24,679 research outputs found

    Monitoring the impact of land cover change on surface urban heat island through google earth engine. Proposal of a global methodology, first applications and problems

    Get PDF
    All over the world, the rapid urbanization process is challenging the sustainable development of our cities. In 2015, the United Nation highlighted in Goal 11 of the SDGs (Sustainable Development Goals) the importance to "Make cities inclusive, safe, resilient and sustainable". In order to monitor progress regarding SDG 11, there is a need for proper indicators, representing different aspects of city conditions, obviously including the Land Cover (LC) changes and the urban climate with its most distinct feature, the Urban Heat Island (UHI). One of the aspects of UHI is the Surface Urban Heat Island (SUHI), which has been investigated through airborne and satellite remote sensing over many years. The purpose of this work is to show the present potential of Google Earth Engine (GEE) to process the huge and continuously increasing free satellite Earth Observation (EO) Big Data for long-term and wide spatio-temporal monitoring of SUHI and its connection with LC changes. A large-scale spatio-temporal procedure was implemented under GEE, also benefiting from the already established Climate Engine (CE) tool to extract the Land Surface Temperature (LST) from Landsat imagery and the simple indicator Detrended Rate Matrix was introduced to globally represent the net effect of LC changes on SUHI. The implemented procedure was successfully applied to six metropolitan areas in the U.S., and a general increasing of SUHI due to urban growth was clearly highlighted. As a matter of fact, GEE indeed allowed us to process more than 6000 Landsat images acquired over the period 1992-2011, performing a long-term and wide spatio-temporal study on SUHI vs. LC change monitoring. The present feasibility of the proposed procedure and the encouraging obtained results, although preliminary and requiring further investigations (calibration problems related to LST determination from Landsat imagery were evidenced), pave the way for a possible global service on SUHI monitoring, able to supply valuable indications to address an increasingly sustainable urban planning of our cities

    The evolution of bits and bottlenecks in a scientific workflow trying to keep up with technology: Accelerating 4D image segmentation applied to nasa data

    Get PDF
    In 2016, a team of earth scientists directly engaged a team of computer scientists to identify cyberinfrastructure (CI) approaches that would speed up an earth science workflow. This paper describes the evolution of that workflow as the two teams bridged CI and an image segmentation algorithm to do large scale earth science research. The Pacific Research Platform (PRP) and The Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI) resources were used to significantly decreased the earth science workflow's wall-clock time from 19.5 days to 53 minutes. The improvement in wall-clock time comes from the use of network appliances, improved image segmentation, deployment of a containerized workflow, and the increase in CI experience and training for the earth scientists. This paper presents a description of the evolving innovations used to improve the workflow, bottlenecks identified within each workflow version, and improvements made within each version of the workflow, over a three-year time period

    Estimating the Creation and Removal Date of Fracking Ponds Using Trend Analysis of Landsat Imagery

    Full text link
    Hydraulic fracturing, or fracking, is a process of introducing liquid at high pressure to create fractures in shale rock formations, thus releasing natural gas. Flowback and produced water from fracking operations is typically stored in temporary open-air earthen impoundments, or frack ponds. Unfortunately, in the United States there is no public record of the location of impoundments, or the dates that impoundments are created or removed. In this study we use a dataset of drilling-related impoundments in Pennsylvania identified through the FrackFinder project led by SkyTruth, an environmental non-profit. For each impoundment location, we compiled all low cloud Landsat imagery from 2000 to 2016 and created a monthly time series for three bands: red, near-infrared (NIR), and the Normalized Difference Vegetation Index (NDVI). We identified the approximate date of creation and removal of impoundments from sudden breaks in the time series. To verify our method, we compared the results to date ranges derived from photointerpretation of all available historical imagery on Google Earth for a subset of impoundments. Based on our analysis, we found that the number of impoundments built annually increased rapidly from 2006 to 2010, and then slowed from 2010 to 2013. Since newer impoundments tend to be larger, however, the total impoundment area has continued to increase. The methods described in this study would be appropriate for finding the creation and removal date of a variety of industrial land use changes at known locations

    Terrestrial applications: An intelligent Earth-sensing information system

    Get PDF
    For Abstract see A82-2214
    • …
    corecore