
LOVBench: Ontology Ranking Benchmark
Niklas Kolbe

University of Luxembourg
niklas.kolbe@uni.lu

Pierre-Yves Vandenbussche
Elsevier

p.vandenbussche@elsevier.com

Sylvain Kubler
Université de Lorraine

s.kubler@univ-lorraine.fr

Yves Le Traon
University of Luxembourg

yves.letraon@uni.lu

ABSTRACT
Ontology search and ranking are key building blocks to establish
and reuse shared conceptualizations of domain knowledge on the
Web. However, the effectiveness of proposed ontology ranking mod-
els is difficult to compare since these are often evaluated on diverse
datasets that are limited by their static nature and scale. In this
paper, we first introduce the LOVBench dataset as a benchmark for
ontology term ranking.With inferred relevance judgments for more
than 7000 queries, LOVBench is large enough to perform a com-
parison study using learning to rank (LTR) with complex ontology
ranking models. Instead of relying on relevance judgments from a
few experts, we consider implicit feedback from many actual users
collected from the Linked Open Vocabularies (LOV) platform. Our
approach further enables continuous updates of the benchmark, cap-
turing the evolution of ontologies’ relevance in an ever-changing
data community. Second, we compare the performance of several
feature configurations from the literature using LOVBench in LTR
settings and discuss the results in the context of the observed real-
world user behavior. Our experimental results show that feature
configurations which are (i) well-suited to the user behavior, (ii)
cover all features types, and (iii) consider decomposition of features
can significantly improve the ranking performance.

KEYWORDS
ontology search, ground truth mining, ontology reuse, semantic
interoperability, learning to rank
ACM Reference Format:
Niklas Kolbe, Pierre-Yves Vandenbussche, Sylvain Kubler, and Yves Le Traon.
2020. LOVBench: Ontology Ranking Benchmark. In Proceedings of The Web
Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380245

1 INTRODUCTION
Ontology search provides users with a ranked list of either ontolo-
gies1 or their terms for a given query. Efficient ontology search
helps users to find and reuse existing knowledge on the Web [7, 14,
18, 20, 33], which benefits communities by establishing consensus
1In the Semantic Web, ontologies are also referred to as linked vocabularies.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings
of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan, https:
//doi.org/10.1145/3366423.3380245.

on domain conceptualizations (e.g., as in the biomedical domain
[39]) as well as the breakup of vertical data silos (e.g., as in Open
Data [5] and the Internet of Things (IoT) [22]). This, ultimately,
eases the discovery and reuse of Web data, fostering interoperabil-
ity among computing systems.

However, the evaluation of ontology ranking models that were
proposed in this context is relatively unexplored. The heterogeneity
of evaluation strategies and underlying ontology collections makes
it difficult to understand, interpret and compare the performance of
proposed ranking models. Existing datasets for ontology ranking
evaluation, such as the state-of-the-art benchmark CBRBench [7],
are often built based on explicit judgments from human experts.
However, the laborious approach to building such benchmarks led
to relatively small datasets (in case of CBRBench, only comprising
ten queries with 819 relevance judgments). Given that ontology col-
lections typically contain hundreds of ontologies and thousands of
terms, benchmarks that only comprise ten queries are not sufficient
for the evaluation of ranking models in real-world settings.

To overcome this issue and address the lack of ontology ranking
comparison studies, we propose the ontology ranking benchmark
LOVBench. It comprises both a dataset including a ground truth
for ranking evaluations and an empirical comparison of state-of-
the-art ranking models. The LOVBench dataset contains more than
180,000 inferred relevance judgments for more than 7,000 queries.
LOVBench’s ground truth relies on implicit, real-world user feed-
back in the form of queries and clicks that were collected from
the Linked Open Vocabularies (LOV) platform2 [41], which comes
with the following advantages. First, the relevance judgments for
ontology terms to a query in LOVBench stem from feedback of
many actual users, which is more representative than judgments
from a few experts; second, collecting user feedback through search
logs does not require manual effort, meaning the benchmark can
be continuously updated to capture the evolution of ontologies
and their relevance in the Semantic Web. The empirical evalua-
tion is performed based on learning to rank (LTR) [24]. Compared
to combining ranking features manually, LTR allows to learn the
optimal combination of the considered features using supervised
machine learning techniques and, thus, allows for a fair compari-
son of complex ranking models. We measure the models’ ranking
quality using the Normalized Discounted Cumulative Gain (NDCG)
[19] as evaluation metric and we compare ranking configurations
as proposed in DWRank [8], AKTiveRank [2] and CBRBench [7].
Our experiments confirm that all considered models outperform
a straight-forward Lucene search [28]. We further show that the

2https://lov.linkeddata.es/dataset/lov/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/322375909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3366423.3380245
https://doi.org/10.1145/3366423.3380245
https://doi.org/10.1145/3366423.3380245
https://lov.linkeddata.es/dataset/lov/

WWW ’20, April 20–24, 2020, Taipei, Taiwan Niklas Kolbe, Pierre-Yves Vandenbussche, Sylvain Kubler, and Yves Le Traon

Table 1: Comparison of existing benchmarks and the proposed LOVBench dataset.

Reference Year Query Ranking Relevance Source Labels Queries Judgments Features Dataset Impl.

AKTiveRank [2] 2006 Keyword Ontology Four experts List 7 13 4 No No
CARRank [43] 2008 Keyword Class Four experts List 80 ∼ 400 1 No No
CBRBench [7] 2014 Keyword Class Ten experts Point (graded) 10 819 8 Yes No
TermPicker [38] 2016 Triple-Pattern Triple-Pattern Mining (LOD) Point (binary) 5,650 3,010,620 5 Yes No
Quality Ranking [21] 2019 Keyword Ontology Mining (scholarly) Point (graded) 25 1,028 11 Yes No

LOVBench 2020 Keyword Term Mining (click logs) Point (graded) 7,395 184,224 33 Yes Yes

consideration of features that are well-suited to the user behavior
as well as the consideration of much larger feature sets (given a
large enough dataset like LOVBench), can significantly improve
the ranking performance. The insights gained in this study help
to understand the effectiveness of ontology ranking models and
can serve as guidelines for the design of more efficient ontology
ranking tools in terms of ranking quality.

In summary, the main contributions of this paper are as follows:
(1) We provide insights of real-world user behavior in ontology

search of which some dissent dominant assumptions in the
literature;

(2) we introduce and publish the LOVBench dataset, a large-
scale ontology ranking benchmark based on actual and timely
user feedback that allows for continuous updates and enables
comparison studies using learning to rank;

(3) we provide an experimental evaluation of ranking effective-
ness of three state-of-the-art ontology ranking models (com-
posed of 13 distinct ranking features) and propose feature
variations and configurations that outperform them (using
in total 33 distinct ranking features);

(4) we conclude with recommendations for the design of effi-
cient ontology search tools.

The remainder of this paper is structured as follows. In Sec-
tion 2, we review previous related work. We present our approach
to building an ontology ranking benchmark based on user clicks
in Section 3. We evaluate the usefulness of user feedback collected
through LOV in Section 4 and describe the details of the LOVBench
dataset in Section 5. We report the subsequent empirical evalua-
tion in Section 6 and discuss our findings in Section 7. Finally, we
conclude the paper in Section 8.

2 RELATEDWORK
In this section, we present related research on the evaluation of
ontology ranking models and the application of LTR with ontology
and term ranking features.

The importance of search within the Semantic Web has been
identified from early on [4]. Despite the huge amount of works on
ontology ranking through content and link analysis, only few uni-
fied approaches to evaluate these models have been proposed. Early
works on ranking in the SemanticWeb, such as Swoogle [15], lacked
any evaluation of the ranking quality, which was soon identified as
a general problem [35]. In the following years, authors presented
diverse evaluations along with proposed ranking models, either
based on small user studies or qualitative discussions on ranking
outputs: Ding et al. [16] made a qualitative comparison between two

ranking models and highlighted the need for relevance judgments
in order to perform a formal evaluation; similarly, Lei et al. agreed
that their evaluation is biased based on their qualitative assessment
[23]. A first evaluation based on how well the ranking matches user
judgments was presented in AKTiveRank [2] using the Pearson
Correlation Coefficient. The evaluation includes a comparison with
Swoogle’s ranking, which resulted in a negative correlation with
the ground truth (inverse ranking) and proved the lack of evalu-
ations to be problematic. A similar evaluation approach has been
followed later in CARRank [43]. Other evaluation approaches that
were followed did not directly assess the ranking performance, but
rather the tool’s overall user experience based on a questionnaire
[32], which requires extensive efforts and does not allow for imme-
diate comparisons with newly proposed rankings. Noy et al. were
the first to use more cost-efficient user feedback in the form of
clicks to evaluate ontology rankings [30]. The evaluation is based
on the Click Through Rate (CTR) on the first ranking position for
several modifications of the ranking model over similar time in-
tervals. However, the authors do not mine any relevance labels
for the query-ontology pairs from the search logs. More recently
published ontology ranking models still consider the evaluation as
a challenging task. The complex NCBO2.0 recommender [26] of
the BioPortal is evaluated with a qualitative discussion based on
absolute feature scores in comparison with a previous version of the
NCBO recommender. The authors state that a user-based evaluation
would help to understand the ranking’s real-world effectiveness,
but refrain from it since it would be a laborious task.

