24,162 research outputs found

    Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    Get PDF
    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan

    Responder Identification in Clinical Trials with Censored Data

    Get PDF
    We present a newly developed technique for identification of positive and negative responders to a new treatment which was compared to a classical treatment (or placebo) in a randomized clinical trial. This bump-hunting-based method was developed for trials in which the two treatment arms do not differ in survival overall. It checks in a systematic manner if certain subgroups, described by predictive factors do show difference in survival due to the new treatment. Several versions of the method were discussed and compared in a simulation study. The best version of the responder identification method employs martingale residuals to a prognostic model as response in a stabilized through bootstrapping bump hunting procedure. On average it recognizes 90% of the time the correct positive responder group and 99% of the time the correct negative responder group

    Survival ensembles by the sum of pairwise differences with application to lung cancer microarray studies

    Full text link
    Lung cancer is among the most common cancers in the United States, in terms of incidence and mortality. In 2009, it is estimated that more than 150,000 deaths will result from lung cancer alone. Genetic information is an extremely valuable data source in characterizing the personal nature of cancer. Over the past several years, investigators have conducted numerous association studies where intensive genetic data is collected on relatively few patients compared to the numbers of gene predictors, with one scientific goal being to identify genetic features associated with cancer recurrence or survival. In this note, we propose high-dimensional survival analysis through a new application of boosting, a powerful tool in machine learning. Our approach is based on an accelerated lifetime model and minimizing the sum of pairwise differences in residuals. We apply our method to a recent microarray study of lung adenocarcinoma and find that our ensemble is composed of 19 genes, while a proportional hazards (PH) ensemble is composed of nine genes, a proper subset of the 19-gene panel. In one of our simulation scenarios, we demonstrate that PH boosting in a misspecified model tends to underfit and ignore moderately-sized covariate effects, on average. Diagnostic analyses suggest that the PH assumption is not satisfied in the microarray data and may explain, in part, the discrepancy in the sets of active coefficients. Our simulation studies and comparative data analyses demonstrate how statistical learning by PH models alone is insufficient.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS426 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data

    Get PDF
    Biomarkers which predict patient’s survival can play an important role in medical diagnosis and treatment. How to select the significant biomarkers from hundreds of protein markers is a key step in survival analysis. In this paper a novel method is proposed to detect the prognostic biomarkers ofsurvival in colorectal cancer patients using wavelet analysis, genetic algorithm, and Bayes classifier. One dimensional discrete wavelet transform (DWT) is normally used to reduce the dimensionality of biomedical data. In this study one dimensional continuous wavelet transform (CWT) was proposed to extract the features of colorectal cancer data. One dimensional CWT has no ability to reduce dimensionality of data, but captures the missing features of DWT, and is complementary part of DWT. Genetic algorithm was performed on extracted wavelet coefficients to select the optimized features, using Bayes classifier to build its fitness function. The corresponding protein markers were located based on the position of optimized features. Kaplan-Meier curve and Cox regression model 2 were used to evaluate the performance of selected biomarkers. Experiments were conducted on colorectal cancer dataset and several significant biomarkers were detected. A new protein biomarker CD46 was found to significantly associate with survival time
    • …
    corecore