46 research outputs found

    Ontology ranking based on the analysis of concept structures

    Get PDF
    In view of the need to provide tools to facilitate the reuse of existing knowledge structures such as ontologies, we present in this paper a system, AKTiveRank, for the ranking of ontologies. AKTiveRank uses as input the search terms provided by a knowledge engineer and, using the output of an ontology search engine, ranks the ontologies. We apply a number of classical metrics in an attempt to investigate their appropriateness for ranking ontologies, and compare the results with a questionnaire-based human study. Our results show that AKTiveRank will have great utility although there is potential for improvement

    Searching and ranking ontologies on the Semantic Web

    Get PDF
    The number of ontologies available online is increasing constantly. Tools that are capable of searching, retrieving, and ranking ontologies are becoming crucial to facilitate ontology search and reuse. In this document, we describe OntoSearch, which is a tool for capturing and searching ontologies on the Semantic web. We also briefly describe AKTiveRank which is used to rank OWL ontologies based on certain ontology-structure analysis.

    Metrics for ranking ontologies

    Get PDF
    Representing knowledge using domain ontologies has shown to be a useful mechanism and format for managing and exchanging information. Due to the difficulty and cost of building ontologies, a number of ontology libraries and search engines are coming to existence to facilitate reusing such knowledge structures. The need for ontology ranking techniques is becoming crucial as the number of ontologies available for reuse is continuing to grow. In this paper we present AKTiveRank, a prototype system for ranking ontologies based on the analysis of their structures. We describe the metrics used in the ranking system and present an experiment on ranking ontologies returned by a popular search engine for an example query

    Searching Ontologies Based on Content: Experiments in the Biomedical Domain

    No full text
    As more ontologies become publicly available, finding the "right" ontologies becomes much harder. In this paper, we address the problem of ontology search: finding a collection of ontologies from an ontology repository that are relevant to the user's query. In particular, we look at the case when users search for ontologies relevant to a particular topic (e.g., an ontology about anatomy). Ontologies that are most relevant to such query often do not have the query term in the names of their concepts (e.g., the Foundational Model of Anatomy ontology does not have the term "anatomy" in any of its concepts' names). Thus, we present a new ontology-search technique that helps users in these types of searches. When looking for ontologies on a particular topic (e.g., anatomy), we retrieve from the Web a collection of terms that represent the given domain (e.g., terms such as body, brain, skin, etc. for anatomy). We then use these terms to expand the user query. We evaluate our algorithm on queries for topics in the biomedical domain against a repository of biomedical ontologies. We use the results obtained from experts in the biomedical-ontology domain as the gold standard. Our experiments demonstrate that using our method for query expansion improves retrieval results by a 113%, compared to the tools that search only for the user query terms and consider only class and property names (like Swoogle). We show 43% improvement for the case where not only class and property names but also property values are taken into account

    Evaluating the semantic web: a task-based approach

    Get PDF
    The increased availability of online knowledge has led to the design of several algorithms that solve a variety of tasks by harvesting the Semantic Web, i.e. by dynamically selecting and exploring a multitude of online ontologies. Our hypothesis is that the performance of such novel algorithms implicity provides an insight into the quality of the used ontologies and thus opens the way to a task-based evaluation of the Semantic Web. We have investigated this hypothesis by studying the lessons learnt about online ontologies when used to solve three tasks: ontology matching, folksonomy enrichment, and word sense disambiguation. Our analysis leads to a suit of conclusions about the status of the Semantic Web, which highlight a number of strengths and weaknesses of the semantic information available online and complement the findings of other analysis of the Semantic Web landscape

    Content-based ontology ranking

    Get PDF
    Techniques to rank ontologies are crucial to aid and encourage the re-use of publicly available ontologies. This paper presents a system that obtains a list of ontologies from a search engine that contain the terms provided by a knowledge engineer and ranks them. The ranking of these ontologies will be done according to how many of the concept labels in those ontologies match a set of terms extracted from a corpus of documents related to the domain of knowledge identified by the knowledge engineer's original search terms

    Building a biomedical ontology recommender web service

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Researchers in biomedical informatics use ontologies and terminologies to annotate their data in order to facilitate data integration and translational discoveries. As the use of ontologies for annotation of biomedical datasets has risen, a common challenge is to identify ontologies that are best suited to annotating specific datasets. The number and variety of biomedical ontologies is large, and it is cumbersome for a researcher to figure out which ontology to use.</p> <p>Methods</p> <p>We present the <it>Biomedical Ontology Recommender web service</it>. The system uses textual metadata or a set of keywords describing a domain of interest and suggests appropriate ontologies for annotating or representing the data. The service makes a decision based on three criteria. The first one is <it>coverage</it>, or the ontologies that provide most terms covering the input text. The second is <it>connectivity</it>, or the ontologies that are most often mapped to by other ontologies. The final criterion is <it>size</it>, or the number of concepts in the ontologies. The service scores the ontologies as a function of scores of the annotations created using the National Center for Biomedical Ontology (NCBO) <it>Annotator web service</it>. We used all the ontologies from the UMLS Metathesaurus and the NCBO BioPortal.</p> <p>Results</p> <p>We compare and contrast our Recommender by an exhaustive functional comparison to previously published efforts. We evaluate and discuss the results of several recommendation heuristics in the context of three real world use cases. The best recommendations heuristics, rated ‘very relevant’ by expert evaluators, are the ones based on coverage and connectivity criteria. The Recommender service (alpha version) is available to the community and is embedded into BioPortal.</p

    A Maut aprroach for reusing domain ontologies on the basis of the NeOn Methodlogy

    Get PDF
    Knowledge resource reuse has become a popular approach within the ontology engineering field, mainly because it can speed up the ontology development process, saving time and money and promoting the application of good practices. The NeOn Methodology provides guidelines for reuse. These guidelines include the selection of the most appropriate knowledge resources for reuse in ontology development. This is a complex decision-making problem where different conflicting objectives, like the reuse cost, understandability, integration workload and reliability, have to be taken into account simultaneously. GMAA is a PC-based decision support system based on an additive multi-attribute utility model that is intended to allay the operational difficulties involved in the Decision Analysis methodology. The paper illustrates how it can be applied to select multimedia ontologies for reuse to develop a new ontology in the multimedia domain. It also demonstrates that the sensitivity analyses provided by GMAA are useful tools for making a final recommendation
    corecore