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Abstract  

Background: There is a need to standardize training in robotic surgery, including objective assessment for accreditation. This 
systematic review aimed to identify objective tools for technical skills assessment, providing evaluation statuses to guide research 
and inform implementation into training curricula.  

Methods: A systematic literature search was conducted in accordance with the PRISMA guidelines. Ovid Embase/Medline, PubMed and 
Web of Science were searched. Inclusion criterion: robotic surgery technical skills tools. Exclusion criteria: non-technical, laparoscopy 
or open skills only. Manual tools and automated performance metrics (APMs) were analysed using Messick’s concept of validity and 
the Oxford Centre of Evidence-Based Medicine (OCEBM) Levels of Evidence and Recommendation (LoR). A bespoke tool analysed 
artificial intelligence (AI) studies. The Modified Downs–Black checklist was used to assess risk of bias.  

Results: Two hundred and forty-seven studies were analysed, identifying: 8 global rating scales, 26 procedure-/task-specific tools, 3 
main error-based methods, 10 simulators, 28 studies analysing APMs and 53 AI studies. Global Evaluative Assessment of Robotic 
Skills and the da Vinci Skills Simulator were the most evaluated tools at LoR 1 (OCEBM). Three procedure-specific tools, 3 error- 
based methods and 1 non-simulator APMs reached LoR 2. AI models estimated outcomes (skill or clinical), demonstrating superior 
accuracy rates in the laboratory with 60 per cent of methods reporting accuracies over 90 per cent, compared to real surgery 
ranging from 67 to 100 per cent.  

Conclusions: Manual and automated assessment tools for robotic surgery are not well validated and require further evaluation before 
use in accreditation processes. 

PROSPERO: registration ID CRD42022304901 

Introduction 
Robotic surgery is increasingly being adopted due to improved 
vision, dexterity and surgical ergonomics. In selected procedures 
there is supportive evidence demonstrating non-inferiority and 
lower morbidity compared to laparoscopy1–5. Minimally invasive 
surgery (MIS) is complex, highly variable and requires technical 
skill with unfavourable error profiles compared to industrial data6. 
Meanwhile, the addition of new technology into the operating 
room, with novel technical and non-technical considerations, 
increases the potential for human error, and therefore patient 
risk7. Of surgical patients, 10–15 per cent in the UK experience 
adverse events, of which 50 per cent are preventable8. Adverse 
events relating to robotic procedures (10 624) were reported in the 
USA between 2000 and 20139 while a global independent review 

on health technology hazards identified a lack of robotic surgical 
training as one of the top 10 risks to patients10. This deficit is being 
addressed through development and standardization of basic and 
specialty curricula11–23. 

Robotic surgical procedures require high levels of experience. 
Evaluation of performance in surgery is shifting from time- and 
operative numbers-based assessment towards proficiency-based 
training and accreditation24. To assist this, objective tools are 
frequently employed but must be fully evaluated if they are to be 
used as summative, high-stakes assessment instruments. 
Traditionally, proficiency in surgery was extrapolated from clinical 
outcomes such as histopathology, morbidity and mortality, yet 
these are subject to multifactorial influences. Intraoperative 
performance analysis has proved to be a fruitful area for 
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assessment of performance and intervention delivery6,25–27. This 
facilitates direct formative feedback to guide reduction in 
proficiency curves, as well as summative assessment26. Objective 
assessments within MIS have demonstrated reliability and 
clinically relevant validities6,25–27, leading to the development of 
tools to aid this28. However, previous studies have highlighted the 
variability in reporting on the validity and reliability of manual 
tools28,29, which risks undermining truly objective skills 
assessment. A full appraisal of the literature on objective 
assessment tools, therefore, is imperative to inform learning and 
accreditation processes in robotic surgery. 

Prior systematic reviews have focused on one aspect of technical 
skills assessment30,31 or combinations of surgical approaches29. 
Other reports provide an overview but lack scope and granularity 
of type of validity and reliability of assessment or fail to grade the 
evidence32. Finally, given the rapid uptake of robotic techniques 
and development of artificial intelligence (AI) methods, many 
reports are now outdated33–37, requiring up-to-date evaluation38–40. 

The aim of this systematic review is to provide an up-to-date 
and comprehensive evaluation of objective, technical skill 
assessment tools in robotic surgery. 

Methods 
This systematic review followed an a priori protocol (PROSPERO 
registration ID CRD42022304901). The Covidence® platform was 
used to screen studies, exclude duplications and extract data. 

Search strategy 
A systematic search of the literature was conducted in line with 
the PRISMA guidelines41. Ovid Embase/Medline, PubMed and 
Web of Science databases were searched from conception to 
22 February 2022. Table S1 outlines the full search strategy. 
Searches were performed independently by two authors using 
medical subject headings (MeSH) terms for ‘Objective’, 
‘Assessment’, ‘Tool’, ‘Error’, ‘Skill’, ‘Robot’ and ‘Surgery’, which 
were combined with Boolean operators ‘AND’ and ‘OR’. Studies 
from knowledge of the field and references from relevant articles, 
including one literature32 and four systematic reviews28,29,31,42, 
were additionally screened. Conference proceedings and journal 
supplement abstracts were considered relevant if meaningful 
data were available. 

Selection of eligible studies 
Four reviewers independently screened, reviewed and extracted data, 
with the primary investigator reviewing all articles. Disagreements 
were resolved through discussion with the corresponding author. 

Included studies followed the PICO question: 

• Population—participants being assessed on robotic technical 
skill. 

• Intervention—an objective technical skill assessment tool or 
method is developed and/or implemented. 

• Comparison—to other tools or measurement of assessment. 
• Outcome—validity, reliability, accuracy, impact on the 

participant.  

Exclusion criteria were solely laparoscopic and/or open 
assessment skills, or failures to retrieve the article or an English 
translation. 

