) = 𝑝𝑛0 (1 − 𝑝)𝑁−𝑛0 − 𝛼
2 (𝑛0/𝑁)𝑛0 (1 − 𝑛0/𝑁)𝑁−𝑛0 is

increasing in [0, 𝑛0/𝑁] and decreasing in [𝑛0/𝑁, 1]. Moreover, we observe that 𝑓 (0) = 𝑓 (1) < 0

and 𝑓 (𝑛0/𝑁) > 0. Thus (4.8) is actually an interval and numerically, we could use the bisection

method to compute the bounds.
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Berry-Esseen CI

Now we apply the Berry-Esseen theorem again. We still assume that 𝑝 < 1/2 is known as a

priori. By the theorem, we get that�����𝑃
(

𝑁 − 𝑛0/𝑝√︁
𝑛0(1 − 𝑝)/𝑝2

≤ 𝑥
)
−Φ(𝑥)

����� ≤ 𝐶𝜌𝑁

𝜎3
𝑁

√
𝑛0
, (4.9)�����𝑃

(
𝑛0/𝑝 − 𝑁√︁
𝑛0(1 − 𝑝)/𝑝2

≤ 𝑥
)
−Φ(𝑥)

����� ≤ 𝐶𝜌𝑁

𝜎3
𝑁

√
𝑛0
, (4.10)

where 𝜎2
𝑁
= 𝐸 (𝑁𝑖 − 1/𝑝)2 = (1 − 𝑝)/𝑝2 and 𝜌𝑁 = 𝐸 |𝑁𝑖 − 1/𝑝 |3.

We need to deal with 𝜌𝑁 first. In fact, we know that

𝑝3𝜌𝑁 = 𝑝3𝐸

����𝑁𝑖 − 1
𝑝

����3 = 𝐸 |𝑝𝑁𝑖 − 1|3 ≤ 1 + 3𝑝𝐸 (𝑁𝑖) + 3𝑝2𝐸 (𝑁2
𝑖 ) + 𝑝3𝐸 (𝑁3

𝑖 ).

Since 𝑁𝑖 ∼ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑝), we know that

𝐸 (𝑁𝑖) =
1
𝑝
, 𝐸 (𝑁2

𝑖 ) =
2 − 𝑝
𝑝2 , 𝐸 (𝑁3

𝑖 ) =
𝑝2 − 6𝑝 + 6

𝑝3 ,

and thus

𝑝3𝜌𝑁 ≤ 𝑝2 − 6𝑝 + 6 + 3(2 − 𝑝) + 3 + 1 = 𝑝2 − 12𝑝 + 16 ≤ 16.

Hence,
𝐶𝜌𝑁

𝜎3
𝑁

√
𝑛0

=
𝐶𝑝3𝜌𝑁

(1 − 𝑝) 3
2
√
𝑛0
≤ 𝐶′

(1 − 𝑝) 3
2
√
𝑛0

where 𝐶′ = 16𝐶 is an absolute constant.

By setting 𝑥 =
√︃

𝑝2

𝑛0 (1−𝑝)

(
𝑁 − 𝑛0

𝑝

)
in (4.9) and 𝑥 =

√︃
𝑝2

𝑛0 (1−𝑝)

(
𝑛0
𝑝
− 𝑁

)
in (4.10), we get that

�����𝐹𝑁 (𝑁) −Φ
(
𝑁𝑝 − 𝑛0√︁
𝑛0(1 − 𝑝)

)����� ≤ 𝐶′√︁
𝑛0(1 − 𝑝)3

;�����1 − 𝐹𝑁−(𝑁) −Φ
(
𝑛0 − 𝑁𝑝√︁
𝑛0(1 − 𝑝)

)����� ≤ 𝐶′√︁
𝑛0(1 − 𝑝)3

.

152



Hence 𝐹𝑁 (𝑁) ≥ 𝛼/2, 𝐹𝑁−(𝑁) ≤ 1 − 𝛼/2 implies that either

𝑝 ≥ 𝑛0/𝑁 and Φ

(
𝑛0 − 𝑁𝑝√︁
𝑛0(1 − 𝑝)

)
+ 𝐶′√︁

𝑛0(1 − 𝑝)3
≥ 𝛼/2

or

𝑝 ≤ 𝑛0/𝑁 and Φ

(
𝑁𝑝 − 𝑛0√︁
𝑛0(1 − 𝑝)

)
+ 𝐶′√︁

𝑛0(1 − 𝑝)3
≥ 𝛼/2.

Thus, we develop a valid confidence region under this particular setting, which is similar to the one

in Section 4.3:

Theorem 4.8. Suppose that we keep sampling from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) until we get 𝑛0 successes and

the sample size is denoted by 𝑁 . Assume that 𝑝 < 1/2. Then{
0 < 𝑝 ≤ 𝑛0

𝑁
∧ 1

2
: Φ

(
𝑁𝑝 − 𝑛0√︁
𝑛0(1 − 𝑝)

)
+ 𝐶′√︁

𝑛0(1 − 𝑝)3
≥ 𝛼

2

}
∪{

𝑛0
𝑁
≤ 𝑝 < 1

2
: Φ

(
𝑛0 − 𝑁𝑝√︁
𝑛0(1 − 𝑝)

)
+ 𝐶′√︁

𝑛0(1 − 𝑝)3
≥ 𝛼

2

}
(4.11)

is a valid (1−𝛼)-level confidence region for 𝑝. Here, 𝐶′ is a universal constant. In particular, one

may pick 𝐶′ = 16𝐶 where 𝐶 is the constant in the Berry-Esseen theorem.

Remark 4.5. Note that when 𝑛0 is not large enough, we have 𝐶′/
√︁
𝑛0(1 − 𝑝)3 ≥ 𝛼/2 anyway.

That is to say, this confidence region is not really practical. However, it could still provide an

insight on how close are the CLT or the Wilson’s intervals to a valid one.

Similar to Section 4.3, the confidence region (4.11) could be further relaxed. However, unlike

in the standard setting, now the error term 𝐶′/
√︁
𝑛0(1 − 𝑝)3 could be well controlled for tiny 𝑝 and

as a result, we are able to get a non-trivial lower bound in this case. More concretely, for any

0 < _ < 1, we have that

0 < 𝑝 < 1,
𝐶′√︁

𝑛0(1 − 𝑝)3
≥ (1 − _)𝛼/2⇒ 𝑝 ≥ 1 −

(
4𝐶′

𝑛0(1 − _)2𝛼2

)1/3
.
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If we could find 0 < _ < 1 such that

(
4𝐶′2

𝑛0(1 − _)2𝛼2

)1/3
=

1
2
,

then for any 0 < 𝑝 < 1/2, we have that

𝐶′√︁
𝑛0(1 − 𝑝)3

≤ (1 − _)𝛼/2.

As a result, any 𝑝 in (4.11) must satisfy that

0 < 𝑝 ≤ 𝑛0
𝑁
∧ 1

2
,Φ

(
𝑁𝑝 − 𝑛0√︁
𝑛0(1 − 𝑝)

)
≥ _𝛼/2 or

𝑛0
𝑁
≤ 𝑝 < 1

2
,Φ

(
𝑛0 − 𝑁𝑝√︁
𝑛0(1 − 𝑝)

)
≥ _𝛼/2.

After simplification, we get that

0 < 𝑝 ≤ 𝑛0
𝑁
,Φ

(
𝑁𝑝 − 𝑛0√︁
𝑛0(1 − 𝑝)

)
≥ _𝛼/2

⇒𝑝 ≥
2𝑁𝑛0 − 𝑧2

_𝛼/2𝑛0 −
√︃

4𝑧2
_𝛼/2𝑁𝑛0(𝑁 − 𝑛0) + 𝑧4

_𝛼/2𝑛
2
0

2𝑁2 ,

𝑛0
𝑁
≤ 𝑝 < 1,Φ

(
𝑛0 − 𝑁𝑝√︁
𝑛0(1 − 𝑝)

)
≥ _𝛼/2

⇒𝑝 ≤
2𝑁𝑛0 − 𝑧2

_𝛼/2𝑛0 +
√︃

4𝑧2
_𝛼/2𝑁𝑛0(𝑁 − 𝑛0) + 𝑧4

_𝛼/2𝑛
2
0

2𝑁2 .

Thus (4.11) could be relaxed into a valid (1 − 𝛼)-level CI, which is defined more rigorously in the

following theorem:

Theorem 4.9. Suppose that we keep sampling from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) until we get 𝑛0 successes and

the sample size is denoted by 𝑁 . Assume that 𝑝 < 1/2. Let

_ = 1 − 4
√

2𝐶′
√
𝑛0𝛼

.
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Then for any 𝑛0 > 32𝐶′2/𝛼2, we have that

𝑝𝐵𝐸𝑢,𝑛0 =

2𝑁𝑛0 − 𝑧2
_𝛼/2𝑛0 +

√︃
4𝑧2
_𝛼/2𝑁𝑛0(𝑁 − 𝑛0) + 𝑧4

_𝛼/2𝑛
2
0

2𝑁2 ,

𝑝𝐵𝐸𝑙,𝑛0
=

2𝑁𝑛0 − 𝑧2
_𝛼/2𝑛0 −

√︃
4𝑧2
_𝛼/2𝑁𝑛0(𝑁 − 𝑛0) + 𝑧4

_𝛼/2𝑛
2
0

2𝑁2

is a valid (1 − 𝛼)-level CI for 𝑝. Here, 𝐶′ is the same as in Theorem 4.8.

Finally, like in the standard setting, we will compare the difference between the B-E CI and the

CLT CI.

Theorem 4.10. Assume that 𝑝 < 1/2. 𝑝𝐵𝐸𝑢,𝑛0 and 𝑝𝐵𝐸
𝑙,𝑛0

are as defined in Theorem 4.9. Then there is

a constant 𝐶′0 which does not depend on 𝑝 and 𝑁 such that

𝑝𝐵𝐸𝑢,𝑛0 − 𝑝
𝐶𝐿𝑇
𝑢,𝑛0 ≤ 𝐶

′
0/𝑁,

𝑝𝐶𝐿𝑇𝑙,𝑛0
− 𝑝𝐵𝐸𝑙,𝑛0

≤ 𝐶′0/𝑁.

Therefore, under the targeted stopping setting, we could justify that the CLT CI is not too far

from a valid one in terms of both upper bound and lower bound.

4.5 Numerical Experiments

To visualize the differences among the CIs, we perform some numerical experiments.

4.5.1 Experiments under the Standard Setting

The true value is chosen as 𝑝 = 1𝑒− 6. For 𝑛 = 5/𝑝, 10/𝑝, 30/𝑝, 50/𝑝, 100/𝑝, we respectively

do 1000 simulations and calculate the CIs with 𝛼 = 0.05. Figure 4.2 and Table 4.2 respectively

present the mean values and the coverage probabilities of the five CIs covered in this chapter.
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Figure 4.2: Mean values of the CIs.

𝑛𝑝 CLT Wilson Exact Chernoff BE
5 0.858 0.969 0.986 0.999 1.0

10 0.923 0.959 0.971 0.999 1.0
30 0.931 0.943 0.951 0.994 1.0
50 0.950 0.948 0.953 0.996 1.0

100 0.945 0.945 0.951 0.995 1.0

Table 4.2: Coverage probabilities of the CIs.

As we analyzed, when 𝑛𝑝 is large, actually the CIs scale similarly, except that B-E fails to give

a non-zero lower bound. While the CLT interval is closest to the truth in terms of the mean value

of the upper bound, it is not reliable especially when 𝑛𝑝 is small. For instance, when 𝑛𝑝 = 5, its

coverage probability is only 0.858, which is much lower than the nominal confidence level 0.95.

The Wilson’s and the exact CIs are quite similar, especially for the upper bound. However, we

notice that the Wilson’s bound sometimes fails to achieve the nominal confidence level, but the

error in the coverage probability is acceptable to some extent. The Chernoff and the B-E CIs are

conservative as expected. We would like to point out that though the B-E upper bound seems to

be much larger than the Chernoff one, it decays much faster as 𝑛𝑝 increases, which coincides with

our theorems.

4.5.2 Experiments under the Targeted Stopping Setting

Now we simulate the targeted stopping setting. We still set 𝑝 = 1𝑒−6. For 𝑛0 = 5, 10, 30, 50, 100,

we respectively do 1000 simulations and calculate the CIs with 𝛼 = 0.05. Figure 4.3 and Table 4.3

respectively present the mean values and the coverage probabilities of the CIs. Note that we do not

include the B-E CI since it is trivial due to small 𝑛0 as aforementioned.

The results are basically similar to the standard setting. We conclude that if we could observe

enough (say, 30) successes, then the CLT CI is indeed reliable.
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Figure 4.3: Mean values of the CIs.

𝑛0 CLT Wilson Exact Chernoff
5 0.943 0.916 0.944 0.984

10 0.955 0.926 0.936 0.994
30 0.964 0.961 0.965 0.993
50 0.942 0.943 0.943 0.989

100 0.950 0.950 0.952 0.991

Table 4.3: Coverage probabilities of the CIs.

4.6 Conclusion

In this chapter, we focus on constructing CIs for some rare-event probability with Bernoulli

data. We respectively consider two settings: the standard setting where the sample size is fixed,

and the targeted stopping setting where the number of successes is fixed. Under each setting,

we first review the commonly used CLT, Wilson’s and exact CIs. It is known that the CLT and

the Wilson’s CIs are not necessarily valid in the sense that the actural coverage probability can

be lower than the nominal confidence level, and the exact CI is valid yet hard to analyze, which

motivates us to derive other valid CIs with more explicit expressions. More specifically, we further

relax the exact confidence region via inverting a concentration inequality and inverting the Berry-

Essen theorem to get the Chernoff and the B-E CIs respectively. Table 4.1 in Section 4.2 is a

comprehensive summary of our findings.

Now we could briefly answer the five motivating questions:

A1. From our analysis, the difference of the CLT upper bound from the B-E upper bound is of

order 𝑝/�̂�, which is of higher order in �̂� than the difference from 𝑝. Hence, when �̂� is large, the

CLT upper bound is not too far from a valid one, and hence it is relatively reliable. However,

temporarily we do not have such guarantees for the lower bound.

A2. There are different ways to construct valid CIs. Among them, the exact CI is tight and can be

computed easily.
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A3. We have analyzed the “half-width” of the Chernoff CI and the B-E upper bound. All of them

are of order 𝑂 (𝑝/
√
�̂�), which is a reasonable magnitude.

A4. Due to the order of the “half-width” of the Chernoff CI, we can conclude that 𝑝 can be viewed

as relatively efficient conditional on �̂� is sufficiently large (see Section 4.3 for more details).

A5. In the targeted stopping setting, we have similar results. Moreover, in this case we also have

guarantees for the CLT lower bound.

Overall, we recommend the exact CI in the situations where absolute safety is critical while

in other general applications, we could suggest using the Wilson’s CI given its excellent empirical

performance. Moreover, when the number of successes is large, either in the standard setting or the

targeted stopping setting, we have justified that the CLT CI and the point estimate are also reliable

by comparisons with the valid Chernoff and B-E CIs. Though the latter two intervals are extremely

conservative, they provide us useful insights in understanding the errors. The remaining problem

is to obtain the guarantees for the CLT lower bound in the standard setting, which will be left for

future work.

4.7 Supplementary A: Proofs

Proof of Theorem 4.1. We get directly from the formula of 𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑢 that

|𝑝𝑊𝑖𝑙𝑠𝑜𝑛𝑢 − 𝑝𝐶𝐿𝑇𝑢 | =

���������
1 − 2𝑝 +

√︂
1 + 4𝑛𝑝(1−𝑝)

𝑧2
1−𝛼/2

− 2
(
1 + 𝑛

𝑧2
1−𝛼/2

)
𝑧1−𝛼/2

√︃
𝑝(1−𝑝)
𝑛

2
(
1 + 𝑛

𝑧2
1−𝛼/2

)
���������

≤
|1 − 2𝑝 | +

����2𝑧1−𝛼/2

√︃
𝑝(1−𝑝)
𝑛

���� + ����√︂1 + 4𝑛𝑝(1−𝑝)
𝑧2

1−𝛼/2
− 2𝑛
𝑧1−𝛼/2

√︃
𝑝(1−𝑝)
𝑛

����
2𝑛/𝑧2

1−𝛼/2
.
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We have that |1 − 2𝑝 | ≤ 1,
���2𝑧1−𝛼/2

√︁
𝑝(1 − 𝑝)/𝑛

��� ≤ 𝑧1−𝛼/2/
√
𝑛 and

�����
√︄

1 + 4𝑛𝑝(1 − 𝑝)
𝑧2

1−𝛼/2
− 2𝑛
𝑧1−𝛼/2

√︂
𝑝(1 − 𝑝)

𝑛

����� =
���������

1√︂
1 + 4𝑛𝑝(1−𝑝)

𝑧2
1−𝛼/2

+ 2𝑛
𝑧1−𝛼/2

√︃
𝑝(1−𝑝)
𝑛

��������� ≤ 1,

which concludes the proof for the upper bounds. The proof for the lower bound is almost the

same. □

Proof of Theorem 4.3. We have that

𝑝
𝐶ℎ𝑒𝑟𝑛𝑜 𝑓 𝑓
𝑢 − 𝑝𝐶𝐿𝑇𝑢 =

√︂
2 log(2/𝛼)𝑝

𝑛
+ (log(2/𝛼))2

𝑛2 + log(2/𝛼)
𝑛

− 𝑧1−𝛼/2

√︂
𝑝(1 − 𝑝)

𝑛

≥ (
√︁

2 log(2/𝛼) − 𝑧1−𝛼/2)
√︂
𝑝

𝑛
+ log(2/𝛼)

𝑛
.

Similarly we could prove the inequality for the lower bounds. □

Proof of Theorem 4.5. Following our derivations, it suffices to show that for the given 𝑁0 and any

𝑛 > 𝑁0, we have that 0 ≤ _ ≤ 1 − 4𝐶√
𝑛𝛼

and 𝑈1 ≤ 𝑈2. Obviously, 2�̃�√
𝑛𝛼
≤ 𝑢 < 1, so _ > 0. On the

other side, _ ≤ 1 − 4𝐶√
𝑛𝛼

holds since 𝑛 ≥
(

4𝐶
𝑢𝛼

)2
. Now we prove that𝑈1 ≤ 𝑈2 for 𝑛 > 𝑁0. Indeed, if

�̃� = 𝐶/
√︁
𝑝(1 − 𝑝), then𝑈1 = 𝑝 ∧ (1− 𝑝) ≤ 𝑝 and we know that𝑈2 ≥ 𝑝, so𝑈1 ≤ 𝑈2. In the other

case that �̃� = 𝑢
√
𝑛𝛼/2, we have that

𝑈1 =
1 −

√︃
1 − 16𝐶2

𝑛𝑢2𝛼2

2
=

16𝐶2

𝑛𝑢2𝛼2

2
(
1 +

√︃
1 − 16𝐶2

𝑛𝑢2𝛼2

) ≤ 16𝐶2

𝑛𝑢2𝛼2

2
(
1 + 1 − 16𝐶2

𝑛𝑢2𝛼2

) =
4𝐶2

𝑛𝑢2𝛼2 − 8𝐶2

and

𝑈2 ≥
1

1 + 𝑛

𝑧2
(1−𝑢)𝛼/2

=
𝑧2
(1−𝑢)𝛼/2

𝑧2
(1−𝑢)𝛼/2 + 𝑛

.
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Since 𝑢 is chosen such that 4𝐶2

𝑢2𝛼2 < 𝑧
2
(1−𝑢)𝛼/2 and

𝑛 ≥
12𝑧2
(1−𝑢)𝛼/2𝐶

2

𝑧2
(1−𝑢)𝛼/2𝑢

2𝛼2 − 4𝐶2
,

we get that
4𝐶2

𝑛𝑢2𝛼2 − 8𝐶2 ≤
𝑧2
(1−𝑢)𝛼/2

𝑧2
(1−𝑢)𝛼/2 + 𝑛

and hence 𝑈1 ≤ 𝑈2. Note that as 𝑢 ↑ 1, 4𝐶2

𝑢2𝛼2 → 4𝐶2

𝛼2 while 𝑧2
(1−𝑢)𝛼/2 → ∞, and thus such 𝑢

exists. □

Proof of Theorem 4.6. We have that

𝑝𝐵𝐸𝑢 − 𝑝𝐶𝐿𝑇𝑢 =

1 − 2𝑝 +
√︂

1 + 4𝑛𝑝(1−𝑝)
𝑧2
_𝛼/2

− 2
(
1 + 𝑛

𝑧2
_𝛼/2

)
𝑧1−𝛼/2

√︃
𝑝(1−𝑝)
𝑛

2
(
1 + 𝑛

𝑧2
_𝛼/2

) .

We first deal with √︄
1 + 4𝑛𝑝(1 − 𝑝)

𝑧2
_𝛼/2

− 2

(
1 + 𝑛

𝑧2
_𝛼/2

)
𝑧1−𝛼/2

√︂
𝑝(1 − 𝑝)

𝑛

=

(
1 −

8𝑧2
1−𝛼/2𝑝(1−𝑝)
𝑧2
_𝛼/2

)
−

4𝑧2
1−𝛼/2𝑝(1−𝑝)

𝑛
+ 4𝑛𝑝(1−𝑝)

𝑧2
_𝛼/2

(
1 −

𝑧2
1−𝛼/2
𝑧2
_𝛼/2

)
√︂

1 + 4𝑛𝑝(1−𝑝)
𝑧2
_𝛼/2

+ 2
(
1 + 𝑛

𝑧2
_𝛼/2

)
𝑧1−𝛼/2

√︃
𝑝(1−𝑝)
𝑛

.

The denominator satisfies that√︄
1 + 4𝑛𝑝(1 − 𝑝)

𝑧2
_𝛼/2

+ 2

(
1 + 𝑛

𝑧2
_𝛼/2

)
𝑧1−𝛼/2

√︂
𝑝(1 − 𝑝)

𝑛
≥

(
2
√︁
𝑛𝑝(1 − 𝑝) (𝑧1−_𝛼/2 + 𝑧1−𝛼/2)

𝑧2
_𝛼/2

)
∨ 1.

Note that (𝑧1−_𝛼/2 + 𝑧1−𝛼/2)/𝑧2
_𝛼/2 increases with the value of _. Since _ ≥ 1 − 𝑢 > 0, we can find
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a constant 𝐶1 such that√︄
1 + 4𝑛𝑝(1 − 𝑝)

𝑧2
_𝛼/2

+ 2

(
1 + 𝑛

𝑧2
_𝛼/2

)
𝑧1−𝛼/2

√︂
𝑝(1 − 𝑝)

𝑛
≥

(
𝐶1

√︁
𝑛𝑝(1 − 𝑝)

)
∨ 1.

Then we deal with the numerator. We know that 𝑧𝛼/2 = Φ−1(𝛼/2) and 𝑧_𝛼/2 = Φ−1(_𝛼/2). By

Taylor expansion, we have that

1
𝑧2
_𝛼/2

=
1
𝑧2
𝛼/2
− 2
√

2𝜋
𝑧3
𝛼/2

𝑒
𝑧2
𝛼/2
2 (_ − 1)𝛼/2 + 𝑟 (_).

Here, 𝑟 (_) is continuous in _ and 𝑟 (_)/(1 − _) → 0 as _ ↑ 1. We also know that 1 − _ ≤ 𝑢, and

thus |𝑟 (_)/(1 − _) | = | (
√
𝑛𝛼𝑟 (_))/(2�̃�) | is bounded by a constant. Hence |

√︁
𝑛𝑝(1 − 𝑝)𝑟 (_) | is

bounded by a constant. We have that

1 −
𝑧2

1−𝛼/2

𝑧2
_𝛼/2

=
2
√

2𝜋
𝑧1−𝛼/2

𝑒
𝑧21−𝛼/2

2
�̃�
√
𝑛
− 𝑧2

1−𝛼/2𝑟 (_).

Thus, the numerator satisfies that�����
(
1 −

8𝑧2
1−𝛼/2𝑝(1 − 𝑝)

𝑧2
_𝛼/2

)
−

4𝑧2
1−𝛼/2𝑝(1 − 𝑝)

𝑛
+ 4𝑛𝑝(1 − 𝑝)

𝑧2
_𝛼/2

(
1 −

𝑧2
1−𝛼/2

𝑧2
_𝛼/2

)�����
≤1 + 8𝑝(1 − 𝑝) +

4𝑧2
1−𝛼/2𝑝(1 − 𝑝)

𝑛
+ 4𝑛𝑝(1 − 𝑝)

𝑧2
_𝛼/2

(
2
√

2𝜋
𝑧1−𝛼/2

𝑒
𝑧21−𝛼/2

2
�̃�
√
𝑛
− 𝑧2

1−𝛼/2𝑟 (_)
)
.

Clearly, the first three terms divided by the denominator are bounded by some constants. Now we

consider the fourth term. Since |
√︁
𝑛𝑝(1 − 𝑝)𝑟 (_) | is bounded, we can also get that the fourth term

divided by the denominator is bounded by some universal constant.

Therefore, combining the above results, we know that�����1 − 2𝑝 +
√︄

1 + 4𝑛𝑝(1 − 𝑝)
𝑧2
_𝛼/2

− 2

(
1 + 𝑛

𝑧2
_𝛼/2

)
𝑧1−𝛼/2

√︂
𝑝(1 − 𝑝)

𝑛

����� ≤ 𝐶2
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where 𝐶2 is a positive constant. We also have that

2

(
1 + 𝑛

𝑧2
_𝛼/2

)
≥ 2𝑛
𝑧2
(1−𝑢)𝛼/2

.

Hence the error term satisfies that���������
1 − 2𝑝 +

√︂
1 + 4𝑛𝑝(1−𝑝)

𝑧2
_𝛼

− 2
(
1 + 𝑛

𝑧2
_𝛼

)
𝑧1−𝛼

√︃
𝑝(1−𝑝)
𝑛

2
(
1 + 𝑛

𝑧2
_𝛼

)
��������� ≤

𝐶0
𝑛

for some constant 𝐶0. From the above derivations, we find that 𝐶0 only depends on 𝛼 and the

choice of 𝑢. □

Proof of Theorem 4.9. If 𝑛0 > 32𝐶′2/𝛼2, then we get that 0 < _ < 1. The validness of the CI is

justified by the derivations above the theorem. □

Proof of Theorem 4.10. We have that

𝑝𝐵𝐸𝑢,𝑛0 − 𝑝
𝐶𝐿𝑇
𝑢,𝑛0 = −

𝑧2
_𝛼/2𝑛0

2𝑁2 +

√︄
𝑧2
_𝛼/2𝑛0(𝑁 − 𝑛0)

𝑁3 +
𝑧4
_𝛼/2𝑛

2
0

4𝑁4 − 𝑧1−𝛼/2

√︂
𝑛0(𝑁 − 𝑛0)

𝑁3

=

(𝑧2
_𝛼/2−𝑧

2
1−𝛼/2)𝑛0 (𝑁−𝑛0)
𝑁3 −

𝑛0𝑧
2
_𝛼/2𝑧1−𝛼/2

𝑁2

√︃
𝑛0 (𝑁−𝑛0)

𝑁3√︂
𝑧2
_𝛼/2𝑛0 (𝑁−𝑛0)

𝑁3 +
𝑧4
_𝛼/2𝑛

2
0

4𝑁4 +
𝑧2
_𝛼/2𝑛0

2𝑁2 + 𝑧1−𝛼/2

√︃
𝑛0 (𝑁−𝑛0)

𝑁3

First, we have that the denominator√︄
𝑧2
_𝛼/2𝑛0(𝑁 − 𝑛0)

𝑁3 +
𝑧4
_𝛼/2𝑛

2
0

4𝑁4 +
𝑧2
_𝛼/2𝑛0

2𝑁2 + 𝑧1−𝛼/2

√︂
𝑛0(𝑁 − 𝑛0)

𝑁3

≥

√︄
𝑧2
_𝛼/2𝑛0(𝑁 − 𝑛0)

𝑁3 = 𝑧1−_𝛼/2

√︂
𝑛0(𝑁 − 𝑛0)

𝑁3 .
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Next, we have that the numerator

(𝑧2
_𝛼/2 − 𝑧

2
1−𝛼/2)𝑛0(𝑁 − 𝑛0)
𝑁3 −

𝑛0𝑧
2
_𝛼/2𝑧1−𝛼/2

𝑁2

√︂
𝑛0(𝑁 − 𝑛0)

𝑁3 ≤
(
1 −

𝑧2
1−𝛼/2

𝑧2
_𝛼/2

)
𝑧2
_𝛼/2𝑛0(𝑁 − 𝑛0)

𝑁3 .

As mentioned in the proof of Theorem 4.6, we have that

1
𝑧2
_𝛼/2

=
1
𝑧2
𝛼/2
− 2
√

2𝜋
𝑧3
𝛼/2

𝑒
𝑧2
𝛼/2
2 (_ − 1)𝛼/2 + 𝑟 (_)

and

1 −
𝑧2

1−𝛼/2

𝑧2
_𝛼/2

=

√
2𝜋

𝑧1−𝛼/2
𝑒
𝑧2
𝛼/2
2
𝐶′1√
𝑛0
𝛼 − 𝑟 (_)𝑧2

𝛼/2

where 𝑟 (_) is continuous in _ and 𝑟 (_)/(1 − _) → 0 as _ ↑ 1. We know that 1 − _ = 𝐶′1/
√
𝑛0 for

some constant 𝐶′1 > 0 from the choice of _. For 𝑛0 > 32𝐶′2/𝛼2, _ is bounded away from 0, and

hence |𝑟 (_)/(1 − _) | = |√𝑛0𝑟 (_)/𝐶′1 | has a constant upper bound. Hence, there exists a constant

𝐶′2 > 0 such that

(
1 −

𝑧2
1−𝛼/2

𝑧2
_𝛼/2

)
𝑧2
_𝛼/2𝑛0(𝑁 − 𝑛0)

𝑁3 ≤
𝐶′2√
𝑛0

𝑧2
_𝛼/2𝑛0(𝑁 − 𝑛0)

𝑁3 .

Combining the results, we get that

𝑝𝐵𝐸𝑢,𝑛0 − 𝑝
𝐶𝐿𝑇
𝑢,𝑛0 ≤

𝐶′2√
𝑛0
𝑧1−_𝛼/2

√︂
𝑛0(𝑁 − 𝑛0)

𝑁3 ≤
𝐶′2𝑧1−_𝛼/2

𝑁
≤
𝐶′3
𝑁

where 𝐶′3 > 0 is a constant and we get the last inequality since _ has a non-zero lower bound.

Now notice that

𝑝𝐶𝐿𝑇𝑙,𝑛0
− 𝑝𝐵𝐸𝑙,𝑛0

= 𝑝𝐵𝐸𝑢,𝑛0 − 𝑝
𝐶𝐿𝑇
𝑢,𝑛0 +

𝑧2
_𝛼/2𝑛0

𝑁2

and
𝑧2
_𝛼/2𝑛0

𝑁2 ≤
𝑧2
_𝛼/2
𝑁

= 𝑂 (1/𝑁).

Therefore, we could find a constant 𝐶′0 such that the theorem holds. □
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Chapter 5: Rare-Event Simulation without Variance Reduction: An

Extreme Value Theory Approach

5.1 Introduction

A major goal of rare-event simulation is to estimate tiny probabilities that are triggered by rare

but catastrophic events [22, 23, 116]. This problem has been of wide interest to various application

areas such as queueing systems [117, 31, 26, 27, 25, 30, 24, 29], communication networks [32],

finance [34, 36, 35] and insurance [38, 37]. In recent years, with the extensive development of

machine learning and artificial intelligence, rare-event simulation is also applied to evaluate the

robustness of machine learning predictors [14, 125] or quantify the risk of intelligent physical

systems [18, 19, 17, 20, 21]. In using Monte Carlo (MC) to estimate rare-event probabilities,

a main challenge is that, by its own nature, the target rare events seldom occur in the simulation

experiments. Since sufficient hits on the target events are required to achieve meaningfully accurate

estimation, this makes crude MC computationally costly as the required simulation size to attain

enough accuracy becomes enormous.

To address the inefficiency of crude MC, a range of variance reduction techniques have been

developed. These techniques aim to alter the naive sampling procedure of crude MC to improve

the error per simulation run, thus attaining adequate accuracy with less number of samples. Among

them, importance sampling (IS) [51, 53, 23] is one of the most popular methods. The idea is to

utilize a change of measure to amplify the frequency of target events in the simulation, and then

to correct this bias with the likelihood ratio. Conditional Monte Carlo (CMC) [54, 63] uses the

conditional probability of the target events on certain information as an unbiased estimator, which

is especially useful in the heavy-tailed case where the classical exponential tilting IS technique

cannot be applied. Multi-level splitting or subset simulation [87, 138, 139] chooses a sequence
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of nested subsets, factorizes the target probability into the product of conditional probabilities and

then estimates each conditional probability by generating samples from the corresponding condi-

tional distribution. Despite demonstratably powerful in many problems, in order to attain good

performances, the variance reduction techniques described above often rely on tractable problem

structures that allow careful algorithmic design. Unfortunately, this requirement could be difficult

or even impossible to meet in complex practical applications. Thus, the main goal of this chapter

is to study an approach to improve upon the efficiency of crude MC in the absence of variance

reduction schemes.