Despite the successful emergence of many ontology search tools
over time in various domains, no attempts to unify ontology rank-
ing evaluation known to us have been proposed until CBRBench [7]
was released, which is the closest work to ours. To the best of our
knowledge, CBRBench is the first published dataset with relevance
labels for query-term pairs obtained from experts. It has further
been used as input for LTR, such as in DWRank [8]. However, CBR-
Bench is limited as follows. First, it only contains a small number
of queries and judgments (10 and 819, respectively), meaning that
its application in LTR settings is limited by its size. Second, it only
compares a few ranking models individually (eight in total), and
not a (potentially learnt) combination of these or in configurations
as they have been proposed in the literature. Moreover, it mostly
compares ontology instead of term ranking features that assign the
same score for all classes of the same ontology [7]. Third, CBRBench
is restricted to class ranking, meaning that it does not provide any
judgments about properties, which limits its potential application

LOVBench: Ontology Ranking Benchmark WWW ’20, April 20–24, 2020, Taipei, Taiwan

to newly proposed ranking models. Fourth, the dataset might be-
come outdated as soon as new ontologies arise and relevance of
terms changes, and because of its laborious way of obtaining the
relevance labels, it cannot be easily updated. Apart from CBRBench,
other datasets have been proposed for LTR in the context of ontol-
ogy ranking. In TermPicker [38], a dataset is automatically derived
from the Linked Open Data (LOD) cloud, however, relevance judg-
ments only indicate whether a certain triple pattern appears in the
LOD cloud or not (binary relevance) and it does not contain any
judgments for keyword-based queries. Kolbe et al. [21] propose a
dataset derived from scholarly data, which, however, only considers
ontology and no term ranking, is also limited by its size (1,028) and
focuses on IoT ontologies.

With LOVBench, we aim to overcome these limitations. An
overview of existing benchmarks and LOVBench is presented in
Table 1. In contrast to the related work, LOVBench satisfies all the
following: it relies on keyword-based queries, ranks classes as well
as properties of ontologies from various domains, graded relevance
labels are mined cost-efficiently from actual, real-world user feed-
back (views and clicks), and it provides sufficient judgments for
complex models in LTR settings (7,395 queries and 184,224 rele-
vance judgments). Moreover, our comparison of state-of-the-art
ranking models considers best combinations of originally proposed
along with newly designed features (in total 33), and we make the
dataset as well as the feature implementation publicly available.

3 LOVBENCH APPROACH
In this section, we present our approach to benchmarking ontol-
ogy ranking models. As illustrated in Figure 1, our approach com-
prises four main steps: (1) analyzing the collected LOV search logs
(containing users’ queries and clicks), (2) inferring and evaluating
relevance labels, (3) creating the LOVBench dataset, and (4) per-
forming the empirical evaluation of ontology ranking models. In
the following, we present an overview of each step and respective
outcomes including key features for the design of LOVBench.

Analyzing LOV search logs. In the first step (cf. Section 4.1),
we analyze the LOV search logs to confirm whether the logs ful-
fill basic requirements to generalize user behavior for ontology
search. Moreover, we extract fundamental insights concluded from
the observed real-world user actions in the context of literature
assumptions on ontology ranking design, which guide our later
feature design and discussions on experimental results.

Inferring relevance labels. In the second step (cf. Section 4.2),
we learn a user click model [10] based on the LOV search logs in
order to infer relevance labels for query-term pairs. Considering
user’s reactions (i.e., clicks) on presented terms for a query to infer
relevance labels has several advantages. Compared to obtaining
explicit judgments from human experts, which may contain bias
and become outdated, collecting implicit user feedback through
logs is cost-efficient and further captures actual, potentially time-
varying user preferences [42]. This helps to overcome the problem
that the amount of training data in LTR settings is often low [21, 40].
However, clicks cannot be used as direct relevance judgments due
to user’s inherent biases (e.g., position bias), click incompleteness
(missing feedback for relevant terms), and noise (a click does not
necessarily imply relevance of a term) [1]. The purpose of user click

R
es
ou

rc
es

&
Li
te
ra
tu
re

A
pp

ro
ac
h

O
ut
co

m
es

LOV
platform

Analysing
search logs
Section 4.1

Insights of
search behavior

Web search
click models

Inferring
relevance
Section 4.2

Evaluation of
user feedback

Ontology
ranking models

Creating
LOVBench

Section 5

Ground
truth

LTR
dataset

LTR
algorithms

Evaluating
rankings
Section 6

Experimental
results

Figure 1: Overview of the LOVBench approach.

models is to take these considerations into account and allow for
the inference of actual relevance based on observed user clicks. In
order to evaluate whether the LOV search logs allow us to infer
meaningful relevance labels, we pursue the following steps:

(1) We learn and compare several user click models with well-
established assumptions of user behavior in Web search,

(2) subsequently infer relevance judgments for query-term pairs
contained in the logs, and

(3) evaluate these relevance predictions by comparing them
with judgments from human assessors of CBRBench [7].

These steps allow us to build a benchmark with relevance labels
that are best aligned with both, observed user clicks as well as
expert judgments.

Creating LOVBench. In general, an ontology benchmark is
composed of two main components: first, a set of sampled query-
term pairs with relevance judgments (the ground truth) and second,
the extracted scores of selected ranking features for these query-
term pairs (used as input for LTR experiments). In the third step of
our LOVBench approach (cf. Section 5), we first sample terms for
the ground truth based on common practices (similar to the one
followed by LETOR [31]). Second, our strategy for the selection
of ranking features for LOVBench is guided by related literature
surveys [14, 22, 45], and respectively discovered features are se-
lected based on applicability constraints. In summary, we build the
LOVBench dataset as follows.

(1) For each query contained in the search log, we sample rele-
vant and non-relevant terms following common practices,

(2) we infer the relevance labels based on the best-performing
user click model of the previous step,

(3) we select ranking features from the literature and propose
variations, and

(4) we extract corresponding feature scores for each query-term
pair of the sample.

As a result, we derive a ground truth file for ontology evaluations
and a dataset that can be used for LTR experiments.

Evaluating ranking models. The last step of our benchmark
(cf. Section 6) is concerned with the comparison of the ranking
models’ performance based on the LOVBench dataset. We follow
a standard LTR experimental methodology [24] and use standard

WWW ’20, April 20–24, 2020, Taipei, Taiwan Niklas Kolbe, Pierre-Yves Vandenbussche, Sylvain Kubler, and Yves Le Traon

0

20000

40000

60000

Raw Clean
Log

Co
un

t

Session
Query
Click

(a) Log size

0

20000

40000

60000

80000

Corpus Viewed Clicked
Distinct terms

Class
Property

(b) Log term coverage

0

10000

20000

30000

40000

50000

1 2 3 4 5
Page

Query
Click

(c) Actions per SERP

0

10000

20000

30000

1 2 3 4 5
Words in query

(d) Query length

0

2000

4000

6000

1 2 3 4 5 6 7 8 9 10
Click position

(e) Clicks on first SERP

Figure 2: LOV search log analysis.

evaluation metrics for information retrieval (NDCG). In addition
to feature configurations as proposed in the literature, we propose
novel variations that are motivated by the observed user behavior
from the LOV search logs.

4 LOV USER FEEDBACK EVALUATION
In this section, we provide insights of real-world user behavior
for ontology search. We analyze the search logs in Section 4.1 and
present the inference of relevance labels in Section 4.2.

4.1 Search Log Analysis
The ontology collection of LOV, at the time of writing, consists of
680 ontologies associated with 43 different domains. User interac-
tions with the LOV interface are logged upon queries and clicks,
without storing any user information. Figure 2 provides details of
the query and click log files collected from LOV’s term search of a
7-months period starting from 01/2019.