Data extraction 
All studies 
Study details including year, country, participant number, 
participant expertise level and evaluator type were extracted. 
Identified studies were grouped based on study and tool types 
into manual, automated performance metrics (APMs) and 
evaluation of statistical models or AI algorithms. These domains 
of technical skill assessment were devised using approaches 
employed by previous reviews and that reflect different 
assessment methods. The manual domain is human assessment 
with subgroups that are global rating scales, procedure-specific 
and error-based tools. APMs are metrics produced by computer 
software typically in virtual reality (VR) simulators. Finally, AI 
algorithms are mathematical models implemented to process 
input data and estimate skill or clinically related outputs, for 
example, using kinematic data to predict postoperative urinary 
incontinence36 or vision data to predict skill level (Fig. 1). 

Manual and APM studies 
Due to the heterogeneity in methods of technical skill assessment, 
different approaches were applied to facilitate evaluation. Manual 
tools and automated performance metrics (non-AI articles) were 
evaluated using Messick’s validity concept43 and the Modified 
Educational Oxford Centre for Evidence-Based Medicine (OCEBM) 
Levels of Evidence (LoE) and Levels of Recommendation (LoR)44. 
Messick’s concept views validity as a continuous process and a 
combination of the classical views of face, content, construct and 
predictive validity, internal consistency, intra- and inter-rater 
reliability. Instead of viewing these as separate, five aspects that 
need to be considered for an assessment tool to be valid were 
assessed (Table 1). Strength of correlational analyses and 
significance was also extracted using standardized definitions. 

Artificial intelligence studies 
AI specialists contributed to screening, data extraction and 
evaluation and a bespoke data extraction template was employed 
to standardize data capture. 

Methodological quality assessment 
Methodological quality assessment was evaluated using a 
modifiable Downs–Black checklist (Table S2)45. Due to study 
heterogeneity some aspects were not applicable; therefore, 
taking a pragmatic approach, we modified the score in these 
circumstances, with a maximum score of 10 available. For AI 
studies, it was not feasible to apply a relevant methodological 
quality tool such as the Downs–Black checklist or Medical 
Education Research Study Quality Instrument (MERSQI)46, as 
most study designs are conceptual. 

Tables 2–4 summarize the main tools in each domain of 
technical skill assessment and Supplementary Tables (Tables S3 to 
S8) describe each study’s analysis. Summaries of the remaining 
tools can be viewed in Table S9. 

Results 
Two thousand, nine hundred and forty-four studies were identified 
from searches with 85 identified from additional sources. Seven 
hundred and forty-nine duplicates were removed. Of 2280 studies 
that were screened and reviewed, 2033 were excluded with 247 
studies undergoing data extraction (Fig. 2). Two hundred and 
twenty-seven studies were classified as observational, including 
Delphi meetings, experimental, cohort and randomized studies  
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not defined as randomized control trials (RCTs), while a total of 20 
RCTs were identified. Of the manual studies, 93 used global rating 
scales (GRS), 45 procedure- or task-specific tools, 43 error-based, 77 
simulator automated performance metrics, 28 non-simulator 
automated performance metrics and 53 AI studies. 

Global rating scale tools 
Eight different GRS tools were identified (Table 2 and Table S3). Global 
Evaluative Assessment of Robotic Skills (GEARS) was the most 
utilized assessment method, assessed in 58 studies, including 
12 RCTs giving a Level 1 recommendation based on 21 studies 
reporting excellent reliability and 3 low/poor. Interestingly, 
crowd-sourced GEARS ratings demonstrated excellent inter-rater 
reliability47, good to strong/excellent inter-observer group 
reliability compared to experts48–51, as well as construct48,52 and 
predictive validity53. GEARS (all raters) demonstrated supportive 
evidence of ‘relationship to other variables’ including concurrent 
(17 studies), construct (25 studies) and predictive validity (3 studies). 

Objective Structured Assessment of Technical Skills (OSATS), 
Global Operative Assessment of Laparoscopic Skills (GOALS) and 
Robotic-OSATS (R-OSATS) were used in a total of 34 studies and 
all received a Level 2 recommendation, despite only one of them 
being robotic-specific. GEARS has no robust data validating 
a benchmark for overall and domain scores, whereas GOALS 
and R-OSATS used the contrasting groups method54 and the 
modified Angoff method55, setting competency at 80 per cent 
and 70 per cent, respectively. All other tools identified have not 
been thoroughly evaluated with LoR 3 or 4 (Table S9). 

Procedure- and task-specific tools 
Twenty-six different types of procedure- and task-specific tool 
were identified in 45 studies (Table 2, Tables S4, S9). Of these, 22 
(48.9 per cent) studies containing 17 (37.8 per cent) different 
tools used full procedural data56–77. With regards to specialty, 21 
(46.7 per cent) studies50,56,57,64,66–74,76,78–84 assessed 15 urology 
tools, 9 (20 per cent) studies58–61,63,75,77,85,86 assessed 8 general 
surgery tools, 3 (6.7 per cent) gynaecology tools58,65,87, 1 (2.2 per 
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Fig. 1 Artificial intelligence framework for surgical skill assessment  

Table 1 Messick’s validity framework adapted from143,144 

Source of validity Evidence Examples  

Test content, that is face and content 
validity 

The test’s content and the construct it is intended 
to measure 

Delphi methodology/expert consensus 
development 

Questionnaires for realism and usefulness 
Response process Analysis of raters, that is how well they respond to 

the test and steps taken to improve the validity 
Rater training/orientation/familiarization 
Randomization 
Powered study 
APMs eliminate rater bias 

Internal structure, that is reliability Degree to which domains and aspects of the tool fit 
the underlying construct 

Intra- and inter-rater reliability, internal 
consistency 

APMs eliminated rater subjectivity 
Relationship to other variables Evaluating scores’ associations/correlations, 

whether they are positive or negative, strong or 
weak, and with other variables including 
discriminative ability 

Concurrent, construct and predictive validity 
Generalizability of the evidence 
Learning curves 

Consequence Impact of the assessment Pass/fail/benchmarking of scores 
Impact or consequences on participants future/ 

learning   
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Table 2 Summary of manual assessment tools 