More specifically, we resort to extreme value theory (EVT) [135], which has been a prominent

approach in extreme event analysis for real data. There, the main challenge is the scarcity of ob-

servations in the tail portion of the data that can directly infer the distributional extreme, and thus

one needs to suitably extrapolate information from the “central" part of the distribution. One ma-

jor approach, which we would borrow here, is the peak-over-threshold (POT) [137] method. This

method is based on the Pickands-Balkema-de Haan theorem [145, 146] which states that, under

suitable assumptions, the distribution function of the so-called excess loss above a threshold con-

verges to the generalized Pareto distribution (GPD) as this threshold increases. In this sense, GPD

is a justified model for tail data fitting. Analogically, we propose applying the POT method on the

crude MC simulation data. That is, within an acceptable computational budget, we use the crude

MC simulator to generate a simulation dataset, treat it as a real dataset, and fit the tail portion of

the data with GPD. The target probability is then estimated with the fitted GPD. Although the POT

method is well-established and this idea seems simple, to our best knowledge, POT has not been

considered in the rare-event simulation context. As discussed above, the latter literature mainly

focuses on developing algorithms to improve the efficiency of crude MC by utilizing tractable

problem structures.

We apply this method to several numerical examples and compare the results with crude MC,

including examples where variance reduction techniques such as IS cannot be applied easily. We

find that, in a suitably wide parameter range, our POT estimator achieves smaller variance than
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crude MC. Moreover, with limited simulation samples, while crude MC often outputs a trivial

estimate of 0, POT can output an estimate of a roughly correct magnitude.

The rest of this chapter is organized as follows. Section 5.2 introduces relevant backgrounds

about the challenge of crude MC and the theory of POT. Section 5.3 demonstrates the numerical

results of several experiments. Finally, Section 5.4 concludes and discusses future work.

5.2 Background

5.2.1 Challenge of Crude MC

We consider a simulation model that outputs a random vector 𝑋 ∈ R𝑑 under probability mea-

sure 𝑃, and we are interested in estimating 𝑝 = 𝑃(𝑋 ∈ 𝐸) where 𝐸 ⊂ R𝑑 is a rare-event set, i.e., 𝑝

is a tiny number. Suppose we generate 𝑛 i.i.d. simulation samples 𝑋1, . . . , 𝑋𝑛. Then the crude MC

estimator is simply 𝑝𝑀𝐶𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝐼 (𝑋𝑖 ∈ 𝐸). In this rare-event setting, we would like to control

the discrepancy between 𝑝𝑀𝐶𝑛 and 𝑝, relative to the magnitude of 𝑝 itself. In other words, we want

to control the probability 𝑃( |𝑝𝑀𝐶𝑛 − 𝑝 | > 𝛿𝑝) for some fixed 𝛿 < 1.

Note that the crude MC estimator is clearly unbiased. By Chebyshev’s inequality, we have for

any 𝛿 > 0,

𝑃( |𝑝𝑀𝐶𝑛 − 𝑝 | > 𝛿𝑝) ≤
𝑣𝑎𝑟 (𝑝𝑀𝐶𝑛 )
𝛿2𝑝2 =

𝑣𝑎𝑟 (𝐼 (𝑋 ∈ 𝐸))
𝑛𝛿2𝑝2 =

𝑝(1 − 𝑝)
𝑛𝛿2𝑝2 ≤ 1

𝑛𝛿2𝑝
.

Thus, 𝑛 ≥ 1
Y𝛿2𝑝

guarantees that 𝑃( |𝑝𝑀𝐶𝑛 − 𝑝 | > 𝛿𝑝) ≤ Y for any Y > 0. This reveals that, when 𝑝 is

tiny, the required simulation size which is reciprocal in 𝑝 can be enormous. Therefore, as widely

known in the literature, crude MC is inefficient for rare-event simulation.

Moreover, we note that 𝑝𝑀𝐶𝑛 can only take values in 0, 1/𝑛, . . . , (𝑛 − 1)/𝑛, 1. In particular,

𝑃(𝑝𝑀𝐶𝑛 = 0) = (1 − 𝑝)𝑛 ≈ 𝑒−𝑛𝑝. Thus, when 𝑛 is not sufficiently large relative to 𝑝, there is a

significant chance that the crude MC estimate is trivially 0.

As discussed in the introduction, we are interested in scenarios where crude MC is the only

available simulation format. In this case, we study POT to obtain a better estimate from crude MC
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without overwhelming the computational effort.

5.2.2 Recap of POT

Now we briefly recap the background for POT. Define the generalized extreme value distribu-

tion (GEV) as

𝐻b (𝑥) =


exp{−(1 + b𝑥)−1/b} if b ≠ 0;

exp{− exp{−𝑥}} if b = 0.

We say a distribution function 𝐹 belongs to the maximum domain of attraction of 𝐻b if there exist

constants 𝑐𝑛 > 0, 𝑑𝑛 ∈ R such that 𝑐−1
𝑛 (𝑀𝑛 − 𝑑𝑛)

𝑑.→ 𝐻b where 𝑀𝑛 denotes the maximum of

𝑛 i.i.d. samples from 𝐹. In this case we write 𝐹 ∈ 𝑀𝐷𝐴(𝐻b). This property is satisfied by a

wide variety of distributions, including Cauchy, Pareto, Loggamma, Uniform, Beta, Exponential,

Weibull, Gamma, Normal, Lognormal, etc.

Suppose that 𝑌 is a random variable with distribution function 𝐹. The right endpoint is defined

as 𝑥𝐹 = sup{𝑥 ∈ R : 𝐹 (𝑥) < 1}. Here, 𝑥𝐹 can be either infinite or finite. For a fixed threshold

𝑢 < 𝑥𝐹 , we call 𝐹𝑢 (𝑥) = 𝑃(𝑌 − 𝑢 ≤ 𝑥 |𝑌 > 𝑢), 𝑥 ≥ 0 the excess distribution function of 𝑌 over the

threshold 𝑢. Finally, we define the GPD as

𝐺b,𝛽 (𝑥) =


1 −

(
1 + b 𝑥

𝛽

)−1/b
if b ≠ 0;

1 − exp
{
− 𝑥
𝛽

}
if b = 0

where b ∈ R, 𝛽 > 0. The support of the distribution is [0,∞) if b ≥ 0 and [0,−𝛽/b] if b < 0.

We have the following theorem (see, e.g., [135]):

Theorem 5.1 (Pickands–Balkema–de Haan Theorem). For any b ∈ R, 𝐹 ∈ 𝑀𝐷𝐴(𝐻b) if and only

if

lim
𝑢↑𝑥𝐹

sup
0<𝑥<𝑥𝐹−𝑢

|𝐹𝑢 (𝑥) − 𝐺b,𝛽(𝑢) (𝑥) | = 0

for some positive function 𝛽.
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The theorem shows that under a mild assumption, the excess distribution converges to a GPD

with certain parameters as the threshold increases. Therefore, given i.i.d. samples 𝑌1, . . . , 𝑌𝑛 from

𝐹, we can pick a large threshold 𝑢, fit the data exceeding 𝑢 with GPD, and then use the fitted GPD

to estimate the target tail quantity. This is called the POT method.

In this chapter, we assume that the target rare event {𝑋 ∈ 𝐸} can be formulated as { 𝑓 (𝑋) ≥ 𝑎}

where 𝑓 is a real-valued function and 𝑎 is a large constant. Under this setting, we estimate the

target probability 𝑝 with the following procedure:

1. Generate i.i.d. simulation samples 𝑋1, . . . , 𝑋𝑛 and compute 𝑌𝑖 = 𝑓 (𝑋𝑖), 𝑖 = 1, . . . , 𝑛;

2. Pick a threshold 𝑢 < 𝑎 following certain criterion;

3. Fit a GPD 𝐺 b̂,𝛽 with the excess data {𝑌𝑖 − 𝑢 : 1 ≤ 𝑖 ≤ 𝑛,𝑌𝑖 > 𝑢};

4. Output 𝑝𝑃𝑂𝑇𝑛 =

(
1
𝑛

∑𝑛
𝑖=1 𝐼 (𝑌𝑖 > 𝑢)

) (
1 − 𝐺 b̂,𝛽 (𝑎 − 𝑢)

)
.

As discussed above, the theoretical guarantee for this POT procedure requires that the distri-

bution function of 𝑌 = 𝑓 (𝑋) belongs to 𝑀𝐷𝐴(𝐻b) for some b ∈ R. Though this assumption is

not verifiable in practice, thanks to its generality the POT method is often applied to real datasets

in the extreme event analysis literature. In this chapter, we follow this reasoning and apply this

method on simulation data.

We note that after generating some crude MC simulation samples and computing a crude MC

estimate, we can always reuse these samples and apply the above procedure to obtain a POT esti-

mate with little additional effort. Therefore, the POT estimate can always serve as a complement

to the crude MC estimate, especially when the latter is trivially 0. In the next section, we will

investigate under what conditions the POT estimator works well through multiple experiments.
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5.3 Numerical Experiments

5.3.1 Example 1: Sample Mean

We start from an easy example. Suppose that 𝑋 ∈ R𝑑 , the simulation output, consists of 𝑑 i.i.d.

random variables. That is, 𝑋 (1) , . . . , 𝑋 (𝑑) are i.i.d. from certain distribution where 𝑋 ( 𝑗) denotes

the 𝑗-th element of the vector 𝑋 . We consider 𝑓 (𝑋) = 1
𝑑

∑𝑑
𝑗=1 𝑋

( 𝑗) , and hence we aim to estimate

𝑃

(
1
𝑑

∑𝑑
𝑗=1 𝑋

( 𝑗) ≥ 𝑎
)
. With i.i.d. simulation samples 𝑋1, . . . , 𝑋𝑛, the crude MC estimator is simply

𝑝𝑀𝐶𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝐼

(
1
𝑑

∑𝑑
𝑗=1 𝑋

( 𝑗)
𝑖
≥ 𝑎

)
. Alternatively, we can use the POT procedure described in

Section 5.2.2 to compute 𝑝𝑃𝑂𝑇𝑛 .

In order to apply POT, we need to select the threshold 𝑢 properly, which involves an intrinsic

bias-variance tradeoff. Intuitively, if 𝑢 is too small, then approximating the excess distribution with

GPD may bear large bias; on the other hand, if 𝑢 is too large, then there are too few data exceeding

this threshold, which may result in large variance in fitting the GPD parameters. In the literature,

some useful tools are proposed to facilitate this selection, such as the mean residual plot [135],

but its performance is arguably still case-by-case. In our experiments, for simplicity, we choose 𝑢

as a certain sample quantile such that it is large but there are still sufficient data above it. In this

sample mean example, we set 𝑑 = 10, 𝑛 = 106 and we compare the performance of 𝑢 being the

0.99/0.999/0.9999-th sample quantile. For instance, if 𝑢 is chosen as the 0.999-th sample quantile,

then there are still 106 × (1 − 0.999) = 1000 samples above this threshold to help us fit the GPD

parameters. Moreover, it remains an open problem what is the best way to fit the GPD parameters.

Throughout this chapter, we use maximum likelihood estimation.

First, we test the methods on a light-tailed distribution, more specifically, normal distribution.

We let 𝑋 ( 𝑗)
𝑖
∼ 𝑁 (0, 1). Under this setting, a highly efficient IS scheme is available. That is,

we sample �̃�1, . . . , �̃�𝑛 such that �̃� ( 𝑗)
𝑖

’s are i.i.d. from 𝑁 (𝑎, 1) instead of 𝑁 (0, 1). Then the IS

estimator is computed by 𝑝𝐼𝑆𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝐼

(
1
𝑑

∑𝑑
𝑗=1 �̃�

( 𝑗)
𝑖
≥ 𝑎

)
exp

{
−𝑎∑𝑑

𝑗=1 �̃�
( 𝑗)
𝑖
+ 𝑑𝑎2/2

}
. We note

that 𝑌 = 𝑓 (𝑋) ∼ 𝑁 (0, 1/𝑑), so actually the true probability 𝑝 = 𝑃(𝑌 ≥ 𝑎) is known, which helps

us compare the performance of all these estimators and evaluate the GPD fitting performance.
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In order to evaluate these estimators, we generate 𝑛 simulation samples, compute each estima-

tor, and repeat this process 𝑁 = 1000 times. Table 5.1 shows the descriptive statistics of these 1000

estimations with 𝑎 = 1.5, where the true probability 𝑝 = 1.05 × 10−6. We see that the carefully

designed IS estimator is highly accurate, i.e. the mean is nearly the truth and the standard deviation

is small relative to the truth. The mean of the crude MC estimates is close to the truth, which is

reasonable since it is actually the mean value of 𝑛×𝑁 = 109 simulation results. However, the stan-

dard deviation of the crude MC estimator is nearly the same as the true probability. In fact, we see

that at least 25% of the crude MC estimates are trivially 0. For the POT method, we see that POT-

0.99 (i.e. 𝑢 is chosen as the 0.99 sample quantile) has large bias but small variance (or standard

deviation); POT-0.999 has small bias and the variance is smaller than crude MC; and POT-0.9999

is more unstable than POT-0.999 as it has larger variance and also gives 0 occasionally. Overall,

POT-0.999 appears the best among the three.

Table 5.1: Statistics of each estimator in Example 1 with 𝑁 (0, 1) distribution and 𝑎 = 1.5. 𝑝 =

1.05 × 10−6.

method mean std min 25% 50% 75% max
MC 1.13E-06 1.05E-06 0 0 1.00E-06 2.00E-06 6.00E-06
IS 1.05E-06 2.39E-09 1.04E-06 1.05E-06 1.05E-06 1.05E-06 1.06E-06
POT-0.99 5.88E-07 2.74E-07 6.34E-08 3.88E-07 5.52E-07 7.36E-07 1.95E-06
POT-0.999 1.01E-06 6.14E-07 1.71E-08 5.47E-07 8.79E-07 1.38E-06 3.48E-06
POT-0.9999 1.00E-06 7.53E-07 0 4.05E-07 8.77E-07 1.48E-06 3.77E-06

Although POT-0.999 still cannot compete with IS, it indeed performs better than crude MC

using the same simulation samples. To achieve the same standard deviation as POT-0.999, crude

MC requires 𝑛′ = ⌈𝑝(1− 𝑝)/𝑠𝑡𝑑2⌉ ≈ 2.79× 106, which is almost three times the actual simulation

size. Moreover, as mentioned before, crude MC estimator gives 0 frequently, while POT-0.999 can

at least give an estimate of a roughly correct magnitude. To illustrate this difference better, we

plot the histograms of these two estimators in Figure 5.1, where we find that POT-0.999 is more

concentrated around the true probability while over 30% of the crude MC estimates are 0.

Now we move 𝑎 to 2, so the target event is even rarer (𝑝 = 1.27 × 10−10). Table 5.2 shows

the descriptive statistics. In this case, since 𝑝 is too small, crude MC completely fails, in the
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Figure 5.1: Histograms of crude MC and POT-0.999 estimates in Example 1 with 𝑁 (0, 1) distri-
bution and 𝑎 = 1.5.

sense that all the 1000 estimates are 0. The IS estimator still performs well. We find that the

POT estimators cannot perform well. In order to explain this phenomenon, in Figure 5.2, we plot

the fitted GPD tails in five random replications against the true tail. We find that when 𝑎 is not

far from the threshold 𝑢 (approximately 0.7, 1.0, 1.2 respectively for the 0.99, 0.999, 0.9999-th

sample quantiles), the fitted values are generally close to the true values. When 𝑎 increases, the

fitting becomes more and more inaccurate and unstable, which coincides with our observations on

𝑎 = 1.5 and 𝑎 = 2. This phenomenon is reasonable, considering that in the POT method, we are

leveraging the limited data above 𝑢, most of which should not be far from 𝑢, to infer the whole tail.

That is, POT may not be suitable if 𝑎 is too far from the threshold 𝑢.

Table 5.2: Statistics of each estimator in Example 1 with 𝑁 (0, 1) distribution and 𝑎 = 2. 𝑝 =

1.27 × 10−10.

method mean std min 25% 50% 75% max
MC 0 0 0 0 0 0 0
IS 1.27E-10 3.37E-13 1.26E-10 1.27E-10 1.27E-10 1.27E-10 1.28E-10
POT-0.99 5.72E-13 3.68E-12 0 0 1.11E-18 7.58E-15 7.49E-11
POT-0.999 5.65E-10 2.25E-09 0 3.19E-18 1.73E-12 1.99E-10 3.77E-08
POT-0.9999 5.29E-09 1.72E-08 0 0 1.83E-12 1.95E-09 1.94E-07

Figure 5.2: GPD fitting performance in Example 1 with 𝑁 (0, 1) distribution.

We also investigate the performance in the heavy-tailed case. Let 𝑋 ( 𝑗)
𝑖
∼ 𝑃𝑎𝑟𝑒𝑡𝑜(𝑡, 𝛼) where
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𝑡, 𝛼 > 0 are the scale and shape parameters. That is, the CDF is 𝑃(𝑋 ( 𝑗)
𝑖
≤ 𝑥) = 1 − (𝑡/𝑥)𝛼, 𝑥 ≥

𝑡. In this case, IS cannot be easily applied. Instead, the CMC estimator defined by 𝑝𝐶𝑀𝐶𝑛 =

1
𝑛

∑𝑛
𝑖=1 𝑛𝑃(𝑋

(𝑑)
𝑖

> (max 𝑗=1,...,𝑑−1 𝑋
( 𝑗)
𝑖
) ∨ (𝑑𝑎 −∑𝑑−1

𝑗=1 𝑋
( 𝑗)
𝑖
)) is known to be unbiased and efficient.

We still repeat each estimator 𝑁 = 1000 times to make a comparison.

Tables 5.3 to 5.6 show the descriptive statistics where 𝑡 = 1 and 𝛼 = 1.5, 2, 3, 5. In these

experiments, 𝑎 is tuned manually such that the true probability is close to 10−7, and hence we could

compare the influence of the shape parameter 𝛼. In all the four experiments, the CMC estimator is

highly accurate, so we use the mean of CMC as an approximate to the truth. By contrast, the crude

MC estimator performs badly. In fact, in every experiment, over 75% of the crude MC estimates

are 0. Among the three POT estimators, POT-0.999 still performs generally well, as the mean is

close to the truth and the standard deviation is much smaller than crude MC. From the histograms

in Figure 5.3, we see that crude MC estimates are almost all 0 while POT-0.999 estimates are

more concentrated. Finally, we note that smaller 𝛼 implies heavier tail, and we observe from these

results that POT works better in this case. Especially, when 𝛼 = 1.5, the standard deviation of

POT-0.999 is only 6.32 × 10−8, while it requires 𝑛′ = ⌈𝑝(1 − 𝑝)/𝑠𝑡𝑑2⌉ ≈ 2.50 × 107 samples for

crude MC to achieve the same standard deviation, which is 25 times the actual 𝑛.

Table 5.3: Statistics of each estimator in Example 1 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 1.5) distribution and 𝑎 =

21601.56.

method mean std min 25% 50% 75% max
MC 9.60E-08 3.21E-07 0 0 0 0 2.00E-06
CMC 9.96E-08 1.07E-13 9.96E-08 9.96E-08 9.96E-08 9.96E-08 9.96E-08
POT-0.99 9.68E-08 2.29E-08 4.54E-08 8.09E-08 9.45E-08 1.11E-07 1.88E-07
POT-0.999 1.09E-07 6.32E-08 1.35E-08 6.44E-08 9.58E-08 1.39E-07 4.46E-07
POT-0.9999 1.78E-07 1.75E-06 1.11E-20 1.58E-08 4.64E-08 1.11E-07 5.13E-05

From the observations drawn from this sample mean example, we conclude that POT helps us

refine crude MC estimation, especially when the simulation size is relatively large so that there

are abundant data above the threshold, the rare-event set boundary 𝑎 is not far from the threshold,

and the tail of the distribution is heavy. In the following subsections, we compare crude MC and

POT-0.999 on several other examples to examine the generality of this conclusion.
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Table 5.4: Statistics of each estimator in Example 1 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 2) distribution and 𝑎 = 1000.

method mean std min 25% 50% 75% max
MC 9.70E-08 3.22E-07 0 0 0 0 2.00E-06
CMC 1.00E-07 2.98E-13 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07
POT-0.99 9.47E-08 2.54E-08 4.04E-08 7.65E-08 9.23E-08 1.10E-07 2.25E-07
POT-0.999 1.12E-07 7.22E-08 8.15E-09 6.10E-08 9.41E-08 1.45E-07 5.01E-07
POT-0.9999 1.36E-07 1.66E-07 0 2.17E-08 8.31E-08 1.82E-07 1.52E-06

Table 5.5: Statistics of each estimator in Example 1 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 3) distribution and 𝑎 = 47.625.

method mean std min 25% 50% 75% max
MC 9.90E-08 3.25E-07 0 0 0 0 2.00E-06
CMC 1.02E-07 2.00E-12 1.02E-07 1.02E-07 1.02E-07 1.02E-07 1.02E-07
POT-0.99 7.54E-08 2.48E-08 2.27E-08 5.79E-08 7.22E-08 8.98E-08 1.97E-07
POT-0.999 1.20E-07 8.48E-08 3.66E-09 5.82E-08 1.00E-07 1.58E-07 5.07E-07
POT-0.9999 1.40E-07 1.84E-07 0 1.60E-08 7.63E-08 1.93E-07 1.80E-06

Table 5.6: Statistics of each estimator in Example 1 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 5) distribution and 𝑎 =

5.234375.

method mean std min 25% 50% 75% max
MC 8.60E-08 3.01E-07 0 0 0 0 2.00E-06
CMC 1.01E-07 1.57E-11 1.01E-07 1.01E-07 1.01E-07 1.01E-07 1.01E-07
POT-0.99 2.23E-08 1.22E-08 2.71E-09 1.39E-08 1.99E-08 2.76E-08 9.95E-08
POT-0.999 9.55E-08 8.17E-08 2.29E-10 3.81E-08 7.39E-08 1.29E-07 6.42E-07
POT-0.9999 1.29E-07 1.82E-07 0 8.10E-09 5.87E-08 1.79E-07 1.58E-06

5.3.2 Example 2: Random Walk

In this subsection, we consider the overflow of a random walk process. We still suppose

that 𝑋 (1) , . . . , 𝑋 (𝑑) are i.i.d. random variables. Then the process {∑𝑘
𝑗=1

(
𝑋 ( 𝑗) − 𝐸𝑋 ( 𝑗)

)
: 𝑘 =

1, . . . , 𝑑} is a random walk where the increment at each step has zero mean. We set 𝑓 (𝑋) =

max𝑘=1,...,𝑑
∑𝑘
𝑗=1

(
𝑋 ( 𝑗) − 𝐸𝑋 ( 𝑗)

)
, and the rare event { 𝑓 (𝑋) ≥ 𝑎} represents the excursion of this

random walk. With 𝑛 simulation samples 𝑋1, . . . , 𝑋𝑛, we can compute 𝑝𝑀𝐶𝑛 and 𝑝𝑃𝑂𝑇𝑛 . We set

𝑑 = 10 and 𝑛 = 106.

Like in Section 5.3.1, we repeat evaluating each estimator for 𝑁 = 1000 times. However,

without accurate IS or CMC estimators, now we need to estimate the truth in another way. As

mentioned before, the average of the 𝑁 crude MC estimates, denoted by 𝑝𝑀𝐶𝑛 , is actually the
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(a) 𝛼 = 1.5 (b) 𝛼 = 2

(c) 𝛼 = 3 (d) 𝛼 = 5

Figure 5.3: Histograms of crude MC and POT-0.999 estimates in Example 1 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 𝛼)
distribution.

average of 𝑛 × 𝑁 simulation samples from all the 𝑁 repetitions. Therefore, we can pool these

𝑛 × 𝑁 samples to compute a confidence interval (CI). In particular, in this as well as the following

subsections, we use the 95% CI given by 𝑝𝑀𝐶𝑛 ± 1.96

√︂
𝑝𝑀𝐶𝑛

(
1−𝑝𝑀𝐶𝑛

)
𝑛×𝑁 as an estimate for the true

target probability.

Table 5.7 presents the descriptive statistics where 𝑋 ( 𝑗) ∼ 𝑁 (0, 1) and Tables 5.8 to 5.10 present

the statistics where 𝑋 ( 𝑗) ∼ 𝑃𝑎𝑟𝑒𝑡𝑜(1, 𝛼) for 𝛼 = 2, 3, 5. The rare-event boundary 𝑎 is tuned such

that the true probability is close to 10−6 for better comparison. Figure 5.4 shows the histograms

of the two estimators in these experiments. These results show consistent observations with the

previous example. The POT estimator is only slightly biased but the standard deviation is nearly

half of that of the crude MC estimator. It also gives non-trivial estimates while about 30% to

40% of the crude MC estimates are 0. Also the POT estimator performs better for heavier-tailed

distributions.

Table 5.7: Statistics of each estimator in Example 2 with 𝑁 (0, 1) distribution and 𝑎 = 15. CI:
1.23 × 10−6 ± 6.86 × 10−8.

method mean std min 25% 50% 75% max
MC 1.23E-06 1.09E-06 0 0 1.00E-06 2.00E-06 6.00E-06
POT-0.999 1.14E-06 6.64E-07 2.13E-08 6.23E-07 1.05E-06 1.54E-06 3.99E-06
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Table 5.8: Statistics of each estimator in Example 2 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 2) distribution and 𝑎 = 3000.
CI: 1.06 × 10−6 ± 6.40 × 10−8.

method mean std min 25% 50% 75% max
MC 1.07E-06 1.09E-06 0 0 1.00E-06 2.00E-06 6.00E-06
POT-0.999 1.15E-06 4.74E-07 2.17E-07 8.03E-07 1.08E-06 1.42E-06 3.15E-06

Table 5.9: Statistics of each estimator in Example 2 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 3) distribution and 𝑎 = 200.
CI: 1.17 × 10−6 ± 6.71 × 10−8.

method mean std min 25% 50% 75% max
MC 1.17E-06 1.14E-06 0 0 1.00E-06 2.00E-06 6.00E-06
POT-0.999 1.29E-06 5.61E-07 1.91E-07 8.74E-07 1.19E-06 1.61E-06 3.27E-06

Table 5.10: Statistics of each estimator in Example 2 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 5) distribution and 𝑎 = 25.
CI: 8.26 × 10−7 ± 5.63 × 10−8.

method mean std min 25% 50% 75% max
MC 8.26E-07 9.23E-07 0 0 1.00E-06 1.00E-06 6.00E-06
POT-0.999 8.72E-07 4.60E-07 6.98E-08 5.39E-07 7.86E-07 1.10E-06 2.75E-06

(a) 𝑁 (0, 1) (b) 𝑃𝑎𝑟𝑒𝑡𝑜(1, 2)

(c) 𝑃𝑎𝑟𝑒𝑡𝑜(1, 3) (d) 𝑃𝑎𝑟𝑒𝑡𝑜(1, 5)

Figure 5.4: Histograms of crude MC and POT-0.999 estimates in Example 2.
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5.3.3 Example 3: Neural Network

In this example, we consider an example that uses rare-event simulation to evaluate the robust-

ness of neural network classification, a problem that has been recently studied in [14, 125]. We

consider the classification problem on the MNIST dataset which contains 70,000 images of hand-

written digits. Each image is encoded as a vector 𝑥 ∈ R784, and belongs to a class in {1, . . . , 10}

(we assume 𝑗 = 1, . . . , 9 corresponds to digit 𝑗 and 𝑗 = 10 corresponds to digit 0). The goal of

the classification task is to predict the class given the input 𝑥 accurately. We train a simple neural

network with an accuracy of over 97%. Given an input image (encoded as a vector) 𝑥, this trained

neural network outputs the predicted logits 𝑧 𝑗 (𝑥), 𝑗 = 1, . . . , 10, and then this input is classified

as arg max 𝑗 𝑧 𝑗 (𝑥). Suppose that the neural network is able to correctly classify the input 𝑥0 to its

true class 𝑗0, and we aim to evaluate the robustness of this classification model via simulation.

That is, we exert a random perturbation Y from certain distribution on the input and then compute

the simulation output 𝑋 = (𝑧 𝑗 (𝑥0 + Y)) 𝑗=1,...,10. Let 𝑓 (𝑋) = max 𝑗≠ 𝑗0 𝑋 ( 𝑗) − 𝑋 ( 𝑗0) , and 𝑎 = 0.

Thus, the target rare event { 𝑓 (𝑋) ≥ 𝑎} is the event that the classification result changes after the

perturbation. We choose the simulation size 𝑛 = 106 and repeat each estimator 𝑁 = 1000 times.

We suppose that each element of the random perturbation Y is i.i.d. with zero mean. For

the light-tailed case, we try 𝑁 (0, 0.172); for the heavy-tailed case, we try 𝑃𝑎𝑟𝑒𝑡𝑜(0.0008, 2) and

𝑃𝑎𝑟𝑒𝑡𝑜(0.02, 3) minus the mean. From Tables 5.11 to 5.13, we find that the POT estimator still

performs similarly to the previous examples. We skip the histograms as they look similar to the

previous ones.

Table 5.11: Statistics of each estimator in Example 3 with 𝑁 (0, 0.172) distribution. CI: 1.10 ×
10−6 ± 6.49 × 10−8.

method mean std min 25% 50% 75% max
MC 1.10E-06 1.04E-06 0 0 1.00E-06 2.00E-06 7.00E-06
POT-0.999 1.03E-06 5.92E-07 3.87E-11 5.75E-07 9.42E-07 1.41E-06 3.98E-06
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Table 5.12: Statistics of each estimator in Example 3 with 𝑃𝑎𝑟𝑒𝑡𝑜(0.0008, 2) distribution. CI:
1.07 × 10−6 ± 6.42 × 10−8.

method mean std min 25% 50% 75% max
MC 1.07E-06 1.03E-06 0 0 1.00E-06 2.00E-06 6.00E-06
POT-0.999 1.22E-06 4.46E-07 1.66E-07 9.06E-07 1.16E-06 1.49E-06 3.14E-06

Table 5.13: Statistics of each estimator in Example 3 with 𝑃𝑎𝑟𝑒𝑡𝑜(0.02, 3) distribution. CI: 1.03×
10−6 ± 6.28 × 10−8.

method mean std min 25% 50% 75% max
MC 1.03E-06 1.02E-06 0 0 1.00E-06 2.00E-06 5.00E-06
POT-0.999 1.33E-06 5.19E-07 2.43E-07 9.59E-07 1.27E-06 1.63E-06 3.66E-06

5.3.4 Example 4: Queueing System

In this example, we consider a complicated queueing system described as follows. Suppose that

customers arrive to the system following a Poisson process with rate _. There are𝑚 sequential first-

in-first-out queues in the system, and the service time of each queue follows a certain distribution.

For 𝑘 = 1, . . . , 𝑚 − 1, after the service at the 𝑘-th queue, each customer joins the (𝑘 + 1)-th queue

with probability 𝑝 and directly leaves the system with probability 1− 𝑝. After the service at the 𝑚-

th queue, each customer leaves the system. Suppose that this simulation model outputs the sojourn

times of the first 𝑑 customers, i.e. 𝑋 ( 𝑗) is the sojourn time of the 𝑗-th customer. We aim to estimate

the probability that the maximum sojourn time exceeds 𝑎, i.e. 𝑓 (𝑋) = max 𝑗=1,...,𝑑 𝑋
( 𝑗) . In the

experiments, we fix _ = 1, 𝑚 = 10, 𝑝 = 0.8, 𝑑 = 10. We choose the simulation size 𝑛 = 106 and

repeat each estimator 𝑁 = 100 times.

Tables 5.14 to 5.17 present the descriptive statistics where the service distribution is chosen as

exponential or Pareto distributions. The value of 𝑎 is not carefully tuned in this example, but we

see that the POT estimate still performs generally better than crude MC.

