3 research outputs found

    RENTAKA: A novel machine learning framework for crypto-ransomware pre-encryption detection

    Get PDF
    Crypto ransomware is malware that locks its victim’s file for ransom using an encryption algorithm. Its popularity has risen at an alarming rate among the cyber community due to several successful worldwide attacks. The encryption employed had caused irreversible damage to the victim’s digital files, even when the victim chose to pay the ransom. As a result, cybercriminals have found ransomware a lucrative and profitable cyber-extortion approach. The increasing computing power, memory, cryptography, and digital currency advancement have caused ransomware attacks. It spreads through phishing emails, encrypting sensitive data, and causing harm to the designated client. Most research in ransomware detection focuses on detecting during the encryption and post-attack phase. However, the damage done by crypto-ransomware is almost impossible to reverse, and there is a need for an early detection mechanism. For early detection of crypto-ransomware, behavior-based detection techniques are the most effective. This work describes RENTAKA, a framework based on machine learning for the early detection of crypto-ransomware.The features extracted are based on the phases of the ransomware lifecycle. This experiment included five widely used machine learning classifiers: Naïve Bayes, kNN, Support Vector Machines, Random Forest, and J48. This study proposed a pre-encryption detection framework for crypto-ransomware using a machine learning approach. Based on our experiments, support vector machines (SVM) performed with the best accuracy and TPR, 97.05% and 0.995, respectively

    Ransomware Network Traffic Analysis for Pre-Encryption Alert

    Get PDF
    International audienceCyber Security researchers are in an ongoing battle against ransomware attacks. Some exploits begin with social engineering methods to install payloads on victims' computers , followed by a communication with command and control servers for data exchange. To scale down these attacks, scientists should shed light on the danger of those rising intrusions to prevent permanent data loss. To join this arm race against malware, we propose in this paper an analysis of various ransomware families based on the collected system and network logs from a computer. We delve into malicious network traffic generated by these samples to perform a packet level detection. Our goal is to reconstruct ransomware's full activity to check if its network communication is distinguishable from benign traffic. Then, we examine if the first packet sent occurs before data's encryption to alert the administrators or afterwards. We aim to define the first occurrence of the alert raised by malicious network traffic and where it takes place in a ransomware workflow. Logs collected are available at http://serveur2.seres.rennes.telecom-bretagne.eu/data/RansomwareData/

    Developing an Effective Detection Framework for Targeted Ransomware Attacks in Brownfield Industrial Internet of Things

    Full text link
    The Industrial Internet of Things (IIoT) is being interconnected with many critical industrial activities, creating major cyber security concerns. The key concern is with edge systems of Brownfield IIoT, where new devices and technologies are deployed to interoperate with legacy industrial control systems and leverage the benefits of IoT. These edge devices, such as edge gateways, have opened the way to advanced attacks such as targeted ransomware. Various pre-existing security solutions can detect and mitigate such attacks but are often ineffective due to the heterogeneous nature of the IIoT devices and protocols and their interoperability demands. Consequently, developing new detection solutions is essential. The key challenges in developing detection solutions for targeted ransomware attacks in IIoT systems include 1) understanding attacks and their behaviour, 2) designing accurate IIoT system models to test attacks, 3) obtaining realistic data representing IIoT systems' activities and connectivities, and 4) identifying attacks. This thesis provides important contributions to the research focusing on investigating targeted ransomware attacks against IIoT edge systems and developing a new detection framework. The first contribution is developing the world's first example of ransomware, specifically targeting IIoT edge gateways. The experiments' results demonstrate that such an attack is now possible on edge gateways. Also, the kernel-related activity parameters appear to be significant indicators of the crypto-ransomware attacks' behaviour, much more so than for similar attacks in workstations. The second contribution is developing a new holistic end-to-end IIoT security testbed (i.e., Brown-IIoTbed) that can be easily reproduced and reconfigured to support new processes and security scenarios. The results prove that Brown-IIoTbed operates efficiently in terms of its functions and security testing. The third contribution is generating a first-of-its-kind dataset tailored for IIoT systems covering targeted ransomware attacks and their activities, called X-IIoTID. The dataset includes connectivity- and device-agnostic features collected from various data sources. The final contribution is developing a new asynchronous peer-to-peer federated deep learning framework tailored for IIoT edge gateways for detecting targeted ransomware attacks. The framework's effectiveness has been evaluated against pre-existing datasets and the newly developed X-IIoTID dataset
    corecore