Global rating scale tools 

Tool Study type Setting Test 
content 

Response 
process 

Internal structure Relationship to 
other variables 

Consequences LoE LoR  

GEARS 46 Observational 
12 RCTs 

36 Lab 
17 OR 
5 Lab & OR 

Experts  
developed 
based on 
GOALS145 

All studies (except 
one53)  
demonstrated 
response  
process 

Inter-rater reliability 

Strong/Very strong/ 
Excellent/High47– 

51,71,82,83,145–156 

Acceptable/Good/ 
Moderate15,48,51,157,158 

Low/Poor50,159 

Intra-rater reliability 

Excellent148 

Internal consistency 

Excellent105,145,160 

Low49  

Concurrent validity 

Other GRS tools49 

Task-/ 
procedure-specific  
tools77,80,81,146,161 

Error tools162 

Virtual reality146,163–166 

APMs52,84,105,154,157 

Non-technical skills167 

Construct validity47,52, 

77,82,84,99,105,145,147,148, 

150,151,153,154,157,161,163, 

167–174 

Predictive validity53,162,175 

80–100% = good to 
excellent (arbitrary 
definition73) 

Benchmarked using 
expert scores167,169 

Level 1b15,83,169 

Level 2a82,149,153, 

159,160,165,166,168,176, 

177 

Level 2b47–52,77, 

80,81,84,99,105,113, 

145–148,150,151,154– 

156, 

161,163,164,167,170,171, 

174,178 

Level 3 53,71,73,152, 

158,162,172,179–182,282 

Level 458,64,175 

Level 1  
recommendation 

OSATS 20 Observational 
3 RCT 

19 Lab 
3 OR 
1 Lab & OR   

All but two 
studies183,184  

demonstrated 
response  
process 

Inter-rater reliability 

High/Excellent90,185,186 

Good/Moderate86,187–189 

Intra-rater reliability 

Strong86 

Internal consistency 

Excellent105NB OSATS/ 

GEARS combo  

Concurrent validity 

Task-/procedure-specific 
tools90 

Error tools190 

Virtual reality90,191 

APMs105 

Cognitive load192 

Construct  
validity54,62,105,185,187, 

188,193,194 

Predictive validity86 

Hypothesized mean 
OSATS category scores 
3.5 novice and 4.5 
expert was in 
concordance with 
results of mean188 

Expert 
benchmarking62,184,185 

Level 2a63,195,196 

Level 2b54,62,90,105, 

183,185–188,189,192– 

194 

Level 386,88,184,190, 

191,197,198 

Level 2 
recommendation 

(NB if combined with 
OSATS 
task-specific, it 
would still be LoR 
2) 

GOALS 4 Observational 
3 RCTs 

5 Lab 
1 OR 
1 Lab & OR 

Expert group 
added 2 
domains to 
GOALS 
creating 
GOALS + 199 

All studies 
demonstrated  
response 
process 

Internal consistency 

High160  

Concurrent validity 

Other GRS tools160 

Virtual reality160,200 

Construct  
validity54,199,201 

Pass mark defined by 
contrasting groups 
method54 by experts92 

Level 1b200 

Level 2a160 

Level 2b54,92,199,201 

Level 458 

Level 2 
recommendation 

R-OSATS 4 Observational 4 Lab Developed from 
GOALS and 
OSATS202 

All studies 
demonstrated  
response 
process 

Inter-rater reliability 

Strong/Very high/ 
Excellent55,203,204 

Acceptable/Moderate/ 
Good202,203 

Intra-rater reliability 

Very strong202 

Moderate/Good203  

Concurrent validity with 
VR204 

Construct validity202,204 

Modified Angoff method 
set threshold 
competency scores per 
drill55 

Level 2b55,202,204 

Level 3203 
Level 2 

recommendation 

Procedure- and Task-Specific Assessment Tools 

OSATS 
Task-specific 

Tools are for 
separate 
procedures/ 
tasks 

5 Observational 
2 RCTs 

7 Lab No studies All demonstrated 
response 
process 

Inter-rater reliability 

High90  

Concurrent validity 

Non-simulator APMs89 

Simulator APMs90 

Construct validity62,98 

Pass mark based on 
experts62 

Level 2a63 

Level 2b62,90,98 

Level 388,89,91 

Level 2 
recommendation 

(NB if combined with 
OSATS GRS, 
would still be 
Level 2) 

RACE 5 Observational 
1 RCT 

3 Lab 
2 OR 
1 Delphi 

and OR 

Delphi  
consensus81 

All demonstrated 
response 
process 

Inter-rater reliability 

Strong/Excellent50,83 

Good/Moderate50 

Intra-rater reliability 
Good81 

Concurrent validity 

GEARS81 

UVA leak on model84 

EASE suturing tool205 

Construct validity81,84   

Level 1b83 

Level 2b50,81,84,205 

Level 378 

Level 2 
recommendation 

Task-Perform-ance 
Metrics Tools 

Tools are for 
separate 
procedures/ 
tasks 

1 Observational 
2 Delphi and 

video rating 
OR videos 

2 Delphi and Lab 

1 Delphi 
1 OR 
1 Delphi 

and OR 
2 Delphi 

and OR 

All tools 
developed 
through 
Delphi 
consensus 

All tools 
demonstrated 
response 
process 

Inter-rater reliability 

Percentage agreement 
0.85–0.9676,77,93,97  

Construct validity76,77,93,97 Anastomotic leak test93 Level 2b76,77,93,97 

Level 475 
Level 2 

recommendation                                                                                                                                                                                                                     

(continued)  
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cent) ear, nose and throat62, 1 (2.2 per cent) microsurgery88, 8 (17.8 
per cent) suturing89–95, 2 (4.4 per cent) dissection92,96, 1 (2.2 per 
cent) vessel dissection and ligation97 and 1 (2.2 per cent) other 
dry model tasks98. 

Robotic Anastomosis Competency Evaluation (RACE), 
Task-Performance Metrics tools and OSATS are the most 
evaluated tools with a Level 2 recommendation, demonstrating 
concurrent and construct validity, missing evaluation for 
predictive and in the consequence domain. One tool, A-OSATS85, 
has been evaluated over all five of Messick’s domains, but only 
in one study and lacking predictive validity. In summary, there 
are no full procedural tools that have been fully evaluated for 
robotic surgery. 

