23,154 research outputs found

    The influence of mutation on population dynamics in multiobjective genetic programming

    Get PDF
    Using multiobjective genetic programming with a complexity objective to overcome tree bloat is usually very successful but can sometimes lead to undesirable collapse of the population to all single-node trees. In this paper we report a detailed examination of why and when collapse occurs. We have used different types of crossover and mutation operators (depth-fair and sub-tree), different evolutionary approaches (generational and steady-state), and different datasets (6-parity Boolean and a range of benchmark machine learning problems) to strengthen our conclusion. We conclude that mutation has a vital role in preventing population collapse by counterbalancing parsimony pressure and preserving population diversity. Also, mutation controls the size of the generated individuals which tends to dominate the time needed for fitness evaluation and therefore the whole evolutionary process. Further, the average size of the individuals in a GP population depends on the evolutionary approach employed. We also demonstrate that mutation has a wider role than merely culling single-node individuals from the population; even within a diversity-preserving algorithm such as SPEA2 mutation has a role in preserving diversity

    A quantum genetic algorithm with quantum crossover and mutation operations

    Full text link
    In the context of evolutionary quantum computing in the literal meaning, a quantum crossover operation has not been introduced so far. Here, we introduce a novel quantum genetic algorithm which has a quantum crossover procedure performing crossovers among all chromosomes in parallel for each generation. A complexity analysis shows that a quadratic speedup is achieved over its classical counterpart in the dominant factor of the run time to handle each generation.Comment: 21 pages, 1 table, v2: typos corrected, minor modifications in sections 3.5 and 4, v3: minor revision, title changed (original title: Semiclassical genetic algorithm with quantum crossover and mutation operations), v4: minor revision, v5: minor grammatical corrections, to appear in QI

    Use of the q-Gaussian mutation in evolutionary algorithms

    Get PDF
    Copyright @ Springer-Verlag 2010.This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.This work was supported in part by FAPESP and CNPq in Brazil and in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant EP/E060722/1 and Grant EP/E060722/2

    Improved sampling of the pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm

    Get PDF
    Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems. We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort

    Population extremal optimisation for discrete multi-objective optimisation problems

    Get PDF
    The power to solve intractable optimisation problems is often found through population based evolutionary methods. These include, but are not limited to, genetic algorithms, particle swarm optimisation, differential evolution and ant colony optimisation. While showing much promise as an effective optimiser, extremal optimisation uses only a single solution in its canonical form – and there are no standard population mechanics. In this paper, two population models for extremal optimisation are proposed and applied to a multi-objective version of the generalised assignment problem. These models use novel intervention/interaction strategies as well as collective memory in order to allow individual population members to work together. Additionally, a general non-dominated local search algorithm is developed and tested. Overall, the results show that improved attainment surfaces can be produced using population based interactions over not using them. The new EO approach is also shown to be highly competitive with an implementation of NSGA-II.No Full Tex
    corecore