The raw log files contain 10,579 user sessions with 59,398 queries
and 17,125 clicks (see Figure 2(a)). In Figure 2(b), we illustrate the
amount of terms that are defined in the LOV corpus that have also
been viewed and clicked by users. The coverage shows that the LOV
search logs are sufficient to generalize search behavior with regard
to the corpus size. The pre-processing for the clean logs include
removing sessions without clicks, queries containing personal in-
formation, as well as queries beyond the first Search Engine Result
Page (SERP). The latter is motivated by our observation that only
very few users made use of the pagination feature (i.e., only few
actions were logged beyond the first page), as shown in Figure 2(c).
We further made the following observations regarding the user
behavior of which some are in contrast with assumptions made in
the literature.

Importance of property ranking. The literature often fo-
cuses on class ranking, and some ranking and evaluation
approaches do not consider properties [2, 7, 8]. As illustrated
in Figure 2(b), we observe equal amount of views and clicks
of classes and properties in LOV, which should be considered
when designing ranking features.

Multiple words in keyword query. Some approaches as-
sume that user queries contain multiple words, e.g., when
considering the number of words that match the term
[8] and relying on the distances in the ontology graph of
matched terms for each word in the query [2]. However,
as shown in Figure 2(d), we observe that the majority of

queries in LOV are single words, which means the potential
usefulness of these ranking models is limited to a small
fraction of queries.

Position for evaluation. The frequency of click positions of
the first SERP is illustrated in Figure 2(e), which shows a
strong bias towards the first position in the result list. Rank-
ing evaluations should thus not only consider the complete
SERP (first ten positions), which is a common choice in the
literature [7, 8], but further based on metrics that only con-
sider the more important top positions of the SERP.

These considerations guide our approach for the creation of
LOVBench, as well as the design and discussion on the LTR experi-
ments in later sections.

4.2 Relevance Inference
In this section, we learn several user click models from the cleaned
LOV search logs in order to infer meaningful relevance labels from
the implicit user feedback. We then evaluate their accuracy through
a comparison with CBRBench, which contains judgments from
human experts.We first describe the setup and subsequently present
the evaluation results.

4.2.1 Learning User Click Models. In order to model user click be-
havior from the LOV search logs, we learn several models that were
proposed in the literature to later select the best performing one
for the inference of relevance judgments in LOVBench. We choose
to experiment with the two best-performing modeling approaches
presented in [10], i.e., the User Browsing Model (UBM) [17] and
the Dynamic Bayesian Network Model (DBN) [9]. As a baseline,
we consider a simple Document-based Click-through Rate Model
(DCTR) [13]. We randomly select 75% of the logged LOV search
sessions for training and hold the remaining 25% out for testing to
learn each model3.

After learning the user click model we can infer relevance for the
query-term pairs contained in the search logs. In general, inferring
relevance Rel for a query Q and a document (i.e., a term t) from a
learnt click model is based on user satisfaction probability [10].

RelQ,t = P (St = 1|Ct = 1) ∗ P (Ct = 1|Et = 1) (1)

where St ,Ct , and Et are binary random variables corresponding to
the user’s satisfaction probability, click probability, and examina-
tion probability for a term t , respectively. The considered user click

3Implementation taken from https://github.com/markovi/PyClick

https://github.com/markovi/PyClick

LOVBench: Ontology Ranking Benchmark WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 2: Evaluation of learnt LOV click models with regard
to click and relevance prediction. Best performance for each
metric is highlighted in bold.

Model Click Relevance
Log-likelihood Perplexity Gain rCBRBench

DCTR −0.274 1.299 - 0.448
DBN −0.271 1.227 0.240 0.282
UBM −0.173 1.187 0.375 0.613

models differ as follows. UBM – unlike DBN – does not consider ac-
tual user satisfaction in the model, meaning this formula simplifies
to the attractiveness probability (i.e., perceived relevance). Another
fundamental difference of UBM’s and DBN’s assumptions concern
the examination probability, which in UBM depends on previous
clicks and their ranks, while in DBN it depends only on the term
position [10]. In DCTR, relevance corresponds to the click-through
rate, i.e., how often a term was clicked compared to how often it
was shown.

4.2.2 Click Prediction Evaluation. As a first step, we evaluate the
learnt models with common evaluation measures on the held-out
test set with regard to click prediction. One evaluation measure for
this purpose is the standard log-likelihood [10].

LL(M) =
∑
s ∈S

n∑
r=1

log PM (Cr = c
s
r |C<r = c

s
<r) (2)

where PM corresponds to model’sM click probability measure at
rank r for a session s ∈ S in the test set, and cr being the actual
click information. We further consider perplexity based on full
probability and perplexity gain [10].

Perplexity(M) =
1
n

n∑
r=1

2−
1
|S|

∑
s∈S (cr log2 +(1−cr) log2 (1−pr))

Gain(MA,MB) =
Perplexity(MB) − Perplexity(MA)

Perplexity(MB) − 1

(3)

where pr corresponds to the model’s predicted click probability
(PM (Cr = 1|q, t)).

The results on the model’s ability to predict the clicks are sum-
marized in Table 2. Both, DBN and UBM outperform the baseline
DCTR model. However, UBM clearly shows a better performance
for log-likelihood as well as perplexity compared to DBN. We thus
find that the learnt model using UBM is able to predict clicks well
and should be preferred over the others. However, we continue the
evaluation based on a comparison with human judgments.

4.2.3 Relevance Prediction Evaluation. In addition to the previous
evaluation on the held-out test set, we leverage existing term rel-
evance judgments from the literature for evaluation purposes. By
evaluating the models’ performance with regard to their relevance
predictions we ensure that inferred relevance labels are accurate
and we gain more confidence in the ground truth. In particular, we
rely on the expert judgments from CBRBench [7]. CBRBench is
composed of ten queries with 34 to 137 term judgments per query.
We are able to compare six queries from CBRBench that have over-
lapping judgments with the relevance predictions of the learnt click

models based on the results shown in the LOV logs (i.e., location,
address, organization, event, music, and person). We use the Pearson
Correlation Coefficient r to evaluate the similarity of the total order
of terms based on the predicted satisfaction probability with the
total order of terms based on the CBRBench judgments.

The results of the relevance prediction evaluation are also sum-
marized in Table 2, showing the correlation r for each model with
respect to the CBRBench judgments. On the one hand, this evalu-
ation step confirms the previous results that the UBM should be
preferred over DCTR and DBN. Furthermore, UBM demonstrates a
a strong correlation with CBRBench’s relevance judgments (0.613),
meaning that the relevance predictions of the UBM model learnt
from the LOV logs are close to the expert judgments from CBR-
Bench. We explain the better performance of UBM compared to
DCTR and DBN due to its consideration of previous clicks and their
position in the same session, based on the experimental findings and
intuition presented in [10], where UBM also performs best. Thus,
we consider the relevance labels inferred from the UBM model in
the LOVBench dataset.

5 LOVBENCH DATASET
In this section, we introduce the considered ranking features and
the sampled ground truth for the proposed ontology ranking bench-
mark dataset.We present the considered features in LOVBenchwith
a joint conceptualization in Section 5.1, introduce our term sam-
pling strategy in Section 5.2, and finally summarize the LOVBench
dataset in Section 5.3.

5.1 Feature Description
We first introduce the notation used to describe the features in a
joint framework. Subsequently, we provide an overview and more
details about the considered ranking features.

5.1.1 Notation. Let O be an ontology in a repository R. An on-
tology O is defined by a set of RDF triples (subject, predicate,

object) which is referred to as RDF graph. A term t in an ontology
can be of type class c4 or property p5. A user query is denoted
by Q , with ith word denoted as qi . The set of ontology terms that
matches the query is denoted by σT (Q,O), where T corresponds
to the type of matched terms, i.e., T ∈ {t , c,p} (corresponding to
all terms, only classes, or only properties, respectively). In addition
to the RDF graph O (illustrated in Figure 3(a)), two more graph
structures can be derived and used for ranking, namely the on-
tology graph (Figure 3(b)) and the repository graph (Figure 3(c)).
These graph structures allow the application of conventional graph
scoring algorithms.

