10,200 research outputs found

    Rapid mixing of Swendsen-Wang dynamics in two dimensions

    Full text link
    We prove comparison results for the Swendsen-Wang (SW) dynamics, the heat-bath (HB) dynamics for the Potts model and the single-bond (SB) dynamics for the random-cluster model on arbitrary graphs. In particular, we prove that rapid mixing of HB implies rapid mixing of SW on graphs with bounded maximum degree and that rapid mixing of SW and rapid mixing of SB are equivalent. Additionally, the spectral gap of SW and SB on planar graphs is bounded from above and from below by the spectral gap of these dynamics on the corresponding dual graph with suitably changed temperature. As a consequence we obtain rapid mixing of the Swendsen-Wang dynamics for the Potts model on the two-dimensional square lattice at all non-critical temperatures as well as rapid mixing for the two-dimensional Ising model at all temperatures. Furthermore, we obtain new results for general graphs at high or low enough temperatures.Comment: Ph.D. thesis, 66 page

    Robustness of large-scale stochastic matrices to localized perturbations

    Get PDF
    Upper bounds are derived on the total variation distance between the invariant distributions of two stochastic matrices differing on a subset W of rows. Such bounds depend on three parameters: the mixing time and the minimal expected hitting time on W for the Markov chain associated to one of the matrices; and the escape time from W for the Markov chain associated to the other matrix. These results, obtained through coupling techniques, prove particularly useful in scenarios where W is a small subset of the state space, even if the difference between the two matrices is not small in any norm. Several applications to large-scale network problems are discussed, including robustness of Google's PageRank algorithm, distributed averaging and consensus algorithms, and interacting particle systems.Comment: 12 pages, 4 figure

    Comparison of Swendsen-Wang and Heat-Bath Dynamics

    Full text link
    We prove that the spectral gap of the Swendsen-Wang process for the Potts model on graphs with bounded degree is bounded from below by some constant times the spectral gap of any single-spin dynamics. This implies rapid mixing of the Swendsen-Wang process for the two-dimensional Potts model at all temperatures above the critical one, as well as rapid mixing at the critical temperature for the Ising model. After this we introduce a modified version of the Swendsen-Wang algorithm for planar graphs and prove rapid mixing for the two-dimensional Potts models at all non-critical temperatures.Comment: 22 pages, 1 figur

    Quantum logarithmic Sobolev inequalities and rapid mixing

    Get PDF
    A family of logarithmic Sobolev inequalities on finite dimensional quantum state spaces is introduced. The framework of non-commutative \bL_p-spaces is reviewed and the relationship between quantum logarithmic Sobolev inequalities and the hypercontractivity of quantum semigroups is discussed. This relationship is central for the derivation of lower bounds for the logarithmic Sobolev (LS) constants. Essential results for the family of inequalities are proved, and we show an upper bound to the generalized LS constant in terms of the spectral gap of the generator of the semigroup. These inequalities provide a framework for the derivation of improved bounds on the convergence time of quantum dynamical semigroups, when the LS constant and the spectral gap are of the same order. Convergence bounds on finite dimensional state spaces are particularly relevant for the field of quantum information theory. We provide a number of examples, where improved bounds on the mixing time of several semigroups are obtained; including the depolarizing semigroup and quantum expanders.Comment: Updated manuscript, 30 pages, no figure

    Rapid mixing of Swendsen-Wang and single-bond dynamics in two dimensions

    Full text link
    We prove that the spectral gap of the Swendsen-Wang dynamics for the random-cluster model on arbitrary graphs with m edges is bounded above by 16 m log m times the spectral gap of the single-bond (or heat-bath) dynamics. This and the corresponding lower bound imply that rapid mixing of these two dynamics is equivalent. Using the known lower bound on the spectral gap of the Swendsen-Wang dynamics for the two dimensional square lattice ZL2Z_L^2 of side length L at high temperatures and a result for the single-bond dynamics on dual graphs, we obtain rapid mixing of both dynamics on ZL2\Z_L^2 at all non-critical temperatures. In particular this implies, as far as we know, the first proof of rapid mixing of a classical Markov chain for the Ising model on ZL2\Z_L^2 at all temperatures.Comment: 20 page
    • …
    corecore