Table 5.14: Statistics of each estimator in Example 4 with 𝐸𝑥𝑝(1) distribution and 𝑎 = 45. CI:
3.50 × 10−7 ± 1.16 × 10−7.

method mean std min 25% 50% 75% max
MC 3.50E-07 5.39E-07 0 0 0 1.00E-06 2.00E-06
POT-0.999 2.95E-07 1.93E-07 6.35E-09 1.23E-07 2.75E-07 4.41E-07 8.34E-07
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Table 5.15: Statistics of each estimator in Example 4 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 2) distribution and 𝑎 = 1000.
CI: 5.30 × 10−7 ± 1.43 × 10−7.

method mean std min 25% 50% 75% max
MC 5.30E-07 8.22E-07 0 0 0 1.00E-06 4.00E-06
POT-0.999 4.98E-07 2.34E-07 1.20E-07 3.25E-07 4.53E-07 6.04E-07 1.12E-06

Table 5.16: Statistics of each estimator in Example 4 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 2) distribution and 𝑎 = 2000.
CI: 1.40 × 10−7 ± 7.33 × 10−8.

method mean std min 25% 50% 75% max
MC 1.40E-07 3.77E-07 0 0 0 0 2.00E-06
POT-0.999 1.31E-07 7.75E-08 2.08E-08 7.37E-08 1.13E-07 1.63E-07 3.46E-07

Table 5.17: Statistics of each estimator in Example 4 with 𝑃𝑎𝑟𝑒𝑡𝑜(1, 3) distribution and 𝑎 = 50.
CI: 4.40 × 10−7 ± 1.30 × 10−7.

method mean std min 25% 50% 75% max
MC 4.40E-07 7.43E-07 0 0 0 1.00E-06 3.00E-06
POT-0.999 4.50E-07 2.28E-07 1.07E-07 2.89E-07 3.85E-07 5.68E-07 1.10E-06

5.4 Conclusion

While variance reduction techniques are powerful tools to increase the efficiency of crude MC

in rare-event simulation, they often heavily rely on tractable problem structures and careful algo-

rithmic design, which may not be possible for complex practical problems. This motivates us to

study the use of POT, a prominent method in extreme event analysis, in rare-event simulation as

an alternative to variance reduction. We formulate and test our POT approach on four rare-event

simulation examples. Naturally, POT may not be as efficient as carefully designed algorithms such

as IS or CMC when they are available. However, it outperforms crude MC in a reasonably wide

spectrum of problems. It performs especially well when the simulation size is relatively large, the

rare event boundary is not far from the threshold, and the tail of the distribution is heavy. Compared

to crude MC, the POT estimator usually has smaller standard deviation with equal simulation size,

and it gives an estimate of a roughly correct magnitude instead of a trivial estimate 0. Therefore,

if efficient variance reduction techniques are not available, then our POT procedure can be used to

refine and improve the crude MC estimate. For instance, if after generating some simulation sam-

178



ples, we find that none of them hits the target event but we cannot afford generating more samples,

then we can compute the POT estimator with these existing samples to get a non-trivial estimate.

In the future, we will investigate how to further improve the performance of our POT procedure,

including threshold selection and fitting of GPD parameters.
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Chapter 6: Calibrating Over-parameterized Simulation Models: A

Framework via Eligibility Set

6.1 Introduction

Stochastic simulation aims to compute output performances for complex systems that lack

analytical tractability. Other than prediction, this evaluation capability facilitates downstream

decision-making tasks including optimization, feasibility test and sensitivity analysis, by changing

the design parameter value and monitoring the output from the simulation. Simulation modeling

as such has been widely used across multiple disciplines in operations research and management

[147, 148], finance [34], intelligent systems [149, 150, 17] and model-based learning [151].

The reliability of simulation models, nonetheless, depends crucially on how well these models

capture reality, which in turn calls for the correctness of calibration. The latter refers to the task of

choosing the model parameter values, and the associated uncertainty quantification on the inference

errors. Often times, data represented by the output of the model are only observed at an aggregate

level, without full information on the detailed underlying dynamics of the considered system. This

is both the strength and challenge of simulation modeling: By building a model for the underlying

dynamics, one could answer questions that require looking into unobserved scenarios by suitably

tuning the design configuration, which is beyond what standard machine learning or statistics can

provide. On the other hand, without direct data, there could be no consistency in estimating these

model parameters, and the reliability of the ultimate model prediction could be in doubt.

In stochastic or discrete-event simulation, calibration has been studied mostly assuming direct

data on the parameter of interest. In this situation, the focus is on assessing the impact of the

statistical error in fitting the parameter that is propagated to the simulation output, known as the

input uncertainty or input error (see, e.g., the surveys [152, 153, 154, 155, 156, 157, 158, 159,
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160]). This problem has drawn wide attention among the simulation community in recent years,

studying methods ranging from the bootstrap [161, 162, 163, 164, 165], finite-difference and delta

method [166, 167, 168, 169], robust optimization [170, 171, 172, 173, 174] and relatedly empirical

likelihood [175], sectioning [176] and Bayesian methods [177, 178, 179, 180].

Nonetheless, when the simulation model validity is checked against output data instead of as-

suming direct input data, the problem is considerably much more difficult [181]. This problem

arises routinely in the simulation model construction process, yet a rigorous study appears quite

open. Conventionally, this problem is treated under the umbrella of model calibration and valida-

tion [182, 183] which suggests an iterative model refinement process. Once a simulation model is

built, it is tested against real data, via two-sample statistical hypothesis tests that compare simu-

lated outputs and real outputs [184] or Turing tests [185] (“validation"). If it is determined from

these tests that the model is inadequate, the model would be refined by either expanding the sys-

tem logic or tuning the model parameters (“calibration"). These two steps are reiterated until the

model is satisfactory. Though intuitive, this approach is ad hoc, potentially time-consuming and,

moreover, there is no guarantee of a satisfactory model at the end. The ad-hoc-ness arises because

just by locating model parameter values that match the simulated versus real outputs in terms of

simple hypothesis tests, there is no guarantee that 1) there exists a unique set of parameter values

that gives the match and 2) the simulation model is good enough for output dimensions different

from the one being tested.

Issue 1) above regards how to locate model parameter values, and contains two sub-issues on

the existence and uniqueness respectively. The existence of matching parameter values means

either the model is correctly specified, or it is parameterized in a rich enough manner so that its de-

gree of freedom is more than necessary to include the “truth", i.e., the model is over-parameterized.

In the latter case, uniqueness may not hold as there could be more than one set, or even potentially

many sets, of parameter values that give the exact match. This issue is known as non-identifiability

[186]. Though this resembles overfitting in machine learning, its underlying challenge and han-

dling methodology are fundamentally different: Whereas one can diagnose overfitting by measur-
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ing generalization errors on test sets, in simulation modeling the main goal is to change the design

parameters to values that are unobserved before, which by definition have no available test data to

start with.

Issue 2), on the other hand, concerns the adequacy in assessing the match between simulated

and real data. Challenges arise from the stochasticity and high-dimensionality of outputs in com-

plex simulation models. In stochastic simulation, the outputs are random by definition and are

often in the form of serial trajectory. In the literature this stochasticity and high dimensionality

is usually avoided by simply using the means of certain outputs as a summary and assessing the

match with real data via classical low-dimensional two-sample hypothesis tests [182, 183]. How-

ever, even if these tests deem an accurate match, it does not necessarily mean the model parameter

takes the correct value, because we may have ignored the many possible other output dimensions

which, related to the first issue above, exacerbates the non-identifiability problem.

Our goal in this chapter is to provide a systematic framework to address the two issues above,

focusing on over-parameterized regime with high-dimensional stochastic outputs. In other words,

we presume that the considered simulation model is sufficiently expressive in resembling the true

hidden dynamics, but it can contain many parameters. The real data and the model outputs can

be multivariate or in the form of time series. Under these presumptions, we first properly define

the target as to find what we call an eligibility set, namely the set of all possible parameter values

such that the real and simulated outputs match, in the idealized situation when there are an infinite

amount of data on both ends. Note that depending on the over-parameterization and the matching

criterion, non-identifiability can arise, and in this case it is theoretically impossible to locate the

true parameter value. The eligibility set is defined as the theoretically best (i.e., smallest) set of

parameter values that one can possibly aim to obtain under the given degree of non-identifiability.

This set contains the true value, and the smaller it is, the more accurately we know regarding the

truth. In this way, instead of enforcing a consistent estimation as in classical statistics, we relax the

estimation target to a set in order to bypass the non-identifiability issue.

The eligibility set provides a theoretical limit on what we can achieve. When finite data are
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available, estimation error kicks in and we could only attain a correct eligibility set up to a certain

statistical confidence. Moreover, the data also affects how we produce the matching criterion.

Ideally, we want our estimation to be correct (i.e., the set we create indeed contains the truth with

high confidence) and non-conservative (i.e., a small set). To this end, we study a framework using

feature extraction-then-aggregation as follows. In the extraction phase, we identify the important

“summaries" for the outputs, where a summary is regarded as effective if it possesses the ability to

distinguish an incorrect model output from the truth. In this chapter, we simply use unsupervised

learning tools, such as penultimate layer extraction from neural network models, to locate the

important output characteristics as summaries. While there are considerably other potential better

approaches, we will see how our suggestion applies well to examples to a reasonable extent.

In the next phase, we compare the match between real and simulated data by testing the sim-

ilarities of these features. Since the number of features could be large in order to well represent

the high-dimensional outputs, the individual hypothesis tests on these features need to be properly

aggregated to control familywise error. Here, good choices of the statistics and the aggregation

method are based on the tractability in calibrating the acceptance-rejection threshold or analyzing

its 𝑝-value (“correct"), and a small resulting Type II error probability on mistakenly accepting a

wrong value (“non-conservative"). Based on these considerations, we propose an approach using

an aggregation of the Kolmogorov-Smirnov (KS) statistics, which leads to the following analytics

tool: Given a parameter value, we can say, with a statistical confidence, whether this value is inside

the eligibility set. If it is not, then the value is not the truth with the prescribed confidence. If it

is, then the value is in the smallest possible set that includes the truth (though no conclusion is

drawn on whether this value is the truth). In short, the more values are “rejected" or equivalently

the smaller is our constructed eligibility set, the more accurate we can locate the truth.

Our approach through eligibility set constructed from feature extraction-then-aggregation de-

scribed above, though intuitive, faces two admitted limitations. First is our presumption of over-

parameterized models which means that the “truth" is recovered with the correct parameter values.

Often times, however, the model, even when richly parameterized, could still deviate from the true
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dynamics and incur a systematic model error – a discrepancy with the truth even when the parame-

ters are best calibrated. Our second limitation concerns computation. When the input dimension is

high, it is difficult to fully construct the eligibility set, and thus we refrain ourselves in the task of

hypothesis testing instead of set estimation, i.e., given a parameter configuration, we test whether

it is inside the eligibility set or in other words “eligible". Both issues appear challenging to us

and deserve much follow-up study. Handling the first issue could borrow the Bayesian perspective

by incorporating an associated prior on model error (e.g., [187, 188], and also [189, 190] which

consider stochastic outputs), or understanding the frequentist behavior of distance minimization

[191, 192, 193]. For the second issue, a potential remedy is to recast the goal as to compute

confidence bounds on target performance measure, and use robust optimization to compute these

bounds by treating the eligibility set as the constraint or the so-called uncertainty set or ambiguity

set (see Section 6.2.1). Such optimization problems are in the form of high-dimensional simula-

tion optimization. We point out that while these important limitations are unresolved in the current

chapter, a systematic methodology to calibrate models that are over-parameterized (i.e., with neg-

ligible model error) with multi-dimensional outputs already appear quite open in the stochastic

simulation literature and worth a starting investigation.

Finally, we test our methodology on the calibration of the Agent-Based Interactive Discrete-

Event Simulation Environment (ABIDES) [194, 195], a detailed model to emulate market order

dynamics. Faced with an increasing demand of a simulation tool to analyze market participant’s

behaviors, ABIDES is designed to emulate the interaction of individual agents with an exchange

agent (e.g., mimicking NASDAQ) and output the emergent time series of the bid-ask prices and

order volumes. ABIDES enables the simulation of tens of thousands of trading agents, many

securities, and can involve various behavioral types of trading agents. The trading agents and

exchange agents communicate through a kernel to request the information of the limit order book

and perform trading order placement. The calibration of the ABIDES model here means finding

a configuration of agents such that the generated price series is similar to observed data – arising

from either an ABIDES simulation with unknown parameters or historical price series. To test
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the power of our approach, we measure the similarity in terms of stylized facts of the limit order

book that can be used as realism metrics [195]. The specific stylized facts that we examine include

heavy tails and aggregation normality, absence of autocorrelations of the log return distribution,

and volatility clustering. In other words, we show that our calibration framework, which operates

in “black-box" regime without knowing the explicit realism metrics in advance, is able to select

models that match data with respect to them.

6.1.1 Comparisons with Existing Approaches

We compare our work with several existing approaches and discuss our relative strengths and

limitations. First, as mentioned previously, our approach aims to provide a systematic framework

to carry out validation-calibration for stochastic simulation that rigorizes the ad hoc suggestions

in the past. To this end, we also point out a related line of work on discrete-event or queueing

inference that leverages analytic solutions or heavy-traffic approximations of the model to recover

input parameters [196, 197, 198, 199, 200, 201]. Different from these works, our approach does

not rely on specific structures of the discrete-event model and assume only a simulatable black-

box input-output relation. The closest to our approach is [202] that uses distributionally robust

optimization (DRO) [203, 204, 205, 206] to compute bounds for performance measures. Like us,

they consider a match between real and simulated data using the KS statistics. However, they

consider single-dimensional output and assume the considered system has a 𝑉-statistic structure.

In contrast, we do not impose assumptions on our system structure and the output can be high-

dimensional, thus necessitate our feature extraction-then-aggregation framework. Moreover, [202]

considers distributional input instead of parametric inputs, the former allowing a tractable (i.e.,

locally convergent) algorithm for solving the constructed DRO, while conducting an analogous

task efficiently in our current setup remains open. We also mention that a preliminary conference

version of the current work has appeared in [207], but without the elaborate investigation on the

eligibility set guarantees, the feature-based approach to handle high-dimensional outputs, and the

detailed numerics.
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Second, in computer experiments, the calibration problem admits a long-standing history and

is also known as simulation-based or likelihood-free inference, as the likelihood function of data is

only accessible via the (black- or grey-box) simulation model [208]. This is regarded as an inverse

problem in scientific fields as one attempts to recover physical parameters from surrogate models

built on physical laws [209, 210, 211]. The predominant approach uses a Bayesian perspective,

by placing priors on the unknown input model parameters and computing posterior for inference

[187, 212, 213, 214, 215]. Recent work such as [216] further improves the extrapolation capa-

bility by using covariate shift techniques. The Bayesian approach is advantageously automatic in

addressing non-identifiability, as the posterior distribution is universally well-defined. However,

as the likelihood function is not directly available, the posterior can often be updated only via ap-

proximate Bayesian computation (ABC) [217, 218], by running acceptance-rejection on simulated

samples that is computationally costly and requires ad hoc tuning [219, 220]. In contrast to this

literature, our approach aims for a frequentist guarantee, hinging on our notion of eligibility set

to bypass non-identifiability, which relies less heavily on the correctness of the underlying model

assumptions such as the prior distribution.

Third, we note that the notion of non-identifiability and the general idea of constructing a confi-

dence set for non-identifiable parameters align with the set identification literature in econometrics

[221, 222, 223, 224]. Compared to this literature, our development differs in the extra random-

ness and complexity introduced by the simulation model. More specifically, in the econometrics

literature, the focus is the identified set arg min\∈Θ𝑄(\) where 𝑄(·) is an objective function (the

distance 𝑑 introduced later can be seen as 𝑄 in their framework) and then confidence sets can be

constructed with the sample objective function 𝑄𝑁 (·). This idea is similar to ours, but in our case,

𝑄𝑁 (\) is still random due to the stochasticity in simulation. Moreover, our objective function can

be much more complicated and even coming from a black-box simulator.

Finally, machine learning techniques have also been applied to solve calibration problems. This

literature focuses on building surrogate models and minimizing the distance with real data. More

specifically, when the simulation model is computationally costly, a surrogate model could be built
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as a proxy to speed up the evaluation and calibration. For instance, [225] proposes a model-assisted

GAN where a convolutional neural network (CNN) is trained as an emulator to mimic the simu-

lator. The similarity between the simulated data and the emulated data is determined by encoding

the data with the same CNN and comparing the 𝐿2 norm of the difference. Alternatively, [226]

suggests to use extreme gradient boosted trees (XGBoost) to learn an ensemble of classification

and regression trees (CART) which ultimately provides an approximation for agent-based models.

After a surrogate is built, the computational load to evaluate and to calibrate by matching with real

data could be significantly reduced. We could also integrate such surrogate models in our frame-

work. That is, if the simulation run is time-consuming, then we could build a surrogate model

for the original simulation model. However, doing so will affect the statistical guarantee of our

eligibility set, because now we should account for the surrogate model error against the original

simulation model.

6.2 Calibration Framework

We consider a family of output probability distributions {𝑃\ : \ ∈ Θ} on R𝑚 where \ is an

unknown 𝑑-dimensional parameter on the parameter space Θ ⊂ R𝑑 . The unknown true parameter

is denoted as \0 ∈ Θ. We suppose real-world output data 𝑋1, . . . , 𝑋𝑁 drawn from 𝑃\0 is available.

On the other hand, given any \ ∈ Θ, we can generate a simulated random sample 𝑌 \1 , . . . , 𝑌
\
𝑛

from 𝑃\ via a black-box machine. Note that, besides simulatability, we do not make any further

assumptions on the relationship between \ and 𝑃\ , which can have a complicated structure as

exhibited by most large-scale simulation models. Also note that the setup above implies implicitly

that the simulation model represented by 𝑃\ is expressive enough, i.e., over-parameterized, so that

it covers the true output distribution.

Our goal is to infer the true value of \ from the real output data and our simulation capability.

For convenience, we use 𝑃\0
𝑁

and 𝑃\𝑛 to denote the empirical probability distributions determined

by the real output data set 𝑋1, . . . , 𝑋𝑁 and the simulated output data set 𝑌 \1 , . . . , 𝑌
\
𝑛 respectively.
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That is,

𝑃
\0
𝑁
(·) = 1

𝑁

𝑁∑︁
𝑘=1

𝛿𝑋𝑘 (·), 𝑃\𝑛 (·) =
1
𝑛

𝑛∑︁
𝑗=1
𝛿𝑌 \

𝑗
(·)

where 𝛿 denotes the Dirac measure. Naturally, we also use 𝐹\0 and 𝐹\ to denote the distribu-

tion functions of 𝑃\0 and 𝑃\ , and correspondingly 𝐹\0
𝑁

and 𝐹\𝑛 to denote the respective empirical

distribution functions.

6.2.1 Remedying Non-Identifiability via Eligibility Sets

To infer \0, the standard statistical approach would be to obtain a point estimate as close to \0

as possible. However, when the simulation model is over-parameterized as in the setup above, there

could be many values other than \0 that give rise to the same output pattern, an issue known as

non-identifiability. More precisely, the observability of output-level data allows us to only obtain

information on the output distribution 𝑃\0 . Consider any statistical distance 𝑑 (·, ·) between two

probability distributions that is valid (in particular, the distance is zero if two distributions are

identical). The best we can achieve is to find \ such that 𝑑 (𝑃\ , 𝑃\0) = 0. If there exists \′0 ∈ Θ such

that \0 ≠ \′0 but 𝑑 (𝑃\′0 , 𝑃\0) = 0, the output data form fundamentally prevents us from identifying

which one is the true parameter. This non-identifiability stems from the unobservability of the

detailed dynamics that create these data.

Our idea to bypass the non-identifiability issue is to construct a region that contains the true

parameter value instead of trying to get a “best” point estimation. We call this region the eligibility

set. To start with, imagine we have infinitely many real data so that 𝑃\0 is fully known. In this

case, the set {\ ∈ Θ : 𝑑 (𝑃\ , 𝑃\0) = 0} clearly contains the true parameter value \0, and moreover

it contains the most refined information on the parameter value coming from the output data.

In practice where we only have a finite real data set of size 𝑁 , we construct a statistically

confident eligibility set by relaxing the distance from zero to a small threshold, namely

E = {\ ∈ Θ : 𝑑 (𝑃\ , 𝑃\0
𝑁
) ≤ [} (6.1)
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where [ ∈ R+ is a suitable constant. This construction is highly intuitive: If 𝑃\ is sufficiently close

to the empirical distribution 𝑃\0
𝑁

, then we take \ as an acceptable candidate, and vice versa. The

use of (6.1) is highlighted in the following simple lemma:

Lemma 6.1. If 𝑑 (·, ·) satisfies

P(𝑑 (𝑃\0 , 𝑃
\0
𝑁
) ≤ [) ≥ 1 − 𝛼 (6.2)

where P refers to the probability with respect to the real data 𝑋1, . . . , 𝑋𝑁 , then E = {\ ∈ Θ :

𝑑 (𝑃\ , 𝑃\0
𝑁
) ≤ [} is a (1 − 𝛼)-level confidence region for \0, i.e.,

P(\0 ∈ E) ≥ 1 − 𝛼. (6.3)

Moreover, if (6.2) holds asymptotically as 𝑁 →∞, then (6.3) holds asymptotically as well.

Proof of Lemma 6.1. The result follows by noting that 𝑑 (𝑃\0 , 𝑃
\0
𝑁
) ≤ [ implies \0 ∈ E. □

The main implication of Lemma 6.1 is that, in order to obtain a statistically valid confidence set

for parameter \, it suffices to construct a statistical distance 𝑑 (·, ·) in the nonparametric space of

probability distributions. Suppose we have knowledge on the sampling distribution on 𝑑 (𝑃\0 , 𝑃
\0
𝑁
),

then we can obtain [ as the quantile of this distribution so that {𝑄 : 𝑑 (𝑄, 𝑃\0
𝑁
) ≤ [} is a (1 − 𝛼)-

level confidence region for 𝑃\0 , consequently giving rise to a confidence region for \0 by “lifting"

from the nonparametric to parametric space. The nonparametric viewpoint here is beneficial as it

is typically extremely difficult to find the right parametric class for simulation models (hence the

term “likelihood-free" inference as discussed in Section 6.1.1). On the other hand, it is relatively

easy to construct 𝑑 (·, ·) such that we know its universal sampling distribution of 𝑑 (𝑄,𝑄𝑁 ), for

general output distribution 𝑄 and its associated empirical distribution 𝑄𝑁 .

An easy but handy observation, which we will utilize heavily in Section 6.4, is that 𝑑 (·, ·)

above can be a semi-metric, i.e., 𝑑 (𝑃,𝑄) can be 0 not only when 𝑃 = 𝑄 but potentially when

𝑃 ≠ 𝑄. Because of this, we can extract a certain dimension or transformation of the output in
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constructing this 𝑑. For instance, let Π𝑃 be the distribution of a transformation of the output

generated from 𝑃. Then we can consider 𝑑 (Π𝑃,Π𝑄) for any statistical distance 𝑑 defined on the

suitable probability distribution space. If we adopt such a semi-metric, then the non-identifiability

should correspondingly be defined with respect to this semi-metric between 𝑃 and 𝑄.

Before moving to more details on 𝑑 (·, ·) and [, we discuss the relation of (6.1) to the robust

optimization (RO) literature [227, 228]. The latter advocates decision-making under the worst-case

scenario as a principled approach to handle optimization under uncertainty, where the worst case

is taken over the uncertain parameters in the model. In computing the worst case, RO places the

target performance measure in the objective, and constrain the uncertain parameters to lie in the

so-called uncertainty set or ambiguity set, which is a set believed to contain the true parameter with

high confidence. In DRO, the uncertain parameters are the underlying probability distributions in a

stochastic problem [203, 205, 204]. In this setting, a common approach to construct the uncertainty

set is a neighborhood ball measured by statistical distance such as the Kolmogorov-Smirnov (KS)

distance [229] that we will utilize, 𝜙-divergence [230, 206, 170, 173, 174, 231] and Wasserstein

distance [232, 233, 234]. It can also be constructed based on moment matching [204, 235, 171] or

imposition of shape information [236, 237, 238]. Like DRO, our set (6.1) is a confidence region

that is constructed to cover the truth with high confidence and, although our target parameters

are finite-dimensional, the set is created via scrutinizing the unknown distributions as in DRO.

However, different from this literature, our uncertainty set is constructed by matching the model

and the real data at the output level as a way to bypass non-identifiability.

In addition to the similarity between eligibility set and uncertainty set, the worst-case notion

in (D)RO that gives rise to bounds on performance measure also plays a role in our framework.

Although we do not pursue in this chapter, this role is important for two reasons. First is that when

the input is high-dimensional, it is difficult to compute the entire eligibility set E, and focusing on

bounds for relevant performance measure simplifies the problem. Second, in simulation analysis

our goal often is to evaluate a target performance measure or conduct a downstream task that uti-

lizes such an evaluation. For concreteness, say this target is 𝜓(\0) where 𝜓 is a function dependent
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on \. The optimization pair

maximize/minimize 𝜓(\)

subject to \ ∈ E
(6.4)

which utilizes the eligibility set E as the feasible region, results in valid confidence bounds for

𝜓(\0). We rigorize this as:

Lemma 6.2. If E is a (1−𝛼)-level confidence set for the true parameter \0, i.e., P(\0 ∈ E) ≥ 1−𝛼

where P refers to the probability with respect to the data, then the optimal values of (6.4), denoted

𝑍∗ and 𝑍∗ respectively, satisfy

P(𝑍∗ ≤ 𝜓(\0) ≤ 𝑍∗) ≥ 1 − 𝛼

That is, 𝑍∗ and 𝑍∗ constitute (1 − 𝛼)-level upper and lower confidence bounds for 𝜓(\0).

Proof of Lemma 6.2. The result follows by noting that \0 ∈ E implies 𝑍∗ ≤ 𝜓(\0) ≤ 𝑍∗, so that

P(𝑍∗ ≤ 𝜓(\0) ≤ 𝑍∗) ≥ P(\0 ∈ E) ≥ 1 − 𝛼.

□

That is, by combining the nonparametric distance 𝑑 in Lemma 6.1 and the DRO formulation

in Lemma 6.2, we arrive at confidence bounds for target performance measure 𝜓(\0), from which

one can utilize for many tasks such as optimization and feasibility analyses. While using DRO is

not the focus of this chapter, it serves to highlight the downstream use of our eligibility set and,

moreover, gives an approach to use it even if the eligibility set cannot be fully constructed which

is important when the input parameter space is huge.
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6.2.2 Constructing Eligibility Sets: An Elementary Case

To implement our proposed framework, we need to resolve two questions. First is the choice

of distance measure 𝑑 and the associated constant [ in order to achieve the guarantee depicted in

Lemma 6.1. Second, at least in elementary cases where we want to approximate the entire E, we

need to be computationally able to determine whether 𝑑 (𝑃\ , 𝑃\0
𝑁
) ≤ [ or not for any \ ∈ Θ.

For the first question, a good choice of 𝑑 should satisfy that (i) the resulting uncertainty set is

non-conservative, i.e., it is as small as possible in terms of “volume"; (ii) the associated threshold

[ that satisfies (6.2) is obtainable; (iii) 𝑑 is efficient to compute. For one-dimensional output, we

consider the Kolmogorov-Smirnov (KS) distance

𝑑 (𝑃1, 𝑃2) = sup
𝑥∈R
|𝐹1(𝑥) − 𝐹2(𝑥) |

where 𝑃1, 𝑃2 are probability distributions and 𝐹1, 𝐹2 are respectively their cumulative distribution

functions. Since 𝑑 (𝑃\0 , 𝑃
\0
𝑁
) is exactly the KS statistic for the goodness-of-fit for 𝐹\0 , its sampling

distribution is well-known and the threshold can be readily set as [ = 𝑞1−𝛼/
√
𝑁 , where 𝑞1−𝛼 is the

(1 − 𝛼)-quantile of sup𝑡∈[0,1] |𝐵𝐵(𝑡) | and 𝐵𝐵(·) denotes a standard Brownian bridge. This choice

of (𝑑, [) satisfies (6.2) asymptotically as 𝑁 increases, and thus Theorem 6.1 applies.

In practice, the simulation size is also finite as constrained by computational capacity. This

requires us to use 𝑃\𝑛 and 𝐹\𝑛 to approximate 𝑃\ and 𝐹\ , and hence 𝑑 (𝑃\𝑛, 𝑃
\0
𝑁
) to approximate

𝑑 (𝑃\ , 𝑃\0
𝑁
). To summarize, the eligibility set for \ is constructed as

E =

{
\ ∈ Θ : sup

𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹

\0
𝑁
(𝑥) | ≤ 𝑞1−𝛼√

𝑁

}
(6.5)

where 𝑞1−𝛼 is the (1 − 𝛼)-quantile of sup𝑡∈[0,1] |𝐵𝐵(𝑡) |. Given any \ ∈ Θ, we can generate a

simulated sample 𝑌 \1 , . . . , 𝑌
\
𝑛 ∼ 𝑃\ and check whether it is in E defined by (6.5). If there are

infinitely many values in the parameter space, then we can choose a finite number of values, say

\1, . . . , \𝑚 ∈ Θ as “representatives”, which can be either deterministic grid points or randomly
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sampled.

It is worth discussing why we choose to use KS over other perceivably natural candidates for

model distances such as the Kullback–Leibler (KL) divergence. The KL divergence, and more

generally 𝜙-divergence, require likelihood ratio that is usually unavailable for simulation models.

Thus, to empirically estimate these divergences, we need to either discretize the distributions or

use variational representation, but even for well-designed consistent KL estimators, the conver-

gence rate can be arbitrarily slow [239]. An alternative choice is the Wasserstein distance, which

is relatively easy to compute thanks to its linear programming representation. However, the corre-

sponding threshold [ cannot be easily calibrated.

Putting everything together, we propose Algorithm 6.1 to compute the eligibility set for the un-

known parameter \. In the following, we present some theoretical results that guide the amount of

simulation runs needed to produce the guarantees offered by Lemma 6.1, and the conservativeness

level of the resulting eligibility set. Theorem 6.1 first gives a sufficient condition on the simulation

size.

Algorithm 6.1: Constructing eligibility set of \.
Input: The real output data 𝑋1, · · · , 𝑋𝑁 . The number of candidate \’s 𝑚. The simulation

replication size 𝑛. The confidence level 1 − 𝛼.
Output: An approximate eligibility set Ê𝑚.

1 Generate \1, · · · , \𝑚 ∈ Θ;
2 For 𝑖 = 1, · · · , 𝑚 do
3 Generate an i.i.d. random sample of simulated data 𝑌 \𝑖1 , · · · , 𝑌

\𝑖
𝑛 ∼ 𝑃\𝑖 ;

4 Compute 𝑐𝑖 = sup𝑥∈R
���1
𝑛

∑𝑛
𝑗=1 𝐼

(
𝑌
\𝑖
𝑗
≤ 𝑥

)
− 1

𝑁

∑𝑁
𝑙=1 𝐼 (𝑋𝑙 ≤ 𝑥)

���;
5 End
6 Return the eligibility set Ê𝑚 = {\𝑖 : 𝑐𝑖 ≤ 𝑞1−𝛼/

√
𝑁}.

Theorem 6.1. Suppose that 𝑋1, · · · , 𝑋𝑁 is an i.i.d. true sample from 𝑃\0 and 𝑌 \0
1 , · · · , 𝑌

\0
𝑛 is an

i.i.d. simulated sample from 𝑃\0 . 𝐹\0
𝑁

and 𝐹\0
𝑛 are respectively the empirical distribution functions

of the two random samples. If 𝑛 = 𝜔(𝑁) as 𝑁 →∞, then

lim inf
𝑛,𝑁→∞

P

(
sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0

𝑁
(𝑥) | ≤ 𝑞1−𝛼√

𝑁

)
≥ 1 − 𝛼.
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From the view of hypothesis testing, Theorem 6.1 analyzes the probability of Type I error in

validating the simulation model outputs. Here, Type I error refers to the eligibility set Ê𝑚 excluding

the true parameter \0 given that \0 is chosen as a representative. The theorem states that the Type I

error probability is asymptotically bounded by 𝛼 as long as the simulation size 𝑛 is of larger order

than the real data size 𝑁 . In this sense, we may regard the discretized eligibility set Ê𝑚 computed

with Algorithm 6.1 as an approximate confidence region for \0.

On the other hand, we also analyze Type II error, i.e., some representative that does not have

the same output distribution as the truth is accepted. Theorem 6.2 provides an upper bound for the

probability that 𝐹\ ≠ 𝐹\0 yet \ is eligible.

Theorem 6.2. Suppose that 𝑋1, · · · , 𝑋𝑁 is an i.i.d. true sample from 𝑃\0 and 𝑌 \1 , · · · , 𝑌
\
𝑛 is an

i.i.d. simulated sample from 𝑃\ . 𝐹\0
𝑁

and 𝐹\𝑛 are respectively the empirical distribution functions

of the two random samples. 𝐹\0 and 𝐹\ denote the cumulative distribution functions of 𝑃\0 and 𝑃\ .

Suppose that sup𝑥∈R |𝐹\ (𝑥) − 𝐹\0 (𝑥) | > 0. For any Y1, Y2 > 0 such that Y1 + Y2 < sup𝑥∈R |𝐹\ (𝑥) −

𝐹\0 (𝑥) |, if

𝑁 >

(
𝑞1−𝛼

sup𝑥∈R |𝐹\ (𝑥) − 𝐹\0 (𝑥) | − Y1 − Y2

)2
,

then

P

(
sup
𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹

\0
𝑁
(𝑥) | ≤ 𝑞1−𝛼/

√
𝑁

)
≤ 2

(
𝑒−2𝑛Y2

1 + 𝑒−2𝑁Y2
2

)
.