Error tools 
Three main tools underwent multiple study evaluations (Table 2): 
the Fundamental Laparoscopic Skills (FLS) scoring system, 
Generic Error Rating Tool (GERT) and Task-Performance Metrics. 
The most common error method was the cumulative number of 
errors, reported in 20 of 42 studies (46.5 per cent; Table S5). In 13 
studies (69.7 per cent) a composite score was created, while a 
further study defined arbitrary task-specific time penalties. There 
is substantial variability in the definition and measurement of 
errors, often missing robust evaluation on validity and multiple 
tools were only present in single studies. The FLS scoring system 
gives a composite score and was used in 9 (20.9 per cent) studies. 
Task-Performance Metrics tools define errors and were used in 5 
(11.6 per cent). The GERT tool assesses a surgical task group, 
error mode, number, description and mechanism of event and 
was analysed in 2 (4.6 per cent) studies. All three methods 
reached Level 2 recommendation. FLS and Task-Performance 
Metrics tools both had evidence of internal structure and 
relationship to other variables, with excellent reliability, 

concurrent and construct validity. There were no reports on 
predictive validity or benchmarking of these tools. 

Simulator automated performance metrics 
Ten different simulators were identified (Table S6, Table 3). 
Automated performance metrics in simulation environments 
have been thoroughly evaluated with 39 (50.6 per cent) studies 
on da Vinci Skills Simulator (dVSS), 17 on (22.1 per cent) 
dV-Trainer (dV-T) and 9 (11.7 per cent) on RobotiX Mentor. 
Sixteen (76.2 per cent) of the 20 RCTs in this review involved 
simulators. These three simulators have been validated in all five 
Messick domains exhibiting concurrent and construct validity. 
dVSS and dV-T training also predicted better performance on the 
console in operative and dry model performances. In addition, 
more comprehensive evaluation in the consequence domain 
has been carried out for all three when compared to other 
assessment tools. Current evidence favours dVSS at Level 1 
recommendation. dV-T, RobotiX Mentor, Promis hybrid surgical 
simulator, Robotic Surgery Simulator (RoSS) and 3D hydrogel 
models with ‘Clinically Relevant Objective or Performance 
Metrics (CROMS/CRPMS)’ all receive Level 2 recommendation. 
The Versius trainer from CMR Surgical has currently been 
evaluated at Level 4 recommendation. Simulators99–101,283 

unlikely to be in wide usage were identified and excluded from  
Table 3. Notably the vast majority of studies (70; 90.9 per cent) 
looked at basic skills, with only 6 (7.8 per cent) reviewing 
procedure-specific VR52,84,99,102–104. 

Non-simulator automated performance metrics 
Of the 28 included studies (Table 3 and Table S7), 16 used da Vinci 
Application Programming Interface (API) kinematic and system 
event data, with 6 (21.4 per cent) from the operating room and 
all within urology. Kinematic and system event data from the da 

Table 2 (continued)  

Global rating scale tools 

Tool Study type Setting Test 
content 

Response 
process 

Internal structure Relationship to 
other variables 

Consequences LoE LoR  

Error Assessment Tools 

FLS Scoring 
System 

8 Observational 
1 RCT 2 

8 Lab 
1 OR and 

Lab 

None 2 demonstrated 
response 
process169,206 

Inter-rater reliability 

Excellent207 

Intra-rater reliability 

Excellent207 

Internal consistency 

Good207  

Construct validity169,208–210 

Concurrent validity with 
GEARS146 

Expert defined 
proficiency/pass fail 
marks169,207–209 

Level 2a169 

Level 2b146,206,208,209 

Level 395,207,209,211 

Level 2 
recommendation 

Task-Perform-ance 
Metrics Tools 

Tools are for 
separate 
procedures/ 
tasks 

1 Observational 
2 Delphi and 

video rating 
OR videos 

2 Delphi and Lab 

1 Delphi 
1 OR 
1 Delphi 

and OR 
2 Delphi 

and OR 

All tools 
developed 
through 
Delphi 
consensus 

All tools 
demonstrated 
response 
process 

Inter-rater reliability 

Percentage agreement 
0.85–0.9676,77,93,97  

Construct validity76,77,93,97 Anastomotic leak test93 Level 2b76,77,93,97 

Level 475 
Level 2 

recommendation 

Generic Error 
Rating Tool 

2 Observational 2 OR None Both 
demonstrated 
response 
process   

Concurrent validity 

GEARS162 

Clinical adverse events 
(presumed intra-op, 
unclear)162 

Cognitive task load192    

Level 2b192 

Level 3162 
Level 3 

recommendation   
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Table 3 Summary of automated performance metrics 

Simulator automated performance metrics 

Tool Study type Setting Test 
content 

Response 
process 

Internal 
structure 

Relationship to  
other variables 

Consequences LoE LoR  

da Vinci (Surgical) 
Skills Simulator 

28 Observational 
11 RCTs 

30 Lab 
9 OR and 

Lab 

14 studies 
showing face 
and content 
validity83,164, 

168,201,204,212– 

220 

Note three 
studies stated 
dVSS more 
realistic/ 
helpful than 
dV-T83,219,220 

Automated metrics  
inherently no rater 
bias 

11 RCTs (3 not 
powered)159,160,165 

2 Powered 
non-randomized 
studies201,212 

Orientation/ 
standardization of 
training201,212, 

215,216,218,221,222 

Automated 
metrics 
inherently 
consistent 

1 study measured 
consistency 
with 
consecutive 
attempts with 
excellent 
reliability217 

