8 research outputs found

    Architectures multi-Asip pour turbo récepteur flexible

    Get PDF
    Rapidly evolving wireless standards use modern techniques such as turbo codes, Bit Interleaved coded Modulation (BICM), high order QAM constellation, Signal Space Diversity (SSD), Multi-Input Multi-Output (MIMO) Spatial Multiplexing (SM) and Space Time Codes (STC) with different parameters for reliable high rate data transmissions. Adoption of such techniques in the transmitter can impact the receiver architecture in three ways: (1) the complex processing related to advanced techniques such as turbo codes, encourage to perform iterative processing in the receiver to improve error rate performance (2) to satisfy high throughput requirement for an iterative receiver, parallel processing is mandatory and finally (3) to allow the support of different techniques and parameters imposed, programmable yet high throughput hardware processing elements are required. In this thesis, to address the high throughput requirement with turbo processing, first of all a study of parallelism on turbo decoding is extended for turbo demodulation and turbo equalization. Based on the results acquired from the parallelism study a flexible high throughput heterogeneous multi-ASIP NoC based unified turbo receiver is proposed. The proposed architecture fulfils the target requirements in a way that: (a) Application Specific Instruction-set Processor (ASIP) exploits metric generation level parallelism and implements the required flexibility, (b) throughputs beyond the capacity of single ASIP in a turbo process are achieved through multiple ASIP elements implementing sub-block parallelism and shuffled processing and finally (c) Network on Chip is used to handle communication conflicts during parallel processing of multiple ASIPs. In pursuit to achieve a hardware model of the proposed architecture two ASIPs are conceived where the first one, namely EquASIP, is dedicated for MMSE-IC equalization and provides a flexible solution for multiple MIMO techniques adopted in multiple wireless standards with a capability to work in turbo equalization context. The second ASIP, named as DemASIP, is a flexible demapper which can be used in MIMO or single antenna environment for any modulation till 256-QAM with or without iterative demodulation. Using available TurbASIP and NoC components, the thesis concludes on an FPGA prototype of heterogeneous multi-ASIP NoC based unified turbo receiver which integrates 9 instances of 3 different ASIPs with 2 NoCs.Les normes de communication sans fil, sans cesse en évolution, imposent l'utilisation de techniques modernes telles que les turbocodes, modulation codée à entrelacement bit (BICM), constellation MAQ d'ordre élevé, diversité de constellation (SSD), multiplexage spatial et codage espace-temps multi-antennes (MIMO) avec des paramètres différents pour des transmissions fiables et de haut débit. L'adoption de ces techniques dans l'émetteur peut influencer l'architecture du récepteur de trois façons: (1) les traitement complexes relatifs aux techniques avancées comme les turbocodes, encourage à effectuer un traitement itératif dans le récepteur pour améliorer la performance en termes de taux d'erreur (2) pour satisfaire l'exigence de haut débit avec un récepteur itératif, le recours au parallélisme est obligatoire et enfin (3) pour assurer le support des différentes techniques et paramètres imposées, des processeurs de traitement matériel flexibles, mais aussi de haute performance, sont nécessaires. Dans cette thèse, pour répondre aux besoins de haut débit dans un contexte de traitement itératif, tout d'abord une étude de parallélisme sur le turbo décodage a été étendue aux applications de turbo démodulation et turbo égalisation. Partant des résultats obtenus à partir de l'étude du parallélisme, un récepteur itératif unifié basé sur un modèle d'architecture multi-ASIP hétérogène intégrant un réseau sur puce (NoC) a été proposé. L'architecture proposée répond aux exigences visées d'une manière où: (a) le concept de processeur à jeu d'instruction dédié à l'application (ASIP) exploite le parallélisme du niveau de génération de métriques et met en oeuvre la flexibilité nécessaire, (b) les débits au-delà de la capacité d'un seul ASIP dans un processus itératif sont obtenus au moyen de multiples ASIP implémentant le parallélisme de sous-blocs et le traitement combiné et enfin (c) le concept de réseau sur puce (NoC) est utilisé pour gérer les conflits de communication au cours du traitement parallèle itératif multi-ASIP. Dans le but de parvenir à un modèle matériel de l'architecture proposée, deux ASIP ont été conçus où le premier, nommé EquASIP, est dédié à l'égalisation MMSE-IC et fournit une solution flexible pour de multiples techniques multi-antennes adoptés dans plusieurs normes sans fil avec la capacité de travailler dans un contexte de turbo égalisation. Le deuxième ASIP, nommé DemASIP, est un démappeur flexible qui peut être utilisé dans un environnement multi-antennes et pour tout type de modulation jusqu'à MAQ-256 avec ou sans démodulation itérative. En intégrant ces ASIP, en plus des NoC et TurbASIP disponibles à Télécom Bretagne, la thèse conclut sur un prototype FPGA d'un récepteur itératif unifié multi-ASIP qui intègre 9 coeurs de 3 différents types d'ASIP avec 2 NoC