Theorem 6.2 states that if a representative \ gives a different output distribution from \0, then

for sufficiently large 𝑁 , we have a finite-sample upper bound for the probability that \ is still

included in Ê𝑚. Note that the smaller is sup𝑥∈R |𝐹\ (𝑥) − 𝐹\0 (𝑥) |, i.e. the closer is the simulation

output distribution to the truth, the larger are the required simulation size 𝑛 and real data size 𝑁

in order to guarantee that \ is distinguished from \0 with high probability, which coincides with

intuition. With Theorem 6.2, we may easily develop a Type II error guarantee for Algorithm 6.1,

as shown in Theorem 6.3.
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Theorem 6.3. We follow Algorithm 6.1 to obtain Ê𝑚. For any Y, Y1, Y2 > 0 such that Y1 + Y2 < Y,

if

𝑁 >

(
𝑞1−𝛼

Y − Y1 − Y2

)2
,

then

P

(
∃𝑖 = 1, · · · , 𝑚 s.t. sup

𝑥∈R
|𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | > Y, \𝑖 ∈ Ê𝑚

)
≤ 2𝑚

(
𝑒−2𝑛Y2

1 + 𝑒−2𝑁Y2
2

)
.

Here, Type II error probability is characterized by the probability that there exists some repre-

sentative \𝑖 such that sup𝑥∈R |𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | > Y (i.e. the output distribution given by \𝑖 is not

too close to the truth) yet it is accepted in the eligibility set Ê𝑚. Theorem 6.3 gives a finite-sample

upper bound for this probability. With chosen Y, Y1, Y2 and sufficiently large real data size 𝑁 , we

could suitably choose the simulation size 𝑛 and the number of representatives 𝑚 such that with

high probability, the eligibility set Ê𝑚 only includes representatives that are close enough to the

truth in terms of output distribution. In this way, Theorem 6.3 provides guidance on how to choose

𝑛 and 𝑚 according to the real data size 𝑁 . For example, we have the following corollaries.

Corollary 6.1. We follow Algorithm 6.1 to obtain Ê𝑚. If log𝑚 = 𝑜(𝑁) and 𝑛 = Ω(𝑁) as 𝑁 →∞,

then for any Y > 0,

lim
𝑚,𝑛,𝑁→∞

P

(
∃𝑖 = 1, · · · , 𝑚 s.t. sup

𝑥∈R
|𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | > Y, \𝑖 ∈ Ê𝑚

)
= 0.

Corollary 6.2. We follow Algorithm 6.1 to obtain Ê𝑚. If 𝑚 = 𝑜(𝑁) and 𝑛 = Ω(𝑁) as 𝑁 → ∞,

then

lim
𝑚,𝑛,𝑁→∞

P

(
∃𝑖 = 1, · · · , 𝑚 s.t. sup

𝑥∈R
|𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | >

√︂
log𝑚
𝑚

, \𝑖 ∈ Ê𝑚

)
= 0.
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Corollary 6.1 shows that if log(𝑚) = 𝑜(𝑁) and 𝑛 = Ω(𝑁) as 𝑁 → ∞, then for any Y > 0,

asymptotically almost surely any eligible representative \𝑖 in Ê𝑚 satisfies that sup𝑥∈R |𝐹\𝑖 (𝑥) −

𝐹\0 (𝑥) | ≤ Y. If further we have 𝑚 = 𝑜(𝑁), then Corollary 6.2 suggests that asymptotically almost

surely any \𝑖 in Ê𝑚 satisfies sup𝑥∈R |𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | ≤
√︁

log𝑚/𝑚, where
√︁

log𝑚/𝑚 shrinks in

𝑚. Intuitively, as long as the simulation size is sufficient and the number of representatives is

moderate, we could confidently conclude that any eligible representative is hardly distinct from

the truth.

Finally, we introduce a two-sample variant of the eligibility set. We say \ is eligible if

sup
𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹

\0
𝑁
(𝑥) | ≤

√︂
𝑛 + 𝑁
𝑛𝑁

√︂
−1

2
log(𝛼/2).

Here, we are considering the two-sample KS statistic
√︃

𝑛𝑁
𝑛+𝑁 sup𝑥∈R |𝐹\𝑛 (𝑥) − 𝐹

\0
𝑁
(𝑥) | and approxi-

mating 𝑞1−𝛼 with
√︃
−1

2 log(𝛼/2). We summarize the two-sample version calibration framework in

Algorithm 6.2.

Algorithm 6.2: Constructing eligibility set of \ (two-sample variant).
Input: The real output data 𝑋1, · · · , 𝑋𝑁 . The number of candidate \’s 𝑚. The simulation

replication size 𝑛. The confidence level 1 − 𝛼.
Output: An approximate eligibility set Ê𝑣𝑚.

1 Generate \1, · · · , \𝑚 ∈ Θ;
2 For 𝑖 = 1, · · · , 𝑚 do
3 Generate an i.i.d. random sample of simulated data 𝑌 \𝑖1 , · · · , 𝑌

\𝑖
𝑛 ∼ 𝑃\𝑖 ;

4 Compute 𝑐𝑖 = sup𝑥∈R
���1
𝑛

∑𝑛
𝑗=1 𝐼

(
𝑌
\𝑖
𝑗
≤ 𝑥

)
− 1

𝑁

∑𝑁
𝑙=1 𝐼 (𝑋𝑙 ≤ 𝑥)

���;
5 End

6 Return The eligibility set Ê𝑣𝑚 =

{
\𝑖 : 𝑐𝑖 ≤

√︃
𝑛+𝑁
𝑛𝑁

√︃
−1

2 log(𝛼/2)
}
.

Similarly, we first provide a theoretical guarantee for Type I error probability.

Theorem 6.4. Suppose that 𝑋1, · · · , 𝑋𝑁 is an i.i.d. true sample from 𝑃\0 and 𝑌 \0
1 , · · · , 𝑌

\0
𝑛 is an

i.i.d. simulated sample from 𝑃\0 . 𝐹\0
𝑁

and 𝐹\0
𝑛 are respectively the empirical distribution functions
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of the two random samples. If 𝑛 = 𝑁 ≥ 4, then

P

(
sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0

𝑁
(𝑥) | ≤

√︂
𝑛 + 𝑁
𝑛𝑁

√︂
−1

2
log(𝛼

2
)
)
≥ 1 − 1.085𝛼.

If 𝑛 = 𝑁 ≥ 458, then

P

(
sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0

𝑁
(𝑥) | ≤

√︂
𝑛 + 𝑁
𝑛𝑁

√︂
−1

2
log(𝛼

2
)
)
≥ 1 − 𝛼.

In contrast to Theorem 6.1, Theorem 6.4 provides finite-sample bounds for the Type I error

probability instead of asymptotic guarantees. Moreover, while Theorem 6.1 requires that 𝑛 grows

in a higher order than 𝑁 , here we let 𝑛 = 𝑁 . From the theorem, as long as 𝑛 = 𝑁 ≥ 4, Type I error

probability is close to achieving the nominal level 𝛼, and as long as 𝑛 = 𝑁 ≥ 458, Type I error

probability is fully controlled by 𝛼.

Regarding Type II error probability, we also have the following theorems.

Theorem 6.5. Suppose that 𝑋1, · · · , 𝑋𝑁 is an i.i.d. true sample from 𝑃\0 and 𝑌 \1 , · · · , 𝑌
\
𝑛 is an

i.i.d. simulated sample from 𝑃\ . 𝐹\0
𝑁

and 𝐹\𝑛 are respectively the empirical distribution functions

of the two random samples. 𝐹\0 and 𝐹\ denote the cumulative distribution functions of 𝑃\0 and 𝑃\ .

Suppose that sup𝑥∈R |𝐹\ (𝑥) − 𝐹\0 (𝑥) | > 0. For any Y1, Y2 > 0 such that Y1 + Y2 < sup𝑥∈R |𝐹\ (𝑥) −

𝐹\0 (𝑥) |, if
𝑛𝑁

𝑛 + 𝑁 >
−1

2 log(𝛼/2)
(sup𝑥∈R |𝐹\ (𝑥) − 𝐹\0 (𝑥) | − Y1 − Y2)2

,

then

P

(
sup
𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹

\0
𝑁
(𝑥) | ≤

√︂
𝑛 + 𝑁
𝑛𝑁

√︂
−1

2
log(𝛼/2)

)
≤ 2

(
𝑒−2𝑛Y2

1 + 𝑒−2𝑁Y2
2

)
.

Theorem 6.6. We follow Algorithm 6.2 to obtain Ê𝑣𝑚. For any Y, Y1, Y2 > 0 such that Y1 + Y2 < Y,
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if
𝑛𝑁

𝑛 + 𝑁 >
−1

2 log(𝛼/2)
(Y − Y1 − Y2)2

,

then

P

(
∃𝑖 = 1, · · · , 𝑚 s.t. sup

𝑥∈R
|𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | > Y, \𝑖 ∈ Ê𝑣𝑚

)
≤ 2𝑚

(
𝑒−2𝑛Y2

1 + 𝑒−2𝑁Y2
2

)
.

The implications of Theorems 6.5 and 6.6 are similar to Theorems 6.2 and 6.3, except that now

𝑛 and 𝑁 need to together satisfy some conditions in order that the finite-sample bounds stated in

the theorems are valid. We could also derive corollaries on how to choose 𝑚 and 𝑛 according to 𝑁

to control Type II error probability. Indeed, Corollaries 6.1 and 6.2 still hold if we replace Ê𝑚 with

Ê𝑣𝑚. That is, we have the following corollaries:

Corollary 6.3. We follow Algorithm 6.2 to obtain Ê𝑣𝑚. If log𝑚 = 𝑜(𝑁) and 𝑛 = Ω(𝑁) as 𝑁 →∞,

then for any Y > 0,

lim
𝑚,𝑛,𝑁→∞

P

(
∃𝑖 = 1, · · · , 𝑚 s.t. sup

𝑥∈R
|𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | > Y, \𝑖 ∈ Ê𝑣𝑚

)
= 0.

Corollary 6.4. We follow Algorithm 6.2 to obtain Ê𝑣𝑚. If 𝑚 = 𝑜(𝑁) and 𝑛 = Ω(𝑁) as 𝑁 → ∞,

then

lim
𝑚,𝑛,𝑁→∞

P

(
∃𝑖 = 1, · · · , 𝑚 s.t. sup

𝑥∈R
|𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | >

√︂
log𝑚
𝑚

, \𝑖 ∈ Ê𝑣𝑚

)
= 0.

Generally, we would recommend using the two-sample variant compared to one-sample since

the former does not require that the simulation size 𝑛 grows faster than the real size 𝑁 . Instead,

𝑛 could be equal to 𝑁 , which reduces the computational load. However, when we already have a
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large number of simulation runs (𝑛 ≫ 𝑁) (e.g., used to train the “features" for high-dimensional

outputs discussed in Section 6.4), we are contented with the one-sample version.

6.3 Elementary Numerics

In this section, we apply our calibration framework to calibrate simple queueing models. We

will show how our methodology recovers the parameters which are nearly non-identifiable from

the truth.

6.3.1 An M/M/1 Example

First, we apply our methodology on a simple M/M/1 queueing model example. The interarrival

time distribution is 𝐸𝑥𝑝(_) and the service time distribution is 𝐸𝑥𝑝(`). Moreover, we follow the

first-come first-served (FCFS) discipline. Our goal is to calibrate (_, `) from the average sojourn

time of the first 100 customers. The parameter space is set as (0, 2)2 and the true value is (0.5, 1).

First of all, to show that our framework could recover the true parameter when the problem

is identifiable, we suppose that the true value of _ is known and we only calibrate `. We use the

two-sample version of Algorithm 6.1 to obtain the eligibility set with 𝑚 = 500, 𝑛 = 𝑁 = 100 and

𝛼 = 0.05. Figure 6.1 shows the approximated KS distance against the value of `. The red line

represents the threshold [, and thus the points below the red line form the eligibility set. From the

figure, we see that the eligibility set centers around the true value 1.

Figure 6.1: Numerical result for calibrating ` in the M/M/1 example: KS distance against `.
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Now we calibrate (_, `) simultaneously with 𝑚 = 1000, 𝑛 = 𝑁 = 100 and 𝛼 = 0.05. Fig-

ure 6.2a shows how the KS distance changes with _ and `. Figure 6.2b visualizes the resulting

eligibility set.

(a) KS distance against _ and `. (b) Eligibility set.

Figure 6.2: Numerical results for calibrating (_, `) in the M/M/1 example.

Judging from Figure 6.2, we observe that this problem is close to non-identifiable. In fact,

it is well known that when _/` < 1, the steady-state sojourn time distribution is 𝐸𝑥𝑝(` − _).

Our simulation output is the average sojourn time of the first 100 customers, which serves as an

approximation to the steady-state. Thus, intuitively, the distance between the simulated data and

the true data mainly depends on the distance between `−_ and the truth. In Figure 6.2b, the dashed

line represents ` − _ = 0.5. The points in the eligibility set indeed lie around this line.

In such a case where the problem is close to non-identifiable while the data size and the sim-

ulation size is not sufficiently large, if we carry out a stochastic gradient descent (SGD) or other

optimization approaches attempting to minimize the distance between the true data and the simu-

lated data, then it is possible that we will arrive at a misleading point which is actually far from

the true value. However, with the concept of eligibility set, we could construct a region that covers

the true parameter with high confidence. This demonstrates the key motivation of our approach in

addressing non-identiafiability by relaxing point to set-level estimation.
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6.3.2 A G/G/1 Example

Now we generalize the problem setting to a G/G/1 queue with interarrival time distribution

𝐺𝑎𝑚𝑚𝑎(𝑘, \) (𝑘 is the shape parameter and \ is the scale parameter) and service time distribution

𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (`, 𝜎2). Suppose that the output of the simulation model is the sojourn time of the first

𝐾 = 10 customers. We aim to calibrate the parameter (𝑘, \, `, 𝜎) from the output data. The true

value is set as (1, 1,−2, 2) and the parameter space is chosen as (0, 5) × (0, 5) × (−5, 5) × (0, 5).

We construct eligibility sets with 𝛼 = 0.05, 𝑚 = 100, 000 and 𝑛 = 𝑁 = 100, 500, 1000. Figure

6.3 shows the evolution of the eligibility set as the data size and the simulation size grow. The

diagonal graphs present the histograms of the points in the eligibility set in each dimension while

the off-diagonal ones visualize the eligibility set via pairwise scatter plots.

From the figure, we find that as the data size and the simulation size grow, the eligibility set

gradually becomes more concentrated around the true value. Moreover, we observe that though `

and 𝜎 could be tuned relatively accurately, (𝑘, \) is close to non-identifiable. Even when 𝑛 = 𝑁 =

1000, the relationship between the first two dimensions of points in the eligibility set still looks

like a reciprocal curve. Intuitively, the mean value of 𝐺𝑎𝑚𝑚𝑎(𝑘, \) is 𝑘\, and thus as long as 𝑘\

is close to the true value 1, it is hard to well distinguish whether (𝑘, \) is also close to the truth

only judging from the customers’ sojourn time.

Now we fix ` = −2 and 𝜎 = 2 and focus on calibrating (𝑘, \). We randomly sample 𝑚 = 1000

points in the parameter space (0, 5)2 and for each point, we test whether it is in the eligibility set

with 𝑛 = 𝑁 = 1000, 2000, 5000, 10000. Figure 6.4 shows how the eligibility set shrinks as 𝑛 and

𝑁 grow. Though the problem is not structurally non-identifiable, it indeed requires a large number

of samples in order to accurately locate the truth.

6.4 Feature-Based Construction of Eligibility Sets

We present our recipe to calibrate simulation models beyond the simple cases considered in

Sections 6.2.2 and 6.3. This requires suitable construction of the distance measure 𝑑. We propose a
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Figure 6.3: Evolution of the eligibility set as the data size and the simulation size increase.

two-stage procedure for this construction, first a feature extraction stage that reduces the dimension

of the outputs to a manageable number, and second a feature aggregation stage to put together the

extracted features into a statistical distance 𝑑 that satisfy the three attractive properties discussed

in Section 6.2.2. The latter requires analyzing the statistical properties of the aggregation schemes

as we will illustrate. For the first stage, we extract features using the penultimate layer of a neural

network, trained using three approaches: auto-encoder, generative adversarial network (GAN)

and its variant Wasserstein GAN (WGAN). For the second stage, we aggregate features using

three methods: supremum of Kolmogorov–Smirnov statistics (SKS), supremum of sample mean

differences (SSMD), and ellipsoidal sample mean differences (ESMD). These aggregated statistics
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(a) 𝑛 = 𝑁 = 1000. (b) 𝑛 = 𝑁 = 2000.

(c) 𝑛 = 𝑁 = 5000. (d) 𝑛 = 𝑁 = 10000.

Figure 6.4: Numerical results for the G/G/1 example.

give rise to a statistical distance, which we compare against computable critical values (at a given

confidence level) to decide the eligibility of a parameter value. Figure 6.5 gives an overview of our

feature-based eligibility decision framework.

6.4.1 Feature Extraction

Our feature-based calibration starts by extracting features from the output 𝑍 , which from now

on are assumed to be potentially high-dimensional. These features are defined via a summary

function 𝑓 acted on the original input space. That is, we find a proper summary function 𝑓 such

that 𝑓 (𝑍) ∈ R𝐾 , in which case we extract 𝐾 features from the output.

In general, there are many possible methods to extract features and the choice of method does

not affect the correctness. More specifically, with summary function 𝑓 , the eligibility set is {\ ∈
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Figure 6.5: Feature-based calibration framework diagram.

Θ : 𝑑 (𝑃\ ◦ 𝑓 −1, 𝑃\0
𝑁
◦ 𝑓 −1) ≤ [} (or approximately {\ ∈ Θ : 𝑑 (𝑃\𝑛 ◦ 𝑓 −1, 𝑃\0

𝑁
◦ 𝑓 −1) ≤ [}). As

long as the threshold [ is calibrated properly according to the distance measure 𝑑, the eligibility

set is guaranteed to cover the true parameter \0 with high probability. However, even though such

a correctness guarantee can be readily ensured by properly choosing [, the choice of 𝑓 affects

the conservativeness in terms of the size of the eligibility set. Consider the case that 𝑍1 ∼ 𝑃\1 ,

𝑍2 ∼ 𝑃\2 and 𝑃\1 ≠ 𝑃\2 . If we choose the summary function 𝑓 such that 𝑓 (𝑍1) and 𝑓 (𝑍2)

have the same distribution, then we cannot distinguish between \1 and \2 only with the extracted

features, though they should have been distinguishable. Therefore, a good method should have the

power to distinguish different parameters.

Here we leverage several machine learning methods to extract features, including auto-encoder

[240], GAN [241], and WGAN [242]. The details can be found in Section 6.7, and here we provide

some key explanation and how we use these methods. Auto-encoder is a bottleneck-like structure,

where the information is compressed by the first half of the network and then reconstructed by the

second half. By minimizing the mean squared error between the original and reconstructed inputs,

the network is trained to learn the latent representation in the middle layer. GAN contains two

competing neural networks, where one of them is a generative model, which learns how to gen-

erate samples similar to the input distribution, and the other one is a discriminative model, which

learns how to differentiate the generated samples from the input ones. The training procedure of
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GAN can be framed as a minimax two-layer game, where the discriminator is trained to minimize

the probability of incorrectly classifying the input data and the simulated data, and the generator

is trained to maximize the probability of the discriminator to make a classification mistake. [241]

shows that when the discriminator is trained to be optimal for any given generator, then the train-

ing of GAN can be viewed as minimizing the Jensen–Shannon (JS) divergence. However, [243]

mentions that the instability of GAN’s training is caused by vanishing gradient when JS diver-

gence is applied to distributions supported by low dimensional manifolds. As an improvement,

[242] proposes WGAN, where it shares similar network architecture with GAN but the objective

is about minimizing the Wasserstein-1 distance instead. Though GAN or WGAN were originally

proposed to generate data with the same distribution as the true data, its generator or discriminator

could serve as a feature extractor. Specifically, the discriminator-based feature extractor has been

successfully applied in various fields [244, 245].

In our work, we consider five feature extraction techniques, including auto-encoder, GAN dis-

criminator output, GAN hidden layer, WGAN critic output and WGAN hidden layer. With a

pre-trained auto-encoder, one can apply its encoder part to extract hidden feature from the input

data. For GAN discriminator output, a usual way is to directly use the trained discriminator for

extraction, which can summarize the output with a single number. GAN hidden layer serves an

alternative way to leverage the discriminator, that is, using the output from the last hidden layer

instead of the final output. Similarly, since WGAN shares a similar network architecture, one can

also use the direct output from the trained critic part (like the discriminator in GAN), or apply

a similar trick to obtain output from the last hidden layer. Intuitively, using GAN discriminator

output or WGAN critic output to summarize a high dimensional data into a single number might

result in much loss of information and thus bring conservativeness. However, using the output of

the last hidden layer not only helps in dimensionality reduction without losing too much informa-

tion but also introduces less conservativeness. We will make a comparison and discuss more in our

experimental results in Section 6.5.
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6.4.2 Feature Aggregation

From now on, we suppose that we have found a way to extract 𝐾 features from the output.

To facilitate presentation, we abuse the notation 𝑋𝑖 in this subsection to refer to the extracted

features, i.e., the summary function 𝑓 applied to the raw real or simulated samples. Suppose

that we have the true sample features 𝑋1, . . . , 𝑋𝑁 ∈ R𝐾 with parameter \0 and simulated sample

features 𝑌 \1 , . . . , 𝑌
\
𝑛 ∈ R𝐾 with parameter \. We need a way to aggregate the features to judge

whether \ = \0.

We will introduce three methods and analyze their correctness and conservativeness. The first

method, SKS, is a generalization of our approach in Section 6.2.2 to multiple output dimensions by

using the Bonferroni correction. We will provide theoretical guarantees for its errors. The second

method is SSMD that applies the Bonferroni correction to sample mean differences, and the third

method ESMD uses the sum of squares of sample mean differences. For the last two methods,

we calibrate the thresholds or critical values with normal approximations borrowed from standard

statistics inference tools. However, it is challenging to analyze the Type II error probabilities for

them, so we will investigate them via examples and draw insights therein.

Intuitively, using more features usually implies more information, and it is easier to distin-

guish different parameters. However, with more features the threshold is also higher, which in turn

makes it more difficult to detect wrong parameters. Generally, for each method, there is no certain

conclusion regarding whether using more or less features would be better in terms of conservative-

ness. Overall, we would recommend using SKS with all the features since theoretically it does not

introduce much conservativeness, whereas SSMD and ESMD do not, at least currently, have the

same level of theoretical guarantees. Moreover, SSMD and ESMD only compare the mean and

the covariance matrix while SKS compares the whole distribution, and hence accounts for more

information.
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Supremum of Kolmogorov-Smirnov Statistics (SKS).

This is a generalization of the calibration approach in Section 6.2.2 from 𝐾 = 1 to 𝐾 > 1,

by using the Bonferroni correction. We focus on the one-sample version, as the results for the

two-sample version could be adapted similarly. In this case, we say \ is eligible (i.e., inside the

eligibility set) if

sup
𝑥∈R
|𝐹\𝑛,𝑘 (𝑥) − 𝐹

\0
𝑁,𝑘
(𝑥) | ≤

𝑞1−𝛼/𝐾√
𝑁

,∀𝑘 = 1, . . . , 𝐾

where 𝐹\0
𝑁,𝑘

and 𝐹\
𝑛,𝑘

are the empirical distribution functions for 𝑋1,𝑘 , . . . , 𝑋𝑁,𝑘 and 𝑌 \1,𝑘 , . . . , 𝑌
\
𝑛,𝑘

.

We note that this method compares the marginal distributions over each dimension, but not the joint

distribution. Having the same marginal distributions does not ensure the same joint distribution,

thus injecting conservativeness to our method. Alternatively, directly comparing the joint distribu-

tions can be less conservative (e.g., using the multivariate Dvoretzky–Kiefer–Wolfowitz inequality

[246]), but such a comparison statistic is computationally challenging for high-dimensional distri-

butions.

To justify the correctness of our methods, we analyze the probability of Type I error, i.e., \0

is eligible according to our criterion. Special focus will be on how the required simulation size

depends on the number of features 𝐾 , that is, whether the requirement is substantial when facing

high-dimensionality. In the one-dimensional case, we have stated Theorem 6.1. Now suppose that

we jointly consider 𝐾 features and we use the Bonferroni correction. Then we have the following

theorem.

Theorem 6.7. Suppose that 𝑋1, · · · , 𝑋𝑁 ∈ R𝐾 is an i.i.d. true sample from 𝑃\0 and 𝑌 \0
1 , · · · , 𝑌

\0
𝑛 ∈

R𝐾 is an i.i.d. simulated sample from 𝑃\0 . 𝐹\0
𝑁,𝑘

and 𝐹\0
𝑛,𝑘

are respectively the empirical distribution

functions of the 𝑘-th component of the two random samples. If 𝑛 = 𝜔(𝑁) as 𝑁 →∞, then

lim inf
𝑛,𝑁→∞

P

(
sup
𝑥∈R
|𝐹\0
𝑛,𝑘
(𝑥) − 𝐹\0

𝑁,𝑘
(𝑥) | ≤

𝑞1−𝛼/𝐾√
𝑁

,∀1 ≤ 𝑘 ≤ 𝐾
)
≥ 1 − 𝛼.
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Similar to Theorem 6.1, Theorem 6.7 justifies that the eligibility set is an asymptotically valid

confidence region for any fixed 𝐾 as long as 𝑛 is of higher order than 𝑁 . Next, to see how 𝑛 should

scale with a growing 𝐾 , we state Theorem 6.8, which shows that the asymptotic guarantee still

holds as long as 𝑛/𝑁 grows in a higher order than log2 𝐾 , which is a relatively slow rate.

Theorem 6.8. Suppose that 𝑋1, · · · , 𝑋𝑁 ∈ R𝐾 is an i.i.d. true sample from 𝑃\0 and 𝑌 \0
1 , · · · , 𝑌

\0
𝑛 ∈

R𝑘 is an i.i.d. simulated sample from 𝑃\0 . 𝐹\0
𝑁,𝑘

and 𝐹\0
𝑛,𝑘

are respectively the empirical distribution

functions of the 𝑘-th component of the two random samples. If 𝑛/𝑁 = 𝜔(log2 𝐾) as 𝐾 →∞, then

lim inf
𝐾→∞

P

(
sup
𝑥∈R
|𝐹\0
𝑛,𝑘
(𝑥) − 𝐹\0

𝑁,𝑘
(𝑥) | ≤

𝑞1−𝛼/𝐾√
𝑁

,∀1 ≤ 𝑘 ≤ 𝐾
)
≥ 1 − 𝛼.

The above theorems provide us some guidance on how to choose the simulation size 𝑛 accord-

ing to the data size 𝑁 and number of features 𝐾 in order to ensure the correctness. Note that in the

high-dimensional case, by replacing 𝑞1−𝛼 with 𝑞1−𝛼/𝐾 , we are increasing the threshold. However,

this increase is not that substantial. Indeed, from [247], we know that P(sup0≤𝑡≤1 |𝐵𝐵(𝑡) | ≤ 𝑧) =

1 − 2
∑∞
𝑣=1(−1)𝑣−1𝑒−2𝑣2𝑧2

for 𝑧 > 0, and thus 𝛼 = 2
∑∞
𝑣=1(−1)𝑣−1𝑒−2𝑣2𝑞2

1−𝛼 ≤ 2𝑒−2𝑞2
1−𝛼 . Hence we

get that 𝑞2
1−𝛼 ≤ − log(𝛼/2)/2. Therefore, 𝑞2

1−𝛼/𝐾 = 𝑂 (log𝐾) as 𝐾 → ∞. That is to say, when

we simultaneously consider a large number of features, using Bonferroni correction will not bring

much conservativeness.

Parallel to the one-dimensional case, we are also interested in whether our methods can effi-

ciently detect the wrong parameters. Thus, we analyze the probability of Type II error, which is

characterized by the scenario that \ ≠ \0 is eligible. Intuitively, the difficulty still depends on the

discrepancy between the distribution functions. If \ ≠ \0 but they result in the same output dis-

tribution, then we cannot identify which is the true parameter only by comparing the output data.

The following theorem, which generalizes Theorem 6.2, shows how the conservativeness depends

on this discrepancy as well as 𝑛, 𝑁, 𝐾 .

Theorem 6.9. Suppose that 𝑋1, · · · , 𝑋𝑁 ∈ R𝐾 is an i.i.d. true sample from 𝑃\0 and 𝑌 \1 , · · · , 𝑌
\
𝑛 ∈
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R𝐾 is an i.i.d. simulated sample from 𝑃\ . 𝐹\0
𝑁,𝑘

and 𝐹\
𝑛,𝑘

are respectively the empirical distribution

functions of the 𝑘-th component of the two random samples. 𝐹\0
𝑘

and 𝐹\
𝑘

denote the cumulative dis-

tribution functions of the 𝑘-th component under 𝑃\0 and 𝑃\ . Suppose that max1≤𝑘≤𝐾 sup𝑥∈R |𝐹\𝑘 (𝑥)−

𝐹
\0
𝑘
(𝑥) | > 0. For any Y1, Y2 > 0 such that Y1 + Y2 < max1≤𝑘≤𝐾 sup𝑥∈R |𝐹\𝑘 (𝑥) − 𝐹

\0
𝑘
(𝑥) |, if

𝑁 >

(
𝑞1−𝛼/𝐾

max1≤𝑘≤𝐾 sup𝑥∈R |𝐹\𝑘 (𝑥) − 𝐹
\0
𝑘
(𝑥) | − Y1 − Y2

)2

,

then

P

(
sup
𝑥∈R
|𝐹\𝑛,𝑘 (𝑥) − 𝐹

\0
𝑁,𝑘
(𝑥) | ≤

𝑞1−𝛼/𝐾√
𝑁

,∀1 ≤ 𝑘 ≤ 𝐾
)
≤ 2

(
𝑒−2𝑛Y2

1 + 𝑒−2𝑁Y2
2

)
.

Comparing with Theorem 6.2, we note that 𝑞1−𝛼/𝐾 grows only logarithmically in 𝐾 as 𝐾 →∞,

so the minimum required 𝑁 does not increase much. Overall, using the Bonferroni correction does

not bring much conservativeness compared to only using one feature, and thus appears superior

as it accounts for more information. In fact, numerical experiments in Section 6.5 shows that the

Bonferroni correction generally works well.

Supremum of Sample Mean Differences (SSMD).

Another natural idea to aggregate features is to directly compare their sample means. We

denote �̄�𝑘 = 1
𝑁

∑𝑁
𝑗=1 𝑋 𝑗 ,𝑘 and 𝑌𝑘 = 1

𝑛

∑𝑛
𝑖=1𝑌

\
𝑖,𝑘

. Assume that 𝑣𝑎𝑟 (𝑋1,𝑘 ), 𝑣𝑎𝑟 (𝑌 \1,𝑘 ) < ∞ for any 𝑘 .

We say \ is eligible if

| �̄�𝑘 − 𝑌𝑘 | ≤ [𝑘 , ∀𝑘 = 1, . . . , 𝐾

where

[𝑘 = 𝑧1−𝛼/(2𝐾)

√︄(
1
𝑁
+ 1
𝑛

)
𝑣𝑎𝑟 (𝑋1,𝑘 )

with 𝑧1−𝛼/(2𝐾) being the (1 − 𝛼/(2𝐾))-quantile of standard normal distribution. In practice,

𝑣𝑎𝑟 (𝑋1,𝑘 ) could be estimated using the sample variance.

Indeed, by the central limit theorem (CLT), we know that for sufficiently large 𝑁 and 𝑛, �̄�𝑘 −𝑌𝑘
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is approximately distributed as 𝑁
(
𝐸 (𝑋1,𝑘 ) − 𝐸 (𝑌1,𝑘 ), 𝑣𝑎𝑟 (𝑋1,𝑘)

𝑁
+ 𝑣𝑎𝑟 (𝑌 \1,𝑘)

𝑛

)
. If \ = \0, then the

approximate distribution is 𝑁
(
0,

(
1
𝑁
+ 1
𝑛

)
𝑣𝑎𝑟 (𝑋1,𝑘 )

)
. We combine this normal approximation

with the Bonferroni correction. Note that the idea is similar to the two-sample hypothesis testing,

and thus when 𝑛 and 𝑁 are large, the approximate correctness is implied. More concretely, we

have the following theorem:

Theorem 6.10. Suppose that 𝑋1, · · · , 𝑋𝑁 ∈ R𝐾 is an i.i.d. true sample from 𝑃\0 and𝑌 \0
1 , · · · , 𝑌

\0
𝑛 ∈

R𝐾 is an i.i.d. simulated sample from 𝑃\0 . For any 𝑘 = 1, . . . , 𝐾 , we denote �̄�𝑘 = 1
𝑁

∑𝑁
𝑗=1 𝑋 𝑗 ,𝑘 , 𝑌𝑘 =

1
𝑛

∑𝑛
𝑖=1𝑌

\0
𝑖,𝑘

and assume that 𝑣𝑎𝑟 (𝑋1,𝑘 ) = 𝑣𝑎𝑟 (𝑌 \0
1,𝑘 ) < ∞. Use 𝑣𝑎𝑟 𝑘 to denote the sample variance

of 𝑋 𝑗 ,𝑘 ’s. If 𝑛/(𝑛 + 𝑁) → 𝜌 where 0 ≤ 𝜌 ≤ 1 as 𝑛, 𝑁 →∞, then

lim inf
𝑛,𝑁→∞

P
©«| �̄�𝑘 − 𝑌𝑘 | ≤ 𝑧1−𝛼/(2𝐾)

√︄(
1
𝑁
+ 1
𝑛

)
𝑣𝑎𝑟 𝑘 , ∀𝑘 = 1, . . . , 𝐾ª®¬ ≥ 1 − 𝛼.