Ontology graph. The ontology graph of O represents classes
and properties of the ontology. Unlike the RDF graph, prop-
erties are modeled as edges instead of nodes. The ontology
graph is denoted by G (O) = (C, Eci ,c j), where C is a set
of nodes representing all classes (c ∈ O) and E is a set of
directed edges. These are derived based on the ontologies’
properties (p ∈ O) and the semantics of rdfs:domain and
rdfs:range, i.e., Eci ,c j = {(ci , c j) ∈ O : (p, rdfs:domain,

4Considered class types: rdfs:Class, owl:Class.
5Considered property types: rdf:Property, rdfs:Property, owl:ObjectProperty,
owl:DatatypeProperty, owl:AnnotationProperty, owl:OntologyProperty.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Niklas Kolbe, Pierre-Yves Vandenbussche, Sylvain Kubler, and Yves Le Traon

dbpedia-owl:residence
dbpedia-owl:Person

dbpedia-owl:Place

rdfs:domain

rdfs:range

(a) RDF graph O

dbpedia-owl:Person dbpedia-owl:Place
dbpedia-owl:residence

(b) Ontology graph G(O)

dbpedia-owl schema
voaf:specialises

(c) Repository graph G(R, {p ∈ voaf})

Figure 3: Illustration of graph definitions used for ranking.

ci) & (p, rdfs:range, c j)}. A more detailed description of
the mapping from O to G (O) can be found in [43].

Repository graph. The repository graph expresses the rela-
tionships among ontologies in the repository. It is denoted
by G (R,P) = (O, EOi ,O j), where O is a set of nodes cor-
responding to the ontologies contained in the repository
(O ∈ R) and EOi ,O j is a set of edges representing all con-
sidered properties p ∈ P that exist between ontologies, i.e.
EOi ,O j = {(Oi ,O j) ∈ R :(Oi, p ∈ P, O j)}.

5.1.2 Feature Selection. Our strategy for the selection of ranking
features for LOVBench is guided by related literature surveys [14,
22, 45], and respectively discovered features are selected based on
the following applicability constraints.
• The feature must rely on a keyword-based query format
and rank ontologies or terms. We choose to consider both,
term and ontology ranking features in LOVBench because
the consideration of the overall quality of an ontology in
which a term is defined is often an important factor for reuse
[37], and thus, ontology features are often applied for term
ranking, such as in CBRBench [7].
• The feature must not depend on metadata information that
cannot be derived from the ontology collection itself. Such
features are often considered in ontology ranking by formu-
lating scores involving user feedback such as ratings and
clicks [26], ontology and term usage in LOD [38], etc. While
these features can be very useful for ranking, applying these
features to different ontology collections can be problematic
because the respective metadata is often not available or
difficult to obtain for other ontology collections [21]. Since
rankingmodels evaluated by LOVBench should be applicable
to any ontology collection, we choose to exclude them.
• The feature must form a significant distinction to already
considered features.
• Priority is given to features for which the complete ranking
configuration as proposed in the literature can be replicated.

Other considerations for a fair comparison of ranking models
include the constraints that define whether a term matches a query
or not. We choose to harmonize the query match for all features
independent from the respective feature’s original approach. This
gives a more accurate query match for all features by considering

the meta vocabularies used in the LOV collection. Lastly, some
ranking features depend on hyperparameters that need to be set by
experts. In LOVBench, we stick to the hyperparameters as suggested
in the original source of the feature. However, our large ground
truth for the application of LTR further allows us to decompose
some of these features (e.g., in case of weighted sums) and implicitly
learn the parameters from the data instead.

5.1.3 Feature Description. An overview of LOVBench’s ranking
features, based on the previously introduced notation, is presented
in Table 3. The subscript after the feature name indicates whether
the feature assigns scores to terms (t), ontologies as a whole (O),
or only to the query (Q). We would like to note that Q-features
cannot be used stand-alone for ranking and that O-features assign
the same score for all terms from the same ontology. The feature
category indicates the feature’s parameters for scoring. We fur-
ther organize the features in four groups (query match, repository
graph analysis, ontology graph analysis, and RDF graph analysis), for
which we provide more details in the following. As motivated pre-
viously, it is possible to use LOVBench for comparisons of rankings
using metadata-based features (as an additional group of features),
however, it is considered out of scope in this paper.

Query match (Feature 1-7). Query match features assess how well
the words in the query match the words that describe a term in
the ontology. The boolean match (Feature 1), e.g., simply states
whether a term is contained in the query match or not and the
text relevancy (Feature 4) measures how many words in the query
match a term. The original matching features followed in LOV
(Feature 2 and 3) are based on a standard BM25 matching score [34].
Feature 2 further assigns weights depending on which property
of a term matches the query and Feature 3 is based on properties
that describe the ontology [41]. We propose two more features in
addition to those used in the state-of-the-art. First, we propose a
variation of the class match (Feature 5) for properties (Feature 6).
These features are based on different weights for exact and partial
matches of query words. Albeit not directly related to matching, we
further consider a simple feature that counts the number of words
in the query (Feature 7). The following details were considered
when extracting query match features for LOVBench.
• A term matches the query (i.e., t ∈ σt) if at least
one word qi ∈ Q matches the domain of at least one
of the following properties of the term: rdfs:label,
dce:title, dcterms:title, skos:prefLabel, rdfs:comment,
rdfs:description, dce:description, dcterms:description,
skos:altLabel, or the local name of the term’s URI. These
are the same properties that were considered in the original
LOV term property boost [41].
• The exact and partial matches (φexact andφpartial) of the class
and property match (Feature 5 and 6) only consider matches
in rdfs:label. The hyperparameters are set to α = 0.6 and
β = 0.4 [2].

We would like to note that features that use terms or ontologies
contained in the query match as input for scoring are not classified
as query match features, but assigned to one of the following groups
to which the scoring algorithm relates.

Repository graph analysis (Feature 8-10).These features determine
the importance of ontologies in the corpus based on the repository

LOVBench: Ontology Ranking Benchmark WWW ’20, April 20–24, 2020, Taipei, Taiwan

graph G (R,P). PageRank has been the most commonly adapted
ranking algorithm for this purpose, especially in the domain of
ontology search engines [22]. The repository graph is usually con-
structed based on owl:imports statements (Feature 8), however, it
has been pointed out that explicit owl:imports statements are often
missing, and considering implicit imports derived from term URIs
appearing in the ontology (Feature 9) showed better performance
[8]. We further propose to build a repository graph using ontolo-
gies’ properties based on the vocabulary of a friend6 (voaf), which
in LOV are automatically derived from the ontology collection [41],
and to consider this graph as input for PageRank (Feature 10).
• PageRank pr for repository graphsG (R,P) is computed as
follows [7].

pr(O, G (R, P)) =
1 − d
|R |

+
∑

Oj ∈(Oi, p ∈ P, O j)

pr(O j , G (R, P))
|(O j, p ∈ P, Oi) |

(4)
where d corresponds to the damping factor (set to d = 0.85).
Since PageRank computes very small scores, we multiple
these with 105.

Ontology graph analysis (Feature 11-16). These features assign
scores to terms and ontologies based on the ontology graph G (O).
PageRank has also been adapted for this purpose. In particular,
[8] proposes a Reversed PageRank approach to identify hubs in
an ontology (Feature 11-13). However, this approach is limited to
classes since PageRank only assigns scores to nodes and not to
edges (i.e., these scores ignore properties). Other considered graph
scoring algorithms include betweenness (Feature 15), for which we
propose a variation for scoring on terms (Feature 14), as well as the
semantic similarity measure (Feature 16). The following details are
considered for creating LOVBench.
• The betweenness measure scores classes based on the num-
ber of shortest paths passing through it [2].

betweenness(c,G (O)) =
∑

ci,c j,c ∈O

λ(ci , c j (c),G (O))

λ(ci , c j ,G (O))
(5)

where λ(ci , c j ,G (O)) corresponds to the total number of
shortest paths from ci to c j , and λ(ci , c j (c),G (O)) defines
the number of shortest paths passing through c .
• Semantic similarity is a measure based on the shortest path
between two classes to capture how close these concepts are
laid out in the ontology [2].

ssm(ci , c j ,G (O)) =

1
|min(λ (ci ,c j ,G (O))) | , if i , j

1, if i = j
(6)

RDF graph analysis (Feature 17-33). Features based on the RDF
graph O extract statistics about terms in an ontology which, e.g.,
can give an indication about the importance of terms in the reposi-
tory and to which detail a term is defined. TF-IDF-based measures
(Feature 17-25) differ in ontology ranking compared to conventional
text retrieval since scoring is adapted to compute the importance
of term URIs in the repository [7]. This implies that TF-IDF-like
term features (Feature 17-19) are query-independent. TF-IDF on-
tology features (Feature 20-22), however, are computed based on
all terms in an ontology that match the query [7], and thus remain
6https://lov.linkeddata.es/vocommons/voaf/v2.3/

Table 3: LOVBench ranking features.