Concurrent validity 

GRS tools160,163– 

165,200,204 

Other VR219 

Error tools163 

Other training 
method223 

Construct  
validity163,181,201,204, 

212–215,221,222,224–226 

Predictive of console  
performance in the  
lab83,194,200,201 

Predictive of console  
performance in the  
OR146,166,201,227 

Pass mark defined 
92,160, 

166,168,169,194,201,204, 

210,216,217,225,228–230 

Level 1b83,200 

Level 2a159,160, 

165,166,168,169,177 

Level 2b146,163, 

164,201,204,212–217, 

221–226,228,229 

Level 373,92,181, 

191,194,210 

Level 4220 

Level 1  
recommendation 

dV-Trainer 13 Observational 
4 RCTs 

17 Lab 9 Face/ 
content83,90, 

193,218–220, 

231–233 

Note lack of 
realism for 
needle 
driving231 

Automated metrics 
inherently no rater 
bias 

4 RCTs (2 not 
powered)165,234 

Orientation/ 
standardization of 
training218,232,235,236 

Automated 
metrics 
inherently 
consistent 

Concurrent validity 

GRS90,165,218 

Other VR219 

Construct  
validity218,219, 

231–233,236,237 

Predictive of console  
performance in the  
lab193,234,238 

Novice proficiency 
criteria 
developed149 

Defined by expert 
performance235 

VR index competency 
score (not 
benchmarked)234 

Level 1b83 

Level 2a149,165,234,235 

Level 2b90,193,218,219, 

231–233,236,237 

Level 3238,239 

Level 4220 

Level 2 
recommendation 

RobotiX Mentor 9 Observational 
1 RCT 

9 Lab 
1 Delphi 

All studies 
showed face/ 
content 
except 
two173,240 

No difference 
between RXM 
and dVSS/ 
dV-T220 

Note limitation of 
realism of 
suture241 

Automated metrics 
inherently no rater 
bias 

Orientation/ 
standardization of 
training102,103,173,241– 

243 

Randomized groups173 

Automated 
metrics 
inherently 
consistent 

Test–retest 
reliability 

Excellent103 

Internal  
consistency  
of metrics 

Fair243 

Unacceptable to 
good143 

Unacceptable to 
poor103  

Concurrent with FRS 
metrics dry lab244 

Construct 
validity103,143,240–244 

Predictive of console 
performance in the 
lab173 

Pass mark defined 241 

based on 
competent 
surgeons240,244,  
with contrasting 
groups method 
103,43,243 

Level 2a173 

Level 2b102,103,143, 

241–244 

Level 2c240 

Level 4220 

Level of 
recommendation 2 

PromisTM hybrid 
surgical 
simulator 

3 Observational 3 Lab Face and 
content245 

Standardized 
orientation245,246 

Internal 
consistency 

Good247  

Construct validity245–247   Level 2b245–247 Level 2 
recommendation 

Robotic Surgery 
Simulator 
(RoSS) 

3 Observational 
1 RCT 

1 Lab 
1 Lab and 

Delphi 

Face248 and 
content 
12,249,250 

Automated metrics 
inherently no rater 
bias 

Randomized, powered12 

Automated 
metrics 
inherently 
reliable 

Construct validity250 

Predictive of console 
performance in the 
lab12   

Level 2a12 

Level 2b250 

Level 4248,249 

Level 2 
recommendation 

3D hydrogel models 
—clinically 
relevant 
objective/ 
performance 
metrics 
(CROMS/ 
CRPMS) 

2 Observational 2 Lab Face and content 
both studies 

Objective metrics 
Pilot testing52   

Concurrent validity with 
GEARS52,84 

Construct validity52,84   

Level 2b52,84 Level 2 
recommendation 

da Vinci SimNow251 1 RCT Lab   Automated metrics 
inherently without 
rater bias 

Automated 
metrics 
inherently 
reliable 

Concurrent validity with 
da Vinci system event 
data recorder 

Construct validity   

Level 2a Level of  
Recommendation 3 

Versius Trainer172 1 Observational Lab   Automated metrics 
inherently without 
rater bias 

Automated 
metrics 
inherently 
reliable 

Learning curve 
demonstrated   

Level 3 Level of 
Recommendation 4 

Non-Simulator Automated Performance Metrics 

da Vinci Kinematic 
and System Event 
Recorders 

NB different terms 
used that is da 
Vinci API, 
dVLogger or da 
Vinci Systems 
Events data 
recorder 

15 Observational 
1 RCT 

10 Lab 
6 OR   

Automated metrics 
inherently without 
rater bias 

1 study randomized251 

Automated 
metrics 
inherently 
reliable 

Concurrent validity 

GRS89,154,157 

VR251 

Cognitive load251 

Task evoked pupillary 
response252 

R.E.N.A.L. nephrotomy 
score and intraop 
data for example 
EBL35   

Level 2a251 

Level 2b35,37,154,157, 

198,252–256 

Level 336,89,189,257,258 

Level of 
Recommendation 2                                                                                                                                                                                                                     

(continued)  
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Vinci systems are the most evaluated APMs on the console 
achieving Level 2 recommendation. Despite two other APM tools 
having the same LoR, da Vinci API data evaluation is arguably 
more useful as concurrent, construct and predictive validity has 
been demonstrated. The only study105 looking at non-kinematic 
data, instrument vibration and forces, showed construct 
and concurrent validity, with a LoR 3. No study has yet fully 
validated non-simulator APM data, primarily missing evaluation 
in the consequence domain. 

Artificial intelligence 
Fifty-three AI studies were identified (Table 4 and Table S8). The range 
of participating surgeons across the AI studies varied from 1106 to 
77107 (median = 8). Most studies employed the publicly available 
JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS)109, 
which features 139 trials from eight surgeons suturing, knot-tying, 
and needle-passing exercises with kinematic data. 

The most common level grouping was between expert and 
novice surgeons; however, there was significant heterogeneity in 
how this was defined. In most cases, expertise was defined by a 
surgeon’s caseload with wide variability, for example 50 to over 
2500 cases33,105. Other studies assigned assessment scores to 
group surgeons above a predefined threshold as experts and 
below as novices108. 

Forty-one (77.4 per cent) studies evaluated their AI models 
using data obtained from simulators or dry lab simulations, 
while 12 (22.6 per cent) studies used data collected from real 
surgical procedures. The most frequently used dry lab data set 
(24/41; 58.5 per cent) was JIGSAWS. 

Studies that used real surgical data included procedures such as 
lymph node dissection110, laparoscopic cholecystectomy108,111, 
robotic assisted radical prostatectomy (RARP) urethrovesical 
anastomosis112, and phases36,113–115, gastrectomy116 and thyroid 
surgery117. RARP procedures were the most common (7/12), with 
Chen et al.33 utilizing the largest data set. 