Like Theorem 6.7 for SKS, Theorem 6.10 controls the Type I error of SSMD. Regarding Type

II error that drives the level of conservativeness, SSMD appears challenging to fully analyze.

Nonetheless, we will look at special cases to draw insights. First, we give an example to show

that using Bonferroni correction can be conservative in terms of relative difference in the Type II

error probability. That is, the ratio of the Type II error probability of using all the 𝐾 features to the

error of using only one feature could be pretty large. Suppose that 𝑋1, · · · , 𝑋𝑁 ∈ R𝐾 is an i.i.d.

random sample from 𝑁 (\0, 𝐼𝐾) (where 𝐼𝐾 denotes the 𝐾 ×𝐾 identity matrix) and 𝑌 \1 , · · · , 𝑌
\
𝑛 ∈ R𝐾

is an i.i.d. random sample from 𝑁 (\, 𝐼𝐾). Given a confidence level 1 − 𝛼, we define [ and [′ by

P

(����𝑁 (
0,

1
𝑁
+ 1
𝑛

)���� ≤ [) = 1 − 𝛼, P
(����𝑁 (

0,
1
𝑁
+ 1
𝑛

)���� ≤ [′) = 1 − 𝛼
𝐾
.

We suppose that Δ1 = \01 − \1 > 0 and \0𝑘 = \𝑘 for 𝑘 = 2, . . . , 𝐾 (\0𝑘 and \𝑘 respectively

denote the 𝑘-th component of \0 and \). If we only use the first feature, that is, we reject \ = \0 if
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| �̄�1 − 𝑌1 | > [, then the Type II error probability is

𝑝1 := P( | �̄�1 − 𝑌1 | ≤ [) = P
(����𝑁 (

Δ1,
1
𝑁
+ 1
𝑛

)���� ≤ [) .
If we use all the 𝐾 features, that is, we reject \ = \0 if ∃𝑘, | �̄�𝑘 − 𝑌𝑘 | > [′, then the Type II error

probability is

𝑝2 := P(∀𝑘, | �̄�𝑘 − 𝑌𝑘 | ≤ [′) =
(
1 − 𝛼

𝐾

)𝐾−1
P

(����𝑁 (
Δ1,

1
𝑁
+ 1
𝑛

)���� ≤ [′) .
The following theorem shows that in this setting, 𝑝2/𝑝1 grows exponentially:

Theorem 6.11. We suppose that 𝑋1, · · · , 𝑋𝑁 ∈ R𝐾 is an i.i.d. true sample from 𝑁 (\0, 𝐼𝐾) and

𝑌 \1 , · · · , 𝑌
\
𝑛 ∈ R𝐾 is an i.i.d. simulated sample from 𝑁 (\, 𝐼𝐾). We suppose that Δ1 = \01 − \1 > 0

and \0𝑘 = \𝑘 for 𝑘 = 2, . . . , 𝐾 . 𝑝1 and 𝑝2 are respectively the Type II error probability of only

using the first feature and using all the 𝐾 features. For fixed 𝐾 > 1, as 𝑁, 𝑛 → ∞, we have that

𝑝2/𝑝1 grows exponentially in 𝑁 and 𝑛.

Next, we show that using all the features with Bonferroni correction is not too conservative in

terms of the absolute difference in the Type II error probability. Here we consider a more general

setting. Suppose that 𝑋1, · · · , 𝑋𝑁 ∈ R𝐾 is an i.i.d. random sample from 𝑁 (\0, Σ) (where Σ is a

positive definite matrix) and 𝑌 \1 , · · · , 𝑌
\
𝑛 ∈ R𝐾 is an i.i.d. random sample from 𝑁 (\, Σ). Given a

confidence level 1 − 𝛼, we define [𝑘 and [′
𝑘

by

P

(����𝑁 (
0,

(
1
𝑁
+ 1
𝑛

)
Σ𝑘𝑘

)���� ≤ [𝑘 ) = 1 − 𝛼, P
(����𝑁 (

0,
(

1
𝑁
+ 1
𝑛

)
Σ𝑘𝑘

)���� ≤ [′𝑘 ) = 1 − 𝛼
𝐾
.

We suppose that \ ≠ \0. We denote Δ𝑘 = \0𝑘 − \𝑘 . If we only use the 𝑘-th feature, that is, we

reject \ = \0 if | �̄�𝑘 − 𝑌𝑘 | > [𝑘 , then the Type II error probability is

𝑝1 := P( | �̄�𝑘 − 𝑌𝑘 | ≤ [𝑘 ) = P
(����𝑁 (

Δ𝑘 ,

(
1
𝑁
+ 1
𝑛

)
Σ𝑘𝑘

)���� ≤ [𝑘 ) .
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If we use all the 𝐾 features, that is, we reject \ = \0 if ∃𝑘, | �̄�𝑘 − 𝑌𝑘 | > [′𝑘 , then the Type II error

probability is

𝑝2 := P(∀𝑘, | �̄�𝑘 − 𝑌𝑘 | ≤ [′𝑘 ).

Theorem 6.12. We suppose that 𝑋1, · · · , 𝑋𝑁 ∈ R𝐾 is an i.i.d. true sample from 𝑁 (\0, Σ) and

𝑌 \1 , · · · , 𝑌
\
𝑛 ∈ R𝐾 is an i.i.d. simulated sample from 𝑁 (\, Σ). 𝑝1 and 𝑝2 are respectively the Type

II error probability of only using the 𝑘-th feature and using all the 𝐾 features. If Δ𝑘 ≠ 0, then for

fixed 𝐾 > 1, as 𝑁, 𝑛 → ∞, both 𝑝1 and 𝑝2 converge to 0 exponentially in 𝑁 and 𝑛. If further we

have 𝑁 = 𝜔(log𝐾) and 𝑛 = 𝜔(log𝐾) as 𝐾 →∞, then 𝑝2 → 0.

Theorem 6.12 shows that in this more general setting, the Type II error probability of either

using only one feature or using all the features decays exponentially in 𝑁 and 𝑛. Moreover, if the

number of features 𝐾 is also growing, the Type II error probability of using all the features still

converges to 0 as long as 𝑁 and 𝑛 grow in a higher order than log𝐾 .

Though the above theorems are developed for the special case of Gaussian distribution, they

convey some information regarding the conservativeness of using more features. Intuitively, in

the general case we may apply CLT and then the sample means are approximately Gaussian for

sufficiently large sample sizes. Our conclusion is that even though in some cases using more

features makes the method more conservative, overall we can still get an acceptable Type II error

probability.

Ellipsoidal Sample Mean Difference (ESMD).

Now we consider further aggregating the sample mean difference of each feature with sum of

squares. We say that \ is eligible if

𝐾∑︁
𝑘=1
( �̄�𝑘 − 𝑌𝑘 )2 ≤ [

where [ is the (1−𝛼)-quantile of the generalized chi-square distribution given by
(

1
𝑁
+ 1
𝑛

)
𝑍𝑇Σ𝑋𝑍

with 𝑍 ∼ 𝑁 (0, 𝐼𝐾) and Σ𝑋 being the covariance matrix of 𝑋1. In practice, Σ𝑋 could be esti-
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mated using the samples and the quantile could be numerically evaluated. Again, the approximate

correctness is implied by CLT. We have the following theorem:

Theorem 6.13. Suppose that 𝑋1, · · · , 𝑋𝑁 ∈ R𝐾 is an i.i.d. true sample from 𝑃\0 and𝑌 \0
1 , · · · , 𝑌

\0
𝑛 ∈

R𝐾 is an i.i.d. simulated sample from 𝑃\0 . For any 𝑘 = 1, . . . , 𝐾 , we denote �̄�𝑘 = 1
𝑁

∑𝑁
𝑗=1 𝑋 𝑗 ,𝑘 , 𝑌𝑘 =

1
𝑛

∑𝑛
𝑖=1𝑌

\0
𝑖,𝑘

. Assume that the covariance matrix of 𝑋1 exists and denote it as Σ𝑋 . Use Σ̂ to denote

the sample covariance matrix of 𝑋 𝑗 ’s. If 𝑛/(𝑛 + 𝑁) → 𝜌 where 0 ≤ 𝜌 ≤ 1 as 𝑛, 𝑁 →∞, then

lim inf
𝑛,𝑁→∞

P

(
𝐾∑︁
𝑘=1
( �̄�𝑘 − 𝑌𝑘 )2 ≤ [

)
≥ 1 − 𝛼

where [ is the (1 − 𝛼)-quantile of the generalized chi-square distribution given by
(

1
𝑁
+ 1
𝑛

)
𝑍𝑇 Σ̂𝑍

with 𝑍 ∼ 𝑁 (0, 𝐼𝐾).

Theorem 6.13 gives a guarantee on Type I error. Regarding Type II error or conservativeness,

we give an example to show that including or excluding more features do not lead to generally

dominant results.

Suppose we have a random sample 𝑋1, . . . , 𝑋𝑁 ∼ 𝑁 (\0, 𝐼𝐾) and a random sample𝑌 \1 , . . . , 𝑌
\
𝑛 ∼

𝑁 (\, 𝐼𝐾) where \0, \ ∈ R𝐾 . If \ = \0, then �̄�𝑘−𝑌𝑘 ∼ 𝑁 (0, 1
𝑁
+ 1
𝑛
) and

∑𝐾
𝑘=1( �̄�𝑘−𝑌𝑘 )2/( 1

𝑁
+ 1
𝑛
) ∼ 𝜒2

𝐾
.

Given a confidence level 1 − 𝛼, we define [ and [′ by

P

(����𝑁 (
0,

1
𝑁
+ 1
𝑛

)���� ≤ [) = 1 − 𝛼, P
(
𝜒2
𝐾 ≤

[′

1
𝑁
+ 1
𝑛

)
= 1 − 𝛼.

Now we suppose that \ ≠ \0. For any 𝑘 = 1, . . . , 𝐾 , we denote Δ𝑘 = \0𝑘 − \𝑘 . If we only use

the 𝑘-th feature, that is, we reject \ = \0 if | �̄�𝑘 − 𝑌𝑘 | > [, then the Type II error probability is

𝑝1 := P( | �̄�𝑘 − 𝑌𝑘 | ≤ [) = P
(����𝑁 (

Δ𝑘 ,
1
𝑁
+ 1
𝑛

)���� ≤ [) .
If we use all the features, that is, we reject \ = \0 if

∑𝐾
𝑘=1( �̄�𝑘 − 𝑌𝑘 )2 > [′, then the Type II error
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probability is

𝑝2 := P

(
𝐾∑︁
𝑘=1
( �̄�𝑘 − 𝑌𝑘 )2 ≤ [′

)
= P

(
𝜒2
𝐾,a ≤

[′

1
𝑁
+ 1
𝑛

)
where

a =

∑𝐾
𝑘=1 Δ

2
𝑘

1
𝑁
+ 1
𝑛

.

Given the value of 𝛼, 𝑘, 𝐾, 𝑛, 𝑁 and Δ𝑘 ’s, we are able to numerically compute 𝑝1 and 𝑝2. Below

are some results from the numerical computation.

First, we set 𝛼 = 0.05, 𝑘 = 1, 𝐾 = 10 and Δ = 0.1 ∗ (1, 1, . . . , 1). We also let 𝑛 = 𝑁 . Then

the change of Type II error probabilities with the sample size is shown in Figure 6.6a. We find that

it is better to use all the features in this case. Next, we set Δ = 0.1 ∗ (1, 0, . . . , 0). The result is

shown in Figure 6.6b. We find that in this case it is better to only use the first feature. The results

are interpretable. In the first case, the marginal distributions in each dimension are different for

the two samples, so using more features help us detect the wrong parameter. In the second case,

however, the distributions are the same except for the first dimension, so including more features in

turn makes it more difficult to distinguish the parameters. Therefore, there is no certain conclusion

that one choice is better than the other.

(a) Δ = 0.1 ∗ (1, 1, . . . , 1) (b) Δ = 0.1 ∗ (1, 0, . . . , 0)

Figure 6.6: Change of Type II error probabilities with the sample size. 𝑝1: Single-feature type II
error probability. 𝑝2: All-feature type II error probability.

We are also interested in how the Type II error probability will change with the dimension 𝐾 .

We fix 𝑛 = 𝑁 = 1000 and the results are shown in Figure 6.7a and 6.7b. From the figures, we
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see that in both cases, the Type I error probability of only using the first feature does not change

with the number of features. In the first case, the Type II error probability of using all the features

decreases as the number of features grows. As explained, each dimension contributes to detecting

the wrong parameter, so it is easier with more features. By comparison, in the second case, the

Type II error probability increases as the number of features grows, as the additional features do

not help us distinguish the parameters but nullify the difference in the first dimension. This result

further supports that neither of the methods dominates the other one.

(a) Δ = 0.1 ∗ (1, 1, . . . , 1) (b) Δ = 0.1 ∗ (1, 0, . . . , 0)

Figure 6.7: Change of Type II error probabilities with the number of features. 𝑝1: Single-feature
type II error probability. 𝑝2: All-feature type II error probability.

6.5 Multi-Agent Simulator Calibration

In this section, we apply our feature-based calibration framework in Section 6.4 to the Agent-

Based Interactive Discrete-Event Simulation (ABIDES) environment [194, 195] which, among

other uses, can be used to simulate limit order book exchange markets such as NASDAQ or New

York Stock Exchange. ABIDES provides a selection of background agent types (such as market

makers, noise agents, value agents, etc.), a NASDAQ-like exchange agent which lists any num-

ber of securities for trade against a limit order book with price-then-FIFO matching rules, and a

simulation kernel which manages the flow of time and handles all inter-agent communication.

We use background agent implementation introduced in [195]. Value agents are designed to

simulate the actions of fundamental traders that trade according to their belief of the exogenous
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value of a stock (also called fundamental price – which in our model follows a mean reverting

price time series). Value traders choose to buy or sell a stock depending on whether it is cheap

or expensive relative to their noisy observation of a fundamental price. The fundamental follows

a discrete-time mean-reverting Ornstein-Uhlenbeck process [248]. Noise agents are designed to

emulate the actions of consumer agents who trade on demand without any other considerations;

they arrive to the market at times that are uniformly distributed throughout the trading day and

place an order of random size in random direction. Market makers act as liquidity providers by

placing limit orders on both sides of the limit order book with a constant arrival rate.

We test our calibration algorithm on ABIDES against a synthetic configuration that is desig-

nated as a ground truth. Our experimental analysis consists of two parts. The first is comparison of

different feature extraction and aggregation techniques in deciding the acceptance/rejection of the

eligibility of configurations. The second part is the study of how the eligible configurations con-

form with the stylized facts, which are the important realism metrics in financial markets. Stylized

fact similarity to the ground truth for the accepted configurations indicates that they are indeed

more “realistic" than the rejected models.

6.5.1 Comparisons of Feature Extraction and Aggregation Techniques

We first test the various approaches in Section 6.4 on a specific example. Then we vary the

number of input parameters and conduct ablation studies on our training methods.

A Basic Example.

We generate limit order book time series that result from simulating the market from 9:30

to 10:00 AM with configurations that consist of an exchange agent, a market maker agent, 𝑛𝑛𝑜𝑖𝑠𝑒

noise agents and 𝑛𝑣𝑎𝑙𝑢𝑒 value agents that each follows a noisy observation of an Orstein-Uhlenbeck

fundamental with the mean reversion rate ^, mean fundamental value 𝑟 and arrival rate _𝑎 (defined

as in [248]). The representative time series is taken as the log returns of the resultant mid-price

sampled at every second, 𝑟𝑡 := log(𝑚𝑡+1/𝑚𝑡), where 𝑚𝑡 is the mid price at second 𝑡 – hence, in our
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experiment, each data point from which to extract relevant features is a time series of length 1799.

We run 𝑁 = 100, 000 simulations for each configuration. The feature extraction network

architectures are shown in Tables 6.3, 6.4 and 6.5 in Section 6.8. The parameters that we aim to

calibrate are 𝑛𝑛𝑜𝑖𝑠𝑒, 𝑛𝑣𝑎𝑙𝑢𝑒, 𝑟 , ^ and _𝑎.

We compare combinations of the five feature extraction methods: autoencoder hidden layer,

GAN hidden layer, WGAN hidden layer, GAN discriminator output and WGAN critic output, and

three aggregation methods: SKS, SSMD and ESMD. We set the confidence level 1 − 𝛼 = 0.95.

Figures 6.8, 6.9 and 6.10 summarize the calibration results of SKS, SSMD and ESMD respectively.

In all figures, Models 1 to 17 in the 𝑥-axis refer to 17 different configurations on ABIDES (see

Table 6.2 for the details). Model 1 represents the ground truth configuration. Models 2 to 5 are the

configurations close to the truth, because their parameters are chosen with smallest perturbations

from the ground truth. The remaining models refer to configurations with parameters that differ

significantly. In Figure 6.8, we use the value of the SKS distance as the 𝑦-axis, so that an SKS

value below the cutoff line of the corresponding aggregation method indicates eligibility. The

accepted configurations are marked as a circle, and the rejected configurations are shown without

any markers. In Figures 6.9 and 6.10, we convert the scale of SSMD and ESMD into a “𝑝-value"

on the 𝑦-axis under a normal approximation, as discussed in Section 6.4.2. The “𝑝-value" here

measures how often the distance is smaller than the critical value. Correspondingly, a dot value

above the cutoff 0.05 indicates eligibility. This 𝑝-value scaling for SSMD and ESMD serves to

facilitate easier visual comparison than in the original scale.

From these results, we see that SKS exhibits the most reasonable trend across the board, where

configurations close to the ground truth are classified as eligible while others are not. In compari-

son, with SSMD and ESMD, some methods either cannot recover the truth or misclassify ineligible

configurations as eligible. Even though some extraction methods with SSMD or ESMD are able

to recover the truth, they also classify many of the other configurations as eligible. Thus, with the

same feature extraction techniques, SSMD and ESMD appear to underperform compared to SKS

in terms of conservativeness.
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Figure 6.8: Comparisons of different feature extraction methods with SKS. Eligible configurations are the
ones below the thresholds (shown in dash lines) and plotted with dots.

Figure 6.9: Comparisons of different feature extraction methods with SSMD. Eligible configurations are
the ones above the thresholds (shown in dash lines).

Figure 6.10: Comparisons of different feature extraction methods with ESMD. Eligible configurations are
the ones above the thresholds (shown in dash lines).
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Calibration with Different Numbers of Model Parameters.

The discussion above indicates that combining SKS with different feature extraction methods

outperforms other aggregation approaches, not only in recovering the truth but also in eliminating

false candidates. This subsection aims to investigate the robustness of this observation. In particu-

lar, we investigate the performance of SKS in calibrating different numbers of model parameters.

Table 6.1 shows five sets of parameters to be calibrated. For each set, we investigate a total

of 20 configuration candidates. Here, the data we calibrate against is the trading mid-price – the

setting is otherwise the same. Moreover, to fairly compare the performance of different feature

extractors, from now on we choose more similar network architectures as in Tables 6.6 to 6.8.

Case No. 1 2 3 4 5
Parameters 𝑛𝑣𝑎𝑙𝑢𝑒 ^, _𝑎 𝑛𝑣𝑎𝑙𝑢𝑒, ^, _𝑎 𝑛𝑣𝑎𝑙𝑢𝑒, 𝑟, ^, _𝑎 𝑛𝑣𝑎𝑙𝑢𝑒, 𝑛𝑛𝑜𝑖𝑠𝑒, 𝑟, ^, _𝑎

Table 6.1: Parameters to calibrate in each case

Figure 6.11: Comparisons of different feature extraction method with SKS statistics. The annotations over
the bars denote whether the true case can be recovered. “T" means true and “F" means false.

Figure 6.11 shows the calibration results on 1 to 5 parameter sets. If a method recovers the

true parameter and simultaneously maintains a small eligibility set (among the 20 configurations),
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then it is viewed as superior. In terms of the first metric, correctness, all of the methods are able to

recover the truth. In terms of the second metric, conservativeness, GAN hidden features appears

to be the best, since it consistently achieves the minimal eligibility set size while able to uncover

the truth. Autoencoder follows next by achieving the smallest set size in 3 cases and the second

smallest set size in 2 cases. WGAN hidden features performs a bit more conservatively than au-

toencoder because in almost all cases, WGAN hidden feature is able to attain the smallest or the

second smallest set size except for case 1. GAN discriminator output is also slightly more conser-

vative than those methods mentioned before, and WGAN critic output is the most conservative one

among all methods. Note that the calibration performance comparisons in terms of correctness and

conservativeness among different methods are similar within each case, which further showcases

the robustness of our methodologies.

Therefore, in order to achieve a low conservativeness, we would first recommend using GAN

hidden layer as a feature extraction method, followed by the autoencoder then WGAN hidden

layer. GAN discriminator output or WGAN critic output are less recommended because of their

over-conservativeness as compared with the first three methods.

Ablation Study.

We further study the performances of different approaches when the number of extracted fea-

tures, 𝐾 , varies. The magnitude of 𝐾 is controlled by the size of the final hidden layer in each

neural network. We vary the size of this layer to 15, 29, 57, 113, 225, and 450. The network archi-

tecture can be adjusted by adding or removing a block of ⟨Convolutional, Leaky ReLU, Dropout⟩

layers in order to increase or decrease the network size by a factor of 2. In each setting, we measure

the Type I error probability and 𝑞−SKS over 500 experiments, where 𝑞 is calculated as the critical

value of SKS. Intuitively, the magnitude of the quantity 𝑞 − SKS measures the gap between the

SKS statistic and the threshold 𝑞. The larger the gap is, the more configurations can be considered

as eligible, meaning that the method is more conservative.

Figures 6.12 and 6.13 present the results of the ablation study. First, we do not observe a clear
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trend of Type I error probability as the number of extracted features changes, and it is not obvious

to see any methods consistently outperforming others. For 𝑞 − SKS, there is no clear pattern

to distinguish its performance either. Nonetheless, all methods have Type I error probabilities

less than or equal to the nominal level 𝛼 = 0.05. Furthermore, all methods constantly obtain a

positive average value of 𝑞 − SKS, meaning that the ground truth can still be recovered even with

different hidden feature dimensions. These two observations once again verify the power of our

methodology.

Figure 6.12: Type I error probability of Autoencoder, GAN hidden features extraction, WGAN
hidden features extraction combined with SKS statistics as the dimension changes.

6.5.2 Realism Metrics

Properties of limit order book market behavior that are repeated across a wide range of in-

struments, markets, and time periods are referred to as stylized facts [249, 250, 251]. Evaluating

the statistical properties of simulated asset returns, order volumes, order arrival times, order can-

cellations, etc and comparing them to those generated from real historical data allows us to infer

the level of fidelity of a simulation; hence, stylized facts can be used as simulated realism metrics

[195]. In this subsection, we investigate how our eligible models can match the ground truth in

terms of these metrics.
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Figure 6.13: The difference between critical value and SKS of Autoencoder, GAN hidden fea-
tures extraction, WGAN hidden features extraction combined with SKS statistics as the dimension
changes. To get a sense of the estimation uncertainty, we also show shaded areas which have width
0.2 times the standard deviation.

We investigate the following metrics. Denote the midprice at time 𝑡 as 𝑚𝑡 , and the log return at

time scale Δ𝑡 as 𝑟𝑡,Δ𝑡 = log𝑚𝑡+Δ𝑡 − log𝑚𝑡 :

• Heavy tails and aggregational normality: The distribution of the asset prices exhibits a fat

tail. However, as Δ𝑡 increases, the distribution tends to show a slimmer tail, and more like a

normal distribution.

• Absence of autocorrelation: The autocorrelation function 𝑐𝑜𝑟𝑟 (𝑟𝑡+𝜏,Δ𝑡 , 𝑟𝑡,Δ𝑡) becomes in-

significant as 𝜏 gets longer than 20 minutes.

• Volatility clustering: High-volatility events usually cluster in time. The autocorrelation func-

tion 𝑐𝑜𝑟𝑟 (𝑟2
𝑡+𝜏,Δ𝑡 , 𝑟

2
𝑡,Δ𝑡
) is used to measure volatility clustering. Empirical results on various

equities indicate that this quantity remains positive over several days.

We examine the realism metrics of the 17 configurations studied in Section 6.5.1. The simu-

lation sample size for each configuration is 100, 000. For the first metric, we examine minutely

log return; for the second metric, we examine the autocorrelation of minutely log returns and take
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Δ𝑡 to be 25 minutes; for the third metric, we examine the 10-second log return and the lags of the

autocorrelation function ranging from 1 to 10.

Figures 6.14, 6.15 and 6.16 show the realism metrics exhibited by the 17 configurations. Recall

that, according to Figure 6.8, the three eligible configurations under our framework are Model 1

(accepted by all methods), Model 2 (accepted only by WGAN critic output with SKS), and Model

3 (accepted only by GAN discriminator output with SKS). Model 1, in particular, is the true con-

figuration. We observe that the distribution of the autocorrelation function value at Δ = 20 minutes

has most of the mass around 0. Therefore, from this perspective, the true configuration follows

the empirical rule of the market. For volatility clustering, the average autocorrelation function of

squared returns among 100, 000 samples decays as the lag (based on 10 seconds) increases but

remains positive. However, we have also found that the autocorrelation function can become neg-

ative as we gradually increase the length of the lag, thus deviating from the empirical rule in this

regime. Nonetheless, the true configuration still loosely follows the empirical rule when the lag is

not too large.

In terms of the similarity between the ground truth and the simulated configurations, we see

that Models 1 and 3 behave almost the same as the truth in all three metrics. Model 2 also behaves

similarly in log return autocorrelation and volatility clustering (even closer to the truth compared

with Model 3 in these two metrics), but it has a slimmer tail in the log return distribution as

shown in Figure 6.14. On the other hand, other models acting statistically like the truth include

Models 4, 5, and 12. In detail, Model 4 is similar but slightly different from the truth in all

these three metrics. Models 5 and 12 are close to the truth in the log return distribution and the

log return autocorrelation, but deviate greatly in volatility clustering. For all the other ineligible

configurations, their realism metric performances are disparate from the truth in more than two of

the metrics. Some examples of this are Models 14 and 9. Model 14 is similar to the truth in log

return distribution, but distinguishable in the log return autocorrelation and volatility clustering,

and Model 9 is similar to the truth in log return autocorrelation, but bears a substantial difference

in the log return distribution and volatility clustering. In summary, the accepted models are able to
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match the truth in terms of realism metrics to a great extent, while the rejected models either have

a lot of difference in one of the metrics or have differences in two or more metrics.

Figure 6.14: One-minute log return distributions. Accepted models are the first three in the first
row, which are shown in red.

6.6 Supplementary A: Proofs of Theorems

Proof of Theorem 6.1. Since

sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0

𝑁
(𝑥) | ≤ sup

𝑥∈R

(
|𝐹\0
𝑛 (𝑥) − 𝐹\0 (𝑥) | + |𝐹\0 (𝑥) − 𝐹\0

𝑁
(𝑥) |

)
≤ sup

𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0 (𝑥) | + sup

𝑥∈R
|𝐹\0
𝑁
(𝑥) − 𝐹\0 (𝑥) |,
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Figure 6.15: Distributions of return autocorrelation at 25 minutes. Accepted models are the first
three in the first row, which are shown in red.

we get that

P

(
sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0

𝑁
(𝑥) | > 𝑞1−𝛼/

√
𝑁

)
≤P

(
sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0 (𝑥) | + sup

𝑥∈R
|𝐹\0
𝑁
(𝑥) − 𝐹\0 (𝑥) | > 𝑞1−𝛼/

√
𝑁

)
≤P

(
sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0 (𝑥) | > _𝑞1−𝛼/

√
𝑁

)
+ P

(
sup
𝑥∈R
|𝐹\0
𝑁
(𝑥) − 𝐹\0 (𝑥) | > (1 − _)𝑞1−𝛼/

√
𝑁

)
for any _ ∈ (0, 1). It is known that

√
𝑛 sup𝑥∈R |𝐹

\0
𝑛 (𝑥) − 𝐹\0 (𝑥) | ⇒ sup𝑡∈R |𝐵𝐵(𝐹\0 (𝑡)) | and

similarly
√
𝑁 sup𝑥∈R |𝐹

\0
𝑁
(𝑥) − 𝐹\0 (𝑥) | ⇒ sup𝑡∈R |𝐵𝐵(𝐹\0 (𝑡)) | as 𝑛, 𝑁 → ∞ where⇒ stands for
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Figure 6.16: Average autocorrelation of squared returns as a function of time lag from 1 to 10.
Squared returns are estimated for every 10 seconds. Accepted models are the first three in the first
row, which are shown in red.

convergence in distribution. 𝑛 = 𝜔(𝑁) as 𝑁 →∞ implies that 𝑛/𝑁 →∞ as 𝑁 →∞, and thus

P

(
sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0 (𝑥) | > _𝑞1−𝛼/

√
𝑁

)
= P

(√
𝑛 sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0 (𝑥) | > _𝑞1−𝛼

√︁
𝑛/𝑁

)
→ 0
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as 𝑁 →∞ for any _ ∈ (0, 1). Hence,

lim sup
𝑁→∞

P

(
sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0

𝑁
(𝑥) | > 𝑞1−𝛼/

√
𝑁

)
≤ lim sup

𝑁→∞
P

(
sup
𝑥∈R
|𝐹\0
𝑁
(𝑥) − 𝐹\0 (𝑥) | > (1 − _)𝑞1−𝛼/

√
𝑁

)
=P

(
sup
𝑡∈R
|𝐵𝐵(𝐹\0 (𝑡)) | > (1 − _)𝑞1−𝛼

)
≤P

(
sup
𝑡∈[0,1

|𝐵𝐵(𝑡) | > (1 − _)𝑞1−𝛼

)
.

By the arbitrariness of _ and the definition of 𝑞1−𝛼, we finally get that

lim sup
𝑁→∞

P

(
sup
𝑥∈R
|𝐹\0
𝑛 (𝑥) − 𝐹\0

𝑁
(𝑥) | > 𝑞1−𝛼/

√
𝑁

)
≤ P

(
sup
𝑡∈[0,1]

|𝐵𝐵(𝑡) | ≥ 𝑞1−𝛼

)
= 𝛼.

□

Proof of Theorem 6.2. We know that

|𝐹\𝑛 (𝑥) − 𝐹
\0
𝑁
(𝑥) | ≥ |𝐹\ (𝑥) − 𝐹\0 (𝑥) | − |𝐹\𝑛 (𝑥) − 𝐹\ (𝑥) | − |𝐹

\0
𝑁
(𝑥) − 𝐹\0 (𝑥) |,

and then we get that

sup
𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹

\0
𝑁
(𝑥) | ≥ sup

𝑥∈R
|𝐹\ (𝑥) − 𝐹\0 (𝑥) | − sup

𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹\ (𝑥) | − sup

𝑥∈R
|𝐹\0
𝑁
(𝑥) − 𝐹\0 (𝑥) |.

Therefore,

P

(
sup
𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹

\0
𝑁
(𝑥) | ≤ 𝑞1−𝛼/

√
𝑁

)
≤P

(
sup
𝑥∈R
|𝐹\ (𝑥) − 𝐹\0 (𝑥) | − sup

𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹\ (𝑥) | − sup

𝑥∈R
|𝐹\0
𝑁
(𝑥) − 𝐹\0 (𝑥) | ≤ 𝑞1−𝛼/

√
𝑁

)
≤P

(
sup
𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹\ (𝑥) | > Y1

)
+ P

(
sup
𝑥∈R
|𝐹\0
𝑁
(𝑥) − 𝐹\0 (𝑥) | > Y2

)
.

The last inequality is obtained using the fact that 𝑞1−𝛼/
√
𝑁 < sup𝑥∈R |𝐹\ (𝑥)−𝐹\0 (𝑥) |−Y1−Y2 under
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the conditions in the theorem. By the refined Dvoretzky–Kiefer–Wolfowitz (DKW) inequality

[252], we get that

P

(
sup
𝑥∈R
|𝐹\𝑛 (𝑥) − 𝐹\ (𝑥) | > Y1

)
≤ 2𝑒−2𝑛Y2

1 , P

(
sup
𝑥∈R
|𝐹\0
𝑁
(𝑥) − 𝐹\0 (𝑥) | > Y2

)
≤ 2𝑒−2𝑁Y2

2 ,

which concludes the proof. □

Proof of Theorem 6.3. By applying Theorem 6.2, we have that

P

(
∃𝑖 = 1, · · · , 𝑚 s.t. sup

𝑥∈R
|𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | > Y, \𝑖 ∈ Ê𝑚

)
≤

𝑚∑︁
𝑖=1
P

(
sup
𝑥∈R
|𝐹\𝑖 (𝑥) − 𝐹\0 (𝑥) | > Y, \𝑖 ∈ Ê𝑚

)
≤2𝑚

(
𝑒−2𝑛Y2

1 + 𝑒−2𝑁Y2
2

)
.