ID Feature Cat. Description Ref.

Query match
1 Boolean matcht Q , t 1, if t ∈ σt ; 0, otherwise [7]
2 Match-boostt Q , t , R bm25(Q, t, R) + boost(σt) [41]
3 Match-descr.O Q , O , R bm25(Q, O, R) [41]
4 Text relevancyt Q , t | {qi ∈ Q : σt , ∅} | [8]
5 Class matchO Q , O ∑

qi ∈Q
α ∗ |φexact

c | + β ∗ |φpartial
c | [2]

6 Prop. matchO Q , O ∑
qi ∈Q

α ∗ |φexact
p | + β ∗ |φpartial

p |

7 Query lengthQ Q | {qi ∈ Q } |

Repository graph analysis
8 PR-importsO O , R pr(O, G (R, {owl:imports})) [7]
9 PR-implicitO O , R pr(O, G (R, {implicit imports})) [7]
10 PR-voafO O , R pr(O, G (R, {p ∈ voaf}))

Ontology graph analysis
11 Hubt c , O pr(c, G (Oreversed)) [8]
12 Max hubO O max({Hubt : c ∈ O } }) [8]
13 Min hubO O min({Hubt : c ∈ O } }) [8]
14 Betweennesst t betweenness(t, G (O)) [2]*
15 BetweennessO Q, O 1

|σc |
∑
c∈σc Betweennesst [2]

16 Semantic sim.O Q , O 1
|(ci ,cj) |

∑
ci ,cj ∈σc

ssm(ci , c j , G (O)) [2]

RDF graph analysis
17 TFt t , O tf(t, O) [7]*,**
18 IDFt t , R idf(t, R) [7]*,**
19 TF-IDFt t , O TFt ∗ IDFt [7]*
20 TFO Q , O ∑

t∈σt TFt [7]**
21 IDFO Q , R ∑

t∈σt IDFt [7]**
22 TF-IDFO Q , O , R ∑

t∈σt TF-IDFt [7]
23 BM25t t , O , R bm25(t, O, R) [7]*
24 BM25O Q , O , R ∑

t∈σt BM25t [7]
25 VSMO Q , O , R vsm(Q, O, R) [7]
26 Subclassest c |subclasses(c) | [2]*,**
27 Superclassest c |superclasses(c) | [2]*,**
28 Relationst c |relations(c) | [2]*,**
29 Siblingst c |siblings(c) | [2]*,**
30 Densityt c w1 ∗ Subclassest + w2 ∗

Superclassest + w3 ∗ Relationst +
w4 ∗ Siblingst

[2]*

31 DensityO Q , O 1
|σc |

∑
c∈σc Densityt [2]

32 Subpropertiest p |subproperties(p) |
33 Superprop.t p |superproperties(p) |

* Adapted for terms, originally only proposed for ontology ranking.
** Originally not considered as individual feature.

query-dependent. Since the intuition of TF-IDF does not apply to
ontology ranking (IDF assigns a low score when a term appears
in many ontologies, even though it is a desirable trait) we decom-
pose the measures into separate features (Feature 17-18 and 20-21).
In addition to TF-IDF-based features, simple statistics of the RDF
graph are also considered for the ranking of terms and ontologies
(Feature 26-33). We propose variations of features from the litera-
ture which are adapted for ranking of terms instead of ontologies
(Feature 26-30) as well as for the consideration of properties instead

https://lov.linkeddata.es/vocommons/voaf/v2.3/

WWW ’20, April 20–24, 2020, Taipei, Taiwan Niklas Kolbe, Pierre-Yves Vandenbussche, Sylvain Kubler, and Yves Le Traon

of classes (Feature 32-33). The following details were considered
for LOVBench.
• Term frequency tf(t ,O) and inverse document frequency
idf(t ,R) are computed as follows [7].

tf(t, O) = 0.5 + 0.5 ∗ f (t, O)

max({f (ti , O) : ti ∈ O })

idf(t, R) = log
(

|R |
| {O : t ∈ O, O ∈ R } |

) (7)

where f (t ,O) is the frequency of a term t in ontology O .
• The adapted notion of BM25 for ranking of terms t is defined
as follows [7].

bm25(t, O, R) = IDFt (t, R)∗
TFt (t, O) ∗ k + 1

TFt (t, O) + k ∗
(
1 − b + b ∗ |O |

avgos(R)

) (8)

where k and b are hyperparameters (k = 2.0, b = 0.75), the
ontology size |O | is computed by its number of triples, and
avgos(R) is the average ontology size in the repository.
• The Vector Space Model (VSM) [36] feature (Feature 25),
adapted to ontology ranking, measures similarity of query
and ontology using tf and idf to compute the weights of
query words qi in the query and ontology [7].

vsm(Q, O, R) =

∑
qi ∈Q

*
,

∑
t∈σt (qi ,O)

(TF-IDFt (qi , t)) ∗ tf-idfQ (qi , Q, R)+
-√ ∑

ti ∈O
(TF-IDFt (ti , O))2 ∗

√ ∑
qi ∈Q

(tf-idfQ (qi , Q, R))2

(9)
where tf-idfQ of a query word qi is defined as follows.

tf-idfQ (qi , Q, R) =
f (qi , Q)

max({f (qj , Q) : qj ∈ Q })
∗

log
(

|R |
| {O : t ∈ O, t ∈ σt (Q, O) } |

) (10)

• The density (Feature 30) depends on a weighted sum, for
which the original weights were used:w1 = 1.0,w2 = 0.25,
w3 = 0.5, andw4 = 0.5 [2].

In summary, we presented the selected state-of-the-art ranking
features and proposed variations and features that are motivated by
our observations made from the LOV search logs. In the next step
we describe our strategy to select samples for the ground truth.

5.2 Term Sampling
When building a ground truth, it is usually impractical to judge
and extract features for all terms in the repository [24]. In the
context of LTR, the chosen strategy of sampling some documents
for each query for learning will impact the observed effectiveness
of the learnt ranking model, referred to as sample selection bias
[25, 29]. Given the discussions of document sampling’s impact
[25], our goal is to ensure that the LOVBench dataset contains a
similar distribution of relevance labels and average sample size
compared to well-known state-of-the-art datasets for conventional
ad-hoc Web retrieval tasks. We follow a similar strategy to the one
presented in LETOR [31], by (i) considering all query-term pairs
without judgment as non-relevant and (ii) selecting samples from
an existing ranking, i.e., the term search results of LOV. For each
query of the LOV search logs, the relevance of the first ten terms
is inferred from the best-performing click model using UBM (see

Table 4: Breakdown of relevance labels in LOVBench, well-
known ad-hoc Web retrieval datasets, and CBRBench.

Label LOVBench TREC Web ClueWeb12 CBRBench

Total 73,950 + 110,274 28,906 5,392 819
Very high (4) 0.34% 0.14% 0.07% 4.64%
High (3) 1.63% 1.42% 1.15% 10.01%
Low (2) 7.26% 8.77% 5.47% 19.90%
Very Low (1) 24.10% 23.64% 20.83% 25.76%
Non (0) 66.59% 63.31% 68.64% 39.68%
Junk (−2) 0.06% 2.73% 3.84% 0.00%

Section 4.2), and an additional amount of non-relevant terms is
randomly sampled from the remaining query match.

As a popular convention, we map the relevance inferred from the
click model, which is measured in terms of satisfaction probability
(0 ≤ RelQ,t ≤ 1), to relevance labels lQ,t on a scale from 0-4, and
further consider a junk grade (−2). We denote the set of labelled
data for queryQ and term t byL = {(Q, t , lQ,t)}, the standard input
for supervised LTR settings, and refer to L with all relevance pre-
dictions as ground truth. As shown in Table 4, this approach results
in a dataset with a similar distribution of relevance judgments com-
pared to established LTR datasets, such as TREC Web 2013 & 2014
[11, 12] and a selection of ClueWeb127 entries as presented in [40].
On the other hand, it reveals a different distribution for CBRBench,
which is a potential explanation for the differences in our inferred
relevance judgments and those made by experts from CBRBench.
The authors of CBRBench only consider a term as relevant with
a score of 2 or higher [7], while we follow the common practice
to consider a score of 1 or higher as relevant. Finally, LOVBench
is composed of 73,950 judgments inferred through the user click
model and 110,274 randomly sampled non-relevant judgments, with
an average sample size of ∼ 26 judgments per query.

