4 research outputs found

    Neural Network-Based Model for Classification of Faults During Operation of a Robotic Manipulator

    Get PDF
    The importance of error detection is high, especially in modern manufacturing processes where assembly lines operate without direct supervision. Stopping the faulty operation in time can prevent damage to the assembly line. Public dataset is used, containing 15 classes, 2 types of faultless operation and 13 types of faults, with 463 force and torsion datapoints. Four different methods are used: Multilayer Perceptron (MLP) selected due to high classification performance, Support Vector Machines (SVM) commonly used for a low number of datapoints, Convolutional Neural Network (CNN) known for high performance in classification with matrix inputs and Siamese Neural Network (SNN) novel method with high performance in small datasets. Two classification tasks are performed-error detection and classification. Grid search is used for hyperparameter variation and F1 score as a metric, with a 10 fold cross-validation. Authors propose a hybrid system consisting of SNN for detection and CNN for fault classification

    Evaluation of objective tools and artificial intelligence in robotic surgery technical skills assessment: a systematic review

    Get PDF
    BACKGROUND: There is a need to standardize training in robotic surgery, including objective assessment for accreditation. This systematic review aimed to identify objective tools for technical skills assessment, providing evaluation statuses to guide research and inform implementation into training curricula. METHODS: A systematic literature search was conducted in accordance with the PRISMA guidelines. Ovid Embase/Medline, PubMed and Web of Science were searched. Inclusion criterion: robotic surgery technical skills tools. Exclusion criteria: non-technical, laparoscopy or open skills only. Manual tools and automated performance metrics (APMs) were analysed using Messick's concept of validity and the Oxford Centre of Evidence-Based Medicine (OCEBM) Levels of Evidence and Recommendation (LoR). A bespoke tool analysed artificial intelligence (AI) studies. The Modified Downs-Black checklist was used to assess risk of bias. RESULTS: Two hundred and forty-seven studies were analysed, identifying: 8 global rating scales, 26 procedure-/task-specific tools, 3 main error-based methods, 10 simulators, 28 studies analysing APMs and 53 AI studies. Global Evaluative Assessment of Robotic Skills and the da Vinci Skills Simulator were the most evaluated tools at LoR 1 (OCEBM). Three procedure-specific tools, 3 error-based methods and 1 non-simulator APMs reached LoR 2. AI models estimated outcomes (skill or clinical), demonstrating superior accuracy rates in the laboratory with 60 per cent of methods reporting accuracies over 90 per cent, compared to real surgery ranging from 67 to 100 per cent. CONCLUSIONS: Manual and automated assessment tools for robotic surgery are not well validated and require further evaluation before use in accreditation processes.PROSPERO: registration ID CRD42022304901

    Reconocimiento de herramientas en vídeos de robótica quirúrgica y evaluación automática de la tarea.

    Get PDF
    Este TFM se enmarca dentro del grupo de investigación de robótica médica de la Universidad de Málaga. El objetivo general de este trabajo es la evaluación automática en vídeos de robótica quirúrgica. En concreto, se analizarán vídeos pertenecientes a una base de datos de maniobras quirúrgicas realizadas con la plataforma da Vinci Research Kit (dVRK) en el marco de una colaboración entre el grupo de investigación de robótica médica de la Universidad de Málaga y el Instituto de Biorobótica de la Scuola Superiore Sant’Anna de la Universidad de Pisa [13]. Para ello, se utilizarán técnicas de Deep Learning para el reconocimiento de objetos en la imagen, y se empleará lógica proposicional como sistema de inferencia para el reconocimiento de las acciones básicas

    Ranking robot-assisted surgery skills using kinematic sensors

    No full text
    Assessing surgical skills is an essential part of medical performance evaluation and expert training. Since it is typically conducted as a subjective task by individuals, it may lead to misinterpretations of the skill performance and hence lead to suboptimal training and organization of the surgical activities. Therefore, objective assessment of surgical skills using computational intelligence techniques via sensory data has received attention from researchers in recent years. So far, the problem has been approached by employing a classification model where a query action for surgery is assigned to a predefined category that determines the level of expertise. In this study, we consider the skill assessment problem as a pairwise ranking task where we compare two input actions to identify better surgical performance. To this end, we propose a hybrid Siamese network that takes two kinematic motion data acquired from robot-assisted surgery sensors and report the probability of the first sample having a better skill than the second one. Experiments on annotated real surgery data reveals that the proposed framework has high accuracy and seems sufficiently accurate for use in practice. This approach may overcome the limitations of having consistent annotations to define skill levels and provide a more interpretable means for objective skill assessment
    corecore