□

Proof of Corollary 6.1. For any Y > 0, we pick Y1 = Y2 = Y/3. If log𝑚 = 𝑜(𝑁) and 𝑛 = Ω(𝑁) as

𝑁 →∞, then

2𝑚
(
𝑒−2𝑛Y2

1 + 𝑒−2𝑁Y2
2

)
= 2

(
𝑒log𝑚−2𝑛Y2

1 + 𝑒log𝑚−2𝑁Y2
2

)
→ 0

as 𝑁 →∞. By applying Theorem 6.3, we prove the corollary. □

Proof of Corollary 6.2. Let Y =
√︁

log𝑚/𝑚 and Y1 = Y2 = Y/3. If 𝑚 = 𝑜(𝑁) and 𝑛 = Ω(𝑁) as

𝑁 →∞, then

2𝑚
(
𝑒−2𝑛Y2

1 + 𝑒−2𝑁Y2
2

)
= 2

(
𝑒log𝑚−2𝑛 log𝑚/(9𝑚) + 𝑒log𝑚−2𝑁 log𝑚/(9𝑚)

)
→ 0

as 𝑁 →∞. By applying Theorem 6.3, we prove the corollary. □

Proof of Theorem 6.4. See Theorem 1 in [253]. □
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Proof of Theorem 6.5. Follow the proof of Theorem 6.2. We could get that

P

(
sup
𝑥∈R
|𝐹 \𝑛 (𝑥) − 𝐹

\0
𝑁
(𝑥) | ≤

√︂
𝑛 + 𝑁
𝑛𝑁

√︂
−1

2
log(𝛼/2)

)
≤P

(
sup
𝑥∈R
|𝐹 \ (𝑥) − 𝐹 \0 (𝑥) | − sup

𝑥∈R
|𝐹 \𝑛 (𝑥) − 𝐹 \ (𝑥) | − sup

𝑥∈R
|𝐹 \0
𝑁
(𝑥) − 𝐹 \0 (𝑥) | ≤

√︂
𝑛 + 𝑁
𝑛𝑁

√︂
−1

2
log(𝛼/2)

)
≤P

(
sup
𝑥∈R
|𝐹 \𝑛 (𝑥) − 𝐹 \ (𝑥) | > Y1

)
+ P

(
sup
𝑥∈R
|𝐹 \0
𝑁
(𝑥) − 𝐹 \0 (𝑥) | > Y2

)
.

where the last inequality is obtained using the fact that
√︃
𝑛+𝑁
𝑛𝑁

√︃
−1

2 log(𝛼/2) < sup𝑥∈R |𝐹\ (𝑥) −

𝐹\0 (𝑥) | − Y1 − Y2 under the conditions in the theorem. Then we apply the refined DKW inequality

to conclude the proof. □

Proof of Theorem 6.6. Follow the proof of Theorem 6.3 except that we apply Theorem 6.5 here.

□

Proof of Corollary 6.3. Follow the proof of Corollary 6.1 except that we apply Theorem 6.6 here.

□

Proof of Corollary 6.4. Follow the proof of Corollary 6.2 except that we apply Theorem 6.6 here.

□

Proof of Theorem 6.7. From Theorem 6.1, we know that for any 𝑘 ,

lim sup
𝑛,𝑁→∞

P

(
sup
𝑥∈R
|𝐹\0
𝑛,𝑘
(𝑥) − 𝐹\0

𝑁,𝑘
(𝑥) | > 𝑞1−𝛼/𝐾/

√
𝑁

)
≤ 𝛼/𝐾,

and thus

lim sup
𝑛,𝑁→∞

P

(
∃𝑘, sup

𝑥∈R
|𝐹\0
𝑛,𝑘
(𝑥) − 𝐹\0

𝑁,𝑘
(𝑥) | > 𝑞1−𝛼/𝐾/

√
𝑁

)
≤ 𝛼.

□

Proof of Theorem 6.8. Define _ = (𝑁/𝑛)1/4/(log𝐾)1/2. As 𝐾 → ∞, _ = 𝑜(1/log𝐾) and _ =
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𝜔(
√︁
𝑁/𝑛). Without loss of generality, we assume that 0 < _ < 1. We have that

lim sup
𝐾→∞

P

(
∃𝑘, sup

𝑥∈R
|𝐹\0
𝑛,𝑘
(𝑥) − 𝐹\0

𝑁,𝑘
(𝑥) | > 𝑞1−𝛼/𝐾/

√
𝑁

)
≤ lim sup

𝐾→∞

𝐾∑︁
𝑘=1
P

(
sup
𝑥∈R
|𝐹\0
𝑛,𝑘
(𝑥) − 𝐹\0

𝑁,𝑘
(𝑥) | > 𝑞1−𝛼/𝐾/

√
𝑁

)
≤ lim sup

𝐾→∞

𝐾∑︁
𝑘=1

(
P

(
sup
𝑥∈R
|𝐹\0
𝑛,𝑘
(𝑥) − 𝐹\0

𝑘
(𝑥) | > _𝑞1−𝛼/𝐾/

√
𝑁

)
+ P

(
sup
𝑥∈R
|𝐹\0
𝑁,𝑘
(𝑥) − 𝐹\0

𝑘
(𝑥) | > (1 − _)𝑞1−𝛼/𝐾/

√
𝑁

) )
≤ lim sup

𝐾→∞

𝐾∑︁
𝑘=1

2
(
𝑒
−2_2𝑞2

1−𝛼/𝐾𝑛/𝑁 + 𝑒−2(1−_)2𝑞2
1−𝛼/𝐾

)
= lim sup

𝐾→∞
2𝐾

(
𝑒
−2_2𝑞2

1−𝛼/𝐾𝑛/𝑁 + 𝑒−2(1−_)2𝑞2
1−𝛼/𝐾

)
.

We know that 𝛼 = 2
∑∞
𝑣=1(−1)𝑣−1𝑒−2𝑣2𝑞2

1−𝛼 , and hence 𝛼/(2𝐾𝑒−2𝑞2
1−𝛼/𝐾 ) → 1 as 𝐾 → ∞. Thus,

2𝑞2
1−𝛼/𝐾 − log𝐾 → − log(𝛼/2) as 𝐾 →∞. We have that

𝐾𝑒−2_2𝑞2
1−𝛼𝑛/𝑁 = 𝑒

log𝐾−(2𝑞2
1−𝛼/𝐾−log𝐾)

√
𝑛/𝑁/log𝐾−

√
𝑛/𝑁 → 0

and

𝐾𝑒
−2(1−_)2𝑞2

1−𝛼/𝐾 = 𝑒
log𝐾−(1−_)2 (2𝑞2

1−𝛼/𝐾−log𝐾)−(1−_)2 log𝐾 → 𝛼/2.

Therefore,

lim sup
𝐾→∞

P

(
∃𝑘, sup

𝑥∈R
|𝐹\0
𝑛,𝑘
(𝑥) − 𝐹\0

𝑁,𝑘
(𝑥) | > 𝑞1−𝛼/𝐾/

√
𝑁

)
≤ 𝛼.

□

Proof of Theorem 6.9. Suppose that 𝑘∗ = arg max1≤𝑘≤𝐾 sup𝑥∈R |𝐹\𝑘 (𝑥) − 𝐹
\0
𝑘
(𝑥) |. Then we have
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that

P

(
sup
𝑥∈R
|𝐹\𝑛,𝑘 (𝑥) − 𝐹

\0
𝑁,𝑘
(𝑥) | ≤ 𝑞1−𝛼/𝐾/

√
𝑁,∀1 ≤ 𝑘 ≤ 𝐾

)
≤P

(
sup
𝑥∈R
|𝐹\𝑛,𝑘∗ (𝑥) − 𝐹

\0
𝑁,𝑘∗ (𝑥) | ≤ 𝑞1−𝛼/𝐾/

√
𝑁

)
.

By applying Theorem 6.2, we get the result. □

Proof. Proof of Theorem 6.10 It is well known that by CLT,

�̄�𝑘 − 𝑌𝑘√︂(
1
𝑁
+ 1
𝑛

)
𝑣𝑎𝑟 (𝑋1,𝑘 )

⇒ 𝑁 (0, 1).

Then by Slutsky’s theorem,
�̄�𝑘 − 𝑌𝑘√︂(
1
𝑁
+ 1
𝑛

)
𝑣𝑎𝑟 𝑘

⇒ 𝑁 (0, 1),

which concludes the proof. □

Proof of Theorem 6.11. We use Φ to denote the CDF of standard normal distribution and denote

𝑞1 = Φ−1(1 − 𝛼
2 ), 𝑞2 = Φ−1(1 − 𝛼

2𝐾 ). Then [ = 𝑞1

√︃
1
𝑁
+ 1
𝑛

and [′ = 𝑞2

√︃
1
𝑁
+ 1
𝑛
. We have that

𝑝1 = Φ
©«𝑞1 −

Δ1√︃
1
𝑁
+ 1
𝑛

ª®®¬ −Φ
©«−𝑞1 −

Δ1√︃
1
𝑁
+ 1
𝑛

ª®®¬
and

𝑝2 =

(
1 − 𝛼

𝐾

)𝐾−1 ©«Φ
©«𝑞2 −

Δ1√︃
1
𝑁
+ 1
𝑛

ª®®¬ −Φ
©«−𝑞2 −

Δ1√︃
1
𝑁
+ 1
𝑛

ª®®¬
ª®®¬ .

For fixed 𝐾 > 1 (which implies 𝑞1 < 𝑞2), as 𝑁, 𝑛→∞, we have that

𝑝2
𝑝1
∼

(
1 − 𝛼

𝐾

)𝐾−1
−𝑞1 + Δ1√︃

1
𝑁
+ 1
𝑛

−𝑞2 + Δ1√︃
1
𝑁
+ 1
𝑛

exp
©«(𝑞2 − 𝑞1)

Δ1√︃
1
𝑁
+ 1
𝑛

+
𝑞2

1 − 𝑞
2
2

2
ª®®¬ ,
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which grows exponentially in 𝑁 and 𝑛. □

Proof of Theorem 6.12. We have that

𝑝2 := P(∀𝑘, | �̄�𝑘 − 𝑌𝑘 | ≤ [′𝑘 ) ≤ P( | �̄�𝑘 − 𝑌𝑘 | ≤ [
′
𝑘 ) = P

(����𝑁 (
Δ𝑘 ,

(
1
𝑁
+ 1
𝑛

)
Σ𝑘𝑘

)���� ≤ [′𝑘 ) =: 𝑝′2.

We still use the notations of 𝑞1 and 𝑞2. Then [𝑘 = 𝑞1

√︃
( 1
𝑁
+ 1
𝑛
)Σ𝑘𝑘 and [′

𝑘
= 𝑞2

√︃
( 1
𝑁
+ 1
𝑛
)Σ𝑘𝑘 .

We have that

𝑝1 = Φ
©«𝑞1 −

Δ𝑘√︃
( 1
𝑁
+ 1
𝑛
)Σ𝑘𝑘

ª®®¬ −Φ
©«−𝑞1 −

Δ𝑘√︃
( 1
𝑁
+ 1
𝑛
)Σ𝑘𝑘

ª®®¬
and

𝑝′2 = Φ
©«𝑞2 −

Δ𝑘√︃
( 1
𝑁
+ 1
𝑛
)Σ𝑘𝑘

ª®®¬ −Φ
©«−𝑞2 −

Δ𝑘√︃
( 1
𝑁
+ 1
𝑛
)Σ𝑘𝑘

ª®®¬ .
Clearly, if Δ𝑘 ≠ 0, then for fixed 𝐾 > 1, as 𝑁, 𝑛→ ∞, both 𝑝1 and 𝑝′2 converge to 0 exponen-

tially in 𝑁 and 𝑛. Compared to 𝑝′2, 𝑝1 decreases exponentially faster.

Now we only analyze 𝑝′2. It is known that as 𝐾 → ∞, 𝑞2 = 𝑂 (
√︁

log𝐾). If Δ𝑘 ≠ 0 and

𝑁 = 𝜔(log𝐾), 𝑛 = 𝜔(log𝐾) as 𝐾 →∞, then

𝑝′2 ≤ Φ̄
©«−𝑞2 +

|Δ𝑘 |√︃
( 1
𝑁
+ 1
𝑛
)Σ𝑘𝑘

ª®®¬→ 0.

□

Proof of Theorem 6.13. Use �̄� and 𝑌 to denote the sample mean vectors. It is well known that

( �̄� − 𝑌 )√︂(
1
𝑁
+ 1
𝑛

) ⇒ 𝑁 (0, Σ𝑋)

and hence ∑𝐾
𝑘=1( �̄�𝑘 − 𝑌𝑘 )2

1
𝑁
+ 1
𝑛

=
( �̄� − 𝑌 )𝑇 ( �̄� − 𝑌 )

1
𝑁
+ 1
𝑛

⇒ 𝑍𝑇Σ𝑋𝑍.
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Since Σ̂→ Σ𝑋 almost surely, we get that [
1
𝑁
+ 1
𝑛

converges to the (1− 𝛼)-quantile of 𝑍𝑇Σ𝑋𝑍 almost

surely, which concludes the proof. □

6.7 Supplementary B: Details on Machine Learning Models and Feature Extraction

Auto-encoder: Auto-encoder is a unsupervised learning method [240]. It is made up of two

components, an encoder 𝑒 : X → HX , and an decoder 𝑟 : HX → X. Given a target dimension

𝐾 , encoder 𝑒 finds the hidden feature 𝐻 ∈ R𝐾 of the input 𝑋 ∈ X, and afterward decoder 𝑟

reconstructs the hidden feature 𝐻 and outputs the reconstruction �̂� ∈ X. The bottleneck structure

allows the network to find out the hidden feature of the input by itself, and the training procedure

minimizes the Euclidean distance between the input samples and the reconstructed samples. The

training of the network can be summarized as follows:

min
\,\̂

∑︁
𝑋

| |𝑟 (𝑒(𝑋; \); \̂) − 𝑋 | |22,

where \, \̂ are the weights of encoder 𝑒 and decoder 𝑟 .

GAN: GAN is another type of unsupervised learning method [241]. There are two adversarial

modules contained in the GAN structure, which are discriminator 𝐷 and generator 𝐺. Given the

real inputs 𝑋1, . . . , 𝑋𝑁 ∈ X from the real distribution 𝑝𝑟𝑒𝑎𝑙 , the GAN network aims at learning the

real distribution 𝑝𝑟𝑒𝑎𝑙 and outputs samples similar to the real inputs. Discriminator 𝐷 has input

𝑋 ∈ X and summarizes 𝑋 to a single value 𝐷 (𝑋), which measures the probability that input 𝑋 is

a sample from the real distribution. The direct output of discriminator, 𝐷 (𝑋), is able to serve as a

hidden feature of 𝑋 . Otherwise, we can also extract the output from the last hidden layer. This is

not as concise as the direct output 𝐷 (𝑋), but preserves more information about 𝑋 . Generator𝐺 has

input 𝑧, as a sample from the latent space Z, and outputs �̂� ∈ X. Similar to two players in game

theory, both discriminator 𝐷 and generator 𝐺 have their own objectives. The training process is

a competition between 𝐷 and 𝐺, where 𝐷 is trained to tell the difference between the real inputs
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and the simulated ones, and 𝐺 is trained to learn the real distribution 𝑝𝑟𝑒𝑎𝑙 and fool discriminator

𝐷. For discriminator 𝐷, it minimizes the cross entropy,

L𝐷 = −E𝑥∼𝑝𝑟𝑒𝑎𝑙 log𝐷 (𝑥) − E𝑧∼Z log(1 − 𝐷 (𝐺 (𝑧))).

As a competitor against 𝐷, generator 𝐺 maximizes the objective of 𝐷, so the loss function of 𝐺 is

L𝐺 = −L𝐷 .

Therefore, the optimization of GAN can be describe as a minimax game:

min
𝐺

max
𝐷
E𝑥∼𝑝𝑟𝑒𝑎𝑙 log𝐷 (𝑥) + E𝑧∼Z log(1 − 𝐷 (𝐺 (𝑧))).

WGAN: There are many variants of GAN, and a popular one is WGAN. Specifically, with an

optimal discriminator 𝐷∗, the objective of GAN quantifies the similarity between the real input

distribution and the generative distribution using the Jensen–Shannon (JS) divergence. However,

the JS divergence becomes less sensitive in measuring the statistical distance between distributions

when their supports are on low-dimensional manifolds, which further causes the instability in

training [242]. Therefore, [242] proposes to adopt Wasserstein-1 distance as a better metric, which

is

𝑊 (𝑝𝑟𝑒𝑎𝑙 , 𝑝𝑔𝑒𝑛) = inf
𝛾∈Π(𝑝𝑟𝑒𝑎𝑙 ,𝑝𝑔𝑒𝑛)

E(𝑥,𝑦)∼𝛾 [| |𝑥 − 𝑦 | |]

where Π(𝑝𝑟𝑒𝑎𝑙 , 𝑝𝑔𝑒𝑛) is the set of all possible joint distributions with marginal distributions 𝑝𝑟𝑒𝑎𝑙

and 𝑝𝑔𝑒𝑛. However, due to the intractability of Wasserstein distance calculation, an alternative is

to leverage the Kantorovich-Rubinstein duality, where the problem becomes

𝑊 (𝑝𝑟𝑒𝑎𝑙 , 𝑝𝑔𝑒𝑛) = sup
| | 𝑓 | |𝐿≤1

E𝑥∼𝑝𝑟𝑒𝑎𝑙 [ 𝑓 (𝑥)] − E𝑥∼𝑝𝑔𝑒𝑛 [ 𝑓 (𝑥)] .

In practice, one can always extend the 1-Lipschitz class functions to 𝐿-Lipschitz and the objective

234



becomes 𝐿 · 𝑊 (𝑝𝑟𝑒𝑎𝑙 , 𝑝𝑔𝑒𝑛). Meanwhile, the 𝐿-Lipschitz continuity of neural network can be

obtained by weight clipping [242]. Therefore, the optimization of WGAN can be described as

follows:

min
𝐺

max
| |𝐷 | |𝐿≤𝐿

E𝑥∼𝑝𝑟𝑒𝑎𝑙 [𝐷 (𝑥)] − E𝑧∼Z [𝐷 (𝐺 (𝑧))] .

Since WGAN has a similar architecture to GAN, we can also use the direct output from the critic

function or output from the last hidden layer as the hidden feature of the input.

6.8 Supplementary C: Experimental Details

Config. 𝑚 𝑛 𝑟 ^ _𝑎

1 100 1000 105 1.67 × 10−12 10−13

2 105 1050 105 1.67 × 10−12 10−14

3 90 900 105 1.67 × 10−12 10−13

4 70 700 105 1.67 × 10−12 10−13

5 95 950 1.1 × 105 1.5 × 10−12 1.1 × 10−13

6 500 1000 105 1.67 × 10−12 10−13

7 70 700 105 8 × 10−1 10−12

8 100 1000 105 5 × 10−2 10−12

9 200 2000 105 1.67 × 10−12 10−13

10 10 100 105 1.67 × 10−12 10−13

11 50 500 105 1.67 × 10−12 10−13

12 105 1050 9 × 104 1.8 × 10−12 8 × 10−14

13 100 3000 105 1.67 × 10−12 10−13

14 10 10 105 1.67 × 10−12 10−12

15 200 1500 105 1.67 × 10−12 10−12

16 10 10 105 1.67 × 10−12 10−13

17 50 500 105 1.67 × 10−12 10−11

Table 6.2: Agent configurations
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Encoder
Layer Network Architecture

1 Dense (1000, tanh)
2 Dense (500, tanh)
3 Dense (200, tanh)
4 Dense (100, tanh)
5 Dense (50, sigmoid)

Decoder
Layer Network Architecture

1 Dense (100, tanh)
2 Dense (200, tanh)
3 Dense (500, tanh)
4 Dense (1000, tanh)
5 Dense (1799, sigmoid)

Table 6.3: Autoencoder architecture (version 1)

Generator
Layer Network Architecture
1 - 3 Dense (9600), Leaky ReLU (slope = 0.2), Reshape ((75, 128))

4 - 6
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

7 - 9
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

10 - 12
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

13 - 15
Transposed Convolutional 1D (128, kernel size = 4, stride = 3, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)
16 - 17 Convolutional 1D (1, kernel size = 100, stride = 1, padding = same), Sigmoid

Discriminator
Layer Network Architecture

1 - 3
Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

4 - 6
Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

7 - 9
Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

10 - 12
Convolutional 1D (128, kernel size = 4, stride = 3, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)
13 - 14 Flatten, Dense (1, sigmoid)

Table 6.4: GAN architecture (version 1)
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Generator
Layer Network Architecture
1 - 3 Dense (9600), Leaky ReLU (slope = 0.2), Reshape ((75, 128))

4 - 6
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

7 - 9
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

10 - 12
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

13 - 15
Transposed Convolutional 1D (128, kernel size = 4, stride = 3, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)
16 - 17 Convolutional 1D (1, kernel size = 100, stride = 1, padding = same), Sigmoid

Discriminator
Layer Network Architecture

1 - 3
Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

4 - 6
Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

7 - 9
Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

10 - 12
Convolutional 1D (128, kernel size = 4, stride = 3, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)
13 - 14 Flatten, Dense (1, linear)

Table 6.5: WGAN architecture (version 1)
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Encoder
Layer Network Architecture

1 - 3
Convolutional 1D (256, kernel size = 4, stride = 2, padding = 1),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

4 - 6
Convolutional 1D (256, kernel size = 4, stride = 2, padding = 1),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

7 - 9
Convolutional 1D (256, kernel size = 4, stride = 2, padding = 1),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

10 - 12
Convolutional 1D (256, kernel size = 4, stride = 2, padding = 2),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

13 - 15
Convolutional 1D (256, kernel size = 4, stride = 2, padding = 2),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)
Decoder

Layer Network Architecture

1 - 2
Transposed Convolutional 1D (256, kernel size = 5, stride = 2, padding = 2),

Leaky ReLU (slope = 0.2)

3 - 4
Transposed Convolutional 1D (256, kernel size = 5, stride = 2, padding = 2),

Leaky ReLU (slope = 0.2)

5 - 6
Transposed Convolutional 1D (256, kernel size = 4, stride = 2, padding = 1),

Leaky ReLU (slope = 0.2)

7 - 8
Transposed Convolutional 1D (256, kernel size = 4, stride = 2, padding = 1),

Leaky ReLU (slope = 0.2)

9 - 10
Transposed Convolutional 1D (256, kernel size = 4, stride = 2, padding = 1),

Leaky ReLU (slope = 0.2)
11 - 12 Convolutional 1D (1, kernel size = 3, padding = 1), Sigmoid

Table 6.6: Autoencoder architecture (version 2)
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Generator
Layer Network Architecture
1 - 3 Dense (3200), Leaky ReLU (slope = 0.2), Reshape ((25, 128))

4 - 6
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

7 - 9
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

10 - 12
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

13 - 15
Transposed Convolutional 1D (128, kernel size = 4, stride = 3, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

16 - 18
Transposed Convolutional 1D (128, kernel size = 4, stride = 3, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)
19 - 20 Convolutional 1D (1, kernel size = 100, stride = 1, padding = same), Sigmoid

Discriminator
Layer Network Architecture

1 - 3
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

4 - 6
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

7 - 9
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

10 - 12
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

13 - 15
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)
16 - 17 Flatten, Dense (1, sigmoid)

Table 6.7: GAN architecture (version 2)
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Generator
Layer Network Architecture
1 - 3 Dense (3200), Leaky ReLU (slope = 0.2), Reshape ((25, 128))

4 - 6
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

7 - 9
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

10 - 12
Transposed Convolutional 1D (128, kernel size = 4, stride = 2, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

13 - 15
Transposed Convolutional 1D (128, kernel size = 4, stride = 3, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)

16 - 18
Transposed Convolutional 1D (128, kernel size = 4, stride = 3, padding = same),

Batch normalization, Leaky ReLU (slope = 0.2)
19 - 20 Convolutional 1D (1, kernel size = 100, stride = 1, padding = same), Sigmoid

Discriminator
Layer Network Architecture

1 - 3
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

4 - 6
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

7 - 9
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

10 - 12
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)

13 - 15
Convolutional 1D (256, kernel size = 4, stride = 2, padding = same),

Leaky ReLU (slope = 0.2), Dropout (probability = 0.2)
16 - 17 Flatten, Dense (1, linear)

Table 6.8: WGAN architecture (version 2)
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Chapter 7: Model Calibration via Distributionally Robust Optimization: On

the NASA Langley Uncertainty Quantification Challenge

We consider the NASA Langley Uncertainty Quantification (UQ) Challenge problem [254]

where, given a set of “output" data and under both aleatory and epistemic uncertainties, we aim

to infer a region that contains the true values of the associated variables. These steps allow us to

investigate the reduction of uncertainty by obtaining further information and estimate the failure

probabilities of related systems. To tackle these challenges, we study a methodology based on

an integration of robust optimization (RO), more specifically, a recent line of research known as

distributionally robust optimization (DRO), and importance sampling in Monte Carlo simulation.

We will see that the main computation machinery in this integrated methodology boils down to

solving sampled linear programs (LPs). In this chapter, we will explain our methodology, introduce

theoretical statistical guarantees via connections to nonparametric hypothesis testing, and present

the numerical results on this UQ Challenge.

We briefly introduce the Challenge and notations, where details can be found in [254]. The un-

certainty model in the Challenge is given by ⟨ 𝑓𝑎, 𝐸⟩, where 𝑎 ∼ 𝑓𝑎 is an aleatory variable following

a probability density 𝑓𝑎 and probability distribution function 𝐹𝑎, and 𝑒 ∈ 𝐸 is an epistemic variable

inside the deterministic set 𝐸 . Both the true distribution of 𝑎 and the true value of 𝑒 are unknown.

Initially, we are given 𝐸0 ⊃ 𝐸 and data 𝐷1 = {𝑦 (𝑖) (𝑡)}, 𝑖 = 1, . . . , 𝑛1 in the form of a discrete-time

trajectory observed at 𝑛𝑡 time points from 0 to 𝑇 . We have the computational capability to simulate

𝑦(𝑎, 𝑒, 𝑡) for given values of 𝑎 ∈ 𝐴, 𝑒 ∈ 𝐸0. The task is to calibrate the distribution of 𝑎 and value

of 𝑒 with uncertainty quantification, as well as using them to conduct downstream decision and

risk evaluation tasks.
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7.1 Overview of Our Methodology (Problem A)

We first give a high-level overview of our methodology in extracting a region 𝐸 that contains

the true epistemic variables. For convenience, we call this region an “eligibility set" of 𝑒. For

each value of 𝑒 inside 𝐸 , we also have a set (in the space of probability distributions) that contains

“eligible" distributions for the random variable 𝑎. For the sake of computational tractability (as

we will see shortly), the eligibility set of 𝑒 is represented by a set of sampled points in 𝐸0 that

approximate its shape, whereas the eligibility set of 𝑎 is represented by probability weights on

sampled points on 𝐴. The eligibility set 𝐸 and the corresponding eligibility set of distributions for

𝑎 are obtained by solving an array of LPs that are constructed from these properly sampled points,

and then deciding eligibility by checking the LP optimal values against a threshold that resembles

the “𝑝-value" approach in hypothesis testing. As another key ingredient, this methodology involves

a dimension-collapsing transformation S, applied on the raw data, which ultimately allows using

the Kolgomorov-Smirnov (KS) statistic to endow rigorous statistical guarantees.

Algorithm 7.1 is a procedural description of our approach to construct the eligibility set 𝐸 ,

which also gives as a side product an eligibility set of the distributions of 𝑎 for each 𝑒, represented

by weights in the set (7.11). In the following, we explain the elements and terminologies in this

algorithm in detail.

Algorithm 7.1: Constructing eligibility set 𝐸 .
Input: Data 𝐷1 = {(𝑦 (𝑖) (𝑡))𝑡=0,...,𝑇 }𝑖=1,...,𝑛1 . A uniformly sampled set of 𝑒(𝑙) , 𝑙 = 1, . . . , 𝑛2

over 𝐸0. A uniformly sampled set of 𝑎 ( 𝑗) , 𝑗 = 1, . . . , 𝑘 over 𝐴. A summary
function S(·) : R𝑛𝑡+1 → R𝑚. A target confidence level 1 − 𝛼.

1 Simulate outputs from the baseline distribution: Evaluate (𝑦(𝑎 ( 𝑗) , 𝑒(𝑙) , 𝑡))𝑡=0,...,𝑇 for
𝑗 = 1, . . . , 𝑘 , 𝑙 = 1, . . . , 𝑛2.

2 Summarize the outputs: Evaluate s(𝑖) = S((𝑦 (𝑖) (𝑡))𝑡=0,...,𝑇 ) for 𝑖 = 1, . . . , 𝑛1, and
S(𝑦(𝑎 ( 𝑗) , 𝑒(𝑙) , 𝑡))𝑡=0,...,𝑇 ) for 𝑗 = 1, . . . , 𝑘 , 𝑙 = 1, . . . , 𝑛2.

3 Compute the degree of eligibility: For each 𝑙 = 1, . . . , 𝑛2, solve optimization problem
Eq. (7.10) to obtain 𝑞∗

𝑙
.

4 Construct the eligibility set: Output 𝐸 = {𝑒(𝑙) : 𝑞∗
𝑙
≤ 𝑞1−𝛼/𝑚}. Smooth the set if needed.
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7.2 A DRO Perspective

Our starting idea is to approximate the set

𝐸 = {𝑒 ∈ 𝐸0 : there exists 𝑃𝑒 s.t. 𝑑 (𝑃𝑒, �̂�) ≤ [}, (7.1)

where 𝑃𝑒 is the probability distribution of {𝑦(𝑎, 𝑒, 𝑡)}𝑡=0,...,𝑇 , namely the outputs of the simulation

model {𝑦(𝑎, 𝑒, 𝑡)}𝑡=0,...,𝑇 at a fixed 𝑒 but random 𝑎. �̂� denotes the empirical distribution of 𝐷1,

more concretely the distribution given by

�̂�(·) = 1
𝑛1

𝑛1∑︁
𝑖=1

𝛿(𝑦 (𝑖) (𝑡))𝑡=0,...,𝑇 (·),

where 𝛿(𝑦 (𝑖) (𝑡))𝑡=0,...,𝑇 (·) denotes the Dirac measure at (𝑦 (𝑖) (𝑡))𝑡=0,...,𝑇 . 𝑑 (·, ·) denotes a discrepancy

between two probability distributions, and [ ∈ R+ is a suitable constant. Intuitively, 𝐸 in Eq. (7.1)

is the set of 𝑒 such that there exists a distribution for the outputs that is close enough to the empirical

distribution from the data. If for a given 𝑒 there does not exist any possible output distribution that

is close to �̂�, then 𝑒 is likely not the truth. The following gives a theoretical justification for using

Eq. (7.1):

Theorem 7.1. Suppose that the true distribution of the output (𝑦(𝑡))𝑡=0,...,𝑇 , called 𝑃𝑡𝑟𝑢𝑒, satisfies

𝑑 (𝑃𝑡𝑟𝑢𝑒, �̂�) ≤ [ with confidence level 1 − 𝛼, i.e., we have

P(𝑑 (𝑃𝑡𝑟𝑢𝑒, �̂�) ≤ [) ≥ 1 − 𝛼, (7.2)

where P denotes the probability with respect to the data. Then the set 𝐸 in Eq. (7.1) satisfies

P(𝑒𝑡𝑟𝑢𝑒 ∈ 𝐸) ≥ 1 − 𝛼, where 𝑒𝑡𝑟𝑢𝑒 denotes the true value of 𝑒. Similar deduction holds if Eq. (7.2)

holds asymptotically (as the data size grows), in which case the same asymptotic modification

holds for the conclusion.

The proof of Theorem 7.1 comes from a straightforward set inclusion.
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Proof. Note that 𝑑 (𝑃𝑡𝑟𝑢𝑒, �̂�) ≤ [ implies 𝑒𝑡𝑟𝑢𝑒 ∈ 𝐸 . Thus we have P(𝑒𝑡𝑟𝑢𝑒 ∈ 𝐸) ≥ P(𝑑 (𝑃𝑡𝑟𝑢𝑒, �̂�) ≤

[) ≥ 1 − 𝛼. Similar derivation holds for the asymptotic version. □

In Eq. (7.1), the set of distributions {𝑃𝑒 : 𝑑 (𝑃𝑒, �̂�) ≤ [} is analogous to the so-called uncer-

tainty set or ambiguity set in the RO literature (e.g., [228, 255]), which is a set postulated to contain

the true values of uncertain parameters in a model. RO generally advocates decision-making under

uncertainty that hedges against the worst-case scenario, where the worst case is over the uncer-

tainty set (and thus often leads to a minimax optimization problem). DRO, in particular, focuses

on problems where the uncertainty is on the probability distribution of an underlying random vari-

able (e.g., [205, 204]). This is the perspective that we are taking here, where 𝑎 has a distribution

that is unknown, in addition to the uncertainty on 𝑒. Moreover, we also take a generalized view

of RO or DRO here as attempting to construct an eligibility set of 𝑒 instead of finding a robust

decision via a minimax optimization.