5.3 Final LOVBench Dataset
In summary, the LOVBench dataset contains: (i) extracted ranking
features (Section 5.1) and (ii) inferred relevance judgments (Sec-
tion 5.2) for 184,224 query-term pairs. We provide a single csv-file
containing the query-term pairs and their relevance judgments
which can be used as ground truth for evaluation purposes. More-
over, the full dataset (including extracted features) is provided in
a format for LTR experiments. It is randomly split by query into
five equal-sized partitions, which in turn are used to derive five
folds with three partitions for training and the remaining two for
validation and testing.

6 EMPIRICAL EVALUATION
In this section, we apply LOVBench to evaluate several ranking
configurations using LTR. We first describe our experiment setup
and then present our experimental results.

6.1 Experimental Setup
The experiments are based on the standard framework for LTR
evaluation [24]. In the following, we describe the considered feature
7https://lemurproject.org/clueweb12/

https://lemurproject.org/clueweb12/

LOVBench: Ontology Ranking Benchmark WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 5: Overview of feature configurations. The feature IDs
correspond to those presented in Table 3.

Category Name Feature configuration Count

Baseline Baseline Lucene search (rdfs:label) 1

Literature DWRank [8] 4, 9, 11-13 5
AKTiveRank [2] 5, 15-16, 31 4
CBRBench [7] 1, 5, 9, 15-16, 22, 24-25, 31 9

Variations LOV-based 2-3 2
LOVBench full 1-33 33
LOVBench light 2, 10, 14, 17-19, 26-29, 32-33 12

configurations, baselines and evaluation metrics. We rely on the
previously introduced LOVBench dataset for the evaluation.

Configurations. We experiment with feature configurations that
are associated with three different groups: baseline, literature, and
variations. An overview of all configurations subject to the experi-
ments is given in Table 5. The purpose of our baseline (a standard
Lucene search on terms’ rdfs:label properties) is to provide the
performance of a straight-forward search approach as a reference
point. We then compare several ranking models as they have been
proposed in the literature with the baseline using the feature sets
from AKTiveRank [2], DWRank [8], and CBRBench [7]. Lastly, we
propose variations that are designed to meet the requirements ob-
served in the LOV search logs. We compare three models to the
baseline and literature: first, a simple model only using current LOV
features as a reference point (LOV-based), second, a model using all
features of LOVBench (LOVBench full), and third, a model with fea-
tures that are chosen based on low computational complexity, high
informativeness and meeting the LOV requirements (LOVBench
light). In total, we evaluate ranking performance of seven different
configurations with up to 33 different features.

Learning to rank. Each model configuration is trained with well-
known LTR techniques. We experiment with both, a pairwise ap-
proach (RankNet [6]) as well as a listwise approach (AdaRank [44])8.
Evaluation and comparison to the baseline is based on five-fold
cross validation.

Metrics. We rely on standard evaluation metrics for information
retrieval. We measure the retrieval performance in terms of multi-
valued relevance based on the Normalized Discounted Cumulative
Gain (NDCG) [19]. Motivated by the discussion in Section 4.1, we
report the NDCG for the first 3, 5, and 10 ranked terms. We further
report the Mean Average Precision (MAP) [3] as a consideration
of ranking models’ effectiveness, which, however, only considers
binary relevance.

6.2 Experimental Results
In this section, we present the experimental results and compare
each configuration to the baseline.

6.2.1 Originals. In Table 6, we compare the performance of several
feature configurations using two LTR algorithms with the baseline.
The first row shows the baseline performance based on a Lucene
search. The first group of configurations (DWRank, AKTiveRank,
8Implementation taken from https://sourceforge.net/p/lemur/wiki/RankLib

Table 6: Results for ranking models with considered feature
configurations using LOVBench. Best results for each algo-
rithm andmetric are highlighted in bold. All configurations
significantly improve the performance in all metrics com-
pared to the baseline (p-value ≤ 0.05).

LTR Configuration NDCG@3 NDCG@5 NDCG@10 MAP

- Baseline 0.261 0.299 0.358 0.433

Ra
nk

N
et

DWRank 0.497 0.508 0.536 0.572
AKTiveRank 0.459 0.469 0.499 0.563
CBRBench 0.480 0.484 0.512 0.564

LOV-based 0.646 0.688 0.724 0.717
LOVBench full 0.841 0.868 0.883 0.845
LOVBench light 0.762 0.781 0.803 0.806

Ad
aR

an
k

DWRank 0.372 0.382 0.404 0.481
AKTiveRank 0.454 0.454 0.478 0.548
CBRBench 0.378 0.379 0.411 0.492

LOV-based 0.638 0.679 0.716 0.710
LOVBench full 0.881 0.902 0.911 0.918
LOVBench light 0.780 0.825 0.860 0.871

CBRBench) for both LTR algorithms shows the performance of
original models from the literature.

When comparing the results of the original configuration with
the baseline, we observe that all configurations manage to sig-
nificantly improve the baseline performance in all metrics. Com-
pared with each other, all models show similar performance, albeit
DWRank performs slightly better when using RankNet and AK-
TiveRank performs slightly better when using AdaRank. Another
interesting observation is that the additional features considered in
CBRBench, which also includes the features proposed in AKTiveR-
ank, barely improve (RankNet) or even harm (AdaRank) the ranking
performance. This is surprising, given that the comparison in CBR-
Bench [7] based on single features shows some of these features to
perform well. This indicates that ranking models should always be
evaluated with all features and weights taken into account, since
individually poorly performing features can still perform well when
combined using LTR.

6.2.2 Variations. The second group for each algorithm (LOV-based,
LOVBench full, LOVBench light) in Table 6 shows the results of
the adapted models.

First, we can observe that all three configurations that use the
original LOV term matching feature (Feature 2) significantly im-
prove the performance of the baseline as well as the models from
the literature. However, we need to keep in mind that the sampled
ground truth is biased on the existing ranking of LOV, which in-
cludes Feature 2 [41]. Moreover, when comparing the LOVBench
full model with the simple LOV-based configuration, we observe
that the additional features in LOVBench significantly improve the
performance. Given that real-time computational requirements can
be a major concern, we are also interested in increasing the ranking
performance with a reduced number of features compared to the
full configuration. As the results of the LOVBench light config-
uration show, the smaller feature set is also able to significantly

https://sourceforge.net/p/lemur/wiki/RankLib

WWW ’20, April 20–24, 2020, Taipei, Taiwan Niklas Kolbe, Pierre-Yves Vandenbussche, Sylvain Kubler, and Yves Le Traon

improve ranking performance compared to the LOV-based model,
albeit not as much as the full model. All these observations hold
true for both learning algorithms, RankNet and AdaRank.

7 DISCUSSION
In this section, we discuss the practical implications of the results
and state the limitations of our approach.

7.1 Practical Recommendations
One of our key findings is that ranking features should be designed
with regard to actual user behavior of the targeted domain. The
performance results of the considered literature models can be ex-
plained with the mismatch of the assumptions for these ranking
models and the user behavior we observe in LOV (cf. Section 4.1).
First, the original AKTiveRank configuration does not include any
term features, meaning that if the ranking contains multiple terms
from the same ontology, these receive the same score. Second, in
DWRank, three out of five features (Feature 11-13) relate to the
hub score, which only scores classes, meaning that this configura-
tion lacks the ability to rank properties, which we have found in
LOV to be equally important as ranking of classes. Furthermore,
the text relevancy feature that is also part of this configuration
(Feature 4) assumes multiple words in the query, which in LOV
is often not the case. Third, CBRBench is, similar to AKTiveR-
ank, mostly composed of ontology features, and further of many
complex features with predefined hyperparameters, not allowing
the LTR algorithms to learn these from the data. As shown by
our experiments, adapting the ranking features to these require-
ments significantly improved the performance. Our results also
demonstrate that increasing the number of ranking features, given
a large enough dataset like LOVBench, allows to increase ranking
performance. However, in practice it is often necessary to form a
reasonable trade-off between effectiveness and computation cost.
This especially concerns query-dependent features that cannot be
pre-computed and have to be extracted at run-time.

As previously mentioned, the experimental results need to be
interpreted in the context of the biases imposed by the current
LOV ranking from which the relevance labels for the ground truth
are derived. The LOV search relies on a Lucene-based match with
property boost and a popularity score measured in term of usages in
LOD datasets [41]. Thus, it is reasonable that relevance features and
qualitative importance features such as PageRank perform better
on our dataset than graph-structural criteria such as density.

