109,778 research outputs found

    A 2D based Partition Strategy for Solving Ranking under Team Context (RTP)

    Full text link
    In this paper, we propose a 2D based partition method for solving the problem of Ranking under Team Context(RTC) on datasets without a priori. We first map the data into 2D space using its minimum and maximum value among all dimensions. Then we construct window queries with consideration of current team context. Besides, during the query mapping procedure, we can pre-prune some tuples which are not top ranked ones. This pre-classified step will defer processing those tuples and can save cost while providing solutions for the problem. Experiments show that our algorithm performs well especially on large datasets with correctness

    Entity Linking for Queries by Searching Wikipedia Sentences

    Full text link
    We present a simple yet effective approach for linking entities in queries. The key idea is to search sentences similar to a query from Wikipedia articles and directly use the human-annotated entities in the similar sentences as candidate entities for the query. Then, we employ a rich set of features, such as link-probability, context-matching, word embeddings, and relatedness among candidate entities as well as their related entities, to rank the candidates under a regression based framework. The advantages of our approach lie in two aspects, which contribute to the ranking process and final linking result. First, it can greatly reduce the number of candidate entities by filtering out irrelevant entities with the words in the query. Second, we can obtain the query sensitive prior probability in addition to the static link-probability derived from all Wikipedia articles. We conduct experiments on two benchmark datasets on entity linking for queries, namely the ERD14 dataset and the GERDAQ dataset. Experimental results show that our method outperforms state-of-the-art systems and yields 75.0% in F1 on the ERD14 dataset and 56.9% on the GERDAQ dataset

    Incremental Discovery of Prominent Situational Facts

    Full text link
    We study the novel problem of finding new, prominent situational facts, which are emerging statements about objects that stand out within certain contexts. Many such facts are newsworthy---e.g., an athlete's outstanding performance in a game, or a viral video's impressive popularity. Effective and efficient identification of these facts assists journalists in reporting, one of the main goals of computational journalism. Technically, we consider an ever-growing table of objects with dimension and measure attributes. A situational fact is a "contextual" skyline tuple that stands out against historical tuples in a context, specified by a conjunctive constraint involving dimension attributes, when a set of measure attributes are compared. New tuples are constantly added to the table, reflecting events happening in the real world. Our goal is to discover constraint-measure pairs that qualify a new tuple as a contextual skyline tuple, and discover them quickly before the event becomes yesterday's news. A brute-force approach requires exhaustive comparison with every tuple, under every constraint, and in every measure subspace. We design algorithms in response to these challenges using three corresponding ideas---tuple reduction, constraint pruning, and sharing computation across measure subspaces. We also adopt a simple prominence measure to rank the discovered facts when they are numerous. Experiments over two real datasets validate the effectiveness and efficiency of our techniques

    Models for Paired Comparison Data: A Review with Emphasis on Dependent Data

    Get PDF
    Thurstonian and Bradley-Terry models are the most commonly applied models in the analysis of paired comparison data. Since their introduction, numerous developments have been proposed in different areas. This paper provides an updated overview of these extensions, including how to account for object- and subject-specific covariates and how to deal with ordinal paired comparison data. Special emphasis is given to models for dependent comparisons. Although these models are more realistic, their use is complicated by numerical difficulties. We therefore concentrate on implementation issues. In particular, a pairwise likelihood approach is explored for models for dependent paired comparison data, and a simulation study is carried out to compare the performance of maximum pairwise likelihood with other limited information estimation methods. The methodology is illustrated throughout using a real data set about university paired comparisons performed by students.Comment: Published in at http://dx.doi.org/10.1214/12-STS396 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce

    Full text link
    In this paper, we present our work towards comparing on-line and off-line evaluation metrics in the context of small e-commerce recommender systems. Recommending on small e-commerce enterprises is rather challenging due to the lower volume of interactions and low user loyalty, rarely extending beyond a single session. On the other hand, we usually have to deal with lower volumes of objects, which are easier to discover by users through various browsing/searching GUIs. The main goal of this paper is to determine applicability of off-line evaluation metrics in learning true usability of recommender systems (evaluated on-line in A/B testing). In total 800 variants of recommending algorithms were evaluated off-line w.r.t. 18 metrics covering rating-based, ranking-based, novelty and diversity evaluation. The off-line results were afterwards compared with on-line evaluation of 12 selected recommender variants and based on the results, we tried to learn and utilize an off-line to on-line results prediction model. Off-line results shown a great variance in performance w.r.t. different metrics with the Pareto front covering 68\% of the approaches. Furthermore, we observed that on-line results are considerably affected by the novelty of users. On-line metrics correlates positively with ranking-based metrics (AUC, MRR, nDCG) for novice users, while too high values of diversity and novelty had a negative impact on the on-line results for them. For users with more visited items, however, the diversity became more important, while ranking-based metrics relevance gradually decrease.Comment: Submitted to ACM Hypertext 2020 Conferenc

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    On Minimum Violations Ranking in Paired Comparisons

    Full text link
    Ranking a set of objects from the most dominant one to the least, based on the results of paired comparisons, proves to be useful in many contexts. Using the rankings of teams or individuals players in sports to seed tournaments is an example. The quality of a ranking is often evaluated by the number of violations, cases in which an object is ranked lower than another that it has dominated in a comparison, that it contains. A minimum violations ranking (MVR) method, as its name suggests, searches specifically for rankings that have the minimum possible number of violations which may or may not be zero. In this paper, we present a method based on statistical physics that overcomes conceptual and practical difficulties faced by earlier studies of the problem.Comment: 10 pages, 10 figures; typos corrected (v2
    • …
    corecore