Theorem 7.1 focuses on the situation where the uncertainty set is constructed and calibrated

from data, which is known as data-driven RO or DRO ([256, 257]). If such an uncertainty set

has the property of being a confidence region for the uncertain parameters or distributions, then

by solving RO or DRO, the confidence guarantee can be translated to the resulting decision, or

the eligibility set in our case. Here we have taken a nonparametric and frequentist approach, as

opposed to other potential Bayesian methods.

In implementation we choose 𝛼 = 0.05, so that the eligibility set 𝐸 has the interpretation of

approximating a 95% confidence set for 𝑒. In the above developments, 𝑑 (𝑃𝑒, �̂�) ≤ [ can in fact be

replaced with a more general set 𝑃𝑒 ∈ U where U is calibrated from the data. Nonetheless, the

distance-based set (or “ball") surrounding the empirical distribution is intuitive to understand, and

our specific choice of the set below falls into such a representation.

To use Eq. (7.1), there are two immediate questions:

1. What 𝑑 (·, ·) should and can we use, and how do we calibrate [?

2. How do we determine whether there exists 𝑃𝑒 that satisfies 𝑑 (𝑃𝑒, �̂�) ≤ [ for a given 𝑒?
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In the following two sections, we address the above two questions respectively which would then

lead us to Algorithm 7.1.

7.3 Constructing Discrepancy Measures

For the first question, we first point out that in theory many choices of 𝑑 could be used (basi-

cally, any 𝑑 that satisfies the confidence property in Theorem 7.1). But, a poor choice of 𝑑 would

lead to a more conservative result, i.e., larger 𝐸 , than others. A natural choice of 𝑑 should capture

the discrepancy of the distributions efficiently. Moreover, the choice of 𝑑 should also account for

the difficulty in calibrating [ such that the assumption in Theorem 7.1 can be satisfied, as well as

the computational tractability in solving the eligibility determination problem in Eq. (7.1).

Based on the above considerations, we construct 𝑑 and calibrate [ as follows. First, we “sum-

marize" the data 𝐷1 into a lower-dimensional representation, say {𝑠(𝑖)1 , . . . , 𝑠
(𝑖)
𝑚 }, 𝑖 = 1, . . . , 𝑛1,

where 𝑠(𝑖)𝑣 = 𝑆𝑣 (𝑦 (𝑖) (𝑡)𝑡=0,...,𝑇 ) for some function 𝑆𝑣 (·). For convenience, we denote S(·) =

(𝑆1(·), . . . , 𝑆𝑚 (·)) : R𝑛𝑡+1 → R𝑚, and s(𝑖) = (𝑠(𝑖)1 , . . . , 𝑠
(𝑖)
𝑚 ). We call S(·) the “summary func-

tion" and s(𝑖) the “summaries" of the 𝑖-th output. S(·) attempts to capture important characteristics

of the raw data (we will see later that we use the positions and values of the peaks extracted from

Fourier analysis). Also, the low dimensionality of s(𝑖) is important to calibrate [ well.

Next, we define

𝑑 (𝑃𝑒, �̂�) = max
𝑣=1,...,𝑚

sup
𝑥∈R

��𝐹𝑒,𝑣 (𝑥) − �̂�𝑣 (𝑥)�� , (7.3)

where �̂�𝑣 (𝑥) = 1
𝑛1

∑𝑛1
𝑖=1 𝐼 (𝑠

(𝑖)
𝑣 ≤ 𝑥), with 𝐼 (·) denoting the indicator function, is the empirical

distribution function of 𝑠(𝑖)𝑣 (i.e., the distribution function of �̂� projected onto the 𝑣-th summary).

𝐹𝑒,𝑣 (𝑥) is the probability distribution function of the 𝑣-th summary of the simulation model output

𝑆𝑣 (𝑦(𝑎, 𝑒, 𝑡))𝑡=0,...,𝑇 (i.e., the distribution function of the projection of 𝑃𝑒 onto the 𝑣-th summary).

We then choose [ = 𝑞1−𝛼/𝑚/
√
𝑛1 as the (1 − 𝛼/𝑚)-quantile of the Kolmogorov-Smirnov (KS)

statistic, namely that 𝑞1−𝛼/𝑚 is the (1 − 𝛼/𝑚)-quantile of sup𝑥∈[0,1] |𝐵𝐵(𝑥) | where 𝐵𝐵(·) denotes

a standard Brownian bridge [258, 259].
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To understand Eq. (7.3), note that the set of 𝑃𝑒 that satisfies 𝑑 (𝑃𝑒, �̂�) ≤ [ is equivalent to 𝑃𝑒

that satisfies

sup
𝑥∈R

��𝐹𝑒,𝑣 (𝑥) − �̂�𝑣 (𝑥)�� ≤ 𝑞1−𝛼/𝑚√
𝑛1

, 𝑣 = 1, . . . , 𝑚, (7.4)

Here, sup𝑥∈R
��𝐹𝑒,𝑣 (𝑥) − �̂�𝑣 (𝑥)�� is the KS-statistic for a goodness-of-fit test against the distribution

𝐹𝑒,𝑣 (𝑥), using the data on the 𝑣-th summary. Since we have 𝑚 summaries and hence 𝑚 tests, we

use a Bonferroni correction and deduce that

lim inf
𝑛1→∞

P

(
sup
𝑥∈R

��𝐹𝑡𝑟𝑢𝑒,𝑣 (𝑥) − �̂�𝑣 (𝑥)�� ≤ 𝑞1−𝛼/𝑚√
𝑛1

for 𝑣 = 1, . . . , 𝑚
)
≥ 1 − 𝛼,

where 𝐹𝑡𝑟𝑢𝑒,𝑣 denotes the true distribution function of the 𝑣-th summary. Thus, the (asymptotic

version of the) assumption in Theorem 7.1 holds.

Note that here the quality of the summaries does not affect the statistical correctness of our

method (in terms of overfitting), but it does affect crucially the resulting conservativeness (in the

sense of getting a larger 𝐸). Moreover, in choosing the number of summaries 𝑚, there is a tradeoff

between the conservativeness coming from representativeness and simultaneous estimation. On

one end, using more summaries mean more knowledge we impose on 𝑃𝑒, which translates into a

smaller feasible set for 𝑃𝑒 and ultimately a smaller eligibility set 𝐸 . This relation, however, is true

only if there is no statistical noise coming from the data. In the case of finite data size 𝑛1, then

more summaries also means that constructing the feasible set for 𝑃𝑒 requires more simultaneous

estimations in calibrating its size, which is manifested in the Bonferroni correction whose degree

increments with each additional summary. In our implementation (see Section 7.7), we find that

using 12 summaries seems to balance well this representativeness versus simultaneous estimation

error tradeoff.

We also note that there could be other approaches than Bonferroni to aggregate the statistics

of individual summaries to obtain an overall familywise guarantee, which could potentially reduce

its conservativeness especially when the summaries are strongly correlated. These alternatives

could be done by estimating the dependence among the summaries, or using 𝑝-value aggregation
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methods that do not require dependence information [260, 261, 262]. We choose Bonferroni here

since it is easy to use and perform reasonably in our implementation.

7.4 Determining Existence of an Aleatory Distribution

Now we address the second question on how we can decide, for a given 𝑒, whether a 𝑃𝑒 exists

such that 𝑑 (𝑃𝑒, �̂�) ≤ [. We first rephrase the representation with a change of measure. Consider a

“baseline" probability distribution, say 𝑃0, that is chosen by us in advance. A reasonable choice,

for instance, is the uniform distribution over 𝐴, the support of 𝑎. Then we can write 𝑑 (𝑃𝑒, �̂�) ≤ [

as

sup
𝑥∈R

����∫
𝑆𝑣 (𝑢)≤𝑥

𝑊𝑒 (𝑢)𝑑𝑃0(𝑢) − �̂�𝑣 (𝑥)
���� ≤ 𝑞1−𝛼/𝑚√

𝑛1
, 𝑣 = 1, . . . , 𝑚, (7.5)

where 𝑊𝑒 (·) = 𝑑𝑃𝑒/𝑑𝑃0 is the Radon-Nikodym derivative of 𝑃𝑒 with respect to 𝑃0, and we have

used the change-of-measure representation 𝐹𝑒,𝑣 (𝑥) =
∫
𝑆𝑣 (𝑢)≤𝑥

𝑊𝑒 (𝑢)𝑑𝑃0(𝑢). Here we have as-

sumed that 𝑃0 is suitably chosen such that absolute continuity of 𝑃𝑒 with respect to 𝑃0 holds.

Eq. (7.5) turns the determination of the existence of eligible 𝑃𝑒 into the existence of an eligible

Radon-Nikodym derivative𝑊𝑒 (·).

The next step is to utilize Monte Carlo simulation to approximate 𝑃0. More specifically, given

𝑒, we run 𝑘 simulation runs under 𝑃0 to generate (𝑦(𝑎 ( 𝑗) , 𝑒, 𝑡))𝑡=0,...,𝑇 for 𝑗 = 1, . . . , 𝑘 . Then

Eq. (7.5) can be approximated by

sup
𝑥∈R

����� 𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 ((𝑦(𝑎 ( 𝑗) , 𝑒, 𝑡))𝑡=0,...,𝑇 ) ≤ 𝑥) − �̂�𝑣 (𝑥)

����� ≤ 𝑞1−𝛼/𝑚√
𝑛1

, 𝑣 = 1, . . . , 𝑚, (7.6)

where 𝑊 𝑗 = (1/𝑘) (𝑑𝑃𝑒/𝑑𝑃0((𝑦(𝑎 ( 𝑗) , 𝑒, 𝑡)))) represents the (unknown) sampled likelihood ratio

from the view of importance sampling [23, 64]. Our task is to find a set of weights, 𝑊 𝑗 , 𝑗 =

1, . . . , 𝑘 , such that Eq. (7.6) holds. These weights should approximately satisfy the properties

of the Radon-Nikodym derivative, namely positivity and integrating to one. Thus, we seek for
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𝑊 𝑗 , 𝑗 = 1, . . . , 𝑘 such that

sup
𝑥∈R

����� 𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 ((𝑦(𝑎 ( 𝑗) , 𝑒, 𝑡))𝑡=0,...,𝑇 ) ≤ 𝑥) − �̂�𝑣 (𝑥)

����� ≤ 𝑞1−𝛼/𝑚√
𝑛1

, 𝑣 = 1, . . . , 𝑚 (7.7)

𝑘∑︁
𝑗=1
𝑊 𝑗 = 1, 𝑊 𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑘, (7.8)

where Eq. (7.8) enforces the weights to lie in a probability simplex. If 𝑘 is much larger than 𝑛1,

then the existence of 𝑊 𝑗 , 𝑗 = 1, . . . , 𝑘 satisfying Eq. (7.7) and Eq. (7.8) would determine that the

considered 𝑒 is in 𝐸 . To summarize, we have:

Theorem 7.2. Suppose 𝑘 = 𝜔(𝑛1), and 𝑃𝑡𝑟𝑢𝑒 is absolutely continuous with respect to 𝑃0 and that

∥𝑑𝑃𝑡𝑟𝑢𝑒/𝑑𝑃0∥∞ ≤ 𝐶 for some constant 𝐶 > 0 and ∥ · ∥∞ denotes the essential supremum. Suppose,

for each 𝑒, we generate 𝑘 simulation replications to get (𝑦(𝑎 ( 𝑗) , 𝑒, 𝑡))𝑡=0,...,𝑇 ), 𝑗 = 1, . . . , 𝑘 , where

𝑎 ( 𝑗) are drawn from 𝑃0 in an i.i.d. fashion. Then the set

𝐸 =

{
𝑒 : there exists𝑊 𝑗 , 𝑗 = 1, . . . , 𝑘 such that Eq. (7.7) and Eq. (7.8) hold

}
will satisfy

lim inf
𝑛1→∞,𝑘/𝑛1→∞

P(𝑒𝑡𝑟𝑢𝑒 ∈ 𝐸) ≥ 1 − 𝛼.

The proof of Theorem 7.2 is in Section 7.14. Note that this theorem is an asymptotic state-

ment when 𝑘 is chosen much larger than 𝑛1. In our subsequent implementation, we configure our

simulation size so that the latter condition holds.

Note that in Theorem 7.2, 𝑊 𝑗 ’s represent the unknown sampled likelihood ratios such that,

together with the 𝑎 ( 𝑗)’s generated from 𝑃0, the function

𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 ((𝑦(𝑎 ( 𝑗) , 𝑒, 𝑡))𝑡=0,...,𝑇 ) ≤ ·)
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approximates the unknown true 𝑣-th summary distribution function 𝐹𝑡𝑟𝑢𝑒,𝑣.

To use the above 𝐸 and elicit the guarantee in Theorem 7.2, we still need some steps in order

to conduct feasible numerical implementation. First, we need to discretize or sufficiently sample

𝑒’s over 𝐸0, since checking the existence of eligible𝑊 𝑗 ’s for all 𝑒 is computationally infeasible. In

our implementation we draw 𝑛2 = 1000 𝑒’s uniformly over 𝐸0, call them 𝑒(1) , . . . , 𝑒(𝑛2) , and then

put together the geometry of 𝐸 from the eligible 𝑒(𝑙)’s. Second, the current representation of the

KS constraint Eq. (7.7) involves entire distribution functions. We can write Eq. (7.7) as a finite

number of linear constraints, given by

�̂�𝑣 (𝑠(𝑖)𝑣 +) −
𝑞1−𝛼/𝑚√
𝑛1
≤

𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 ((𝑦(𝑎 ( 𝑗) , 𝑒, 𝑡))𝑡=0,...,𝑇 ) ≤ 𝑠(𝑖)𝑣 ) ≤ �̂�𝑣 (𝑠(𝑖)𝑣 −) +

𝑞1−𝛼/𝑚√
𝑛1

(7.9)

for 𝑖 = 1, . . . , 𝑛1, 𝑣 = 1, . . . , 𝑚, where 𝑠(𝑖)𝑣 , 𝑖 = 1, . . . , 𝑛1 are the 𝑣-th summary of the 𝑖-th data point,

and 𝑠(𝑖)𝑣 + and 𝑠(𝑖)𝑣 − denote the right and left limits of the empirical distribution at 𝑠(𝑖)𝑣 .

Thus, putting everything together, we solve, for each 𝑒(𝑙) , 𝑙 = 1, . . . , 𝑛2, the feasibility problem:

Find𝑊 𝑗 , 𝑗 = 1, . . . , 𝑘 such that Eq. (7.9) and Eq. (7.8) hold.

If there exists feasible 𝑊 𝑗 , 𝑗 = 1, . . . , 𝑘 , then 𝑒(𝑙) is eligible. The set {𝑒(𝑙) : 𝑒(𝑙) is eligible} is

an approximation of 𝐸 . Note that this is a “sampled" subset of 𝐸 . In general, without running the

simulation at the other points of 𝐸 , there is no guarantee whether these other points are eligible

or not. However, if the distribution of {𝑦(𝑎, 𝑒, 𝑡)}𝑡=0,...,𝑇 is continuous in 𝑒 in some suitable sense,

then it is reasonable to believe that the neighborhood of an eligible point 𝑒(𝑙) is also eligible (and

vice versa). In this case, we can “smooth" the discrete set of {𝑒(𝑙) : 𝑒(𝑙) is eligible } if needed

(e.g., by doing some clustering and taking the convex hull of each cluster). Finally, note that the

feasibility problem above is a linear problem in the decision variables𝑊 𝑗 ’s.
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7.5 Towards the Main Procedure

To link to our main Algorithm 7.1, we offer an equivalent approach to the above feasibility-

problem-based procedure that allows further flexibility in choosing the threshold 𝑞1−𝛼/𝑚, which

currently is set as the Bonferroni-adjusted KS critical value. This equivalent approach leaves this

choice of threshold open and can determine the set of eligible 𝑒(𝑙) as a function of the threshold,

thus giving some room to improve conservativeness should the formed approximate 𝐸 turns out

to be too loose according to other expert opinion. Here, we solve, for each 𝑒(𝑙) , 𝑙 = 1, . . . , 𝑛2, the

optimization problem

𝑞∗
𝑙
= min 𝑞

s.t. �̂�𝑣 (𝑠(𝑖)𝑣 +) − 𝑞√
𝑛1

≤ ∑𝑘
𝑗=1𝑊 𝑗 𝐼 (𝑆𝑣 ((𝑦(𝑎 ( 𝑗) , 𝑒(𝑙) , 𝑡))𝑡=0,...,𝑇 ) ≤ 𝑠(𝑖)𝑣 )

≤ �̂�𝑣 (𝑠(𝑖)𝑣 −) + 𝑞√
𝑛1

for 𝑖 = 1, . . . , 𝑛1, 𝑣 = 1, . . . , 𝑚;∑𝑘
𝑗=1𝑊 𝑗 = 1, 𝑊 𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑘,

(7.10)

where the decision variables are 𝑊 𝑗 , 𝑗 = 1, . . . , 𝑘 and 𝑞. If the optimal value 𝑞∗
𝑙

satisfies 𝑞∗
𝑙
≤

𝑞1−𝛼/𝑚, then 𝑒(𝑙) is eligible (This can be seen by checking its equivalence to the feasibility problem

via the monotonicity of the feasible region for 𝑊 𝑗 ’s in Eq. (7.10) as 𝑞 increases). The rest then

follows as above that {𝑒(𝑙) : 𝑒(𝑙) is eligible} is an approximation of 𝐸 . Like before, Eq. (7.10) is an

LP. Moreover, here 𝑞∗
𝑙

captures in a sense the “degree of eligibility" of 𝑒(𝑙) , and allows convenient

visualization by plotting 𝑞∗
𝑙

against 𝑒(𝑙) to assess the geometry of 𝐸 . For these reasons we prefer to

use Eq. (7.10) over the feasibility problem before. These give the full procedure in Algorithm 7.1.

Note that Algorithm 7.1 has a variant where we re-generate a sample of 𝑎 ( 𝑗)’s for each different

𝑒(𝑙) . It is clear that the correctness guarantee (Theorem 7.2) still holds in this case.

Now we analyze the complexity of our calibration procedure. To implement Algorithm 7.1, we

evaluate the output 𝑦 for 𝑘 × 𝑛2 times and use FFT to summarize the outputs 𝑘 × 𝑛2 times. Then

we solve the linear optimization for 𝑛2 times, where the linear optimization problem includes 𝑘 +1
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decision variables and 2𝑚 × 𝑛1 + 𝑘 + 1 linear constraints.

Moreover, we also present how to find eligible distributions of 𝑎 for an eligible 𝑒(𝑙) . The set of

eligible distributions of 𝑎 is approximated by the weights𝑊 𝑗 ’s that satisfy Eq. (7.9) and Eq. (7.8),

namely {
𝑊 𝑗 , 𝑗 = 1, . . . , 𝑘 :�̂�𝑣 (𝑠(𝑖)𝑣 +) −

𝑞1−𝛼/𝑚√
𝑛1

≤
𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 ((𝑦(𝑎 ( 𝑗) , 𝑒(𝑙) , 𝑡))𝑡=0,...,𝑇 ) ≤ 𝑠(𝑖)𝑣 )

≤ �̂�𝑣 (𝑠(𝑖)𝑣 −) +
𝑞1−𝛼/𝑚√
𝑛1

, for 𝑖 = 1, . . . , 𝑛1, 𝑣 = 1, . . . , 𝑚;

𝑘∑︁
𝑗=1
𝑊 𝑗 = 1, 𝑊 𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑘

}
, (7.11)

where 𝑊 𝑗 is the probability weight on 𝑎 ( 𝑗) . From this, one could also obtain approximate bounds

for quantities related to the distribution of 𝑎. For instance, to get approximate bounds for the mean

of 𝑎, we can maximize and minimize
∑
𝑗 𝑊 𝑗𝑎

( 𝑗) subject to constraint (7.11).

7.6 Related Literature

Before we discuss our numerical findings, we discuss some related literature on the problem

setting and our proposed methodology.

The model calibration problem that infers input from output data has been studied across dif-

ferent disciplines. In scientific areas it is viewed as an inverse problem [186], in which Bayesian

methodologies are predominantly used (e.g., [212, 213, 187, 214, 215]). Our presented approach

is an alternative to Bayesian methods that aim to provide frequentist guarantees in the form of

confidence regions. In addition to Bayesian approaches, other alternative methods include entropy

maximization [263] that use the entropy as a criterion to select the “best" distribution, but it does

not have the frequentist guarantee in recovering the true distribution that we provide in this UQ

Challenge.
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We point out that model calibration has also been investigated in the stochastic simulation

community [264, 183]. In this setting, model calibration is often viewed together with model

validation. To validate a model, the conventional approach is to use statistical tests such as the

two-sample mean-difference tests [184] or others like the Schruben-Turing test [185] that decides

whether the simulated output data and historical real output data are close enough. If not, then

the simulation model is re-calibrated, and this process is repeated until the gap between simulation

and real data is sufficiently close. Though having a long history, the development of rigorous

frameworks to conduct model calibration and validation has been quite open with relatively few

elaborate discussions in the literature [181].

In terms of methodology, our approach is closely related to RO, which is an established method

for optimization under uncertainty that advocates the representation of unknown or uncertain pa-

rameters in the model as a (deterministic) set (e.g., [228, 255]). This set is often called an un-

certainty set or an ambiguity set. In the face of decision-making, RO optimizes the decision over

the worst-case scenario within the uncertainty set, which usually comes in the form of a minimax

problem with the outer optimization on the decision while the inner optimization on the worst case

scenario. DRO, a recently active branch of RO, considers stochastic optimization where the under-

lying probability distribution is uncertain (e.g., [203, 205, 204]). In this case, the uncertainty set

lies in the space of probability distributions and one attempts to make decisions under the worst-

case distribution. In this chapter we take a generalized view of RO or DRO as attempting to find a

set of eligible “decisions", namely the 𝑒, so it does not necessarily involve a minimax problem but

instead a set construction.

In data-driven RO or DRO, the uncertainty set is constructed or calibrated from data. If such

a set has the property of being a confidence region for the uncertain parameters or distributions,

then by solving the RO or DRO, the confidence guarantee can be translated to bounds on the

resulting decision, and in our case the eligibility set. This approach of constructing uncertainty

sets, by viewing them as confidence regions or via hypothesis testing, has been the main approach

in data-driven RO or DRO [229]. Recently, alternate approaches have been studied to reduce the

252



conservativeness in set calibration, by utilizing techniques from empirical likelihood [265, 266,

267], Wasserstein profile function [268], Bayesian perspectives [269] and data splitting [257, 270].

In our development, we have constructed an uncertainty set for the unknown distribution 𝑃𝑒

via a confidence region associated with the KS goodness-of-fit test. This uncertainty set has been

proposed in [229]. Other distance-based uncertainty sets, including 𝜙-divergence [230, 206, 170,

173, 174, 231] and Wasserstein distance [232, 233, 234], have also been used, as well as sets

based on moment [204, 235, 171] or distributional shape information [236, 237, 238]. We use

a simultaneous group of KS statistics with Bonferroni correction, motivated by the tractability in

the resulting integration with the importance weighting. The closest work to our framework is

the stochastic simulation inverse calibration problem studied in [202], but they consider single-

dimensional output and parameter to calibrate the input distributions, in contrast to our “summary"

approach via Fourier analysis and the multi-dimensional settings we face.

Another important ingredient in our approach is importance sampling. This is often used as a

variance reduction tool (e.g., [51, 52]; [54] Chapter 5; [34] Chapter 4) and is shown to be partic-

ularly effective in rare-event simulation (e.g., [22, 63, 23, 64]). It operates by sampling a random

variable from a different distribution from the true underlying distribution, and applies a so-called

likelihood ratio to de-bias the resulting estimate. Other than variance reduction, importance sam-

pling is also used in risk quantification in operations research and mathematical finance that uses

a robust optimization perspective (e.g., [170, 172, 173]), which is more closely related to our use

in this chapter. Additionally, it is used in Bayesian computation [271], and more recently in ma-

chine learning contexts such as covariate shift estimation [272, 273] and off-policy evaluation in

reinforcement learning [274, 275].

In the remainder of this chapter, we illustrate the use of our methodology and report our nu-

merical results on the UQ Challenge.
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7.7 Summarizing Discrete-Time Histories using Fourier Transform

By observing the plot of the outputs 𝑦 (𝑖) , 𝑖 = 1, . . . , 𝑛1 (see Figure 7.1), we judge that these time

series are highly seasonal. Naturally, we choose to use discrete Fourier transform to summarize

(𝑦(𝑡))𝑡=0,...,𝑇 , and we may write 𝑦(𝑡) in the form 𝑦(𝑡) = ∑𝑁−1
𝑘=−(𝑁−1) 𝐶𝑘𝑒

𝑖𝑘𝜔0𝑡 where 𝜔0 =
2𝜋𝑛𝑡
𝑁𝑇

. In

order to apply Fast Fourier Transform (FFT) more easily, we pick 𝑁 = 2⌈log2 (𝑛𝑡+1)⌉ and pad each

𝑦 (𝑖) with trailing zeros to length 𝑁 .

Figure 7.1: The plot of 𝑦 (𝑖) , 𝑖 = 1, . . . , 𝑛1

First we apply FFT to 𝑦 (𝑖) , 𝑖 = 1, . . . , 𝑛1. For each 𝑦 (𝑖) , we compute the 𝐶𝑘 ’s. Figure 7.2 shows

the real part and the imaginary part of 𝐶𝑘 ’s against the corresponding frequencies. Note that we

only show 𝐶𝑘 ’s with positive 𝑘 since 𝐶−𝑘 is the complex conjugate of 𝐶𝑘 .

For the real part, we see that there is a large positive peak, a large negative peak, a small positive

peak and a small negative peak. After testing, we confirm that for any 𝑖, the large peaks lie in the

first 14 terms (from 0Hz to 1.59Hz), while the small peaks lie between the 15th term and the 50th

term (from 1.71Hz to 5.98Hz). For the imaginary part, we see that there is a large negative peak

and a small positive peak. The large peak is also located in the first 14 terms and the small peak

between the 15th term and the 50th one.

Therefore, we choose to use the following method to summarize 𝑦 (i.e., construct the function

S(·)): first, we apply the Fourier transform to compute 𝐶𝑘 ’s and the corresponding frequencies;

second, we compute the real part and the imaginary part of 𝐶𝑘 ’s; third, for the real part, we find

the maximum value and the minimum value over [0𝐻𝑧, 1.59𝐻𝑧] and [1.71𝐻𝑧, 5.98𝐻𝑧], as well
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(a) Real part (b) Imaginary part

Figure 7.2: The real part and the imaginary part of 𝐶𝑘 ’s against the corresponding frequencies

as their corresponding frequencies; fourth, for the imaginary part, we find the minimum value over

[0𝐻𝑧, 1.59𝐻𝑧] and the maximum value over [1.71𝐻𝑧, 5.98𝐻𝑧] as well as their corresponding

frequencies. Then we use these 12 parameters as the summaries of 𝑦.

To illustrate how well these summaries fit 𝑦, Figure 7.3a shows the comparison for 𝑦 (1) . The

fit qualities of other time series are similar to this example. Though they are not extremely close

to each other, the fitted curves do resemble the original curves. Note that it is entirely possible

to improve the fitting if we keep more frequencies even if they are not as significant as the main

peaks. For instance, Figure 7.3b shows the improved fitting curve if for both real part and imag-

inary part, we respectively keep the 20 frequencies with the largest values. It can be seen that

now the fit quality is quite good. On the other hand, as discussed in Section 7.2, using a larger

number of summaries both represents more knowledge of 𝑃𝑒 (better fitting) but also leads to more

simultaneous estimation error when using the Bonferroni correction needed in calibrating the set

for 𝑃𝑒. To balance the conservativeness of our approach coming from representativeness versus

simultaneous estimation, we choose to use the 12-parameter summaries depicted before.
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(a) 12 parameters (b) 80 parameters

Figure 7.3: Fitting 𝑦 (1) with different number of parameters

7.8 Uncertainty Reduction (Problem B)

7.8.1 Ranking Epistemic Parameters (B.1 and B.2)

Now we implement Algorithm 7.1 with 𝑛2 = 𝑘 = 1000 and the summary function S(·) defined

in the previous section. The dimension of the summary function is 𝑚 = 12. We choose 𝛼 to be

0.05. Thus, following the algorithm, for each 𝑙 = 1, . . . , 𝑛2, we compute 𝑞∗
𝑙

and then compare it

with 𝑞1−𝛼/𝑚 = 𝑞1−0.05/12 = 1.76.

In Figure 7.4, we plot the 𝑞∗
𝑙
’s against each dimension of 𝑒. The red horizontal lines in the

graphs correspond to 𝑞1−𝛼/𝑚 = 1.76. Thus the dots below the red lines constitute the eligible 𝑒’s.

We rank the epistemic parameters according to these graphs, namely we rank higher the parameter

whose range can potentially be reduced the most if we remove the region with no eligible 𝑒. Note

that this ranking scheme can be summarized using more rigorous metrics related to the expected

amount of eligible 𝑒’s after range shrinkage, but since there are only four dimensions, using the

graphs directly seem sufficient for our purpose here.

We find that the values of 𝑒2 and 𝑒4 of the eligible 𝑒’s broadly range from 0 to 2, which implies

that reducing the ranges of these two dimensions could hardly reduce our uncertainty. By contrast,

the values of 𝑒1 and 𝑒3 of the eligible 𝑒’s are both concentrated in the lower part of [0, 2]. Thus,

our ranking of the epistemic parameters according to their ability to improve the predictive ability
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is 𝑒3 > 𝑒1 > 𝑒2 > 𝑒4.

Chances are that the true values of 𝑒1 and 𝑒3 are relatively small. In order to further pinpoint

the true values of 𝑒1 and 𝑒3, we choose to make two uncertainty reductions: increase the lower

limits of the bounding interval of 𝑒1 and 𝑒3.

(a) 𝑒1 (b) 𝑒2

(c) 𝑒3 (d) 𝑒4

Figure 7.4: 𝑞∗
𝑙

against each epistemic variable

7.8.2 Impact of the value of 𝑛1 (A.2)

To investigate the impact of the value of 𝑛1, for different values of 𝑛1 we randomly sample

𝑛1 outputs without replacement. Then we take these outputs as the new data set. By repeatedly

implementing Algorithm 7.1, we find that the larger is 𝑛1, the smaller is the proportion of eligible

𝑒’s. It is intuitive that as the data size grows, 𝑒 can be better pinpointed. Moreover, except for 𝑒4,
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the range of each epistemic variable of eligible 𝑒’s obviously shrinks as 𝑛1 increases, which further

confirms that 𝑒4 is the least important epistemic variable.

7.8.3 Updated Parameter Ranking (B.3)

After the epistemic space is reduced, we repeat the process in Section 7.8.1 but now 𝑒’s are

generated uniformly from 𝐸1. From the associated scatter plots (Figure 7.5), the updated ranking

of the epistemic parameters is 𝑒2 > 𝑒3 > 𝑒1 > 𝑒4.

(a) 𝑒1 (b) 𝑒2

(c) 𝑒3 (d) 𝑒4

Figure 7.5: 𝑞∗
𝑙

against each epistemic variable (refined)
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7.9 Reliability of Baseline Design (Problem C)

7.9.1 Failure Probabilities and Severity (C.1, C.2 and C.5)

Combining the refined range of 𝑒 provided by the host with our Algorithm 7.1, we construct

𝐸 ⊂ 𝐸1. To estimate min𝑒∈𝐸/max𝑒∈𝐸 P(𝑔𝑖 (𝑎, 𝑒, \) ≥ 0), we run simulations to respectively solve

min/max
𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑔𝑖 (𝑎 ( 𝑗) , 𝑒, \) ≥ 0)

s.t. 𝑒 ∈ 𝐸,𝑊 ∈ 𝑈𝑒,

(7.12)

where 𝑈𝑒 is the set of (𝑊1, · · · ,𝑊𝑘 ) in Eq. (7.11) that is dependent on the value of 𝑒. These give

the range of 𝑅𝑖 (\). We use the same method to approximate 𝑅(\), the failure probability for any

requirement. Note that in our implementation the 𝐸 in the formulations above is represented by

discrete points 𝑒(𝑙)’s. As discussed previously, under additional smoothness assumptions, we could

“smooth" these points to obtain a continuum. Nonetheless, under sufficient sampling of 𝑒(𝑙) , the

discretized set should be a good enough approximation in the sense that the optimal values from

the “discretized" problems are close to those using the continuum.

Using the above method, we get that the ranges of 𝑅1(\), 𝑅2(\), 𝑅3(\) and 𝑅(\) are approxi-

mately [0, 0.6235], [0, 0.7320], [0, 0.5270] and [0, 0.8217]. Though the ranges seem to be quite

wide, they can provide us useful information to be utilized next.

To evaluate 𝑠𝑖 (\), the severity of each individual requirement violation, similarly we simulate

max
𝑒∈𝐸

max
𝑊∈𝑈

𝑘∑︁
𝑗=1
𝑊 𝑗𝑔𝑖 (𝑎 ( 𝑗) , 𝑒, \)𝐼 (𝑔𝑖 (𝑎 ( 𝑗) , 𝑒, \) ≥ 0).