The majority approached skill assessment as a classification 
task (28/53; 52.8 per cent), with the aim of predicting the 
participant skill level. Twenty (37.7 per cent) studies estimated 
an assessment score (numerical regression) that corresponds to 
an assessment tool. Notably, only three118–120 attempted to 
estimate the individual domains of the tool, with the remainder 
predicting the total score. 

A few studies adopted a different approach to assess skill; 
ranking performance121, estimating the operating field 
clearness116, using stylistic behaviour labels122 and linking skill 
levels to clinical outcomes in RARP36,113,115,123. 

Of the 53 studies, 20 (37.7 per cent) utilized video data, 29 (54.7 per 
cent) used kinematics, 7 (13.2 per cent) employed system events 
and 3 (5.6 per cent) used force data. Furthermore, a few others 
utilized clinical parameters such as BMI and prostate -specific 
antigen (PSA)114, eye-tracking and electroencephalography (EEG) 
signals, electromyography data (EMG) and galvanic skin response 
(GSR)124, surgical gesture sequences114 and stylistic behaviour 
components122,125,126. Among these studies, 33 (62.3 per cent) 
used a single input modality (for example, video only), while 
20 (37.7 per cent) utilized two or more input modalities. 

Twenty-six (49.1 per cent) studies used classic machine learning 
methods, with support vector machine (SVM) being the most 
common (13/26 (50 per cent)). Most used APMs as input. 
Twenty-seven (51 per cent) employed deep learning methods, with 
19 (35.8 per cent) using convolutional neural networks (CNN). 
Video-based deep learning methods used a CNN to extract visual 
features, which are then either fed to a temporal model110,111,127–131 

or to a simple classifier/regressor108,112,116,131,132. Kinematic-based 
deep learning approaches use either temporal convolutional 
networks (TCN)110,133,134 or recurrent neural network (RNN)129,135 

or a combination of the two119,136,137. Notably, deep learning 
approaches have gained popularity in surgical skill assessment 
(Fig. S1). 

To evaluate their developed methods, most studies utilized the 
accuracy metric and Spearman’s correlation coefficient (SCC). 
The accuracy rates and SCC for the models tested on real 
surgical data ranged from 67 per cent to 100 per cent and 0.41 to 
0.64, respectively, but were inferior to simulator/dry-lab data; 
nearly 60 per cent of classification methods reported accuracy 
above 90 per cent; while only one study111 out of 10 reported 
SCC over 0.90. 

Discussion 
This systematic review comprehensively analysed the current 
development and evaluation status of objective technical skills 
assessment tools in robotic surgery. Despite the plethora of 
publications, it is evident that full evaluation according to 
Messick’s concept is sparse. This may explain the notable lack 
of reports showing their implementation within day-to-day 
practice or curricula. Many manual tools are lacking in scope 
and are arguably unsuitable to be used as summative tools at 
their current validation status. Emerging evidence in AI has 
reached the first in-human studies, but these are predominantly 
conceptual and require full validation. The current review 
suggests that research efforts should be focused on validating 

Table 3 (continued)  

Simulator automated performance metrics 

Tool Study type Setting Test 
content 

Response 
process 

Internal 
structure 

Relationship to  
other variables 

Consequences LoE LoR  

Construct  
validity35,37,157, 

251–256 

Predictive validity35–37, 

256 

Electromag-netic 
motion tracker 
sensor 
(TrakStar; 
Ascension 
Technologies, 
USA) 

5 Observational All Lab   Automated metrics 
inherently without 
rater bias 

Standardized 
orientation259 

Experts reviewed 
metrics260 

Automated 
metrics 
inherently 
reliable 

Construct 
validity206,259,261,262   

Level 2b206,259,261,262 

Level 3260 
Level 2 

recommendation 

SurgTrak™ Motion 
tracking235 

1 RCT Lab   Automated metrics 
inherently without 
rater bias 

Randomized, powered   

Construct validity   Level 2a Level 2 
recommendation   
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and implementing existing instruments rather than seeking any 
further robotic surgery assessment methods. 

GEARS and VR simulators offer clear opportunities for formative 
and summative assessment within the basic skills curricula. 
Simulator studies demonstrated VR participants outperforming 
controls or an improvement in post-VR curriculum assessments in 
the operative and laboratory setting. GEARS has not been formally 
benchmarked and given that it is likely the best manual annotation 
GRS tool to use with AI models warrants further focused 
evaluation. Meanwhile, given that AI studies often use OSATS or 
modified GOALS, efforts are necessary to inform the computer 
science and surgical community to utilize GEARS instead for robotic 
global technical ratings. Chen et al.28 highlighted gaps in the 
assessment domains of generic robotic skills assessments for 
GEARS, which provides an opportunity for modification and 
re-evaluation. VR simulators allow safe transference of basic skills 
and have defined competency benchmarks before progression to 
console training, broadly speaking a score between 80 and 90 per cent. 

Procedure-specific VR and 3D-printed hydrogel models provide 
high-fidelity simulation allowing an opportunity for standardized, 

safe progression to clinical training. These platforms avoid 
possible ethical, religious and moral issues that can prevent the 
use of cadaver or live animals. Only six studies were identified 
evaluating procedure-specific VR, confirming the need for 
further development and evaluation of different operative VR 
and 3D model tasks. However, additional issues including 
training access and the financial implications of these platforms 
remain unstudied. 

Procedure-specific tools can potentially act as excellent 
formative and summative assessments often with higher 
reliability than GRS. Three tools (OSATS task-specific, RACE and 
Task-Performance Metrics) had the highest LoR; however, 
importantly there are no reports demonstrating predictive validity 
or benchmarking full procedural tools. Task-Performance Metrics 
were all developed through Delphi consensus as proficiency-based 
progression (PBP) assessment tools and had high reliability 
through trained expert raters undergoing reliability ‘checks’. The 
tools’ structure includes phases and subtasks for each procedure 
and can be commended for including operation-specific error 
metrics. Their intended application is within proficiency-based 

References from databases
n = 2944

References from other sources including
citations of identified studies, authors
knowledge base and studies released after d
n = 85

Duplicates removed n = 749
Duplicates identified Ovid MEDLINE n = 352
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Studies screened n = 2280

Studies assessed for eligibility
through full text review
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Studies included in review
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Studies excluded n = 2004
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Wrong intervention n = 1
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training, which aims to benchmark phases or modules before 
moving on to the next stage. However, these among other tools 
are not yet publicly available, precluding research including 
external validation efforts. 