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Energy Efficient VLSI Circuits for MIMO-WLAN

    Get PDF
    Mobile communication - anytime, anywhere access to data and communication services - has been continuously increasing since the operation of the first wireless communication link by Guglielmo Marconi. The demand for higher data rates, despite the limited bandwidth, led to the development of multiple-input multiple-output (MIMO) communication which is often combined with orthogonal frequency division multiplexing (OFDM). Together, these two techniques achieve a high bandwidth efficiency. Unfortunately, techniques such as MIMO-OFDM significantly increase the signal processing complexity of transceivers. While fast improvements in the integrated circuit (IC) technology enabled to implement more signal processing complexity per chip, large efforts had and have to be done for novel algorithms as well as for efficient very large scaled integration (VLSI) architectures in order to meet today's and tomorrow's requirements for mobile wireless communication systems. In this thesis, we will present architectures and VLSI implementations of complete physical (PHY) layer application specific integrated circuits (ASICs) under the constraints imposed by an industrial wireless communication standard. Contrary to many other publications, we do not elaborate individual components of a MIMO-OFDM communication system stand-alone, but in the context of the complete PHY layer ASIC. We will investigate the performance of several MIMO detectors and the corresponding preprocessing circuits, being integrated into the entire PHY layer ASIC, in terms of achievable error-rate, power consumption, and area requirement. Finally, we will assemble the results from the proposed PHY layer implementations in order to enhance the energy efficiency of a transceiver. To this end, we propose a cross-layer optimization of PHY layer and medium access control (MAC) layer

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Rapid prototyping of ASIP-based flexible MMSE-IC linear equalizer

    No full text
    International audienceRapid emergence of diverse wireless communication standards implies two crucial requirements on hardware implementation: (1) Hardware platform flexibility for multistandard support, and (2) Rapid prototyping methodology for system validation under different use case scenarios. ASIP based platform, designed through Architecture Description Language(ADL) fulfills both of these requirements in an elegant way. This paper presents the design summary and prototyping flow of an ASIP-based flexible MMSE-IC Linear Equalizer for MIMO Turbo-Equalization Applications. The rapid development and prototyping flow has been described starting from LISA ADL description till the FPGA implementation. Using a logic emulation board integrating Virtex 5 FPGA,the prototype of 2Ă—2 spatially multiplexed MIMO system achieves a throughput of 65 MSymbol/Sec at a clock frequency of 130MHz

    Exploration of the scalability of SIMD processing for software defined radio

    Get PDF
    The idea of software defined radio (SDR) describes a signal processing system for wireless communications that allows performing major parts of the physical layer processing in software. SDR systems are more flexible and have lower development costs than traditional systems based on application-specific integrated circuits (ASICs). Yet, SDR requires programmable processor architectures that can meet the throughput and energy efficiency requirements of current third generation (3G) and future fourth generation (4G) wireless standards for mobile devices. Single instruction, multiple data (SIMD) processors operate on long data vectors in parallel data lanes and can achieve a good ratio of computing power to energy consumption. Hence, SIMD processors could be the basis of future SDR systems. Yet, SIMD processors only achieve a high efficiency if all parallel data lanes can be utilized. This thesis investigates the scalability of SIMD processing for algorithms required in 4G wireless systems; i. e. the scaling of performance and energy consumption with increasing SIMD vector lengths is explored. The basis of the exploration is a scalable SIMD processor architecture, which also supports long instruction word (LIW) execution and can be configured with four different permutation networks for vector element permutations. Radix-2 and mixed-radix fast Fourier transform (FFT) algorithms, sphere decoding for multiple input, multiple output (MIMO) systems, and the decoding of quasi-cyclic lowdensity parity check (LDPC) codes have been examined, as these are key algorithms for 4G wireless systems. The results show that the performance of all algorithms scales with the SIMD vector length, yet there are different constraints on the ratios between algorithm and architecture parameters. The radix-2 FFT algorithm allows close to linear speedups if the FFT size is at least twice the SIMD vector length, the mixed-radix FFT algorithm requires the FFT size to be a multiple of the squared SIMD width. The performance of the implemented sphere decoding algorithm scales linearly with the SIMD vector length. The scalability of LDPC decoding is determined by the expansion factor of the quasicyclic code. Wider SIMD processors offer better performance and also require less energy than processors with a shorter vector length for all considered algorithms. The results for different permutations networks show that a simple permutation network is sufficient for most applications
    corecore