The results for 𝑠1(\), 𝑠2(\) and 𝑠3(\) are respectively 0.1464, 0.0493 and 3.5989. Clearly the

violation of 𝑔3 is the most severe one while the violation of 𝑔2 is the least.
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7.9.2 Rank for Uncertainties (C.3)

Our analysis on the rank for epistemic uncertainties is based on the range of 𝑅(\) obtained

above. In our computation, we obtain

min
𝑊∈𝑈
/max
𝑊∈𝑈

𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑔𝑖 (𝑎 ( 𝑗) , 𝑒, \) ≥ 0 for some 𝑖 = 1, 2, 3)

for each eligible 𝑒 ∈ 𝐸 . For simplicity, we use 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 to denote these two values for each

eligible 𝑒 ∈ 𝐸 respectively.

Our approach is to scrutinize the plots of 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 against each epistemic variable (Figure

7.6 and 7.7). For 𝑅𝑚𝑖𝑛, large values are notable, since it means that any distribution that provides

similarity to the original data is going to fail with a large probability. Therefore the most ideal

reduction is to avoid the region of 𝑒 such that all 𝑅𝑚𝑖𝑛’s are large. For 𝑅𝑚𝑎𝑥 , the largest 𝑅𝑚𝑎𝑥 for

the region denotes the maximum failure probability that one can have. So we pay attention to the

epistemic variables that could potentially reduce the “worst-case” failure probability. Note that it

is possible to convert this approach to a quantitative metric by setting a threshold to define large

𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 , and checking the reduced number of sampled 𝑒’s having a large 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥

when the range of an epistemic variable shrinks. But since there are only four dimensions, visual-

izing from the graphs directly seems sufficient for our purpose. Based on these considerations, we

conclude that the rank for epistemic uncertainties is 𝑒3 > 𝑒1 > 𝑒2 > 𝑒4.

7.9.3 Representative Realizations (C.4)

Since the distribution of 𝑎 in our approach is defined as an ambiguity set that depends on 𝑒,

the failure domain would also be based on each eligible 𝑒. We classify an eligible 𝑒 to be notable

if its corresponding 𝑅𝑚𝑖𝑛 is relatively large. We set this threshold to define a large 𝑅𝑚𝑖𝑛 to 0.1,

but noting that the choice here is context-dependent in general. For convenience, we denote the
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Figure 7.6: 𝑅𝑚𝑖𝑛 against each epistemic variable.

Figure 7.7: 𝑅𝑚𝑎𝑥 against each epistemic variable.

“best-case"distribution corresponding to 𝑅𝑚𝑖𝑛 as 𝑤𝑚𝑖𝑛, where

𝑤𝑚𝑖𝑛 = arg min
𝑊∈𝑈

𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑔𝑖 (𝑎 ( 𝑗) , 𝑒, \) ≥ 0).
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We consider the representative realizations of uncertainties as those 𝑎’s with large value of 𝑤𝑚𝑖𝑛

(in our case we consider > 0.05).

From our observation, we find that these representative realizations have a clear pattern on the

scatter plot with 𝑎1 and 𝑎3 as the coordinates (as in Figure 7.8). We also provide some example

responses of cases in each group. We observe that there is a clear similarity in the responses within

each group, which can be interpreted as different failure patterns.

Figure 7.8: The four groups of representative realizations on the scatter plot with 𝑎1 and 𝑎3 as the
coordinates. The four groups are failure cases caused by 𝑔1, 𝑔2 and 𝑔3 (blue), 𝑔1 (red), 𝑔2 (yellow)
and 𝑔3 (green).

262



7.10 Reliability-Based Design (Problem D)

To find a reliability-optimal design point \𝑛𝑒𝑤, we minimize

max
𝑒∈𝐸

min
𝑊∈𝑈

𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑔(𝑎 ( 𝑗) , 𝑒, \) ≥ 0). (7.13)

Here is the reason why we choose this function as the objective. For an eligible 𝑒 ∈ 𝐸 , if

min𝑊∈𝑈
∑𝑘
𝑗=1𝑊 𝑗 𝐼 (𝑔(𝑎 ( 𝑗) , 𝑒, \) ≥ 0) is large, then the true probability in which the system fails

must be even larger than this “best-case" estimate, which implies that this point 𝑒 has a consider-

able failure likelihood. The objective above thus aims to find a design point to minimize this best-

case estimate, but taking the worst-case among all the eligible 𝑒’s. Arguably, one can use other

criteria such as minimizing max𝑒∈𝐸 max𝑊∈𝑈
∑𝑘
𝑗=1𝑊 𝑗 𝐼 (𝑔(𝑎 ( 𝑗) , 𝑒, \) ≥ 0), but this could make our

procedure more conservative.

The optimization problem (7.13) is of a “black-box" nature since the function 𝑔 is only ob-

served through simulation, and the problem is easily non-convex. Instead of insisting on full

optimality which could be difficult to achieve in this problem, we use gradient descent to guide us

toward local improvement over the baseline design. Note that we need to sample 𝑎 ( 𝑗) when we

land at a new \ during our iterations, and hence our approach takes the form of a stochastic gradi-

ent descent or stochastic approximation [276, 277]. Moreover, the gradient cannot be estimated in

an unbiased fashion as we only have black-box function evaluation, and thus we need to resort to

the use of finite-difference. This results in a zeroth-order or the so-called Kiefer-Wolfowitz (KW)

algorithm [278, 279]. As we have a nine-dimensional design variable, we choose to update \ via

a coordinate descent, namely at each iteration we choose one of the dimensions and run a central

finite-difference along that dimension, followed by a movement of \ guided by this gradient esti-

mate with a suitable step size. The updates are done in a round-about fashion over the dimensions.

The perturbation size in the finite-difference is chosen of order 1/𝑛1/4 here as it appears to perform

well empirically (though theoretically other scaling could be better).

Algorithm 7.2 shows the details of our optimization procedure. Considering that the compo-
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Algorithm 7.2: KW algorithm to find \𝑛𝑒𝑤.
Input: The baseline design point \𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. The initial step size 𝑐0. The initial perturbation

size 𝑎0. The max iteration 𝑁𝑚𝑎𝑥 . The objective function 𝑓 (\).
1 Set 𝑥𝑛𝑜𝑤 = 19 and 𝑛 = 1.
2 While 𝑛 ≤ 𝑁𝑚𝑎𝑥 do
3 Set 𝑐𝑛 = 𝑐0/𝑛1/4 and 𝑎𝑛 = 𝑎0/𝑛.
4 For 𝑖 from 1 to 9 do
5 𝑢 = 𝑓 (\𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ◦ (𝑥𝑛𝑜𝑤 + 𝑐𝑛𝑒𝑖)).
6 𝑙 = 𝑓 (\𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ◦ (𝑥𝑛𝑜𝑤 − 𝑐𝑛𝑒𝑖)).
7 𝑔 = (𝑢 − 𝑙)/(2𝑐𝑛).
8 𝑥𝑛𝑜𝑤 = 𝑥𝑛𝑜𝑤 − 𝑎𝑛𝑔𝑒𝑖.
9 End

10 𝑛 = 𝑛 + 1.
11 End
12 Output \𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ◦ 𝑥𝑛𝑜𝑤.
13 (◦ denotes the Hadamard product).

nents of \𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 are of very different magnitudes, we first perform a normalization to ease this

difference. The quantity 𝑥𝑛𝑜𝑤 encodes the position of the normalized \𝑛𝑜𝑤, and 19 denotes a nine-

dimensional vector of 1’s that is set as the initial normalized design point. We set 𝑐0 = 𝑎0 = 0.1

and 𝑁𝑚𝑎𝑥 = 8.

After running the algorithm, we arrive at a new design point, \𝑛𝑒𝑤. Compared with the baseline

design, the objective function decreases from 0.3656 to 0.2732. Note that this means that the

best-case estimate of the failure probability, among the worst possible of all eligible 𝑒’s, is 0.2732.

Compared to the final design discussed in Section 7.11, the improvement here is relatively small.

We believe that the small improvement could be caused by the conservativeness of the eligible set,

which is mainly due to the lack of data.

For \𝑛𝑒𝑤, the ranges of 𝑅1(\), 𝑅2(\), 𝑅3(\) and 𝑅(\) (defined in Section 7.9.1) are approxi-

mately [0, 0.5935], [0, 0.7469], [0, 0.5465] and [0, 0.8205]. We could observe from the plots of

𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 that 𝑒2 has significant different patterns on high values in both plots. According to

the trends shown in the plots, we rank the epistemic variables as 𝑒2 > 𝑒3 > 𝑒1 > 𝑒4.
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(a) Real part (b) Imaginary part

Figure 7.9: The real part and the imaginary part of 𝐶 (1)
𝑘

’s against the corresponding frequencies.

(a) Real part (b) Imaginary part

Figure 7.10: The real part and the imaginary part of 𝐶 (2)
𝑘

’s against the corresponding frequencies.

7.11 Design Tuning (Problem E)

With data sequence 𝐷2 = {𝑧(𝑖) (𝑡)} for 𝑖 = 1, . . . , 𝑛2, we may incorporate the additional in-

formation to update our model as before. Similar to Section 7.7, we use FFT to summarize

the highly seasonal responses. In particular, we represent (𝑧(𝑖)1 (𝑡))𝑡=0,...,𝑇 and (𝑧(𝑖)2 (𝑡))𝑡=0,...,𝑇 as

𝑧1(𝑡) =
∑𝑁−1
𝑘=−(𝑁−1) 𝐶

(1)
𝑘
𝑒−𝑖𝑘𝜔0𝑡 and 𝑧2(𝑡) =

∑𝑁−1
𝑘=−(𝑁−1) 𝐶

(2)
𝑘
𝑒−𝑖𝑘𝜔0𝑡 respectively. As shown in Fig-

ures 7.9 and 7.10, the responses in frequency domain have common patterns in the positive and

negative peaks. Again we use the values of these peaks and their corresponding frequencies to
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summarize 𝑧1 and 𝑧2, which leads to 20 extra parameters adding to the 12 parameters extracted

from 𝐷1.

With the extracted parameters from both 𝐷1 and 𝐷2, we now update our eligibility set for 𝐸

by computing 𝑞∗
𝑙
’s. We determine eligible 𝑒’s with the new threshold 𝑞1−0.05/32 = 1.89. The values

of 𝑞∗
𝑙
’s are presented in Figure 7.11. Compared with Figure 7.5, we observe that the trend in 𝑒2

changes slightly. The 𝑞∗
𝑙
’s with high value in 𝑒2 become higher after introducing the information

from 𝐷2, which indicates that 𝑒 with higher 𝑒2 is less eligible. Based on the stronger trend in 𝑒2

and the observation in Section 7.10, we determine to refine 𝑒2 on both ends.

(a) 𝑒1 (b) 𝑒2

(c) 𝑒3 (d) 𝑒4

Figure 7.11: 𝑞∗
𝑙

against each epistemic variable (after incorporating 𝐷2).

In Figure 7.12, we present 𝑞∗
𝑙
’s of samples of 𝑒 for determining the final eligibility set, 𝐸2.

With these updated information, the final design \ 𝑓 𝑖𝑛𝑎𝑙 is obtained using Algorithm 7.2, where
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\ 𝑓 𝑖𝑛𝑎𝑙 . The ranges of 𝑅1(\ 𝑓 𝑖𝑛𝑎𝑙), 𝑅2(\ 𝑓 𝑖𝑛𝑎𝑙), 𝑅3(\ 𝑓 𝑖𝑛𝑎𝑙) and 𝑅(\ 𝑓 𝑖𝑛𝑎𝑙) are [0,0.1676], [0,0.1620],

[0,0.046] and [0,0.2551] respectively. Compared to \𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and \𝑛𝑒𝑤, the worst-case reliability

performance is significantly improved.

(a) 𝑒1 (b) 𝑒2

(c) 𝑒3 (d) 𝑒4

Figure 7.12: 𝑞∗
𝑙

against each epistemic variable (final refined).

7.12 Risk-Based Design (Problem F)

Recall that we create an eligibility set for 𝑒 in the form of {𝑒(𝑙) : 𝑞∗
𝑙
≤ 𝑞1−𝛼/𝑚}, which provides

us (1−𝛼) confidence for covering the truth asymptotically. To reduce 𝑟% volume of the eligibility

set, we remove 𝑟% number of eligible points in the set with the larger 𝑞∗
𝑙
’s. Note that since the

samples of 𝑒’s are uniformly generated, the proportion of samples falling into the eligible set is

a reasonable estimate of the relative volume of the eligible set. Because larger 𝑞∗
𝑙

indicates less
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similarity with the true response, the reduced eligibility set maintains more important 𝑒(𝑙)’s.

In our setting for 𝑒, taking risks is equivalent to reducing the confidence level for covering

the truth. Let us assume the 𝑟% upper quantile of 𝑞∗
𝑙

is 𝑞𝑟%. Then the reduced eligibility set can

be represented as {𝑒(𝑙) : 𝑞∗
𝑙
≤ 𝑞𝑟%}. By finding the �̃� such that 𝑞𝑟% = 𝑞1−�̃�/𝑚, we can find the

confidence level 1 − �̃� that corresponds to each choice of 𝑟%. In later discussion, the reduced

eligibility set corresponding to risk level 𝑟% is denoted as 𝐸𝑟%.

In our experiment, we use 𝐸2 in Section 7.11 as the baseline. Table 7.1 shows the risk levels

and their corresponding confidence levels. The relation between 𝑟% and �̃� highly depends on

the value of 𝑞∗
𝑙
’s. In our case, we observe that a large portion of 𝑞∗

𝑙
’s are close to 𝑞1−𝛼/𝑚. As a

consequence, the reduction in the volume of the set does not lead to a similar extent of reduction

in the confidence level. Since the confidence level is almost not changed, we can anticipate that

the design results with different 𝑟% in the range of (0, 10) will perform similarly.

Table 7.1: The risk levels against their corresponding confidence level.

𝑟% 0 2 4 6 8 10
|𝐸𝑟% | 114 113 110 108 106 104
𝑞𝑟% 1.89 1.886 1.884 1.884 1.881 1.879
1 − �̃� 95% 94.9% 94.8% 94.8% 94.7% 94.6%

With different 𝑟%’s, we construct 𝐸𝑟%’s using the above approach and implement Algorithm 7.2

to obtain risk-based designs \𝑟%’s. Then we evaluate the \𝑟%’s by computing the reliability and

severity metrics based on their corresponding eligibility set 𝐸𝑟% and also 𝐸2. The evaluation re-

sults using 𝐸2 are shown in Figure 7.13. We observe from Figure 7.13 that both the reliability or

severity metrics are insensitive to the change of 𝑟% (since the results for all considered 𝑟%’s other

than 𝑟% = 4% are similar, we believe that the disparate performance at 𝑟% = 4% is caused jointly

by the randomness in the optimization algorithm and failure probability estimation). In fact, the

results are also insensitive to whether using 𝐸2 or 𝐸𝑟% to compute the metrics. Since the difference

can be neglected (the largest difference is smaller than 0.01), we omit the results using 𝐸𝑟%. From

these results, we confirm our conjecture that taking risks would not make much difference in our

design approach.
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(a) Reliability (b) Severity

Figure 7.13: The reliability and severity metrics for \𝑟%’s evaluated using 𝐸2.

7.13 Discussion

In this UQ Challenge, we propose a methodology to calibrate model parameters and quantify

calibration errors from output data under both aleatory and epistemic uncertainties. The approach

utilizes a framework based on an integration of distributionally robust optimization and importance

sampling, and operates computationally by solving sampled linear programs. It provides theoret-

ical confidence guarantees on the coverage of the ground truth parameters and distributions. We

apply and illustrate our approach to the model calibration and downstream risk analysis tasks in

the UQ Challenge. Our approach is drastically different from established Bayesian methodologies,

both in the type of guarantee (frequentist versus Bayesian) and computation method (optimiza-

tion versus posterior sampling). We anticipate much further work in the future in expanding our

methodology to more general problems as well as comparing it with the established approaches.

We discuss some immediate future improvements in our implementation in this UQ Challenge.

Our procedure relies on several configurations that warrant further explorations. First, the eligi-

bility set geometry is dictated by the choices of the distance metric between distributions and the

summary function. Our choice of KS-distance is motivated by nonparametric hypothesis testing

that provides asymptotic guarantees. However, since only a finite number of samples is available in

practice, its performance can be problem dependent, and other nonparametric test statistics could
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be considered. Regarding summary functions, we have chosen them based on the visualization of

Fourier transform and justify their number via a balance of representativeness and conservative-

ness in simultaneous estimation. Our refinement results indicate that our eligibility set performs

well in locating 𝑒, which validates our configurations. Nonetheless, a more rigorous approach to

choose both the distance metric and the summary functions is desirable.

Our approach requires sampling a number of 𝑎 and 𝑒 for eligibility set and aleatory distribution

construction. Since a limited size of naive (uniform) sample might miss important information

in a large continuous space and cause high variance, we have used several variance reduction

techniques including stratified sampling and common random numbers. We note that the samples

for 𝑎 have a larger effect on designs, since they are used to construct the associated best- and

worst-case distributions and the quality of samples can be crucial to correctly evaluating the design

performances. Moreover, a good sampling scheme can also lead to higher stability of the stochastic

gradient descent algorithm.

Lastly, we note that the conservative nature of our robust approach is reflected in the system

design. While our robust approach performs well in locating the eligibility set and providing upper

bounds on reliability, directly using these bounds as the objectives for optimizing designs appears

over-conservative. Further work on improving the choice of eligibility sets and sampling on 𝑎 and

𝑒 could help improve these design performances.

7.14 Supplementary A: Proof of Theorem 7.2

This proof is adapted from the proof of Theorem 2 in [202]. We denote 𝐿 = 𝑑𝑃𝑡𝑟𝑢𝑒/𝑑𝑃0. Let

𝑊 𝑗 =
𝐿 (𝑎 ( 𝑗 ) )∑𝑘
𝑗=1 𝐿 (𝑎 ( 𝑗 ) )

. For simplicity, we use y(𝑎) to denote (𝑦(𝑎, 𝑒𝑡𝑟𝑢𝑒, 𝑡))𝑡=1,...,𝑇 and use y 𝑗 to denote

(𝑦(𝑎 ( 𝑗) , 𝑒𝑡𝑟𝑢𝑒, 𝑡))𝑡=1,...,𝑇 . Then we have that
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sup
𝑥∈R

������ 𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) − �̂�𝑣 (𝑥)

������
≤ sup
𝑥∈R

������ 𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) −

1
𝑘

𝑘∑︁
𝑗=1

𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥)

������+
sup
𝑥∈R

������1𝑘 𝑘∑︁
𝑗=1

𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) − 𝐸𝑃0 (𝐿 (𝑎)𝐼 (𝑆𝑣 (y(𝑎)) ≤ 𝑥))

������+
sup
𝑥∈R

��𝐸𝑃0 (𝐿 (𝑎)𝐼 (𝑆𝑣 (y(𝑎)) ≤ 𝑥)) − �̂�𝑣 (𝑥)
��

= sup
𝑥∈R

������ 𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) −

1
𝑘

𝑘∑︁
𝑗=1

𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥)

������+
sup
𝑥∈R

������1𝑘 𝑘∑︁
𝑗=1

𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) − 𝐸𝑃0 (𝐿 (𝑎)𝐼 (𝑆𝑣 (y(𝑎)) ≤ 𝑥))

������+
sup
𝑥∈R

��𝐸𝑃𝑡𝑟𝑢𝑒 (𝐼 (𝑆𝑣 (y(𝑎)) ≤ 𝑥)) − �̂�𝑣 (𝑥)�� .
For the first term, we have that

𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) −

1
𝑘

𝑘∑︁
𝑗=1

𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥)

=
1
𝑘

𝑘∑︁
𝑗=1

𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥)
(

𝑘∑𝑘
𝑗=1 𝐿 (𝑎 ( 𝑗))

− 1

)
.

(7.14)

Since ∥𝑑𝑃𝑡𝑟𝑢𝑒/𝑑𝑃0∥∞ ≤ 𝐶, we get that 1
𝑘

∑𝑘
𝑗=1 𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) ≤ 𝐶. Moreover, we know

that 𝐸𝑃0 (𝐿) = 1 and 𝑣𝑎𝑟𝑃0 (𝐿) < ∞, and thus

√
𝑘

(
𝑘∑𝑘

𝑗=1 𝐿 (𝑎 ( 𝑗))
− 1

)
𝑑.→𝑁 (0, 𝑣𝑎𝑟𝑃0 (𝐿))

where
𝑑.→ denotes convergence in distribution or weak convergence.
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Hence, we get from Eq. (7.14) that

sup
𝑥∈R

������ 𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) −

1
𝑘

𝑘∑︁
𝑗=1

𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥)

������ = 𝑂𝑝 (1/
√
𝑘).

For the second term, following the proof in [202], we know that


√
𝑘
©«1
𝑘

𝑘∑︁
𝑗=1

𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) − 𝐸𝑃0 (𝐿 (𝑎)𝐼 (𝑆𝑣 (y(𝑎)) ≤ 𝑥))
ª®¬

𝑑.→{𝐺 (𝑥)}

in ℓ∞ ({𝑎 ↦→ 𝐿 (𝑎)𝐼 (𝑆𝑣 (y(𝑎)) ≤ 𝑥) : 𝑥 ∈ R}) and 𝐺 is a Gaussian process. Therefore, we get that

sup
𝑥∈R

������1𝑘 𝑘∑︁
𝑗=1

𝐿 (𝑎 ( 𝑗))𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) − 𝐸𝑃0 (𝐿 (𝑎)𝐼 (𝑆𝑣 (y(𝑎)) ≤ 𝑥))

������ = 𝑂𝑝 (1/
√
𝑘).

Finally, it is known that

√
𝑛1 sup

𝑥∈R

��𝐸𝑃𝑡𝑟𝑢𝑒 (𝐼 (𝑆𝑣 (y(𝑎)) ≤ 𝑥)) − �̂�𝑣 (𝑥)�� 𝑑.→ sup
𝑥∈[0,1]

|𝐵𝐵(𝐹𝑡𝑟𝑢𝑒,𝑣 (𝑥)) |.

Combining the above results, we get that for each 𝑣 = 1, . . . , 𝑚,

lim sup
𝑛1→∞,𝑘/𝑛1→∞

P
©«sup
𝑥∈R

������ 𝑘∑︁
𝑗=1
𝑊 𝑗 𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) − �̂�𝑣 (𝑥)

������ > 𝑞1−𝛼/𝑚√
𝑛1

ª®¬ ≤ 𝛼

𝑚

and hence

lim inf
𝑛1→∞,𝑘/𝑛1→∞

P(𝑒𝑡𝑟𝑢𝑒 ∈ 𝐸) ≥ 1 − 𝛼

since 𝑒𝑡𝑟𝑢𝑒 ∈ 𝐸 if and only if sup𝑥∈R
���∑𝑘

𝑗=1𝑊 𝑗 𝐼 (𝑆𝑣 (y 𝑗 ) ≤ 𝑥) − �̂�𝑣 (𝑥)
��� ≤ 𝑞1−𝛼/𝑚√

𝑛1
for any 𝑣 =

1, . . . , 𝑚.

272



References

[1] P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdisciplinary challenge,”
IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 1, pp. 90–96, 2017.

[2] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos, “Next-generation air-
borne collision avoidance system,” Massachusetts Institute of Technology-Lincoln Labo-
ratory Lexington United States, Tech. Rep., 2012.

[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for direct
perception in autonomous driving,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 2722–2730.

[4] J. Van Brummelen, M. O’Brien, D. Gruyer, and H. Najjaran, “Autonomous vehicle percep-
tion: The technology of today and tomorrow,” Transportation Research Part C: Emerging
Technologies, vol. 89, pp. 384–406, 2018.

[5] R. Glasius, A. Komoda, and S. C. Gielen, “Neural network dynamics for path planning and
obstacle avoidance,” Neural Networks, vol. 8, no. 1, pp. 125–133, 1995.

[6] S. X. Yang and C. Luo, “A neural network approach to complete coverage path planning,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 1,
pp. 718–724, 2004.

[7] N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and J. C. Gerdes, “Neural
network vehicle models for high-performance automated driving,” Science Robotics, vol. 4,
no. 28, 2019.

[8] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road obstacle avoidance
through end-to-end learning,” in Advances in Neural Information Processing Systems,
2006, pp. 739–746.

[9] Z. Chen and X. Huang, “End-to-end learning for lane keeping of self-driving cars,” in 2017
IEEE Intelligent Vehicles Symposium (IV), IEEE, 2017, pp. 1856–1860.

[10] N. T. S. Board, Preliminary report, highway, hwy18mh010, 2018.

[11] N. T. S. Board, Collision between car operating with partial driving automation and truck-
tractor semitrailer delray beach, florida, march 1, 2019, 2019.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial exam-
ples,” arXiv preprint arXiv:1412.6572, 2014.

273



[13] L. Weng et al., “PROVEN: Verifying robustness of neural networks with a probabilistic
approach,” in International Conference on Machine Learning, PMLR, 2019, pp. 6727–
6736.

[14] S. Webb, T. Rainforth, Y. W. Teh, and M. P. Kumar, “A statistical approach to assessing
neural network robustness,” arXiv preprint arXiv:1811.07209, 2018.

[15] B. Wang, S. Webb, and T. Rainforth, “Statistically robust neural network classification,” in
Uncertainty in Artificial Intelligence, PMLR, 2021, pp. 1735–1745.

[16] L. Fraade-Blanar, M. S. Blumenthal, J. M. Anderson, and N. Kalra, Measuring Automated
Vehicle Safety: Forging a Framework. RAND Corporation, 2018.

[17] D. Zhao et al., “Accelerated evaluation of automated vehicles safety in lane-change sce-
narios based on importance sampling techniques,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 18, no. 3, pp. 595–607, 2016.

[18] Z. Huang, H. Lam, D. J. LeBlanc, and D. Zhao, “Accelerated evaluation of automated ve-
hicles using piecewise mixture models,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 9, pp. 2845–2855, 2017.

[19] M. O’Kelly, A. Sinha, H. Namkoong, R. Tedrake, and J. C. Duchi, “Scalable end-to-end
autonomous vehicle testing via rare-event simulation,” in Advances in Neural Information
Processing Systems, 2018, pp. 9827–9838.

[20] D. Zhao, X. Huang, H. Peng, H. Lam, and D. J. LeBlanc, “Accelerated evaluation of auto-
mated vehicles in car-following maneuvers,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 19, no. 3, pp. 733–744, 2017.

[21] M. Arief et al., “Deep probabilistic accelerated evaluation: A robust certifiable rare-event
simulation methodology for black-box safety-critical systems,” in International Confer-
ence on Artificial Intelligence and Statistics, PMLR, 2021, pp. 595–603.

[22] J. A. Bucklew, Introduction to Rare Event Simulation. Springer, 2004, vol. 5.

[23] S. Juneja and P. Shahabuddin, “Rare-event simulation techniques: An introduction and
recent advances,” Handbooks in Operations Research and Management Science, vol. 13,
pp. 291–350, 2006.

[24] J. S. Sadowsky, “Large deviations theory and efficient simulation of excessive backlogs in
a 𝐺𝐼/𝐺𝐼/𝑚 queue,” IEEE Transactions on Automatic Control, vol. 36, no. 12, pp. 1383–
1394, 1991.

[25] D. P. Kroese and V. F. Nicola, “Efficient estimation of overflow probabilities in queues
with breakdowns,” Performance Evaluation, vol. 36, pp. 471–484, 1999.

274



[26] J. Blanchet, P. Glynn, and H. Lam, “Rare event simulation for a slotted time 𝑀/𝐺/𝑠
model,” Queueing Systems, vol. 63, no. 1, pp. 33–57, 2009.

[27] J. Blanchet and H. Lam, “Rare-event simulation for many-server queues,” Mathematics of
Operations Research, vol. 39, no. 4, pp. 1142–1178, 2014.

[28] J. Blanchet and M. Mandjes, “Rare event simulation for queues,” in Rare Event Simulation
Using Monte Carlo Methods, Chapter 5, 2009, pp. 87–124.

[29] R. Szechtman and P. W. Glynn, “Rare-event simulation for infinite server queues,” in Pro-
ceedings of the Winter Simulation Conference, IEEE, vol. 1, 2002, pp. 416–423.

[30] A. Ridder, “Importance sampling algorithms for first passage time probabilities in the in-
finite server queue,” European Journal of Operational Research, vol. 199, no. 1, pp. 176–
186, 2009.

[31] P. Dupuis, K. Leder, and H. Wang, “Importance sampling for weighted-serve-the-longest-
queue,” Mathematics of Operations Research, vol. 34, no. 3, pp. 642–660, 2009.

[32] S. Parekh and J. Walrand, “A quick simulation method for excessive backlogs in networks
of queues,” IEEE Transactions on Automatic Control, vol. 34, no. 1, pp. 54–66, 1989.

[33] B. Chen, J. Blanchet, C.-H. Rhee, and B. Zwart, “Efficient rare-event simulation for mul-
tiple jump events in regularly varying random walks and compound Poisson processes,”
Mathematics of Operations Research, vol. 44, no. 3, pp. 919–942, 2019.

[34] P. Glasserman, Monte Carlo Methods in Financial Engineering. Springer, 2004, vol. 53.

[35] P. Glasserman, W. Kang, and P. Shahabuddin, “Fast simulation of multifactor portfolio
credit risk,” Operations Research, vol. 56, no. 5, pp. 1200–1217, 2008.

[36] P. Glasserman and J. Li, “Importance sampling for portfolio credit risk,” Management Sci-
ence, vol. 51, no. 11, pp. 1643–1656, 2005.

[37] S. Asmussen and H. Albrecher, Ruin Probabilities. World Scientific, 2010, vol. 14.

[38] S. Asmussen, “Conjugate processes and the simulation of ruin problems,” Stochastic Pro-
cesses and their Applications, vol. 20, no. 2, pp. 213–229, 1985.

[39] J. F. Collamore, “Importance sampling techniques for the multidimensional ruin problem
for general Markov additive sequences of random vectors,” The Annals of Applied Proba-
bility, vol. 12, no. 1, pp. 382–421, 2002.

[40] P. Heidelberger, “Fast simulation of rare events in queueing and reliability models,” ACM
Transactions on Modeling and Computer Simulation (TOMACS), vol. 5, pp. 43–85, 1995.

275



[41] G. Rubino and B. Tuffin, “Markovian models for dependability analysis,” in Rare Event
Simulation Using Monte Carlo Methods, Chapter 6, 2009, pp. 125–144.

[42] B. Tuffin, “On numerical problems in simulations of highly reliable Markovian systems,”
in First International Conference on the Quantitative Evaluation of Systems, 2004. QEST
2004. Proceedings., IEEE, 2004, pp. 156–164.

[43] V. F. Nicola, M. K. Nakayama, P. Heidelberger, and A. Goyal, “Fast simulation of highly
dependable systems with general failure and repair processes,” IEEE Transactions on Com-
puters, vol. 42, no. 12, pp. 1440–1452, 1993.

[44] V. F. Nicola, P. Shahabuddin, and M. K. Nakayama, “Techniques for fast simulation of
models of highly dependable systems,” IEEE Transactions on Reliability, vol. 50, no. 3,
pp. 246–264, 2001.

[45] P. Grassberger, “Go with the winners: A general Monte Carlo strategy,” Computer Physics
Communications, vol. 147, no. 1-2, pp. 64–70, 2002.

[46] W. Sandmann, “Rare event simulation methodologies in systems biology,” in Rare Event
Simulation Using Monte Carlo Methods, Chapter 11, 2009, pp. 243–266.

[47] P. Dupuis, K. Spiliopoulos, and H. Wang, “Importance sampling for multiscale diffusions,”
Multiscale Modeling & Simulation, vol. 10, no. 1, pp. 1–27, 2012.

[48] E. Vanden-Eijnden and J. Weare, “Rare event simulation of small noise diffusions,” Com-
munications on Pure and Applied Mathematics, vol. 65, no. 12, pp. 1770–1803, 2012.

[49] M. Bayati, J. H. Kim, and A. Saberi, “A sequential algorithm for generating random
graphs,” Algorithmica, vol. 58, pp. 860–910, 2010.

[50] J. H. Blanchet, “Efficient importance sampling for binary contingency tables,” The Annals
of Applied Probability, pp. 949–982, 2009.

[51] D. Siegmund, “Importance sampling in the Monte Carlo study of sequential tests,” The
Annals of Statistics, pp. 673–684, 1976.

[52] P. W. Glynn and D. L. Iglehart, “Importance sampling for stochastic simulations,” Man-
agement Science, vol. 35, no. 11, pp. 1367–1392, 1989.

[53] J. S. Sadowsky and J. A. Bucklew, “On large deviations theory and asymptotically effi-
cient Monte Carlo estimation,” IEEE transactions on Information Theory, vol. 36, no. 3,
pp. 579–588, 1990.

[54] S. Asmussen and P. W. Glynn, Stochastic Simulation: Algorithms and Analysis. Springer
Science & Business Media, 2007, vol. 57.

276



[55] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[56] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning. MIT Press Cam-
bridge, 2016, vol. 1.

[57] A. Dieker and M. Mandjes, “On asymptotically efficient simulation of large deviation prob-
abilities,” Advances in Applied Probability, vol. 37, no. 2, pp. 539–552, 2005.

[58] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed
integer programming,” arXiv preprint arXiv:1711.07356, 2017.
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