It is evident that there is a paucity of procedure-specific tools 
ready for implementation into robotic training curricula. They 
also lack scope, with the majority in urology, and so as a 
surgical community it is imperative to both develop tools 
missing for key operations and fully evaluate existing ones. 

Error tools identified in this review typically used cumulative 
number of errors and have not been fully evaluated within clinical 
settings. A key aspect in a surgeon’s learning curve is to 
understand the ‘what, where, when, how, why’ and corrective 
mechanisms of an error, which no current study has reported. 
Granular methods of surgeons’ technical performance and errors 
are necessary to train AI, combined with global rating scales and 
procedure-specific tools, to fully understand the complexities of 
any operation. Tools should combine each aspect with full 
comprehensive evaluation before implementation into training 
curricula. As demonstrated in this review, reliability can most 
likely be improved through expert, trained raters and quality 
assurance processes. 

APMs and AI are emerging and promising tools to guide training 
and assessment in robotic surgery. APMs can be considered truly 
objective, yet need further focused evaluation to understand and 
benchmark important metrics for construct and predictive 
validity. While AI models performed well when analysing 
intraoperative surgical skill data, they generally perform better 
on simulator/dry lab. 

A significant proportion of the AI models tested on simulated data 
achieved accuracy rates above 90 per cent, while some models 
tested on real surgical data demonstrated perfect classification 

performance of surgical skill levels. Despite this, AI-based skill 
assessment is still in its conceptual stage with four broad areas 
that need to be addressed: data sets, manual annotation, AI model 
evaluation and integration into clinical practice. 

For the field of automated surgical skill assessment to advance, 
it is critical to assess models on real surgical data. Additionally, it 
is crucial to gather data from high-fidelity simulations tasks so AI 
models can be evaluated for benchmarking and comparison 
of different methods. Efforts must focus on collecting large, 
publicly available, diverse data sets, including surgeons with 
differing levels of expertise and different robotic platforms with 
matched clinical outcome data. Utilizing diverse data sets will 
ensure AI models are unbiased and can generalize effectively on 
unseen surgeons and tasks. 

Identified AI studies used different ways to evaluate their 
methods making direct comparisons challenging and reducing 
external validity. Testing models on the JIGSAWS data set has 
highlighted the performance gap between cross-validation 
schemes such as Leave-One-User-Out (LOUO) and more 
relaxed schemes such as Leave-One-Super-Trial-Out (LOSO). 
However, before automated skill assessment can be used in 
clinical practice it must first be ensured the models can 
generalize to unseen surgeons. To achieve this, evaluation 
should be performed with cross-validation schemes (for small 
data sets), or with large external test sets containing trials from 
unseen surgeons from different hospitals to ensure 
generalizability138–140. LOSO still remains useful in situations 
where the performance of a specific surgeon is tracked for 
proficiency curve analyses. 

To achieve integration into clinical practice, it is essential that 
models can provide not only accurate predictions but also clear, 
understandable justifications for their decisions that clinicians 

Table 4 Summary of artificial intelligence studies 

Study 
setting 

Participant 
no. 

Tasks/procedure Data set Data set size 
(trials) 

Model input Model output that is  
estimates/predictions | 

performance  

Simulators 
(VR) 

1–9124 

10–19122,125, 

126,263  

≥ 20107 

Ring and rail107,122,124,125,263 

Suture sponge107,122,125 

Camera targeting, peg board, 
dots and needles, tubes124 

Endowrist manipulation, 
needle control and needle 
driving skills126 

All private <50124,263 

50–99122,125,126 
Kinematics107,122,125,126,263 

Skill-related labels125,126 

EMG signals125 

Eye-tracking and EEG 
signals124 

Skill level125,263 | accuracy 
65–100% 

GEARS107,126 | accuracy 
69–89% 

Skill-related labels122 | 
accuracy 48–99% 

Dry lab 1–9118,120,121, 

127,129–132, 

134,135,136,198, 

264–275 

10–19105,276– 

278  

≥ 20152 

Suturing120,121,131,132, 

264–266,276,277 

Needle passing118–121, 

127–132,134,136,137,265, 

267–270,272,274,275,279 

Knot tying118,120,121,127, 

129–132,134,136,137,198, 

265–270,272,274,277,278 

Transection and 
dissection264,276 

Peg transfer105,152 

Ring transfer280 

JIGSAWS110,111, 

118–121,127– 

132, 

134,135,137, 

265–269,272– 

275, 

277,279 

<50271,274 

50–99136 

100–149110,111, 

118–121,127–132, 

134,135,137,152,198, 

265–270,272–275, 

277–279  

≥ 150105 

Kinematics105,118–120, 

129,134–137,152,198, 

264–266,269,271,274–278, 

281 

Force data105,264 

System event data264,271, 

276,281 

Videos121,127,128,130–132, 

267,268,270,272,273,279 

Skill level118,127, 

134–137,198,265,266,268, 

269,271,274,276,277, 

280,281 | accuracy 46–100% 
Modified OSATS 

(JIGSAWS)111,118–120, 

127,128,131,132,267,270,272 | 
SCC 0.03–0.93 

GEARS152 | accuracy 52–75% 

Operating 
room 

1–9106,110, 

111,115 

10–1933,112  

≥ 2036,114,138 

RARP33,36,112,114,115,138 

Urethrovesical 
anastomosis33,112 

Needle handling/driving138 

Lymph node dissection106,110 

Laparoscopic 
cholecystectomy108,111 

HeiChole111 <50106,110–112,117 

50–9933,114,116 

100–149115  

≥ 15036,108,138 

Videos106,108,110– 

112,116,117,138 

Kinematics33,36,115 

System event data33,36,115 

Clinical parameters114,115 

Skill level33,108,112,117,138 | 
accuracy 67–100% 

PLACE score106 | accuracy 
83.3% 

Modified GOALS110,111 | SCC 
0.46–0.57 

3-Month/6-month urinary 
continence after RARP36 | 
AUC 0.67–0.74) 

1-Year erectile function 
recovery114 | AUC 
0.68–0.77   
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can trust. As the role of AI in healthcare continues to expand there 
is increasing awareness of the potential pitfalls and the need for 
guidance to avoid them141, including a recent statement from 
the World Health Organization142. 

