8,821 research outputs found

    Augmented reality device for first response scenarios

    Get PDF
    A prototype of a wearable computer system is proposed and implemented using commercial off-shelf components. The system is designed to allow the user to access location-specific information about an environment, and to provide capability for user tracking. Areas of applicability include primarily first response scenarios, with possible applications in maintenance or construction of buildings and other structures. Necessary preparation of the target environment prior to system\u27s deployment is limited to noninvasive labeling using optical fiducial markers. The system relies on computational vision methods for registration of labels and user position. With the system the user has access to on-demand information relevant to a particular real-world location. Team collaboration is assisted by user tracking and real-time visualizations of team member positions within the environment. The user interface and display methods are inspired by Augmented Reality1 (AR) techniques, incorporating a video-see-through Head Mounted Display (HMD) and fingerbending sensor glove.*. 1Augmented reality (AR) is a field of computer research which deals with the combination of real world and computer generated data. At present, most AR research is concerned with the use of live video imagery which is digitally processed and augmented by the addition of computer generated graphics. Advanced research includes the use of motion tracking data, fiducial marker recognition using machine vision, and the construction of controlled environments containing any number of sensors and actuators. (Source: Wikipedia) *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat; Microsoft Office; Windows MediaPlayer or RealPlayer

    Design and Evaluation of Neurosurgical Training Simulator

    Get PDF
    Surgical simulators are becoming more important in surgical training. Consumer smartphone technology has improved to allow deployment of VR applications and are now being targeted for medical training simulators. A surgical simulator has been designed using a smartphone, Google cardboard 3D glasses, and the Leap Motion (LM) hand controller. Two expert and 16 novice users were tasked with completing the same pointing tasks using both the LM and the medical simulator NeuroTouch. The novice users had an accuracy of 0.2717 bits (SD 0.3899) and the experts had an accuracy of 0.0925 bits (SD 0.1210) while using the NeuroTouch. Novices and experts improved their accuracy to 0.3585 bits (SD 0.4474) and 0.4581 bits (SD 0.3501) while using the LM. There were some tracking problems with the AR display and LM. Users were intrigued by the AR display and most preferred the LM, as they found it to have better usability

    Mobile brain/body imaging (MoBI) of physical interaction with dynamically moving objects

    Get PDF
    © 2016 Jungnickel and Gramann. The non-invasive recording and analysis of human brain activity during active movements in natural working conditions is a central challenge in Neuroergonomics research. Existing brain imaging approaches do not allow for an investigation of brain dynamics during active behavior because their sensors cannot follow the movement of the signal source. However, movements that require the operator to react fast and to adapt to a dynamically changing environment occur frequently in working environments like assembly-line work, construction trade, health care, but also outside the working environment like in team sports. Overcoming the restrictions of existing imaging methods would allow for deeper insights into neurocognitive processes at workplaces that require physical interactions and thus could help to adapt work settings to the user. To investigate the brain dynamics accompanying rapid volatile movements we used a visual oddball paradigm where participants had to react to color changes either with a simple button press or by physically pointing towards a moving target. Using a mobile brain/body imaging approach (MoBI) including independent component analysis (ICA) with subsequent backprojection of cluster activity allowed for systematically describing the contribution of brain and non-brain sources to the sensor signal. The results demonstrate that visual event-related potentials (ERPs) can be analyzed for simple button presses and physical pointing responses and that it is possible to quantify the contribution of brain processes, muscle activity and eye movements to the signal recorded at the sensor level even for fast volatile arm movements with strong jerks. Using MoBI in naturalistic working environments can thus help to analyze brain dynamics in natural working conditions and help improving unhealthy or inefficient work settings

    Portallax:bringing 3D displays capabilities to handhelds

    Get PDF
    We present Portallax, a clip-on technology to retrofit mobile devices with 3D display capabilities. Available technologies (e.g. Nintendo 3DS or LG Optimus) and clip-on solutions (e.g. 3DeeSlide and Grilli3D) force users to have a fixed head and device positions. This is contradictory to the nature of a mobile scenario, and limits the usage of interaction techniques such as tilting the device to control a game. Portallax uses an actuated parallax barrier and face tracking to realign the barrier's position to the user's position. This allows us to provide stereo, motion parallax and perspective correction cues in 60 degrees in front of the device. Our optimized design of the barrier minimizes colour distortion, maximizes resolution and produces bigger view-zones, which support ~81% of adults' interpupillary distances and allow eye tracking implemented with the front camera. We present a reference implementation, evaluate its key features and provide example applications illustrating the potential of Portallax
    • …
    corecore