In conclusion, the following considerations should be taken into
account when designing ontology ranking models, which were also
followed for the LOVBench light configuration:

(1) mixing and prioritizing of ranking granularities depending
on the platform (ontologies/terms and classes/properties),

(2) diverse coverage of all feature categories (querymatch, repos-
itory graph, ontology graph and RDF graph analysis),

(3) preferring decomposed features when possible,
(4) being aware of the user behavior of targeted platform,
(5) the number of query match features should be minimized.
Lastly, LOVBench can be used not only to evaluate, but also to

train ranking models and integrate these for re-ranking of ontology
terms in other applications with different ontology collections. In

this case, we would like to highlight that the query match constraint
should be adjusted to the meta-vocabularies considered in the re-
spective ontology collection and all features need to be extractable
for the LOV ontology collection.

7.2 Limitations
The applicability of LOVBench for the evaluation of ontology rank-
ings is limited as follows. First, only ranking models that use a
keyword-based query format to rank ontology terms can be eval-
uated. Albeit this is the most popular approach in existing search
interfaces [22], this means that LOVBench cannot be considered
as a general benchmark in the broader context of ontology reuse.
E.g., in some tools other search interfaces and rank granularities
are used (such as the ranking of the best combination of ontolo-
gies [27]). However, the current lack of search logs from respective
platforms hinder the application of our approach to other search
interfaces. We believe that the adoption of our approach to other
ontology search platforms could ultimately result in a landscape
of benchmarks for all variations. Second, applying LOVBench for
the evaluation of ranking models that include features that rely on
metadata information such as user ratings can be difficult, as this
metadata needs to be collected for the LOV collection. However,
using metadata-based features in the ranking model in general can
be problematic, depending on the way the metadata is collected.
Instead, sufficient and well-designed ontology and term features
directly derived from the ontology collection might be able to sub-
stitute such features [21].

8 CONCLUSION
In this paper, we address the problem of ontology ranking evalu-
ations and comparisons in LTR settings. We analyze logged user
interactions of a real-world ontology search platform (LOV) and
use this implicit user feedback infer relevance judgments for query-
term pairs. Our evaluation shows that inferred relevance judg-
ments are close to those made by human experts. We create the
LOVBench dataset that comprises 184,224 relevance judgments for
7,395 queries and considers 33 different ontology ranking features.
We then evaluate and compare three state-of-the-art ranking mod-
els from the literature based on this ground truth. We explain the
results in the context of the observed user behavior in LOV and
propose variations and configurations that outperform the baseline.
The published dataset can be applied for future ontology ranking
evaluations and LTR experiments.

In future work, the LOVBench dataset can be updated in regular
time intervals to capture the evolution of ontologies and their rele-
vance in the Semantic Web. The continuous nature of LOVBench
further allows the benchmark to grow in terms of queries and judg-
ments over time. Moreover, future work includes online evaluation
of learnt models in LOV to evaluate their effectiveness with actual
user feedback, e.g., based on users’ average click position.

RESOURCES
The LOVBench dataset, the code for the extraction of selected fea-
tures, the code to run the experiments presented in this paper, and
the cleaned search logs collected from LOV are available online9.
9LOVBench resources: https://github.com/nut-hatch/LOVBench

https://github.com/nut-hatch/LOVBench

LOVBench: Ontology Ranking Benchmark WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork.

2019. Addressing Trust Bias for Unbiased Learning-to-Rank. In The World Wide
Web Conference. ACM, 4–14. https://doi.org/10.1145/3308558.3313697

[2] Harith Alani, Christopher Brewster, andNigel Shadbolt. 2006. RankingOntologies
with AKTiveRank. In International Semantic Web Conference. Springer, 1–15.
https://doi.org/10.1007/11926078_1

[3] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc.

[4] Tim Berners-Lee, James Hendler, Ora Lassila, et al. 2001. The Semantic Web.
Scientific American 284, 5 (2001), 28–37.

[5] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2011. Linked Data: The Story
So Far. In Semantic Services, Interoperability and Web Applications: Emerging
Concepts. IGI Global, 205–227. https://doi.org/10.4018/978-1-60960-593-3.ch008

[6] Christopher Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Gregory N Hullender. 2005. Learning to Rank using Gradient
Descent. In Proceedings of the 22nd International Conference on Machine Learning.
ACM, 89–96. https://doi.org/10.1145/1102351.1102363

[7] Anila Sahar Butt, Armin Haller, and Lexing Xie. 2014. Ontology Search: An
Empirical Evaluation. In International Semantic Web Conference. Springer, 130–
147. https://doi.org/10.1007/978-3-319-11915-1_9

[8] Anila Sahar Butt, Armin Haller, and Lexing Xie. 2016. DWRank: Learning
Concept Ranking for Ontology Search. Semantic Web 7, 4 (2016), 447–461. https:
//doi.org/10.3233/SW-150185

[9] Olivier Chapelle and Ya Zhang. 2009. A Dynamic Bayesian Network Click Model
for Web Search Ranking. In Proceedings of the 18th International Conference on
World Wide Web. ACM, 1–10. https://doi.org/10.1145/1526709.1526711

[10] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for
Web Search. Synthesis Lectures on Information Concepts, Retrieval, and Services 7,
3 (2015), 1–115. https://doi.org/10.2200/S00654ED1V01Y201507ICR043

[11] Kevyn Collins-Thompson, Paul Bennett, Fernando Diaz, Charlie Clarke, and
Ellen M Voorhees. 2013. TREC 2013 Web Track Overview. TREC (2013).

[12] Kevyn Collins-Thompson, Craig Macdonald, Paul Bennett, Fernando Diaz, and
Ellen M Voorhees. 2015. TREC 2014 Web Track Overview. TREC (2015).

[13] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An Ex-
perimental Comparison of Click Position-Bias Models. In Proceedings of the
2008 International Conference on Web Search and Data Mining. ACM, 87–94.
https://doi.org/10.1145/1341531.1341545

[14] Mathieu d’Aquin and Natalya F Noy. 2012. Where to publish and find ontologies?
A survey of ontology libraries. Journal of Web Semantics 11 (2012), 96–111.
https://doi.org/10.1016/j.websem.2011.08.005

[15] Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R Scott Cost, Yun Peng, Pavan
Reddivari, Vishal Doshi, and Joel Sachs. 2004. Swoogle: A Search and Metadata
Engine for the Semantic Web. In Proceedings of the Thirteenth ACM International
Conference on Information and Knowledge Management. ACM, 652–659. https:
//doi.org/10.1145/1031171.1031289

[16] Li Ding, Rong Pan, Tim Finin, Anupam Joshi, Yun Peng, and Pranam Kolari. 2005.
Finding and Ranking Knowledge on the Semantic Web. In International Semantic
Web Conference. Springer, 156–170. https://doi.org/10.1007/11574620_14

[17] Georges E Dupret and Benjamin Piwowarski. 2008. A User Browsing Model to
Predict Search Engine Click Data from Past Observations. In Proceedings of the
31st Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 331–338. https://doi.org/10.1145/1390334.1390392

[18] Jens Hartmann, Raúl Palma, and Asunción Gómez-Pérez. 2009. Ontology Reposi-
tories. In Handbook on Ontologies. Springer, 551–571. https://doi.org/10.1007/978-
3-540-92673-3_25

[19] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-Based Evaluation
of IR Techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446. https://doi.org/10.1145/582415.582418

[20] Megan Katsumi and Michael Grüninger. 2017. Choosing ontologies for reuse.
Applied Ontology 12, 3-4 (2017), 195–221. https://doi.org/10.3233/AO-160171

[21] Niklas Kolbe, Sylvain Kubler, and Yves Le Traon. 2019. Popularity-driven Ontol-
ogy Ranking using Qualitative Features. In International Semantic Web Conference.
Springer. https://doi.org/10.1007/978-3-030-30793-6_19

[22] Niklas Kolbe, Sylvain Kubler, Jérémy Robert, Yves Le Traon, and Arkady Za-
slavsky. 2019. Linked Vocabulary Recommendation Tools for Internet of Things:
A Survey. ACM Computing Surveys (CSUR) 51, 6 (2019), 127. https://doi.org/10.
1145/3284316

[23] Yuangui Lei, Victoria Uren, and Enrico Motta. 2006. Semsearch: A Search Engine
for the Semantic Web. In International Conference on Knowledge Engineering and
Knowledge Management. Springer, 238–245. https://doi.org/10.1007/11891451_22

[24] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331. https://doi.org/10.1007/978-
3-642-14267-3

[25] Craig Macdonald, Rodrygo LT Santos, and Iadh Ounis. 2013. The whens and hows
of learning to rank for web search. Information Retrieval 16, 5 (2013), 584–628.
https://doi.org/10.1007/s10791-012-9209-9

[26] Marcos Martínez-Romero, Clement Jonquet, Martin J O’Connor, John Graybeal,
Alejandro Pazos, and Mark A Musen. 2017. NCBO Ontology Recommender 2.0:
an enhanced approach for biomedical ontology recommendation. Journal of
Biomedical Semantics 8, 1 (2017), 21. https://doi.org/10.1186/s13326-017-0128-y

[27] Marcos Martínez-Romero, José M Vázquez-Naya, Javier Pereira, and Alejandro
Pazos. 2014. BiOSS: A system for biomedical ontology selection. Computer
Methods and Programs in Biomedicine 114, 1 (2014), 125–140. https://doi.org/10.
1016/j.cmpb.2014.01.020

[28] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene in action:
covers Apache Lucene 3.0. Manning Publications Co.