Increasingly detailed and informative feedback beyond simple 
scores or skill level labels can help to personalize surgical 
training. Although there have been some efforts to develop 
explainable AI models and feedback mechanisms111,127,128,133, 
more research is needed to fully address these issues, focusing on 
developing methods that are more transparent and interpretable, 
for example written reports and error-detection capabilities to 
provide more informative context-specific feedback. Indeed, 
research is needed investigating human factors with educational 
specialists to elucidate the best way for skill assessment to be 
presented and when. 

To credential surgeons as competent for independent practice, 
blinded expert video rating is considered an essential part 
of accreditation21. This requires fully evaluated objective 
summative assessment tools. Often, surgeons undergoing robotic 
training are already credentialed, adding additional challenges 
to standardizing pathways and ensuring patient safety. 
Undoubtedly, there are many routes to competency and now also 
emergent robotic systems to consider. 

This review has highlighted many assessment domains, with 
their advantages, disadvantages and future research needs 
(Table 5). To achieve implementation of validated and reliable 
tools into curricula, collaboration between surgical societies is 
required. Through expert consensus and large, multicentre, 
international studies, single tools for each procedure should be 
developed and fully evaluated. Only then, should they be 

Table 5 Summary of all assessment domains 

Assessment domain Advantages Disadvantages Further research  

Global Rating Scales Quick to fill in. 
GEARS is capable of strong validity 

and reliability. 
Likely good formative tools for 

generic technical skill. 

Subjective, risk of low reliability. 
Miss granularity of operative steps; 

therefore, not to be used solely for 
summative assessment in procedural 
training. 

No evidence used in day-to-day 
formative/summative assessment or 
incorporated into curricula. 

Benchmarking alongside 
procedure-specific tools. 

Incorporation into curricula. 
Expert consensus on tool to use for 

training AI, and a standardized 
method for example experts who 
are trained with reliability tests. 

Procedure-specific Valid and reliable often as it is easy 
to agree on what steps have been 
done that is binary. 

Useful formative and summative 
assessments. 

Potential to miss how well the surgeon 
performs an operation. 

Currently only a few tools and 
predominantly within urology. 

No fully evaluated or benchmarked 
tools exist for robotics. 

Benchmarking with GRS tools. 
Development and full evaluation of 

more tools within different 
specialties. 

Incorporation into training curricula. 

Error methods Evidence of validity and reliability. 
Important part of formative 

assessment for the surgeon to 
improve and summative to 
indicate competency. 

Difficult to define certain aspects for 
example how and why it occurs. 

Detailed error analysis takes time 
consuming retrospective video 
analysis. 

Combine with GRS and 
procedure-specific operative 
analysis including benchmarking. 

Further evaluation of existing tools 
within MIS. 

AI recognition of near-misses or 
pre-errors, errors, and critical 
errors, through manual annotation. 

Automated 
performance 
metrics 

Promising objective tools which 
have some validity evidence. No 
concerns re: reliability or bias. 

Simulators have been thoroughly 
evaluated and are a good tool for 
basic skills transfer to the 
console. 

Simulator APMs for procedure-specific 
simulation are lacking development 
and evaluation. 

Non-simulator APMs—current 
understanding is limited as to their 
meaning for formative/summative 
assessment and patient outcome. 

Data are protected by industry. 
Requires expertise in computer science 

collaborating with industry and 
clinicians; therefore, used only in 
research currently. 

Simulator evaluation on 
procedure-specific tasks. 

Evaluation of emerging robotic 
platforms VR and APMs. 

Evaluation of APM data in the clinical 
setting. 

Creation of more open data sets or 
perhaps registries should be 
considered. 

Availability of APM data sets depends 
on collaborating with industry to 
ensure it can be publicly available. 

Artificial intelligence Promising initial results, with the 
potential to transform formative 
and summative assessment, 
particularly if evaluated with 
APMs. 

In its infancy. 
Ensuring AI is correctly assessing 

performance requires highly reliable, 
manually annotated videos, which is 
time-consuming, particularly given 
the numbers needed to train then 
test. 

Current results are from small data 
sets. 

More challenging to evaluate in the 
clinical setting with more variability, 
for example camera and patient 
movements. 

External validity of methods to 
surgeons outside of the research data 
set. 

Risk of blocking innovation in the 
future? 

Open data sets/registries. 
Evaluation with manually annotated/ 

rated videos to help train AI, 
alongside APMs. 

Development of more complex 
laboratory data sets to initially 
evaluate models, then transfer into 
multispecialty clinical setting.   
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implemented within curricula as formative and summative tools, 
or in the evaluation of APMs and AI. 

Limitations 
This comprehensive review standardized data extraction with 
Messick’s concept and modified OCEBM guidelines. Nevertheless, 
due to marked study heterogeneity this was difficult at times, 
and was particularly evident when utilizing the OCEBM guidance, 
with previous systematic reviews disagreeing on studies’ LoE. Not 
only this, but some studies have a higher LoE, despite 
demonstrating less validity evidence than others. It is likely that 
guidelines require updating as surgical data science evolves. The 
application of methodological quality tools was found to be 
impractical for assessing AI studies, primarily as most are in their 
conceptual stage of development. Future research should focus 
on developing and piloting a new AI-specific study quality 
assessment tool. 

Conclusion 
A large number of manual, automated and artificial intelligence 
tools in robotic surgery exist. There is huge variability in 
approach to assessment and the level of evaluation among all 
domains of robotic technical skill assessment, with few 
having been well validated. In addition, there is a lack of 
scope and most tools are presently only used within the 
research setting, despite the unmet need for both objective 
formative and summative tools to inform learning and 
accreditation, respectively. Collaboration between surgical 
societies, AI scientists and industry, with large high-quality 
studies and open data sets, appears the most efficient way 
forward to aid diffusion and implementation of objective 
assessment tools in clinical practice to enhance training and 
patient safety. 
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