[29] Tom Minka and Stephen Robertson. 2008. Selection bias in the LETOR datasets.
In SIGIR Workshop on Learning to Rank for Information Retrieval. Citeseer, 48–
51. https://www.microsoft.com/en-us/research/publication/selection-bias-letor-
datasets/

[30] Natalya F Noy, Paul R Alexander, Rave Harpaz, Patricia L Whetzel, Raymond W
Fergerson, and Mark A Musen. 2013. Getting Lucky in Ontology Search: A Data-
Driven Evaluation Framework for Ontology Ranking. In International Semantic
Web Conference. Springer, 444–459. https://doi.org/10.1007/978-3-642-41335-
3_28

[31] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection
for research on learning to rank for information retrieval. Information Retrieval
13, 4 (2010), 346–374. https://doi.org/10.1007/s10791-009-9123-y

[32] Yuzhong Qu and Gong Cheng. 2011. Falcons Concept Search: A Practical Search
Engine for Web Ontologies. IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans 41, 4 (2011), 810–816. https://doi.org/10.1109/
TSMCA.2011.2132705

[33] Antonio J Roa-Valverde and Miguel-Angel Sicilia. 2014. A survey of approaches
for ranking on the web of data. Information Retrieval 17, 4 (2014), 295–325.
https://doi.org/10.1007/s10791-014-9240-0

[34] Stephen E Robertson. 1997. Overview of the okapi projects. Journal of Documen-
tation 53, 1 (1997), 3–7. https://doi.org/10.1108/EUM0000000007186

[35] Cristiano Rocha, Daniel Schwabe, and Marcus Poggi Aragao. 2004. A Hybrid
Approach for Searching in the Semantic Web. In Proceedings of the 13th Interna-
tional Conference on World Wide Web. ACM, 374–383. https://doi.org/10.1145/
988672.988723

[36] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A Vector Space Model
for Automatic Indexing. Commun. ACM 18, 11 (1975), 613–620. https://doi.org/
10.1145/361219.361220

[37] Johann Schaible, Thomas Gottron, and Ansgar Scherp. 2014. Survey on Common
Strategies of Vocabulary Reuse in Linked Open Data Modeling. In European
Semantic Web Conference. Springer, 457–472. https://doi.org/10.1007/978-3-319-
07443-6_31

[38] Johann Schaible, Thomas Gottron, and Ansgar Scherp. 2016. TermPicker: En-
abling the Reuse of Vocabulary Terms by Exploiting Data from the Linked
Open Data Cloud. In International Semantic Web Conference. Springer, 101–117.
https://doi.org/10.1007/978-3-319-34129-3_7

[39] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug,
Werner Ceusters, Louis J Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J
Mungall, et al. 2007. The OBO Foundry: coordinated evolution of ontologies to
support biomedical data integration. Nature Biotechnology 25, 11 (2007), 1251.
https://doi.org/10.1038/nbt1346

[40] Bram van den Akker, Ilya Markov, and Maarten de Rijke. 2019. ViTOR: Learning
to Rank Webpages Based on Visual Features. In The World Wide Web Conference.
ACM, 3279–3285. https://doi.org/10.1145/3308558.3313419

[41] Pierre-Yves Vandenbussche, Ghislain A Atemezing, María Poveda-Villalón, and
Bernard Vatant. 2017. Linked Open Vocabularies (LOV): a gateway to reusable
semantic vocabularies on the Web. Semantic Web 8, 3 (2017), 437–452. https:
//doi.org/10.3233/SW-160213

[42] Chao Wang, Yiqun Liu, and Shaoping Ma. 2016. Building a click model: From
idea to practice. CAAI Transactions on Intelligence Technology 1, 4 (2016), 313–322.
https://doi.org/10.1016/j.trit.2016.12.003

[43] Gang Wu, Juanzi Li, Ling Feng, and Kehong Wang. 2008. Identifying Potentially
Important Concepts and Relations in an Ontology. In International Semantic Web
Conference. Springer, 33–49. https://doi.org/10.1007/978-3-540-88564-1_3

[44] Jun Xu and Hang Li. 2007. Adarank: A Boosting Algorithm for Information
Retrieval. In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 391–398. https:
//doi.org/10.1145/1277741.1277809

[45] Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann,
and Sören Auer. 2016. Quality assessment for Linked Data: A Survey. Semantic
Web 7, 1 (2016), 63–93. https://doi.org/10.3233/SW-150175

https://doi.org/10.1145/3308558.3313697
https://doi.org/10.1007/11926078_1
https://doi.org/10.4018/978-1-60960-593-3.ch008
https://doi.org/10.1145/1102351.1102363
https://doi.org/10.1007/978-3-319-11915-1_9
https://doi.org/10.3233/SW-150185
https://doi.org/10.3233/SW-150185
https://doi.org/10.1145/1526709.1526711
https://doi.org/10.2200/S00654ED1V01Y201507ICR043
https://doi.org/10.1145/1341531.1341545
https://doi.org/10.1016/j.websem.2011.08.005
https://doi.org/10.1145/1031171.1031289
https://doi.org/10.1145/1031171.1031289
https://doi.org/10.1007/11574620_14
https://doi.org/10.1145/1390334.1390392
https://doi.org/10.1007/978-3-540-92673-3_25
https://doi.org/10.1007/978-3-540-92673-3_25
https://doi.org/10.1145/582415.582418
https://doi.org/10.3233/AO-160171
https://doi.org/10.1007/978-3-030-30793-6_19
https://doi.org/10.1145/3284316
https://doi.org/10.1145/3284316
https://doi.org/10.1007/11891451_22
https://doi.org/10.1007/978-3-642-14267-3
https://doi.org/10.1007/978-3-642-14267-3
https://doi.org/10.1007/s10791-012-9209-9
https://doi.org/10.1186/s13326-017-0128-y
https://doi.org/10.1016/j.cmpb.2014.01.020
https://doi.org/10.1016/j.cmpb.2014.01.020
https://www.microsoft.com/en-us/research/publication/selection-bias-letor-datasets/
https://www.microsoft.com/en-us/research/publication/selection-bias-letor-datasets/
https://doi.org/10.1007/978-3-642-41335-3_28
https://doi.org/10.1007/978-3-642-41335-3_28
https://doi.org/10.1007/s10791-009-9123-y
https://doi.org/10.1109/TSMCA.2011.2132705
https://doi.org/10.1109/TSMCA.2011.2132705
https://doi.org/10.1007/s10791-014-9240-0
https://doi.org/10.1108/EUM0000000007186
https://doi.org/10.1145/988672.988723
https://doi.org/10.1145/988672.988723
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1007/978-3-319-07443-6_31
https://doi.org/10.1007/978-3-319-07443-6_31
https://doi.org/10.1007/978-3-319-34129-3_7
https://doi.org/10.1038/nbt1346
https://doi.org/10.1145/3308558.3313419
https://doi.org/10.3233/SW-160213
https://doi.org/10.3233/SW-160213
https://doi.org/10.1016/j.trit.2016.12.003
https://doi.org/10.1007/978-3-540-88564-1_3
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.1145/1277741.1277809
https://doi.org/10.3233/SW-150175

	Abstract
	1 Introduction
	2 Related Work
	3 LOVBench Approach
	4 LOV User Feedback Evaluation
	4.1 Search Log Analysis
	4.2 Relevance Inference

	5 LOVBench Dataset
	5.1 Feature Description
	5.2 Term Sampling
	5.3 Final LOVBench Dataset

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Discussion
	7.1 Practical Recommendations
	7.2 Limitations

	8 Conclusion
	References

